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ABSTRACT

Existing multi-objective multi-armed bandit (MO-MAB) approaches mainly focus
on achieving Pareto optimality. However, a Pareto optimal arm that receives a
high score from one user may lead to a low score from another, since in real-world
scenarios, users often have diverse preferences across different objectives. Instead,
these preferences should inform customized learning, a factor usually neglected
in prior research. To address this need, we study a preference-aware MO-MAB
framework in the presence of explicit user preferences, where each user’s overall-
reward is modeled as the inner product of user preference and arm reward. This
new framework shifts the focus from merely achieving Pareto optimality to further
optimizing within the Pareto front under preference-centric customization. To the
best of our knowledge, this is the first theoretical exploration of customized MO-
MAB optimization based on explicit user preferences. This framework introduces
new and unique challenges for algorithm design for customized optimization. To
address these challenges, we incorporate preference estimation and preference-
aware optimization as key mechanisms for preference adaptation, and develop new
analytical techniques to rigorously account for the impact of preference estimation
errors on overall performance. Under this framework, we consider three preference
structures inspired by practical applications, with tailored algorithms that are
proven to achieve near-optimal regret, and show good numerical performance.

1 INTRODUCTION

Multi-objective multi-armed bandit (MO-MAB) problem is an important extension of the multi-
armed bandits (MAB) (Drugan & Nowe, 2013). In MO-MAB problems each arm is associated
with a D-dimensional reward vector. In this environment, objectives could conflict, leading to arms
that are optimal in one dimension, but suboptimal in others. A natural solution is utilizing Pareto
ordering to compare arms based on their rewards (Drugan & Nowe, 2013). Specifically, for any arm
i ∈ [K], if its expected reward µi is non-dominated by that of any other arms, arm i is deemed to be
Pareto optimal. The set containing all Pareto optimal arms is denoted as Pareto front O∗. Formally,
O∗ = {i | µj ̸≻ µi,∀j ∈ [K] \ i}, where u ≻ v holds if and only if u(d) > v(d),∀d ∈ [D]. The
performance is then evaluated by Pareto regret, which measures the cumulative minimum distance
between the learner’s obtained rewards and rewards of arms within O∗ (Drugan & Nowe, 2013).
However, simply obtaining a solution that has good Pareto regret does not take into account the fact
that individual users would like to pick the choice that matches their specific needs. As the example
depicted in Fig. 1, given multiple Pareto optimal restaurants, one user may give a higher preference
to quality, while another user may give a higher preference to affordibility. This means that user
preferences need to be accounted for in the MO-MAB problem set up in order to choose the right
solution on the Pareto front O∗. This is the focus of this paper.
Although numerous MO-MAB studies have been conducted, most of them achieve Pareto optimality
via an arm selection policy that is uniform across all users, which we refer to as a global policy.
Specifically, one representative line of research focuses on efficiently estimating the entire Pareto
front O∗, and the action in each round is randomly chosen on the estimated Pareto front (Drugan &
Nowe, 2013; Turgay et al., 2018; Lu et al., 2019; Drugan, 2018; Balef & Maghsudi, 2023). Another
line of research transforms the D-dimensional reward into a scalar using a scalarization function,
which targets a specific Pareto optimal arm solution without the costly estimation of entire Pareto
front Drugan & Nowe (2013); Busa-Fekete et al. (2017); Mehrotra et al. (2020); Xu & Klabjan (2023).
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Hi, are there any resturants 
nearby for dinner?

Hi, you can go to resturant 
B, it’s a fancy resturant with 
good taste and service:
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User reward rating

Hi, are there any resturants 
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Figure 1: A scenario of users interacting with a conversational recommender for restaurant recommendation.
(a) Recommender achieves Pareto optimality but receives low rating from user. (b) Recommendations with high
users’ ratings when the recommender captures users’ preferences and aligns optimization with preferences.

These studies construct the scalarization function in a user-agnostic manner, causing the target arm
solution to remain the same across different users.
However, simply achieving Pareto optimality using a global policy may not yield favorable outcomes,
since, as mentioned earlier, users often have diverse preferences across different objectives. Consider
the following scenario depicted in Fig. 1(a), where two users with distinct preferences interact with a
conversational recommender to find a nearby restaurant for dinner. The upper section lists restaurant
options, each associated with multi-dimensional rewards (e.g., price, taste, service), while the lower
section shows the dialogues and users’ reward ratings for the recommendations. Clearly, restaurants
A, B, and C are Pareto optimal, as none of their rewards are dominated by others. Previous research
using a global policy would either randomly recommend a restaurant from A, B, or C, or select one
based on a fixed global criterion to achieve Pareto optimality. However, while recommending a
restaurant like B might lead to positive feedback from user-1, it is likely to result in a low reward
rating from user-2, who prefers an economical meal, since restaurant B is expensive. In contrast,
Fig. 1(b) illustrates that when the system accurately captures user preferences (e.g., user-1 prefers a
tasty meal, while user-2 prefers a cheap meal), it can select options more likely to receive positive
reward ratings from both users. Therefore, we argue that optimizing MO-MAB should be customized
based on the user preferences rather than solely aiming for Pareto optimality with a global policy.

While interactive user modeling and customized optimization cross multiple objectives presents
promising experimental results in some areas including recommendation (Xie et al., 2021), ranking
(Wanigasekara et al., 2019), and more (Reymond et al., 2024), there are no theoretical studies on
MO-MAB customization under explicit user preferences. Particularly, two open problems remain: (1)
how to develop provably efficient algorithms for customized optimization under different preference
structure (e.g., unknonwn preference, non-stationary preference, corrupted preference)? (2) how does
the additional user preferences impact the overall performance?

To fill this gap, we introduce a formulation of MO-MAB problem, where each user is associated
with a D-dimensional preference vector, referred to as a preference for short, with each element
representing the user’s preference for the corresponding objective. Formally, in each round t, user
incurs a stochastic preference ct∈RD. The player selects an arm at and observes a stochastic reward
rat,t∈RD. We define the scalar overall-reward as the inner product of arm reward rat,t and user
preference ct. The learner’s goal is to maximize the overall-reward accrued over a given time horizon.
For performance evaluation, we define the regret metric as the cumulative expected gap related to the
overall-reward. We term this problem as Preference-Aware MO-MAB (PAMO-MAB).
Our contributions are summarized as follows.
• New theoretical results. To the best of our knowledge, this is the first work that explicitly showcases

the fundamental impact of user preferences in the regret optimization of MO-MAB problems. Moti-
vated by real applications, we consider the PAMO-MAB problem under three practical preference
structures: known (possibly dynamic) preferences, unknown (possibly dynamic) preferences with
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feedback, and hidden preferences, with tailored algorithms that are proven to achieve near-optimal
regret in each case. The expressions of our results are in an explicit form that capture a clear
dependency on various preference setups.

• New preference-aware algorithm design. We derive a lower bound to highlight the fundamental
reason why existing algorithms based on the global policies are no longer feasible for the PAMO-
MAB problem. Hence, we propose tailored algorithms for PAMO-MAB under different preference
structures. In contrast to other MO-MAB methods, our algorithms involve two novel designs:
(D1) Preference estimation mechanism and (D2) Preference-aware optimization, which allows us
to effectively capture the user preferences and optimize the overall outcome under the estimated
preferences for customization. Note that the designs of (D1) and (D2) are not trivial generalizations
of existing MO-MAB methods because the preference structure and the reward structure are
different. In addition to reward estimation, the preference estimation also introduces uncertainty,
which further affects the arm selection and reward estimation, making it necessary to carefully
design the estimation approach and new objective term for optimization.

• New analytical ideas. Our regret analysis involves novel ideas for solving the new difficulties
due to the design of (D1) and (D2). (a) The regret is influenced by the joint estimation error of
both preference and reward, which significantly increases the difficulty of regret analysis. To
address this, we introduce a tunable parameter ϵ to decompose the suboptimal actions into two
disjoint sets based on whether the corresponding preference estimation is sufficiently accurate or
not. This enables the regret that is caused by reward estimation error to be independently analyzed
on such two sets. (b) When the preference estimation is accurate under parameter ϵ, the error can
be analyzed based on the reward estimation. Moreover, when the preference estimation is not
sufficiently accurate, since the idea (a) does not explicitly decouple the effect of the joint error
in preference and reward estimations, the effect of the set of suboptimal actions is still unclear.
To address this, we transfer this set to a uniform imprecise estimation set, such that a tractable
formulation can be constructed based on the distance bound.

2 RELATED WORK

Multi-Objective Multi-Armed Bandits. MO-MAB extends scalar rewards in the standard MAB
problem to multi-dimensional vectors. The Pareto-UCB work (Drugan & Nowe, 2013) introduced
the MO-MAB framework and Pareto regret as a metric, achieving O(log T ) Pareto regret using
the UCB technique. Other techniques, including Knowledge Gradient (Yahyaa et al., 2014) and
Thompson Sampling (Yahyaa & Manderick, 2015), have subsequently been adapted for MO-MAB.
Additionally, researchers have extended the contextual setup to MO-MAB, where the action reward
for each objective is modeled as a function of the input context and action (Turgay et al., 2018; Lu
et al., 2019). These studies aim to efficiently approximate the entire Pareto front O∗, and employ a
random arm selection policy on the estimated Pareto front to achieve Pareto optimality. However,
computing the full Pareto front is computationally expensive, leading to another line of work where
multi-dimensional rewards are scalarized. This approach converts the multi-dimensional reward into
a scalar value through a scalarization function, targeting a specific Pareto optimal solution without
approximating the entire Pareto front. The scalarization function can either be randomly initialized
(chosen) (Drugan & Nowe, 2013; Xu & Klabjan, 2023), or optimized based on a fixed metric, such
as the Generalized Gini Index score (Busa-Fekete et al., 2017; Mehrotra et al., 2020). Nonetheless,
existing studies primarily achieve Pareto optimality through a global policy for arm selection across
all users. As discussed in Section 1, merely achieving Pareto optimality with a global policy may
not yield favorable outcomes, as users have diverse preferences on different objectives. Therefore,
customized MO-MAB optimization under user preferences is essential, which is the goal of our work.
Preference-based MO-MAB optimization. Recent studies have explored MO-MAB optimization
using lexicographic order (Ehrgott, 2005) to reflect user preferences. In lexicographic order, objectives
are prioritized hierarchically, where the first objective takes absolute precedence over the second, and
so on. Hüyük & Tekin (2021) first introduced lexicographic order to MO-MAB, and Cheng et al.
(2024) extended it to mixed Pareto-lexicographic environments. However, lexicographic order may
not adequately capture a user’s overall satisfaction in real-world applications, where preferences often
involve trade-offs rather than strict prioritization. For example, a user may prefer a $10 meal with
good taste over a $9.5 meal with poor taste, even though cost is a priority. Our work proposes a more
general framework that incorporates a weighted order based on the user’s explicit preference space.
Notably, the lexicographic order becomes a special case of our proposed PAMO-MAB framework.
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3 PROBLEM FORMULATION

We consider MO-MAB with K arms and D objectives. At each round t ∈ [T ], the learner chooses an
arm at to play and observes a stochastic D-dimensional reward vector rat,t ∈ R ⊆ RD for action
at, which we refer to as reward. For the reward, we make the following standard assumption:
Assumption 3.1 (Bounded stochastic reward). For i ∈ [K], t ∈ [T ], d ∈ [D], each reward entry
ri,t(d) is independently drawn from a fixed but unknown distribution Fri,d with mean µi(d) and
variance σ2

r,i,d, satisfying ri,t(d) ∈ [0, 1], and σ2
r,i,d ∈ [σ2

r↓, σ
2
r↑], where σ2

r↓, σ
2
r↑ ∈ R+.

User preferences. At each round t, we consider the user to be associated with a stochastic D-
dimensional preference vector ct ∈ C ⊆ RD, indicating the user preferences across the D objectives.
We refer to this vector as preference for short. Specifically, we make the following assumptions:
Assumption 3.2 (Bounded stochastic preference). For t ∈ [T ], d ∈ [D], each preference entry ct(d)
is independently drawn from a possibly dynamic distribution Fct,d (either known or unknown) with
mean ct(d) and variance σ2

c,t,d, satisfying ct(d) ≥ 0, ∥ct∥1 ≤ δ, σ2
c,t,d ∈ [0, σ2

c ].
Assumption 3.3 (Independence). For t∈ [T ], i∈ [K], d1, d2∈ [D], ri,t(d1), ct(d2) are independent.

Assumption 3.3 is common in real applications since ct and rt are inherently determined by indepen-
dent factors: user characteristics and arm properties. For example, an individual user’s preferences
do not influence a restaurant’s location, environment, pricing level, etc., and vice versa.
Preference-aware reward. We define an overall-reward as the inner product of arm’s reward and
user’s preference, which is as a scalar and models the user reward rating under their preferences.
Specifically, we refer to the inner product mapping Φ : C ×R → R as the aggregation function. In
each round t, the overall-reward gat,t for the chosen arm at is defined as:

gat,t = Φ(ct, rat,t) =
∑
d∈[D] ct(d) · rat,t(d) = cTt rat,t. (1)

To evaluate the learner’s performance, we define regret relative to a possibly dynamic oracle as the
difference in expected overall-reward, i.e., the difference between the expected cumulative overall-
reward by selecting the arm with the highest expected overall-reward at each time t and the expected
overall-reward under the learner’s policy:

R(T ) =
∑T

t=1

(
E[Φ(ct, ra∗

t ,t
)]− E[Φ(ct, rat,t)]

)
=
∑T

t=1 c
T
t (µa∗

t
− µat

) (2)

where a∗t = argmaxi∈[K] E[Φ(ct, ri,t)] refers to the best arm at round t. The goal is to minimize
the cumulative regret R(T ). We term this problem as Preference-Aware MO-MAB (PAMO-MAB).
Remark 3.1. Despite the linear model of overall reward, PAMO-MAB differs fundamentally from
linear (contextual) bandits (Abbasi-Yadkori et al., 2011; Chu et al., 2011) for the following reasons:
• In linear bandits, the input features are observable before making decisions, whereas in PAMO-

MAB, both the random reward and preference can be unknown and must be estimated.
• In linear bandits, the feedback is a scalar reward, whereas in PAMO-MAB, the feedback can take on

various forms: aD-dimensional reward, aD-dimensional reward with aD-dimensional preference,
or a D-dimensional reward with an overall-reward, depending on the interaction protocols.

4 A LOWER BOUND

In the following, we develop a lower bound (Proposition 1) on the defined regret for PAMO-MAB.
Such a lower bound will quantify how difficult it is to control regret without preference-adaptive
policies under PAMO-MAB. Firstly, we present a definition characterizing a class of MO-MAB
algorithms of which the sequential decision-making is independent of the preference information.
Definition 1 (Preference-Free Algorithm). Let ct = {c1, c2, ..., ct} ∈ RD×t and ct =
{c1, c2, ..., ct} ∈ RD×t be the preference sequence and the sequence of corresponding mean vectors
up to t episodes. Let πA

t be the policy of algorithm A at time t for selecting arm at in a PAMO-MAB
problem. Then A is defined as a preference-free algorithm if its policy πA

t is independent of ct and
ct, i.e., PπA

t
(at = i|ct, ct) = PπA

t
(at = i) for all arms i ∈ [K] and all episodes t ∈ (0, T ].

To our knowledge, most existing algorithms in theoretical MO-MAB studies (Drugan & Nowe,
2013; Busa-Fekete et al., 2017; Xu & Klabjan, 2023; Hüyük & Tekin, 2021; Cheng et al., 2024) fall
within the class of preference-free algorithms, which employ a global policy for arm selection, while
neglecting users’ preferences—an essential feature commonly observed in practical applications.
Proposition 1. Assume an MO-MAB environment contains multiple objective-conflicting arms, i.e.,
|O∗| ≥ 2, where O∗ is the Pareto Optimal front. Then, for any preference-free algorithm, there exists
a subset of preference such that the regret R(T ) = Ω(T ).

4
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Proposition 1 shows that for the PAMO-MAB problem with |O∗| ≥ 2, sub-linear regret is no longer
achievable for preference-free algorithms. The reason is that for any arm i ∈ O∗ that is optimal in
one preference subset C+, there exists another preference subset C− where arm i becomes suboptimal.
However, preference-free algorithms cannot adapt their policies to different sets of preferences, and
thus fail to consistently perform optimally across the entire preference space C. Please see Appendix
B for the detailed proof of Proposition 1. We therefore ask the following question: Can we design
preference-adaptive algorithms that achieve sub-linear regret for PAMO-MAB? The answer is
yes. In the following, we conduct a comprehensive analysis of PAMO-MAB under three structures,
considering both prior-known and unknown preference environments. We demonstrate that through
preference adaptation, the algorithms can achieve sub-linear regret.

5 THE CASE WHEN THE PREFERENCE IS KNOWN
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Figure 2: User expressing her expected pref-
erences to QA system by customizing input
prompts before source language model selection.

We begin with the simpler case where the learner knows
the user’s expected preferences before arm selection,
as a warm-up for understanding the structure of the
problem. Formally, at each round t, the learner ob-
tains ct ∈ RD from user’s input and selects an arm
at ∈ [K], then observes rat,t ∈ RD. This setup is in-
spired by numerous real-world applications. In person-
alized recommender, systems are typically informed of
user preferences (e.g., quality, price, style) before rec-
ommendation. Many online systems now enable users
to express their preferences before decision-making
through interactive techniques such as conversations,
prompt design, keyword search, and more. An example is shown in Fig. 2, where the user personalizes
the prompt input, allowing for the adaptive selection of the source model in a QA system.

To this end, we propose a novel Preference-UCB (PRUCB) algorithm, presented in Algorithm 1. At a
high level, Algorithm 1 is an extension of the UCB approach (Auer et al., 2002) for PAMO-MAB. As
discussed in Section 4, it is crucial for the learner to adapt to user preferences; otherwise, sub-linear
regret is unattainable. To address this, we introduce two key designs in PRUCB as follows.

Preference estimation. Capturing user preferences is a fundamental step toward preference adapta-
tion. In this case, since the expected preference is known in advance, we can trivially leverage this
information as the preference estimation: ĉt←ct. However, we still emphasize that this mechanism
is crucial, as in the unknown preference scenarios explored in Section 6 and Section 7, preference
estimation must be carefully designed.

Algorithm 1 Preference UCB (PRUCB)
1: Parameters: α.
2: Initialization: Ni,1←0; r̂i,1← [0]D,∀i∈ [K].
3: for t = 1, · · · , T do
4: Obtain user expected preference ct, ĉt←ct.

▷ (Preference estimation)
5: Draw at by Eq. 3, observe reward rat,t.

▷ (Preference-aware optimization)
6: Update Ni,t+1 and r̂i,t+1,∀i∈ [K] by Eq.4.

▷ (Reward estimation)
7: end for

Preference-aware optimization. To enable the
policy to adapt to the estimated preference ĉt, and
following the "optimism in the face of uncertainty"
principle (Auer et al., 2002), the arm selection pol-
icy of PRUCB at each round t is designed as:

at = argmaxi∈[K] Φ(ĉt, r̂i,t +
√

log(t/α)
max{1,Ni,t}e),

(3)
where Φ(·, ·) is the aggregation function defined in
Eq. 1, and Ni,t=

∑t−1
j=1 1{aj=i} is the number of

pulls of arm i within the first t−1 rounds. r̂i,t is reward estimation of arm i, with a bonus vector√
log(t/α)/Ni,te to strikes a balance between exploration and exploitation, where α ∈ (0, 1] is an

algorithm hyper-parameter. For t ∈ [2, T ] and i ∈ [K], Ni,t and r̂i,t are updated as follows:

Ni,t=Ni,t−1+1{at−1=i}, r̂i,t =
r̂i,t−1Ni,t−1+rat−1,t−1·1{at−1=i}

Ni,t
, (4)

with Ni,1 ← 0, r̂i,1 ← [0]D,∀i ∈ [K]. In a nutshell, PRUCB models the user preference and arm
rewards simultaneously by updating ĉt and r̂t, then leverages this knowledge to formulate the upper
confidence bound (UCB) of the overall-reward through the aggregation function Φ. In this way,
PRUCB elegantly transforms the problem into maximizing the UCB of the estimated overall-reward
under the estimates of preference ĉt and reward r̂t, achieving preference-awareness. Building upon
these two major components, we summarize the main PRUCB algorithm in Algorithm 1. The regret
is characterized in Theorem 2 below.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 2. Assuming ct ∈ RD follows (possibly dynamic) distribution with expectation vector ct
known before decision making, then for any α ∈ (0, 1], the regret of PRUCB is upper-bounded as

R(T ) ≤
∑K
i=1

(
4δ2η↑i log (T

α )

η↓2i

+
Dπ2α2η↑i

3

)
= O(δ log T )1

where η↑i =maxt∈Ti{cTt ∆i,t}, η↓i =mint∈Ti{cTt ∆i,t}, Ti={t∈ [T ] | a∗t ̸= i} is the set of episodes
when arm i is suboptimal, ∆i,t = µa∗t −µi∈R

D,∀t∈ [T ].
The proof of Theorem 2 is provided in Appendix C.1. Particularly, Theorem 2 demonstrates the
benefit of introduced preference estimation and preference-aware optimization mechanisms, achieving
the near-optimal regret (on the order of O(log T )) for PAMO-MAB problem

6 THE CASE WHEN THE PREFERENCE IS UNKNOWN
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Rec Perf.

SpeedClick-Through Rate

fast... fast...

Figure 3: A scenario of user indicating her instanta-
neous preferences after arm pulling.

In this section, we explore a more challenging sce-
nario where, at each round t, the user preference
ct is unknown and only revealed after action at
is taken, along with the reward rat . This proto-
col is common in practical applications. Fig. 3
illustrates an example where a user on a streaming
platform (e.g., TikTok) refreshes for a new video
list, and the system selects a source model for
recommending new videos. If the recommender
selects a source model with good empirical recom-
mendation performance (e.g., click-through rate)
but low efficiency, the user may refresh again or
close the app during content loading. This behav-
ior suggests that the user might have a stronger preference for efficiency over content quality. Such
preference information can only be obtained after taking the action (i.e., selecting the source model).
We begin with the case where the preference ct follows a fixed distribution, and then extend the
analysis to a more complex yet more practical scenario where the preference distribution is dynamic.

6.1 STATIONARY PREFERENCE

For the unknown preference case, the inaccessibility of the true preference expectation c raises
two fundamental questions for algorithm design: 1) how to estimate the unknown preferences via
feedback? 2) how to handle the uncertainty of preference estimation in decision-making? To this end,
we advance PRUCB into PRUCB-SPM and elaborate on the key designs involved as follows.

Algorithm 2 Preference UCB with Stationary Prefer-
ence estimation (PRUCB-SPM)
1: Parameters: α.
2: Ni,1←0, r̂i,1← [0]D, ∀i∈ [K]; ĉ1← [0]D .
3: for t = 1, · · · , T do
4: Draw arm at by Eq. 6, observe reward rat,t and

user preference ct. ▷ (Preference-aware optimization)
5: UpdateNi,t+1 and reward estimate r̂i,t+1, ∀i ∈ [K]

by Eq. 4. ▷ (Reward estimation)
6: Update preference estimate ĉt+1 by Eq.5.

▷ (Preference estimation)7: end for

Preference estimation. Due to the un-
known expected preference, directly using
c as the modeled ĉ is no longer feasible. To
resolve this issue, we leverage the empirical
average of preference feedback as the prefer-
ence estimate. For t ∈ [2, T ], PRUCB-SPM
updates preference estimate as

ĉt =
(t−2)ĉt−1+ct−1

t−1 . (5)
Preference-aware optimization. Since the
reward environment remains the same as in
Section 5, for all i∈ [K], we follow Eq. 4
for the updating of Ni,t and reward estimation r̂i,t. Based on the estimated ĉt and r̂t, we can
construct a preference-aware optimization measure, analogous to PRUCB. However, the unknown
preference introduces two new challenges in the preference-aware optimization measure design:

• The updated preference estimate could deviate from the true expectation. An intuitive approach
might involve constructing a confidence region Θt for ĉt, similar to the reward estimation r̂t. The
solution would then be to choose the pair (at, ĉ

′
t) ∈ [K]×Θt that jointly maximizes the UCB of

the overall-reward, i.e., at = argmaxi∈[K] maxĉ′
t∈Θt

Φ(ĉ′t, r̂i,t +
√

log(t/α)/Ni,te). However,

1We consider ∥ct∥1=Θ(δ), η↓i =Θ(η↑i ), thus simplify δ2η↑i /η
↓
i

2≤Cδ2/(cTt ∆i,t)=Cδ/
(
(ct/δ)

T∆i,t

)
=

Cδ/(c′t
T
∆i)=O(δ), where c′t = Θ(1)e is the δ-scale normed preferences, C = Θ(1) satisfies η↑i ≤ Cη

↓
i .
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in this case, a confidence region for the preference estimate ĉt is unnecessary. The fundamental
reason is that preference estimation does not involve sequential action decision-making component.
Specifically, at each round t, the preference feedback ct is observed with certainty after arm pulling
and is independent of the chosen action at. Thus, the empirical average suffices, as ĉt will converge
to the true mean c over time by law of large numbers, whereas additional exploration is unnecessary.
In contrast, for reward estimation, the action at determined by r̂t will also influence the future
estimate r̂t+1. In this context, adding a confidence term is necessary to avoid overconfidence in the
estimates and encourage the exploration of different arms, improving future decision-making.

• Another concern is whether the confidence width
√

log(t/α)/Ni,t for r̂i,t in known preference
case remains feasible in unknown case. Errors in preference estimation can propagate to reward
estimation. Specifically, imprecise preference estimation can lead to inaccurate overall-reward
UCB estimation, resulting in misguided exploitation. This, in turn, affects reward estimation, as it
depends on the arms selected. Despite this, we show that the confidence width of

√
log(t/α)/Ni,t

for the reward estimate suffices to control the regret, as preference estimation benefits from higher
learning efficiency due to higher sampling rate compared to reward estimation of each arm. Thus,
the impact of imprecise ĉt on the estimation of r̂t becomes negligible as t increases.

Building upon the analysis above, the arm selection policy of PRUCB-SPM is designed as:
at = argmaxi∈[K] Φ(ĉt, r̂i,t +

√
log(t/α)/max{1, Ni,t}e). (6)

We characterize the regret upper-bound of PRUCB-SPM in Theorem 3. Note that in the stationary
preference case, we omit the subscript of t in a∗t , ∆i,t for simplicity, as they are independent of t.
Theorem 3. Assume the preference follows unknown fixed distribution with the value being revealed
after each arm pull. Let ηi = cT∆i, ∆i = µa∗ − µi ∈ RD, PRUCB-SPM has

R(T ) ≤
∑

i ̸=a∗

( 4(δ + δ√
D
)2 log (T

α
)

ηi
+
Dπ2α2ηi

3︸ ︷︷ ︸
Rr(T ): Regret caused by reward estimation error

+
4
√
2(Dδ∥∆i∥2)2.5

η1.5i

+
Dπ2ηi

3︸ ︷︷ ︸
Rc(T ): Regret caused by preference estimation error

)
. (7)

Remark 6.1. Theorem 3 shows that, without known user preferences, PRUCB-SPM achieves a regret
of O(δ log T ), demonstrating near-optimal performance. Notably, the regret caused by additional
preference estimation error is bounded by a constant related to objective dimension D and ℓ1-norm
bound δ of preference. Furthermore, the dominant regret term, caused by reward estimation error,
degrades performance by only a factor of (1 + 1/

√
D)2 compared to the known-preference case.

This implies that the impact of additional preference estimation error on the final regret is small.

To prove Theorem 3, the main difficulty lies in decoupling and capturing the effects of the joint
error from both reward estimation and preference estimation on the final regret. To address this, we
introduce a tunable parameter ϵt to quantify the accuracy of preference estimation ĉt, and decompose
suboptimal actions into two disjoint sets, accounting for two regret terms of Rr(T ) and Rc(T ) in Eq
7. The derivation of Rr(T ) relies on Proposition 8 in Appendix C.1, which characterizes the policy
behavior under accurate preference estimation updates. The derivation of Rc(T ) relies on Lemma 10
in Appendix D.1.2 to transfer the original set with joint error to a preference estimation deviation
event, making it more tractable. Please refer to Appendix D.1 for the full proof of Theorem 3.

Corrupted Preference? The potential limitation of the above result is that, in some applications,
precise user preference feedback may not be obtainable. For example, in Figure 3, the system infers
user preferences (efficiency vs. quality) from action logs rather than explicit user feedback, which can
introduce corruption into the preference estimation. Therefore, we further explore the performance of
PRUCB-SPM under corrupted preference feedback. Building on the assumptions in Theorem 3, we
define the observed preference feedback as being manipulated by stochastic corruption: c̃t = ct+ zt,
where ct is the true preference, c̃t is the observed (corrupted) feedback, and zt∈RD is the stochastic
corruption component. For d∈ [D], zt(d) is independently drawn from a fixed distribution with mean
z(d) and variance σ2

z,d ≤ σ2
z . We use ∥z∥2 to denote the level of stochastic corruption.

The following Theorem 4 characterizes the regret and robustness of PRUCB-SPM (Algorithm 2)
under stochastic preference corruptions. The proof is provided in Appendix D.2.
Theorem 4. Inherit the assumptions in Theorem 3, but assume that the observed preference feedback
is under stochastic corruption. Let Bi = ηi

1+ 1
D

− ∥z∥2∥∆i∥2, ηi = cT∆i. Then PRUCB-SPM has
1 if ∃i ̸= a∗, s.t., Bi ≤ 0, then R(T ) = Ω(T ); 2 else if Bi > 0,∀i ̸= a∗, then

R(T ) ≤
∑
i̸=a∗

(
4(D+1)2δ2 log(T

α )

ηi
+ Dπ2α2ηi

3 +
4D2ηi∥∆i∥2

2(σ
2
c+σ

2
z)

B2
i

+ 4D1.5ηi∥∆i∥2(δ+δz)
3Bi

)
.
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Theorem 4 shows as long as the corruption level satisfies the attack tolerance threshold of Bi >
0,∀i ̸= a∗, PRUCB-SPM attains an O(D2δ log T ) regret, implying its robustness. Moreover, our
analysis of adversarial corruption case also demonstrates the robustness of PRUCB-SPM against
adversarial attack up to a corruption level of o(T ). See Appendix D.3 for the detailed analysis.

6.2 NON-STATIONARY PREFERENCE

In this section, we consider abruptly changing environments, a more practical scenario in real-world
applications. Building on the assumptions of Theorem 3, we assume that the preference distribution
ct remains fixed during periods but changes at unknown time instants called breakpoints. The number
of breakpoints within T is denoted by ψT . Unlike the stationary preference case, the challenge here
is that the empirical estimate ĉt by Eq. 5 becomes a biased estimator of the expected preference ct
due to the time-varying distribution. To address this, we propose PRUCB-APM (Algorithm 3).

Algorithm 3 Preference UCB with Abrupt Prefer-
ence estimation (PRUCB-APM)
1: Parameters: α. Sliding-window length τ .
2: Ni,1←0; r̂i,1← [0]D,∀i∈ [K]; ĉ1← [0]D .
3: for t = 1, · · · , T do
4: Draw arm at by Eq. 6, observe rat,t and user’s

preference ct. ▷ (Preference-aware optimization)
5: Update Ni,t+1, and reward estimate r̂i,t+1,
∀i ∈ [K] by Eq. 4. ▷ (Reward estimation)

6: Update preference estimate ĉt+1 by Eq. 8.
▷ (Preference estimation)7: end for

Specifically, inspired by the sliding-window
UCB (Garivier & Moulines, 2008), we consider
averaging recent observations over a fixed hori-
zon for user preference estimation, rather than
averaging observations over all past rounds. For-
mally, at round t ∈ [2, T ], PRUCB-APM up-
dates the preference estimate by computing a
local empirical average using the last τ plays:

ĉt =
1

min{τ,t−1}
∑t−1
ℓ=max{1,t−τ} cℓ, (8)

where τ is an algorithm parameter denoting the
sliding-window length. The sliding-window es-
timator removes outdated samples and retains recent ones, enabling it to track the latest preference
patterns. For reward estimation and preference-aware optimization, we follow the Eq. 4 and Eq. 6.
In Theorem 5 below, we characterize the regret of PRUCB-APM, and show that it is controlled by τ .
Please refer to Appendix D.4 for the proof sketch and detailed proof steps of Theorem 5.

Theorem 5. Inherit the assumptions in Theorem 3 but assume ct follows abruptly changing dis-
tribution. Let Ti = {t ∈ [T ] | a∗t ̸= i}, η↓i = mint∈Ti

{cTt ∆i,t} and η↑i = maxt∈Ti
{cTt ∆i,t}.

∆i,t = µa∗t − µi,t ∈ RD, a∗t is the dynamic oracle. ∥∆↑
i ∥2 = max{t,j}∈[T ]×[K]/i ∥µi,t − µj,t∥2.

Then for any τ > maxi∈[K](2Dδ∥∆↑
i ∥2/η

↓
i )

5
2 , any α ∈ (0, 1], PRUCB-APM follows

R(T ) ≤
∑K
i=1 η

↑
i

( 4(δ+ δ√
D
)2 log(T/α)

(η↓i )
2

+D π2α2

3 + ψT τ +
2D(T−τ)

τ2 +
( 2Dδ∥∆↑

i ∥2

η↓i

) 5
2 + Dπ2

3

)
,

Remark 6.2. If the horizon T and the number of breakpoints ψT are known in advance, the window
size τ can be chosen to minimize R(T ). Specifically, taking τ = (4DT/ψT )

1
3 yields R(T ) =

O(δ log(T ) +D
1
3ψT

2
3 T

1
3 ). Assuming that ψT = O(T γ) for some γ ∈ [0, 1), then we have R(T ) is

dominant with order of O(T (1+2γ)/3). In particular, if γ = 0 , R(T ) = O(δ log(T ) +D
1
3T

1
3 ).

Remark 6.3. If there is no breakpoint, i.e., ψT = 0, the problem reduces to the stationary preference
case. In this case, the optimal window length τ is obviously T (as large as possible), and ηi↑ = ηi

↓.
Plugging these back to Theorem 5 yields the regret that matches the result obtained in Theorem 3,
indicating Theorem 5 is an effective generalization of Theorem 3.

7 THE CASE WITH HIDDEN PREFERENCE
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Figure 4: A scenario of user’s prefer-
ences feedback is not provided.

Finally, we consider another practical scenario where only
feedback on the reward and overall reward is observable,
while preference feedback is not provided. For instance, in
hotel surveys, customers often provide ratings on specific
objectives (e.g., price, location, environment, amenities)
along with an overall rating (as depicted in Fig. 4). In
such cases, user preferences can be inferred from the latent
relationship between the overall rating and the individual
objective ratings. Formally, in each round t, the learner
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selects an arm at∈ [K], and observes the reward vector rat ∈RD, as well as the overall-reward score
gat,t = Φ(ct, rat,t) = cTt rat,t ∈ R corresponding to the selected action. The preference ct∈RD is
stationary and follows an unknown distribution.

Given this framework, we adhere to the original Assumption 3.1 on rewards. Note in many real-world
applications, such as hotel rating systems, the overall rating shares the same scale as individual
objective ratings. Thus, we introduce Assumption 7.1, where the bound on the overall reward is
identical to that of the reward. This, in turn, leads to a revised Assumption 7.2 on preference.
Assumption 7.1. For t ∈ [T ], at ∈ [K], the overall-reward score satisfies gat,t ∈ [0, 1].
Assumption 7.2. For t ∈ [T ], d∈ [D], preference satisfies ct(d) ∈ [0, 1] and ∥ct∥1 ≤ 1.

To address this problem, we propose a novel PRUCB-HPM (see Algorithm 4). The fundamentally
different preference structure with Section 6 introduces new challenges, which we discuss below.

Algorithm 4 Preference UCB with Hidden Preference
estimation (PRUCB-HPM)
1: Parameters: α, λ, βt.
2: r̂i,1← [0]D, Ni,1← 0, ∀i∈ [K], ĉ1← [ 1

D
]D , Υ1←λI ,

Θ1 ← {c′|(c′ − ĉ1)
TΥ1(c

′ − ĉ1) ≤ β1 ∧ ∥c′∥1 ≤ 1}.
3: for t = 1, · · · , T do
4: Draw arm at by Eq.11, observe reward rat,t and

overall-reward gat,t. ▷ (Preference-aware optimization)
5: Update Ni,t+1, and rewards estimation r̂i,t+1,∀i ∈

[K] by Eq. 4. ▷ (Reward estimation)
6: Update Υt+1 and latent preference estimation ĉt+1

by Eq.9. ▷ (Preference estimation)
7: Update preference confidence ellipse Θt+1 by Eq.10.
8: end for

Preference estimation. Due to the ab-
sence of preference feedback, we can only
infer user preference knowledge through
the latent relationship from rewards rat,t
and overall-rewards gat,t. Recall that the
overall-reward is the inner product of pref-
erence and reward, it becomes natural to
estimate the latent preference by regres-
sion based on previous rewards and overall-
rewards. While regression-based coeffi-
cient estimation has been widely used in
linear (contextual) bandits works (Abbasi-
Yadkori et al., 2011; Zhao et al., 2020;
Hanna et al., 2024), designing preference
estimation by regression in our case is non-
trivial due to the fundamentally different setting. Specifically, in our scenario, the latent coefficient
(preference) vector ct is random in each round t, unlike the fixed coefficients in linear bandit litera-
ture. The regression model can be written as gat,t = (c + ζt)

Trat,t = cTrat,t + ζTt rat,t, where
ζt = ct− c ∈ RD is an independent random noise term. Note we condition on all observed variables
up to round t, so that gat,t and rat,t are deterministic. This model implies that the noise term ζTt rat,t
on output gat,t is no longer independent of the input rat,t. Intuitively, the standard regression models
are not applicable here due to the violated assumption of noise of output being independent of the
input, whereas the errors-in-variables methods (e.g., Deming regression) would be preferred.

However, we assert that standard regression remains feasible for preference estimation in this problem.
Thanks to the fact that E[ζt] = E[ct]−E[c] = [0]D, we have E[gat,t] = E[cTrat,t]+E[ζt

Trat,t] =

cTrat,t, implying the noise term ζt
Trat,t vanishes in expectation, and the model behaves like a

standard linear regression model in expectation. This suggests that, in expectation, the noise does not
systematically bias the model. Hence, in PRUCB-HPM, we estimate the latent preference by solving
a ridge regression problem: ĉt = argminc′

∑t−1
ℓ=1(c

′Traℓ,ℓ − gaℓ,ℓ)2 + λ∥c′∥22, where λ ≥ 0 is a
regularization parameter of Algorithm 4 to reduce overfitting and handle the variance introduced by
ζTt rat,t. Above equation yields a close form solution as follows:

ĉt = Υ−1
t

∑t−1
ℓ=1 gaℓ,ℓraℓ,ℓ, Υt = Υt−1 + rat−1,t−1r

T
at−1,t−1, and Υ1 = λI (9)

Preference-aware optimization. Next, we adopt the principle of “optimism in the face of uncertainty”
for arm selection. It is important to note that in this case, constructing a confidence set for the
preference estimate ĉt is necessary, as ĉt is now involved in the sequential decision-making process.
More specifically, the selection of arm at depends on ĉt, while the future estimate ĉt+1 is inferred
from observations of {raℓ,ℓ}tℓ=1 and {gaℓ,ℓ}tℓ=1, which are dependent on actions at in turn. Therefore,
we define the confidence set for the preference estimation as a constrained ellipse:

Θt = {c′ | (c′ − ĉt)
TΥt(c

′ − ĉt) ≤ βt ∧ ∥c′∥1 ≤ 1}, (10)
where βt>1 is an algorithm parameter that increases with t. Inspired by prior linear bandit studies
(Abbasi-Yadkori et al., 2011; He et al., 2022), we set βt = Õ(D) 2 in our problem and show that, for

2We use the notation Õ to suppress dependence on logarithmic factors of T

9
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Preference Known Unknown Hidden
Stationary ✓ ✗ ✓ ✓ ✗ ✓

Notification / Feedback ✓ ✓ ✓ ✓ ✓ ✗
Corrupted ✗ ✗ ✗ ✓ ✗ ✗

Algorithm Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Regret O(δ log T ) O(δ log T ) O(D2δ log T ) if Bi > 0,∀i ̸= a∗ O(D
1
3ψ

2
3

T T
1
3 ) Õ(D

√
T )

(Theorem 2) (Theorem 3) (Theorem 4) (Theorem 5) (Theorem 6)

Table 1: Summery of our main analytical results of PAMO-MAB problem under different preference structures.

regression under stochastic coefficients (preferences), c ∈ Θt holds with high probability (please see
detailed analysis of Proposition 14 in Appendix E.1). The reward estimation r̂i,t,∀i ∈ [K] follows
Eq. 4. At each round t, the learner selects the arm at by solving the joint optimization problem as:

at = argmaxi∈[K] maxc′∈Θt
Φ(c′, r̂i,t +

√
log(t/α)/max{Ni,t, 1}e). (11)

Theorem 6. Let preference ct follows unknown stationary distribution, and only over-reward and re-
ward feedback is provided. For any λ > 0, by setting

√
βt =

√
λ+
√
D log

(
1 + t−1

λ

)
+ 4 log

(
πt√
2ϑ

)
and α =

√
8ϑ

KD(D+3)π2 , let M = ⌊min
{
t′ | (t − 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t′
}
⌋,

with probability greater than 1− ϑ, PRUCB-HPM has,

R(T ) ≤
√
βT

√
2D

log( 5
4
)
log
(
1 +

(1 + σ2
r↑)(T −M)

λ

)
(T −M)︸ ︷︷ ︸

Rc(T ): Regret by preference estimation error

+ 4

√
K log

(T
α

)
(T −M)︸ ︷︷ ︸

Rr(T ): Regret by reward estimation error

+M

= O
(
D log(T )

√
T +

√
D log(T/ϑ)T +

√
K log

(
T/ϑ)T

)
= Õ(D

√
T ).

Theorem 6 shows that, even without direct preference feedback, PRUCB-HPM achieves sub-linear
regret through carefully designed mechanisms for preference adaptation. In particular, for t ≥M ,
whereM 3 is a constant independent of T , the regret asymptotically scales as Õ(D

√
T ). Interestingly,

the regret due to preference estimation error exceeds that due to reward estimation error, becoming the
dominant regret term. This is expected, given the increased difficulty of estimating latent preferences
through regression. The proof of Theorem 6 is provided in Appendix E.2.

8 NUMERICAL ANALYSIS
R

eg
re

t

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000
t

(ours)
(ours)

200

0 5000

Figure 5: Regrets un-
der stationary prefer-
ence environment.

In this section, we report the performance of PRUCB and PRUCB-SPM
in a stationary preference environment. The PAMO-MAB instance is set
with K arms and D objectives. The preference means are random defined,
and the regret is defined by Eq 2. Detailed experimental settings and more
experimental results can be found in Appendix A.1.

Fig. 5 shows that our algorithms significantly outperform other competi-
tors. Moreover, from the zoom-in window, we observe that PRUCB-SPM
exhibits only a very slight performance degradation compared to PRUCB
(under known preferences), indicating that the proposed PRUCB-SPM can
effectively model user preference in stationary preference environments.

It is worth noting that other competitors are preference-free algorithms,
all of which exhibit linear regret, aligning with our lower bound (Proposition 1). In other words,
this demonstrates that approaches agnostic to user preferences cannot align their outputs with user
preferences, even if they achieve Pareto optimality. For more experimental results under stationary,
non-stationary and hidden preference environments, please refer to Appendix A.1, A.2 and A.3.

9 CONCLUSION

In this paper, we make the first effort to theoretically explore the explicit user preferences-aware MO-
MAB, where the overall-reward is determined by both arm reward and user preference. Motivated by
real-world applications, we provide a comprehensive analysis of this problem under three preference
structures, with corresponding algorithms that achieve provably efficient with sub-linear regrets. The
main analytical results in this paper are summarized in Table 1.

3Since σ2
r↓ ∈R+, we have limt→∞ 2D

√
K(t− 1) log t

α
/
(
σ2
r↓(t − 1)

)
= limt→∞ C1

√
log(t)−C2

t−1
= 0,

because
√

log(t) grows very slowly compared to
√
t− 1 as t increases. Hence M exists for sufficiently large t′.
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A EXPERIMENTS

In this section, we conduct numerical experiments to evaluate the effectiveness of our proposed
algorithms under different user preference environments.

A.1 EXPERIMENTS IN STATIONARY PREFERENCE ENVIRONMENT

A.1.1 COMPARISON WITH BASELINES

In this section, we verify the capability of PRUCB and PRUCB-SPM to model user preference ct and
optimize the overall reward in a stationary preference environment. We compare these two algorithms
in terms of regret defined in Eq 2 with the following multi-objective bandits algorithms.

• S-UCB (Drugan & Nowe, 2013): the scalarized UCB algorithm, which scalarizes the multi-
dimensional reward by assigning weights to each objective and then employs the single objective
UCB algorithm Auer et al. (2002). Throughout the experiments, we assign each objective with
equal weight.

• S-MOSS: the scalarized UCB algorithm, which follows the similar way with S-UCB by scalarizing
the multi-dimensional reward into a single one, but uses MOSS (Audibert & Bubeck, 2009) policy
for arm selection.

• Pareto-UCB (Drugan & Nowe, 2013): the Pareto-based algorithm, which compares different arms
by the upper confidence bounds of their expected multi-dimensional reward by Pareto order and
pulls an arm uniformly from the approximate Pareto front.

• Pareto-TS (Yahyaa & Manderick, 2015): the Pareto-based algorithm, which makes use of the
Thompson sampling technique to estimate the expected reward for every arm and selects an arm
uniformly at random from the estimated Pareto front.

Experimental settings. For evaluation, we use a synthetic dataset. Specifically, we consider the
MO-MAB withK arms, each arm i ∈ [K] associated with aD-dimensional reward, where the reward
of each objective d follows a Bernoulli distribution with a randomized mean µi(d) ∈ [0, 1]. For user
preference, we consider two settings including predefined preference and randomized preference.
For predefined preference-aware structure, we define the mean preference c as c(d) = 2.0 if d =
j; 0.5 otherwise, where j ∈ [D] is randomly selected. The practical implication of this structure is
that it represents a common scenario in which the user exhibits a markedly higher preference for one
particular objective while showing little interest in others. For randomized preference, the values of
mean preference c are randomly defined within [0, 5]. For both setups, the instantaneous preference is
generated under Gaussian distributions with corresponding means and variance of 0.5. To guarantee
the non-negative preference, we clip the generated instantaneous preference within [0, 2c].

Implementations. For the implementations of the algorithms, we reveal the true expected preference
for PRUCB before arm pulling in each episode, while for PRUCB-SPM, we use the estimated
preference instead. Following the previous studies (Auer et al., 2002; Audibert et al., 2007), we set
α = 1. The time horizon is set to T = 5000 rounds, and we repeat 10 trials for each set of evaluation
due to the randomness from both environment and algorithms.

Results. We report the averaged regret performance of the algorithms under stationary preference
distributions in Fig. 6. It is evident that our algorithms significantly outperform other competitors in
all experiments. This is expected since the competing algorithms are designed for Pareto-optimality
identification and do not utilize the preference structure of users considered in this paper, which our
algorithm explicitly exploits. Additionally, from the zoom-in window, we observe that PRUCB-SPM
exhibits only a very slight performance degradation compared to PRUCB, which knows the preference
expectation in advance. This indicates that the proposed PRUCB-SPM can effectively model user
preference via empirical estimation in stationary preference environments.

A.1.2 ROBUSTNESS TO STOCHASTIC ATTACKS

In this section, we explore the robustness of our proposed RUCB-SPM against stochastic corruptions
on preference feedback.

Experimental settings and implementations. We consider the same preference-aware MO-MAB
environment as Appendix A.1.1. Specifically, the stochastic reward and preference is generated
in the same manner as in Appendix A.1.1. Additionally, we define a stochastic attacker which
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Figure 6: Regrets of different algorithms under stationary preference environment.
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Figure 7: Regrets of RUCB-SPM against different level of stochastic preference corruptions.

manipulates the observed preference feedback with a corruption component zt at each episode t,
i.e., c̃t = ct + zt, where ct is the ground-truth while c̃t is the corrupted preference observed by
learner, and the corruption component zt has the mean vector of z. The mean corruption vector
z is generated by uniformly selecting a value within [−1, 1] for each objective d ∈ [D], and then
rescaling the vector to a fixed L2-norm ∥z∥2 to represent the level of corruption. In our experiment,
we vary the level of ∥z∥2 to investigate the robustness of our proposed RUCB-SPM against stochastic
preference attacks. The parameter settings of RUCB-SPM follows the implementation in Appendix
A.1.1. Similarly, we set time horizon T = 5000 rounds, and repeat 10 trials for each set of evaluation.

Results. We report the averaged regret of RUCB-SPM under different level of preference corruptions
(∥v∥2) in Fig. 7. Specifically, B = mini∈[K]\a∗{ cT∆i

(1+ 1
D )∥∆i∥2

} denotes the robustness threshold of
RUCB-SPM derived in our theoretical analysis in Remark D.1. RUCB-SPM* denotes the algorithm
under no attacks.

From the results, we can see that for the attack level under or even slightly higher thanB, RUCB-SPM
can achieve very close sub-linear regret with the original RUCB-SPM* without attacks, indicating
the robustness of RUCB-SPM against stochastic preference corruptions. One interesting discovery is
that higher objective dimensions present greater tolerance to corruption. Specifically, in the case with
with D = 5, RRUCB-SPM is robust to a corruption level of approximately 1.2B (see the curve of
∥v∥2 = 0.5 in the first column subplot, and the curve of ∥v∥2 = 1.5 in the third column subplot). In
contrast, for the case with D = 8, RUCB-SPM remains robust up to a corruption level of 2B (see the
curve of ∥v∥2 = 0.7 in the second column subplot, and the curve of ∥v∥2 = 1.5 in the fourth column
subplot). This might be due to the fact that, as the dimension of the preference space increases, it
becomes more challenging to find an efficient attack combination across D dimensions under the
constraint ∥v∥2 to achieve successful attack.

A.2 EXPERIMENTS IN ABRUPTLY PREFERENCES CHANGING ENVIRONMENT

In this section, we verify the capability of PRUCB-APM to model user preference ct and optimize
the overall reward in a preference abruptly changing environment.

A.2.1 COMPARISON WITH BASELINES

Experimental settings. We consider the same MO-MAB baseline algorithms as in the stationary
preference setting for comparison. The reward is generated in the same manner as in the stationary
preference setting. Similarly, two preference settings are evaluated: predefined preference and
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Figure 8: Regrets of different algorithms under abruptly changing preference distribution.
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Figure 9: Regrets of RUCB-APM with different choices of sliding-window lengths τ .

randomized preference. To simulate the abruptly changing preference environment, we define the
number of breakpoints as ψ, and the changing episodes are isometrically sampled within T . At
each changing episode tl, we re-define the mean value of preference ct for instantaneous preference
generation in the following episodes until the next changing episode tl+1. For predefined preference,
we set the mean preference ct as c(d) = 2.0 if d = jtl ; 0.5 otherwise, where jtl ∈ [D] is randomly
chosen at each changing episode tl. For randomized preference, the mean vector of preference c is
randomly re-defined within [0, 5] at each changing episode.

Implementation. For the proposed PRUCB-APM, we set α = 1 following previous studies (Auer
et al., 2002; Audibert et al., 2007), and set the sliding-window length τ = 80 while not the value as
Remark 6.2 suggests since we assume T and ψ are not known to the learner. We perform 10 trials up
to round T = 5000 for evaluation.

Results. The average regrets of the algorithms under abrupt environment with different settings
of K,D and ψ are reported in Fig. 8. It is evident that our algorithm PRUCB-APM significantly
outperform other competitors in all experiments. By the zoom-in window, we observe that PRUCB-
APM can well estimate user preference ct with a fast convergence rate and utilize the preference
information for optimizing the overall reward in a preference abruptly changing environment.

Parameter analysis of PRUCB-APM on sliding-window lengths τ . We investigate the impact
of sliding-window lengths τ in PRUCB-APM on the overall performance by varying τ from 10 to
400. The results are depicted in Fig. 9. PRUCB-APM (opt) refer to the choice of τ = (4DTψ )

1
3 as

suggested in Remark 6.2. It shows that for the choice of small τ (under 80), it present a close regret
performance, indicating PRUCB-APM is not that sensitive to the choice of small sliding-window
length. Specifically, for very small sliding-window length (i.e., τ = 10), it presents slightly worse
performance than that of the optimal τ . However, for the large sliding-window length (above 200), it
adapts to changes slowly.

A.3 EXPERIMENTS IN HIDDEN PREFERENCES ENVIRONMENT

In this section, we evaluate the performance of PRUCB-HPM in modeling user preference ct and
optimizing the overall reward when explicit user preference is not visible, but overall reward gat,t
and reward rat,t are revealed after each episode.

Experimental protocol. Given that PRUCB-HPM models both the expected arms reward and user
preference, we designed a new user-switching protocol for evaluation. Figure 10 illustrates this
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Figure 10: (a) Users switching protocol for experimental evaluation of hidden preference and multi-
objective reward modelings. (b) One real-world example of the experimental protocol.
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Figure 11: Regrets of different algorithms under hidden preference environment.

protocol with 3 users and 9 arms. Specifically, at each episode, one user is exposed to a block of arms
(3 in our illustration). Only the arms within this block can be selected for this user. After one arm has
been pulled, the system observes the reward rat,t and user’s overall ratings gat,t corresponding to the
pulled arm at. In the next episode, the arm block rotates to another user. The goal is to maximize the
cumulative overall ratings from all users.

This protocol simulates real-world applications, such as recommender systems, where empirical
multi-objective rewards (ratings) of arms (recommendation candidates) are obtained from a diverse
set of users rather than a single fixed user. Additionally, users are not always exposed to a fixed set of
arms (recommendation candidates). This user-switching protocol allows us to evaluate the algorithm’s
ability to model arm reward and user preference, thus enabling the customized optimization of users’
overall ratings. In Figure 10(b), we present an intuitive example of the protocol in the context of
real-world hotel recommendations. Specifically, the blocks represent different cities (e.g., NYC,
LA, CHI), and the hotel candidates within these cities correspond to the arms within the blocks. At
each time step, a customer travels to a city, stays in a hotel recommended by the system, and leaves
feedback (both objective and overall ratings) after her or his stay. In the next episode, the customer
travels to a different city and encounters a new set of hotel options. The hotel recommender system
needs to learn the multi-objective rewards of all hotel candidates from various customers and model
each customer’s preference based on their multi-objective and overall feedback. This enables the
system to customize optimal hotel recommendations tailored to individual user preference.

Baselines. For performance comparison, we choose the MO-MAB baselines used in stationary envi-
ronment (Appendix A.1.1, including S-UCB (Drugan & Nowe, 2013), S-MOSS, Pareto-UCB (Drugan
& Nowe, 2013) and Pareto-TS (Yahyaa & Manderick, 2015)). Additionally, note that the scale overall
score is also provided, it is feasible to use standard MAB methods by leveraging historical overall
rewards for optimization. Hence we also choose classic MAB algorithms including UCB (Auer et al.,
2002) and MOSS (Audibert & Bubeck, 2009) for comparison.

Experimental settings. In our experiment, we set N users and 3N arms in total, and each arm
associates with D-dimensional reward. The generations of instantaneous reward ri,t of arms and
user preference ct follow the same settings as stationary environment.

For user-switching protocol, we set N blocks in total, with each block containing 3 fixed arms. At
each episode, each user will be randomly assigned one block without replacement. The learner can
only select the arm within assigned block for each user.
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Implementation. Similarly, we set α = 1 in PRUCB-HPM. For regularization coefficient, we set
λ = 1. For confidence radius, we set

√
βt = 0.1

√
D log(t). We perform 10 trials up to round T =

5000 for each set of evaluation.

Results. We report average performance of the algorithms in Fig. 11. As shown, our proposed
PRUCB-HPM achieves superior results in terms of regret under all experimental settings compared
to other competitors. This empirical evidence suggests that modeling user preference and leveraging
this information for arm selection significantly enhances the performance of customized bandits
optimization.

B PROOF OF PROPOSITION 1

Lemma 7 (Variant of Lemma 7 in Jun et al. (2018)). Assume that a bandit algorithm enjoys a
sub-linear regret bound, then E[Ni,T ] = o(T ),∀i ̸= a∗.

Proof. The sub-linear regret bound implies that for a sufficiently large T there exists a constantC > 0

such that
∑K
i=1 E[Ni,T ]c

T
t (µa∗ −µi) < CT . Hence we have E[Ni,T ]cTt (µa∗ −µi) ≤ CT,∀i ̸= a∗,

implying E[Ni,T ] < CT
cT
t (µa∗−µi)

.

Definition 2 (Pareto order, Lu et al. (2019)). Let u,v ∈ RD be two vectors.

• u dominates v, denoted as u ≻ v, if and only if ∀d ∈ [D],u(d) > v(d).

• v is not dominated by u, denoted as by u ̸≻ v, if and only if u = v or ∃d ∈ [D],v(d) > u(d).

• u and v are incomparable, denoted as u||v, if and only if either vector is not dominated by the
other, i.e., u ̸≻ v and v ̸≻ u.

Proof of Proposition 1. We first construct an arbitrary K-armed D-objective MO-MAB environ-
ment with conflicting reward objectives. Let each objective reward of each arm follow a dis-
tribution, i.e., ri,t(d) ∼ Disti,d,∀i ∈ [K],∀d ∈ [D], with mean of µi(d). Define P :=
{[Dist1,d]

D, [Dist2,d]
D, ..., [DistK,d]

D} be the set of K-armed D-dimensional reward distributions.

We start with a simple case where the MO-MAB environment has two conflicting objective arms.
Specifically, assume that ∃u, v ∈ [K], s.t.,

µu ̸= µv; µu||µv
and

µu ≻ µi,µv ≻ µi,∀i ∈ [k] \ {u, v}.

Due to µu ̸= µv, by taking the orthogonal complement of µu − µv, we can construct a subset
Cς+ := {c ∈ RD|cT (µu − µv) = 0}. Next we consider two different constant preferences vector
sets as the user’s preferences, to construct two sets of preferences-aware MO-MAB scenarios.

Scenarios Sς+ . For any ς+ > 0, we can construct a subset Cς+ := {c ∈ RD|cT (µu − µv) = ς+}.
Specifically, the general form of cς+ ∈ Cς+ can be written as cς+ = ς+

∥µu−µv∥2
2
(µu − µv) + c0,

where c0 is any vector such that c0 ∈ C0. Then for the preferences-aware MO-MAB scenarios
Sς+ := {P×Cς+} under the sets of arm reward distributions P and user preferences Cς+ , it is obvious
that arm u is the optimal arm since µu ≻ µi,∀i ∈ [K] \ {u, v} and cTς+µu > cTς+µv,∀cς+ ∈ Cς+ .

Scenarios Sε− . Similarly, for any ε− < 0, we can construct a subset Cε− := {c ∈ RD|cT (µu −
µv) = ε−}, with the general form of cε− = ε−

∥µu−µv∥2
2
(µu − µv) + c0, where c0 is any vector such

that c0 ∈ C0. For scenarios Sε− := {P × Cε−} with same arm rewards distributions P but modified
user preferences Cε− sets, we have the arm v to be the optimal.

We use Pς+ to denote the probability with respect to the scenarios Sς+ , and use Pε− to denote the
probability conditioned on Sε− . Analogous expectations Eς+ [·] and Eε− [·] will also be used. Let
at−1 = {A1, ..., At−1} and rt−1 = {x1, ...,xt−1} be the actual sequence of arms pulled and the
sequence of received rewards up to episode t− 1, and Ht−1 = {⟨A1,x1⟩, ..., ⟨At−1,xt−1⟩} be the
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corresponding historical rewards sequence. For consistency, we define a0, r0 and H0 as the empty
sets. Assume there exists a preferences-free algorithm A (i.e., Pareto-UCB (Drugan & Nowe, 2013))
that is possibly dependent on historical rewards sequence Ht−1 at episode t (classical assumption in
MAB), achieving sub-linear regret in scenarios Sς+ . Let Ni,T be the number of pulls of arm i by A
up to T episode. By Lemma 7, we have

Eς+ [N∗,T ] = Eς+ [Nu,T ] = T − o(T ). (12)

Since the policy πA
t of A is possibly dependent on Ht−1 but independent on the sequences of

instantaneous preferences ct and preferences means ct, for t ∈ (0, T}, i ∈ [K] we have

Eς+ [1at=i]− Eε− [1at=i]

=
∑

at−1∈[K]t−1

∫
rt−1∈[0,1]D×(t−1)

PπA
t
(at = i|Ht−1, [c0]

t, [c0]
t) · Pς+(Ht−1)drt−1

−
∑

at−1∈[K]t−1

∫
rt−1∈[0,1]D×(t−1)

PπA
t
(at = i|Ht−1, [cε− ]

t, [cε− ]
t) · Pε−(Ht−1)drt−1

=
(a)

∑
at−1∈[K]t−1

∫
rt−1∈[0,1]D×(t−1)

PπA
t
(at = i|Ht−1) ·

(
Pς+(Ht−1)− Pε−(Ht−1)

)
drt−1,

(13)

with

Pς+(Ht−1) =

t−1∏
τ=1

(
Pς+(Hτ−1) · PπA

τ
(aτ = Aτ |Hτ−1) · Pς+(raτ = xτ |aτ = Aτ )

)
,

Pε−(Ht−1) =

t−1∏
τ=1

(
Pε−(Hτ−1) · PπA

τ
(aτ = Aτ |Hτ−1) · Pε−(raτ = xτ |aτ = Aτ )

)
.

(14)

where c0, cε− can be any constant vectors such that c0 ∈ C0 and c0 ∈ Cε− . (a) holds since the policy
πA
t is independent of ct, ct and hence PπA

t
(at = i|Ht−1) = PπA

t
(at = i|Ht−1, [c0]

t, [c0]
t) =

PπA
t
(at = i|Ht−1, [cε− ]

t, [cε− ]
t) (recall the definition of preferences-free algorithm in Definition 1).

Additionally, please note that both scenarios Sς+ and Sε− share the same arm reward distributions P ,
which implies that for any t ∈ (0, T ] and A ∈ [K], we have

Pς+(rat = xt|at = A) = Pε−(rat = xt|at = A).

Combining result above with Eq. 14 and using the fact that H0 := ∅ for both Sς+ and Sε− , it can be
easily verified by induction that Pς+(Ht−1) = Pε−(Ht−1). Plugging this back to Eq 13 yields

Eς+ [1at=i]− Eε− [1at=i]

=
∑

at−1∈[K]t−1

∫
rt−1∈[0,1]D×(t−1)

PπA
t
(at = i|Ht−1) ·

(
������������:0

Pς+(Ht−1)− Pε−(Ht−1)

)
drt−1 = 0.

(15)

By summing over T we can derive that

Eς+ [Ni,T ] =
T∑
t=1

Eς+ [1at=i] =
T∑
t=1

Eε− [1at=i] = Eε− [Ni,T ].

Combining above result with Eq. 12 gives that=
Eς+ [Nu,T ] = Eε− [Nu,T ] = T − o(T ) = Ω(T ).
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However, recall that in scenarios Sε− , u is a suboptimal arm, which implies that the regret of A in
Sε− would be at least Ω(T ), i.e.,

R(T ) =
∑
i ̸=v

cTε−(µv − µi)Eε− [Ni,T ]

> |ε−|Eε− [Nu,T ] = Ω(T ).

The analysis above indicates that for the case with two objective-conflicting arms u, v, for any
preferences-free algorithm A, if there exists a ς+ > 0 such that A can achieve sub-linear regret in
scenarios Sς+ , then it will suffer the regret of the order Ω(T ) in scenarios Sε− for all ε− < 0, and
vice verse (i.e., sub-linear regret in ε− > 0 while Ω(T ) regret in Sς+ ).

Next we extend the solution to the MO-MAB environment containing more than two objective-
conflicting arms. Specifically, for each conflicting arm i, we can simply select another conflicting arm
j to construct a pair, and apply the solution we derived in two-conflicting arms case. By traversing all
conflicting arms, we have that for any preferences-free algorithm A achieving sub-linear regret in
a scenarios set S0 with a subset of conflicting arms {a∗} as the optimal, there must exists another
scenarios set S ′0 for each arm i ∈ {a∗} such that the arm i is considered as suboptimal and lead to
the regret of order Ω(T ). This concludes the proof of Proposition 1.

Remark B.1. As a side-product of the analysis above, we have that:

If one MO-MAB environment contains multiple objective-conflicting arms, i.e., |O∗| ≥ 2, where O∗

is the Pareto Optimal front. Then for any Pareto-Optimal arm i ∈ O∗, there exists preferences subsets
such that the arm i is suboptimal.

C ANALYSES FOR SECTION 5 (KNOWN PREFERENCE)

C.1 PROOF OF THEOREM 2

For analyzing PRUCB’s behaviours in the environment where the preference distribution is possibly
dynamic, the main difficulty lies in tracking the potentially changes of the best arm. Specifically, in
preference changing environments, the optimal arm is not fixed any more and would change with the
changing preference distributions.

We begin with a more general upper bound (Proposition 8) for the learner’s behavior using a policy
that optimizes the inner product between the reward upper confidence bound (UCB) of arms and an
arbitrary dynamic vector bt. It demonstrates that after a sufficiently large number of samples (on the
order ofO(log T )) for each arm i, for the episodes where the inner product of its rewards expectations
with bt is not highest, the expected number of times arm i is pulled can be well controlled by a
constant. The proof of Proposition 8 is provided in Appendix C.1.1.
Proposition 8. Let bt ∈ RD be an arbitrary bounded vector at time step t with ∥bt∥1 ≤M , define
Mi := {t ∈ [T ] | i ̸= argmaxj∈[K] b

T
t µj},∀i ∈ [K]. For the policy of at = argmaxΦ(bt, r̂i,t +√

log(t/α)
max{1,Ni,t}e), for any arm i ∈ [K], any subsetMo

i ⊂Mi, we have

E

 ∑
t∈Mo

i

1{at=i}

 ≤ 4M2 log (Tα )

L2
i

+
|B+T |π2α2

3
,

where Li = mint∈Mo
i
{maxj∈[K]\i{bTt (µj − µi)}}, B+T := {[b1(d), b2(d), ..., bT (d)] ̸= 0,∀d ∈

[D]} is the collection set of non-zero [b(d)]T sequence.

Proof of Theorem 2. Define Ti = {t ∈ [T ]|a∗t ̸= i} be the set of episodes when i serving as a
suboptimal arm over T . Let ∆i,t = µa∗t − µi ∈ RD,∀t ∈ [1, T ] be the gap of expected rewards
between suboptimal arm i and best arm a∗t at time step t, η↓i = mint∈Ti

{cTt ∆i,t} and η↑i =

maxt∈Ti{cTt ∆i,t} refer to the lower and upper bounds of the expected overall-reward gap between i
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and a∗t over T when i serving as a suboptimal arm. Let Ñi,T denotes the number of times that arm i
is played as a suboptimal arm, i.e.,

Ñi,T =

T∑
t=1

1{at=i ̸=a∗t }.

Then we can apply Proposition 8 on Ñi,T for analysis. Specifically, by directly substituting bt with
ct, the policy of at aligns with that of PRUCB, and it is easy to verify thatMi = Ti, Li = η↓i . And
thus by Proposition 8, we have

E[Ñi,T ] = E

[∑
t∈Ti

1{at=i}

]
≤

4δ2 log (Tα )

η↓2i
+
|C+T |π2α2

3
,

where C+T := {d ∈ [D] | [c1(d), c2(d), ..., cT (d)] ̸= [0]T } is the set of non-zero expected preference
sequence on each dimension (objective). By multiplying above result with the corresponding upper-
bound of expected gap η↑i and sum over K arms concludes the proof of Theorem 2.

C.1.1 PROOF OF PROPOSITION 8

We begin with stating a useful central bound below.
Lemma 9 (Hoeffding’s inequality for general bounded random variables (Vershynin, 2018) (Theorem
2.2.6)). Given independent random variables {X1, ..., Xm} where ai ≤ Xi ≤ bi almost surely (with
probability 1) we have:

P

(
1

m

m∑
i=1

Xi −
1

m

m∑
i=1

E[Xi] ≥ ϵ

)
≤ exp

(
−2ϵ2m2∑m
i=1(bi − ai)2

)
.

Proof of Proposition 8. Define ã∗t = argmaxj∈[K] b
T
t µj ,∀t ∈ (0, T ], for any β ∈ (0, T ], we have

∑
t∈Mo

i

1{at=i} ≤
∑
t∈Mo

i

1{at=i,Ni,t≤β} +
∑
t∈Mo

i

1{at=i,Ni,t>β}

≤ β +
∑
t∈[T ]

1{at=i ̸=ã∗t ,Ni,t>β}.
(16)

where the first term refers to the event of insufficient sampling (quantified by β) of arm i. , then for
the event of second term, we have

{at = i ̸= ã∗t , Ni,t > β}

⊂

{
bTt r̂i,t > bTt µi + bTt e

√
log(t/α)

Ni,t︸ ︷︷ ︸
Ãt

, Ni,t > β

}

∪

{
bTt r̂ã∗t ,t < bTt µã∗t − bTt e

√
log(t/α)

Nã∗t ,t︸ ︷︷ ︸
B̃t

, Ni,t > β

}

∪

{
Ãc
t, B̃

c
t , b

T
t r̂i,t + bTt e

√
log(t/α)

Ni,t
≥ bTt r̂ã∗t ,t + bTt e

√
log(t/α)

Nã∗t ,t
, Ni,t > β︸ ︷︷ ︸

Γ̃t

}
.

(17)

Specifically, Ãt and B̃t denote the events where the constructed upper confidence bounds (UCBs) for
arm i or the optimal arm a fail to accurately bound their true expected rewards, indicating imprecise
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rewards estimation. Meanwhile, Γ̃t represents the event where the UCBs for both arms effectively
bound their expected rewards, yet the UCB of arm i still exceeds that of the arm ã∗t though it yields
the maximum value of bTt µã∗t , leading to pulling of arm i. According to (Auer et al., 2002), at least
one of these events must occur for an pulling of arm i to happen at time step t.

For event Γ̃t, the Ãc
t and B̃c

t imply

bTt µi + bTt e

√
log(t/α)

Ni,t
≥ bTt r̂i,t and bTt r̂ã∗t ,t ≥ bTt µã∗t − bTt e

√
log(t/α)

Nã∗t ,t
,

indicating

bTt µi + 2bTt e

√
log(t/α)

Ni,t
≥ bTt r̂i,t + bTt e

√
log(t/α)

Ni,t
≥ bTt r̂ã∗t ,t + bTt e

√
log(t/α)

Nã∗t ,t
≥ bTt µã∗t

=⇒ 2bTt e

√
log(t/α)

Ni,t
≥ bTt µã∗t − bTt µi.

Combining above result and relaxing the first and second union sets in Eq. 17 gives:

{at = i ̸= ã∗t , Ni,t > β}

⊂

{
bTt r̂i,t > bTt µi + bTt e

√
log(t/α)

Ni,t

}
∪

{
bTt r̂ã∗t ,t < bTt µã∗t − bTt e

√
log(t/α)

Nã∗t ,t

}

∪

{
bTt (µã∗t − µi) < 2∥bt∥1

√
log(t/α)

Ni,t
, Ni,t > β

}

⊂

{
∪

d∈D+
T

{
bt(d)r̂i,t(d) > bt(d)µi(d) + bt(d)

√
log(t/α)

Ni,t

}}
︸ ︷︷ ︸

At

∪

{
∪

d∈D+
T

{
bt(d)r̂ã∗t ,t(d) < bt(d)µã∗t (d)− bt(d)

√
log(t/α)

Nã∗t ,t

}}
︸ ︷︷ ︸

Bt

∪

{
bTt (µã∗t − µi) < 2∥ĉt∥1

√
log(t/α)

Ni,t
, Ni,t > β, bTt ∆i > ηi − ϵ

}
︸ ︷︷ ︸

Γt

,

(18)

where D+
T :=

{
d|[b1, b2, ..., bT ](d) ∈ B+T

}
, and B+T := {[b1(d), b2(d), ..., bT (d)] ̸= 0,∀d ∈ [D]}

is the collection set of non-zero [b(d)]T sequence.

Then on event At, by applying Hoeffding’s Inequality (Lemma 9), for any d ∈ [D], we have

P

(
bt(d)r̂i,t(d) > bt(d)µi(d) + bt(d)

√
log(t/α)

Ni,t

)
= P

(
r̂i,t(d)− µi(d) >

√
log(t/α)

Ni,t

)

≤ exp

(
−2N2

i,t log(t/α)

Ni,t
∑Ni,t

ι=1 (1− 0)2

)

= exp (−2 log(t/α)) =
(α
t

)2
,

(19)
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which yields the upper bound of P(At) as

P(At) ≤
∑
d∈D+

T

P

(
bt(d)r̂i,t(d) > bt(d)µi(d) + bt(d)

√
log(t/α)

Ni,t

)
≤ |B+T |

(α
t

)2
, (20)

and similarly,

P(Bt) ≤
∑
d∈D+

T

P

(
bt(d)r̂ã∗t ,t(d) < bt(d)µã∗t (d)− bt(d)

√
log(t/α)

Nã∗t ,t

)
≤ |B+T |

(α
t

)2
. (21)

Next we investigate the event Γt :=
{
bTt ∆i < 2∥bt∥1

√
log(t/α)
Ni,t

, Ni,t > β
}

. Let β = 4M2 log(T/α)
L2

i
.

Since Ni,t ≥ β and recall that bTt (µã∗t − µi) ≥ Li, we have,

2∥bt∥1

√
log(t/α)

Ni,t
≤ 2∥bt∥1

√
log(t/α)

β
≤ 2M

√
log(T/α)

β
= Li ≤ bTt (µã∗t − µi), (22)

implying that the event Γt has P-probability 0. By combining Eq. 16 with Eq. 17, 20 and 21, the
expectation of LHS term in Eq. 24 can be upper-bounded as follows:

E

 ∑
t∈Mo

i

1{at=i}

 = E

[
T∑
t=1

1{at=i ̸=ã∗t }

]

≤ 4M2 log(T/α)

L2
i

+ |B+T |α
2
T∑
t=1

t−2

≤
(a)

4M2 log(T/α)

L2
i

+ |B+T |
π2α2

3
,

(23)

where (a) holds by the convergence of sum of reciprocals of squares that
∑∞
t=1 t

−2 = π2

6 . This
concludes the proof.

C.2 REMARKS OF THEOREM 2

Remark C.1. If the distribution of ct is stationary with known c, each arm can be viewed as having
a stationary reward distributed with mean of cTµi ∈ R, and the goal is to maximizing accumulative
reward. This reduces the problem to a standard MAB framework. By treating η↑i = η↓i = cT∆i as
the reward gap between arm i and the best arm a∗, and δ as the upper-bound of reward cTt rat,t in
each round t, our result in Theorem 2 matches the typical UCB bounds (Auer et al., 2002).

Remark C.2. Interestingly, the standard stochastic MAB can also be seen as a special case of
PAMO-MAB with known preferences. Specifically, a K-armed stochastic bandit with reward means
x1, . . . , xK is equivalent to the MO-MAB case where ∃j ∈ [D] s.t., µi(j) = xi, ∀i ∈ [K] and
ct = ej (the j-th standard basis vector). In this case, obviously the best arm a∗t = argmaxi∈[K] xi.

Note |C+T |= 1, η↓i = η↑i =∆i(j) = xa∗t −xi, the result in Theorem 2 can be rewrite as: R(T ) ≤∑K
i=1

4
xa∗

t
−xi

log (Tα ) +O(1), which recovers the bound in standard MAB (Auer et al., 2002).

Specifically, the remarks above illustrate that under stationary and known preference environments, by
introducing the preference-aware optimization, PAMO-MAB can be related to a standard MAB and
is solvable using conventional techniques. This insight also provides a foundation for the algorithm
design and regret analysis in the unknown preference cases, where we will show that under precise
preference estimation, the unknown preference problem can be reduced to the known case but
narrowed overall-reward gap.
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D ANALYSES FOR SECTION 6 (UNKNOWN PREFERENCE)

D.1 REGRET OF PRUCB-SPM: THEOREM 3 (STATIONARY PREFERENCE)

The presented Theorem 3 establishes the upper bound of regret R(T ) for PRUCB-SPM under
stationary preference environment. For the convenience of the reader, we re-state some notations that
will be used in the following before going to proof. In the case where both reward rt and preference
ct follow fixed distributions with mean vectors of µ and c, the optimal arm a∗t = argmaxi∈[K] c

Tµi
remains the same in each step, and thus we use a∗ to denote the optimal arm for simplicity. Let
ηi = cT∆i denote the expected overall-reward gap between arm i and best arm a∗, where ∆i =
µa∗ − µi ∈ RD.

D.1.1 PROOF SKETCH OF THEOREM 3

We analyze the expected number of times in T that one suboptimal arm i ̸= a∗ is played, denoted by
Ni,T . Since regret performance is affected by both reward and preference estimates, we introduce a
hyperparameter ϵt to quantify the accuracy of the empirical estimation ĉt.

The key idea is that by using ϵt to measure the closeness of the preference estimation ĉt to the true
expected vector c, the event of pulling a suboptimal arm can be decomposed into two disjoint sets
based on whether ĉt is sufficiently accurate, as determined by ϵt. And the parameter ϵt can be tuned
to optimize the final regret. This decomposition allows us to address the problem of joint impact
from the preference and reward estimate errors, analyzing the undesirable behaviors of leaner caused
by estimation errors of reward r̂ and preference ĉ independently.

For suboptimal pulls induced by error of r̂, we show that the pseudo episode setMi where the sub-
optimal arm i is considered suboptimal under the preference estimate align with the true suboptimal
episode set [T ], and the best arm withinMi is consistently identified as better than arm i. Using this
insight, we show that this case can be transferred to a new preference known instance with a narrower
overall-reward gap w.r.t ϵt.

For suboptimal pulls due to error of ĉ, we first relax the suboptimal event set to an overall-reward
estimation error set, eliminating the joint dependency on reward and preference from action at. Then
we develop a tailored-made error bound (Lemma 10) on preference estimation, which transfers the
original error set to a uniform imprecise estimation set on preference, such that a tractable formulation
of the estimation deviation can be constructed.

D.1.2 PROOF OF THEOREM 3

Proof. Let Ni,T denote the expected number of times in T that the suboptimal arm i ̸= a∗ is
played. We first analyze the upper-bound over Ni,T , and then derive the final regret R(T ) by
R(T ) =

∑
i ̸=a∗ ∆iNi,T . The proof consists of several steps.

Step-1 (Ni,T Decomposition with Parameter ϵt):

For any i ̸= a∗, any time step t ∈ [T ], with a hyper-parameter 0 < ϵt ≤ ηi introduced, we can
formulate the the number of times the suboptimal arm i is played as follows:

Ni,T =

T∑
t=1

1{at=i} =

T∑
t=1

1{at=i,ĉT
t µa∗>ĉT

t µi+ηi−ϵt}︸ ︷︷ ︸
N r̃

i,T :
Suboptimal pulls caused by imprecise

reward estimation

+

T∑
t=1

1{at=i,ĉT
t µa∗≤ĉT

t µi+ηi−ϵt}︸ ︷︷ ︸
N c̃

i,T :
Suboptimal pullings caused by

imprecise preference estimation

.

(24)

The technical idea behind is that by introducing ϵt to measure the closeness of the preference
estimate ĉt to the true expected vector c (i.e., the gap between ĉTt ∆i and cT∆i), we can decouple
the undesirable behaviors caused by either reward estimation error or preference estimation error.

Specifically, we set ϵt = min
{
ϵ0, δ∥∆i∥2

√
D log(t)

t

}
, where 0 < ϵ0 ≤ ηi is the parameter of proof
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that can be optimized by regret, δ∥∆i∥2
√

D log(t)
t asymptotically converges to 0 as t increases. Let

N r̃
i,T and N c̃

i,T denote the times of suboptimal pulling induced by imprecise reward estimation and
preference estimation (shown in Eq. 24). We use Eϵt and Pϵt to denote the probability distribution
and expectation under parameter ϵt. Next, we will study these two terms separately.

Step-2 (Bounding N r̂
i,T ):

Define Mi as the set of episodes that arm i achieves suboptimal expected overall-reward under
preference estimation ĉt, i.e., Mi := {t ∈ [T ] | i ̸= argmaxj∈[K] ĉ

T
t µj}. Since for the event

regarding N r̂
i,T , we have ĉTt ∆i > ηi − ϵt ≥ 0 holds for all t ∈ [T ], which implies that a∗ still yields

a better result than i given the estimated preference coefficient ĉt over time horizon T . Thus the
suboptimal pulling of arm i is attributed to the imprecise rewards estimations of arms. Additionally,
we haveMi = [T ] since arm i is at least worse than a∗ under the preference estimation ĉt for all
episode t ∈ [T ]. Hence for N r̃

i,T we have

N r̃
i,T =

T∑
t=1

1{at=i,ĉT
t ∆i>ηi−ϵt} =

∑
t∈Mi

1{at=i,ĉT
t ∆i>ηi−ϵt} (25)

Let Li = mint∈Mi
{maxj∈[K]\i{ĉTt (µj − µi)}}, Ĉ+T := {[ĉ1(d), ..., ĉT (d)] ̸= 0,∀d ∈ [D]} be

the collection set of non-zero preference estimation sequence. Recall that PRUCB-SPM leverages

ĉt for overall-reward UCB optimization, i.e., at = argmaxΦ(ĉt, r̂i,t +
√

log(t/α)
max{1,Ni,t}e). By

Proposition 8, we have

Eϵ

[ ∑
t∈Mi

1{at=i,ĉT
t ∆i>ηi−ϵ}

]
≤ E

[ ∑
t∈Mi

1{at=i}

]
≤

4δ2 log (Tα )

L2
i

+
|Ĉ+T |π2α2

3
. (26)

Additionally, since ĉTt ∆i > ηi − ϵt ≥ 0 holds for all t ∈ [T ], it implies that

Li = min
t∈Mi

{ max
j∈[K]\i

{ĉTt (µj − µi)}} ≥ min
t∈Mi

ĉTt ∆i > ηi − ϵt ≥ ηi − ϵ0.

Plugging above result into Eq. 26, and by |Ĉ+T | ≤ D, we have the expectation of N r̃
i,T in Eq. 24 can

be upper-bounded as follows:

Eϵt
[
N r̃
i,T

]
= Eϵt

[ ∑
t∈Mi

1{at=i,ĉT
t ∆i>ηi−ϵt}

]

≤ 4δ2 log(T/α)

(ηi − ϵ0)2
+D

π2α2

3
.

(27)

Step-3 (Bounding N c̃
i,T ):

We begin with stating one tailored-made preference estimation error bound which will be utilized in
our derivation.

Lemma 10. For any non-zero vectors ∆, c ∈ Rk, and all ϵ ∈ R, if cT∆ > ϵ, then for any vector c′

s.t, c′T∆ = ϵ, we have

∥c− c′∥2 ≥
cT∆− ϵ
∥∆∥2

.

Please see Appendix D.1.3 for the proof of Lemma 10
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Firstly we relax the instantaneous event set of N c̃
i,T in Eq. 24 into a pure estimation error case as:{

at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵt
}
⊂
{
ĉTt µa∗ ≤ ĉTt µi + ηi − ϵt

}
=
{
ĉTt ∆i ≤ ηi − ϵt

}
.

(28)

Then, according to Lemma 10 above, we can transfer the original overall-reward gap estimation error
to the preference estimation error. More specifically, since cT∆i > ηi − ϵt always holds, for any
t ∈ (0, T ], by applying Lemma 10, we have{

ĉTt ∆i ≤ ηi − ϵt
}
⊂
{
∥c− ĉt∥2 ≥

cT∆i − (ηi − ϵt)
∥∆i∥2

}
⊂
{
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

}
.

(29)

=⇒ Pϵt
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵt

)
≤ Pϵt

(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

)
. (30)

Next we aim to upper-bound the RHS term of Eq. 30. Since ϵt follows different values at different

episodes t, we consider it by 1 ϵt = ϵ0 and 2 ϵt = δ∥∆i∥2
√

D log(t)
t separately. Let tϵ0 =

min{t′ | ϵ0 ≥ δ∥∆i∥2
√

D log(t)
t ,∀t > t′}. Due to limt→∞

√
log t
t = 0, we have tϵ0 does exist.

More specifically, by the fact that log(t) < t
1
5 ,∀t > 0, for any t ≥ (

√
Dδ∥∆i∥2

ϵ0
)

5
2 , we can derive that

ϵ0 ≥ δ∥∆i∥2
√
Dt−

4
5 > δ∥∆i∥2

√
D

log(t)

t
=⇒ tϵ0 ≤

(√Dδ∥∆i∥2
ϵ0

) 5
2 .

where the first inequality holds by the monotonic decreasing of
√
t−

4
5 , and the second inequality

holds by log(t)
t < t1/5

t ,∀t > 0.

1 Hence for t ≤ ⌊tϵ0⌋, we have ϵ0 ≤ δ∥∆i∥2
√

D log(t)
t and thus

⌊tϵ0⌋∑
t=1

Pϵt

(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

)
=
(a)

⌊tϵ0⌋∑
t=1

Pϵt

(
∥c− ĉt∥2 ≥

ϵ0
∥∆i∥2

)
≤ tϵ0 ≤

(√Dδ∥∆i∥2
ϵ0

) 5
2 , (31)

where (a) holds by the definition of ϵt, i.e., ∀t ≤ ⌊tϵ0⌋, ϵt = min
{
ϵ0, δ∥∆i∥2

√
D log(t)

t

}
= ϵ0.

Please note that the probability of the event {∥c− ĉt∥2 ≥ ϵ0
∥∆i∥2

} can be further bounded using tail
bounds such as Hoeffding’s inequality or Bernstein’s inequality. And due to ϵ0

∥∆i∥2
> 0 as a constant,

the union probability over ⌊tϵ0⌋ episodes can be bounded with a constant by the convergence of
geometric series (as detailed in Eq. 43). However, for computational convenience and to keep the
final solution concise, we simply treat the union probability as ⌊tϵ0⌋ here.

2 On the other hand, for t > ⌊tϵ0⌋, we have ϵ0 ≥ δ∥∆i∥2
√

D log(t)
t holds, which yields

Pϵt
(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

)
=
(a)

Pϵt
(
∥c− ĉt∥2 ≥ δ

√
D log(t)

t

)
= Pϵt

(
D∑
d=1

(c(d)− ĉt(d))
2 ≥ Dδ2 log(t)

t

)

≤
(b)

D∑
d=1

Pϵt

(
|c(d)− ĉt(d)| ≥ δ

√
log(t)

t

) (32)

where (a) holds by the definition of ϵt, (b) holds since union bound and the fact that there must be at
least one objective d ∈ [D] satisfying (c(d)− ĉt(d))

2 ≥ 1
D
Dδ2 log(t)

t , otherwise the event would fail.
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Note that for all t ∈ (0, T ], ct follows same the distribution, and the deviation is exactly the radius of
the preference confidence ellipse, thus we can use a tail bound for the confidence interval on empirical
mean of i.i.d. sequence. Applying the the Hoeffding’s inequality (Lemma 9), the probability for each
objective d ∈ [D] can be upper-bounded as follows:

Pϵt

(
|c(d)− ĉt(d)| ≥ δ

√
log(t)

t

)
≤ 2 exp

(
−2δ2t2 log(t)

t
∑t
τ=1 δ

2

)
=

2

t2
. (33)

Plugging above result back to Eq. 32 and summing over (⌊tϵ0⌋, T ] yield

T∑
t=⌊tϵ0⌋+1

Pϵt
(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

− δ
√

log(t)

t

)
≤

T∑
t=⌊tϵ0⌋+1

2D

t2
≤ Dπ2

3
, (34)

where the first inequality holds by the convergence of sum of reciprocals of squares that
∑∞
t=1 t

−2 =
π2

6 . By combining Eq. 31, Eq. 34 with Eq. 30, we can obtain the upper-bound for the expectation of
N c̃
i,T in Eq. 24 as follows:

Eϵt
[
N c̃
i,T

]
= Eϵt

[
T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵt}

]

=

T∑
t=1

Pϵt
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵt

)

≤
⌊tϵ0⌋∑
t=1

Pϵt
(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

)
+

T∑
t=⌊tϵ0⌋+1

Pϵt
(
∥c− ĉt∥2 ≥

ϵt
∥∆i∥2

)

≤
(√Dδ∥∆i∥2

ϵ0

) 5
2 +

Dπ2

3
(by Eq. 31 and Eq. 34).

(35)

Step-4 (Final R(T ) Derivation and Optimization over ϵ0):

Combining Eq.24 with the corresponding upper-bounds of Eϵ
[
N r̃
i,T

]
(Eq.27) and Eϵ

[
N c̃
i,T

]
(Eq.35),

we can get

Eϵ[Ni,T ] ≤
4δ2 log(T/α)

(ηi − ϵ0)2
+
Dπ2α2

3
+
(√Dδ∥∆i∥2

ϵ0

) 5
2 +

Dπ2

3
, (36)

Note that for any i ̸= a∗, the parameter ϵ0 ∈ (0, ηi) can be optimally selected so as to minimize the
RHS of Eq. 36. For simplicity, taking ϵ0 = 1√

D+1
ηi yields

E[Ni,T ] ≤
4(δ + δ√

D
)2 log (Tα )

η2i
+
Dπ2α2

3
+
( (D +

√
D)δ∥∆i∥2
ηi

) 5
2 +

Dπ2

3
.

Since
√
D +D ≤ 2D holds for all D ≥ 1, we can replace

√
D +D with 2D in result above for a

simpler form. Multiplying the results above by the expected overall-reward gap ηi for all suboptimal
arms i ̸= a∗ and summing them up, we can derive the regret of PRUCB-SPM follows the upper
bound below,

R(T ) ≤
∑
i ̸=a∗

4(δ + δ√
D
)2 log (Tα )

ηi
+
Dπ2α2ηi

3
+

4
√
2(Dδ∥∆i∥2)

5
2

η
3/2
i

+
Dπ2ηi

3
.

which concludes the proof of Theorem 3.
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D.1.3 PROOF OF LEMMA 10

Proof of Lemma 10. Let ϕϵ be the set of solution such that xT∆ = ϵ, ϕcT∆ be the solution set of
xT∆ = cT∆, i.e.,

ϕϵ :=
{
x | xT∆ = ϵ

}
ϕcT∆ :=

{
x | xT∆ = cT∆

}
,

where ϕϵ and ϕcT∆ can be viewed as two hyperplanes share the same normal vector of ∆. Let cϕϵ

be the projection of vector c on hyperplane ϕϵ. Apparently, (cϕϵ
− c) ⊥ ϕϵ, and thus we have

∥cϕϵ
− c∥2 =

cT∆

∥∆∥2
− ϵ

∥∆∥2
, (37)

which is also the distance between the parallel hyperplanes ϕϵ and ϕcT∆. By the principle of distance
between points on parallel hyperplanes, we have for any ĉ ∈ ϕϵ, the distance between ĉ and c is
always greater than or equal to the shortest distance between the hyperplanes ϕϵ and ϕcT∆, i.e.,

∥ĉ− c∥2 ≥ ∥cϕϵ − c∥2 =
cT∆− ϵ
∥∆∥2

(38)

D.2 PROOF OF THEOREM 4 (STATIONARY PREFERENCE UNDER STOCHASTIC CORRUPTION)

Proof. Let Ni,T denotes expected number of times each suboptimal arm i ̸= a∗ being pulled under
statistical preference corruptions zt within T time horizon. We first analyze Ni,T and then derive the
final regret bound of R(T ). The proof follows similar steps as Theorem 3 in Appendix D.1.2.

Step-1 (Ni,T Decomposition with Parameter ϵt):

Similarly, we leverage a parameter ϵt measuring the estimation accuracy of ĉt, and decompose
the suboptimal arm pulling event into two disjoint sets by whether the preference estimation ĉt
is sufficiently precise, as quantified by ϵt > 0. In this case, we set ϵt as a constant: ϵt = ϵ, and
decompose the Ni,T as follow:

Ni,T =

T∑
t=1

1{at=i̸=a∗} =

T∑
t=1

1{at=i̸=a∗,ĉT
t µa∗>ĉT

t µi+ηi−ϵ}︸ ︷︷ ︸
N r̃

i,T :
Suboptimal pulls caused by imprecise

reward estimation

+

T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵ}︸ ︷︷ ︸
N c̃

i,T :
Suboptimal pulls caused by

imprecise preference estimation

.

Please note that in this case, the empirical estimation of preference is computed by the potentially
manipulated preference feedback by corruption attacker (stochastic or adversarial), i.e.,

ĉt =
1

t

t∑
τ=1

c̃τ =
1

t

t∑
τ=1

(cτ + zτ ).

Step-2 (Bounding N r̃
i,T ):

Since termN r̃
i,T counts the number of undesired pulls of suboptimal arm i ̸= a∗ under the assumption

of ĉTt ∆i > ηi − ϵ > 0. In this case, a∗ is still a better arm than i given the estimated preference
vector ĉt though it was corrupted either by stochastic or adversarial corruptions. Thus it is easy to
verify that the result of N r̃

i,T (Eq. 27) in proof of Theorem 3 (Appendix D.1.2, Step-1) still holds
under both stochastic and adversarial corruptions, i.e.,

Eϵ
[
N r̃
i,T

]
≤ 4δ2 log(T/α)

(ηi − ϵ)2
+ |C+T |

π2α2

3
. (39)

Step-3 (Bounding N c̃
i,T ):

We begin with stating one concentration bound that will be utilized in our derivation. Please see
Appendix D.2.2 for the proof of Lemma 11.
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Lemma 11 (Variant of Bernstein’s inequality). Let {X1, ..., Xm} be non-negative and independent,
identically distributed random variables, with expected value of E[X] and variance of Var[X].
Suppose that Xi ≤M almost surely for all i. Then, for any positive ϵ,

P

(∣∣∣∣∣ 1m
m∑
i=1

Xi − E[X]

∣∣∣∣∣ ≥ ϵ
)
≤ 2 exp

(
−ϵ2m

2Var[X] + 2
3Mϵ

)
.

Please see Appendix D.2.2 for the proof of Lemma 11.

By relaxing the the original event set and applying Lemma 10, we have:{
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

}
⊂
{
ĉTt ∆i ≤ ηi − ϵ

}
⊂
{
∥c− ĉt∥2 ≥

cT∆i − (ηi − ϵ)
∥∆i∥2

}
⊂
(a)

{
∥c+ z − ĉt∥2 + ∥z∥2 ≥

cT∆i − (ηi − ϵ)
∥∆i∥2

}
=

{
∥c+ z − ĉt∥2 ≥

ϵ

∥∆i∥2
− ∥z∥2

}
,

where (a) holds by the triangle inequality that

∥c− ĉt∥2 = ∥c+ z − ĉt − z∥2 ≤ ∥c+ z − ĉt∥2 + ∥z∥2.

Thus we have

Pϵ
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
≤ Pϵ

(
∥c+ z − ĉt∥2 ≥

ϵ− ∥∆i∥2∥z∥2
∥∆i∥2

)
= Pϵ

(
D∑
d=1

(
(c+ z)(d)− ĉt(d)

)2 ≥ ϵ− ∥∆i∥2∥z∥2
∥∆i∥2

)

≤
D∑
d=1

Pϵ
(
|(c+ z)(d)− ĉt(d)| ≥

ϵ− ∥∆i∥2∥z∥2√
D∥∆i∥2

)
.

(40)

where the last inequality holds by the union bound and the fact that there must exist at least one
dimension d ∈ [D] satisfying

(
(c+ z)(d)− ĉt(d)

)2 ≥ ϵ−∥∆i∥2∥z∥2

D∥∆i∥2
, otherwise the event would fail.

Recall that ct and zt are independent, for all t ∈ (0, T ], c̃t(d) = ct(d) + zt(d),∀d ∈ [D] follows
the distribution as the convolution of the distributions of ct(d) and zt(d), which has the mean and
variance of c(d) + z(d) and σ2

c + σ2
z respectively. By the definition of ĉt in PUCB-SPM, we can

apply a tail bound to upper bound the probability (in Eq. 40) that the empirical mean ĉt(d) of bounded
random variables c̃t(d) deviates from its expected value c(d) + z(d). Let Bϵ,i = ϵ− ∥z∥2∥∆i∥2,
next we consider two cases as follows.

Case 1 : Bϵ,i ≤ 0. In this case, it is evident that |(c+z)(d)−ĉt(d)| ≥ 0 ≥ ϵ−∥∆i∥2∥z∥2√
D∥∆i∥2

=
Bϵ,i√
D∥∆i∥2

strictly holds for all t ∈ (0, T ], indicating that Pϵ
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
= 1.

Summing over T derives the result that

Eϵ
[
N c̃
i,T

]
= Eϵ

[
T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵ}

]

=

T∑
t=1

Pϵ
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
= Ω(T ).

(41)

Case 2 : Bϵ,i > 0. Since Bϵ,i is a constant deviation, by applying the the variant of Bernstein’s
inequality (Lemma 11) on event {|(c+z)(d)−ĉt(d)| ≥ Bϵ,i√

D∥∆i∥2
}, the probability for each objective
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d ∈ [D] can be upper-bounded as follows:

Pϵ

(
|(c+ z)(d)− ĉt(d)| ≥

Bϵ,i√
D∥∆i∥2

)
≤ 2 exp

(
−

B2
ϵ,i

2D∥∆i∥22(σ2
c + σ2

z) +
2
3
(δ + δz)Bϵ,i

√
D∥∆i∥2

t

)
,

where σ2
c and σ2

z are the variance upper-bounds of preference and corruption distributions for each
objective, δ and δz are the upper-bounds of ∥ct∥1 and ∥zt∥1. Plugging back to Eq.40 yields the result
of

Pϵ

(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
≤ 2D exp

(
−

B2
ϵ,i

2D∥∆i∥22(σ2
c + σ2

z) +
2
3
(δ + δz)Bϵ,i

√
D∥∆i∥2

t

)
.

Summing over T derives the upper-bound for the expectation of N c̃
i,T under stochastic corruptions:

Eϵ
[
N c̃
i,T

]
= Eϵ

[
T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵ}

]

=

T∑
t=1

Pϵ
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
≤ 2D

T∑
t=1

exp

(
−

B2
ϵ,i

2D∥∆i∥22(σ2
c + σ2

z) +
2
3 (δ + δz)Bϵ,i

√
D∥∆i∥2

t

)

≤
(a)

2D

exp
(

B2
ϵ,i

2D∥∆i∥2
2(σ

2
c+σ

2
z)+

2
3 (δ+δz)Bϵ,i

√
D∥∆i∥2

)
− 1

≤ 4D2∥∆i∥22(σ2
c + σ2

z)

B2
ϵ,i

+
4D

3
2 (δ + δz)∥∆i∥2

3Bϵ,i
(by ex ≥ x+ 1,∀x ≥ 0).

(42)

where (a) holds since for any a > 0, we have

T∑
t=1

(
e−a
)t

=

T−1∑
t=0

e−a ·
(
e−a
)t ≤ ∞∑

t=0

e−a ·
(
e−a
)t

=
e−a

1− e−a
(by closed form of the geometric series)

=
1

ea − 1
.

(43)

Step-4 (Final Derivation and Trade-Off over ϵ0):

Combining the results of Eq. 39, Eq. 41 and Eq. 42 yields

1 if ∃i ̸= a∗, s.t., Bϵ,i ≤ 0, then Eϵ[Ni,T ] = Ω(T );

2 else if Bϵ,i > 0,∀i ̸= a∗, then

Eϵ[Ni,T ] ≤
4δ2 log (Tα )

(ηi − ϵ)2
+
Dπ2α2

3︸ ︷︷ ︸
Suboptimal pulls caused by imprecise

reward estimation

+
4D2∥∆i∥22(σ2

c + σ2
z)

B2
ϵ,i

+
4D

3
2 (δ + δz)∥∆i∥2

3Bϵ,i︸ ︷︷ ︸
Suboptimal pulls caused by

imprecise preference estimation

,

Note that the RHS of result above can be minimized by selecting an appropriate ϵ. Moreover, there
is a trade-off between robust tolerance to the corruption level z and the final regret. Specifically, a
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larger ϵ provides a more robust threshold to the corruption z due to the increased Bϵ,i. However, this
would also lead to higher regret caused by error from the reward estimation.

For both satisfied final regret and robust performance, we set ϵ = ηi
1+ 1

D

and thus Bi = ηi
1+ 1

D

−
∥z∥2∥∆i∥2. Therefore, if Bi > 0,∀i ̸= a∗, then we have

E[Ni,T ] ≤
4(D + 1)2δ2 log (Tα )

η2i
+
Dπ2α2

3
+

4D2∥∆i∥22(σ2
c + σ2

z)

B2
i

+
4D

3
2 (δ + δz)∥∆i∥2

3Bi
,

otherwise E[Ni,T ] = Ω(T ).

Multiplying the results above by the expected overall-reward gap ηi for all suboptimal arms i ̸= a∗

and summing them up yields the final regret R(T ) upper bound in Theorem 4.

D.2.1 TIGHTNESS OF ATTACK TOLERANCE

Remark D.1 (Tightness of attack tolerance). Theorem 4 shows a tight attack tolerance threshold
for PRUCB-SPM against stochastic preference attack. Note that there exists a minimax lower bound
for the attack tolerance: if ηi − |zT∆i| ≤ 0, then for any policy π, infπ supC×RR(T ) = Ω(T ),
since in this case, there exists a set of z that can close the overall-reward gap between arms i and
a∗, making arm i appear optimal over a∗. Our algorithm presents a slightly relaxed threshold
Bi = ηi/(1 + 1/D)− ∥z∥2∥∆i∥2. Here, ηi/(1 + 1/D) acts as a lower confidence bound for the
overall-reward gap ηi due to preference estimation error. By Cauchy–Schwarz inequality, ∥z∥2∥∆i∥2
is an upper bound for |zT∆i|. This implies that the attack tolerance Bi of PRUCB-SPM matches the
attack tolerance in minimax lower bound up to a constant factor of 1/(1 + 1/D).

D.2.2 PROOF OF LEMMA 11

Lemma 12 (Bernstein inequality for bounded distributions (Vershynin, 2018) (Theorem 2.8.4)).
Given independent zero-mean random variables {X1, ..., Xm} where |Xi| ≤M almost surely (with
probability 1) for all i, then for all positive ϵ:

P

(
m∑
i=1

Xi ≥ ϵ

)
≤ exp

( − 1
2ϵ

2∑m
i=1 E[X2

i ] +
1
3Mϵ

)
. (44)

Proof of Lemma 11. Let Yi = Xi − E[Xi], apparently Y1, ..., Ym are i.i.d. random variables with
zero mean, and for all i, |Yi| ≤M almost surely. By plugging Yi into Eq. 44 (Lemma 12), for any
positive ϵ0 we have

P

(
m∑
i=1

Yi ≥ ϵ0

)
≤ exp

( − 1
2ϵ

2
0∑m

i=1 E[Y 2
i ] +

1
3Mϵ0

)
. (45)

=⇒ P

(
m∑
i=1

(Xi − E[Xi]) ≥ ϵ0

)
≤ exp

(
− 1

2ϵ0
2∑m

i=1 E[(Xi − E[Xi])
2
] + 1

3Mϵ0

)

=
(a)

exp

( − 1
2ϵ0

2

mVar[X] + 1
3Mϵ0

)
.

(46)

where (a) holds since E[(Xi − E[Xi])
2
] = E[X2

i − 2XiE[Xi] + E[Xi]
2] = E[X2

i ] − E[Xi]
2 =

Var[Xi]. Let ϵ = ϵ0
m , we have
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P

(
1

m

m∑
i=1

Xi − E[X] ≥ ϵ

)
= P

(
m∑
i=1

(Xi − E[Xi]) ≥ ϵ0

)

≤ exp

( − 1
2 (mϵ)

2

mVar[X] + 1
3Mmϵ

)
= exp

(
−ϵ2m

2Var[X] + 2
3Mϵ

)
.

(47)

Then using the symmetry property of confidence interval, we can derive the desired result as
Lemma 11.

D.3 ANALYSIS FOR STATIONARY PREFERENCE UNDER ADVERSARIAL CORRUPTION

D.3.1 ADVERSARY FOR STOCHASTIC PREFERENCE-AWARE MO-MAB

In this section, we consider the preference with stationary distributions but under arbitrary adversarial
corruptions. We inherit the assumptions in Theorem 3 but define an adversary that would alter the
preference observations. Specifically, the user preference on each objective is independently drawn
from a fixed and unknown distribution, and the preference observation after each episode is then
possibly manipulated by an adversary: c̃t = ct + zt, with zt denoting the adversarial corruption
component.

Formally, the protocol between learner and adversary, at each round t = 1...T , is as follows:

1. Stochastic preference ct(d) on each objective d ∈ [D] is independently drawn from a stationary
distribution Fcd , stochastic reward ri,t(d) is drawn independently from a stationary distribution
Fri,d for each arm i ∈ [K] and each objective d ∈ [D].

2. The learner computes a distribution ωt over K arms under historical reward and preference
observations, and picks arm at ∼ ωt for acting.

✄ 3. (Attacker) The adversary returns a corrupted preference vector c̃t = ct + zt, where zt is the
adversarial corruption component.

4. The learner observes reward rt and corrupted preference feedback c̃t.

Corruption Budget. We refer to ∥c̃t − ct∥1 as the amount of corruption injected in round t. The
total attack budget of the adversary is given by

∑T
t=1 ∥c̃t − ct∥1 =

∑T
t=1 ∥zt∥1 ≤ Z.

In Theorem D.2 below, we we provide the regret performance of PRUCB-SPM under the adversarial
corruptions. The proof of which is provided in Appendix D.3.2.
Theorem 13 (Regret). Inherit the assumptions in Theorem 3 but the revealed feedback after episode
is under adversarial corruptions. For any attack budget Z ≥ 0, PRUCB-SPM has

R(T ) ≤
∑
i ̸=a∗

(
4(δ + δ√

D
)2

ηi
log (

T

α
) +

2(1 +
√
D)

∥∆i∥2
Z

)
+O(1).

Remark D.2. Theorem implies that the algorithm PRUCB-SPM attains a sub-linear regret as long
as the adversarial corruption budget level Z = o(T ). In particular, PRUCB-SPM achieves the
same order of regret as the uncorrupted setting when Z = O(log T ). It effectively demonstrates that
PRUCB-SPM also has strong robustness against adversarial attack.

D.3.2 PROOF OF THEOREM D.2 (ADVERSARIAL CORRUPTIONS)

Proof. Let Ni,T be the expected number of times each suboptimal arm i being pulled under adversar-
ial preference corruption zt within T time horizon. We first analyze the performance regarding Ni,T ,
and then extend the solution to the final regret R(T ). The proof is similar with the case of stochastic
corruption.

Step-1 (Ni,T Decomposition with Parameter ϵ):
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Firstly, we decompose the suboptimal arm pulling event using parameter ϵ > 0 as:

Ni,T =

T∑
t=1

1{at=i̸=a∗} =

T∑
t=1

1{at=i̸=a∗,ĉT
t µa∗>ĉT

t µi+ηi−ϵ}︸ ︷︷ ︸
N r̃

i,T :
Suboptimal pulls caused by imprecise

reward estimation

+

T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵ}︸ ︷︷ ︸
N c̃

i,T :
Suboptimal pulls caused by

imprecise preference estimation

.

where the empirical estimation of preference is computed by the potentially manipulated preference
feedback by adversarial attacker, i.e.,

ĉt =
1

t

t∑
τ=1

c̃τ =
1

t

t∑
τ=1

(cτ + zτ ).

Step-2 (Bounding N r̃
i,T ):

From the analysis of Theorem 4, we have that the result of N r̃
i,T in Eq. 39 (Step-1 , Appendix D.2)

still holds under both stochastic and adversarial corruptions, and thus

Eϵ
[
N r̃
i,T

]
≤ 4δ2 log(T/α)

(ηi − ϵ)2
+ |C+T |

π2α2

3
. (48)

Step-3 (Bounding N c̃
i,T ):

Let ĉSt and ĉt be the empirical mean vector of the stochastic ground-truth preference and the empirical
mean vector of the actual (adversely corrupted) preference feedback after t episodes respectively. By
relaxing the the original event set and applying Lemma 10, we have:{

at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ
}
⊂
{
ĉTt ∆i ≤ ηi − ϵ

}
⊂
{
∥c− ĉt∥2 ≥

cT∆i − (ηi − ϵ)
∥∆i∥2

}
=

{
∥c− ĉSt + ĉSt − ĉt∥2 ≥

ϵ

∥∆i∥2

}
⊂
(a)

{
∥c− ĉSt ∥2︸ ︷︷ ︸

Term 1

+ ∥ĉSt − ĉt∥2︸ ︷︷ ︸
Term 2

≥ ϵ

∥∆i∥2

}
,

(49)

where (a) holds by the triangle inequality. Next we analyze the probabilities regarding two terms
separately.

Step-3-i (Bounding Term 1): For Term 1, recall that c is the mean of statistic ground-truth preference
ct, we can thus establish the probability upper-bound on the event of Term 1 using the tail bound.

Specifically, by the variant of Bernstein’s inequality (Lemma 11), we have

Pϵ

∥c− ĉSt ∥2︸ ︷︷ ︸
Term 1

≥ ϵ

2∥∆i∥2

 ≤ D∑
d=1

Pϵ
(
|c(d)− ĉt(d)| ≥

ϵ

2
√
D∥∆i∥2

)

≤ 2D exp

(
−ϵ2t

8D∥∆i∥22σ2
c +

4
3δϵ
√
D∥∆i∥2

)
,

(50)

where σ2
c is the variance upper-bound of preference distribution for each objective, δ is the upper-

bound of ∥ct∥1.

Step-3-ii (Bounding Term 2): For Term2, we compare the actual (corrupted) empirical means ĉt with
the ground-truth empirical means ĉSt . Since the corrupted empirical means can be altered by at most
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absolute corruption Z
t for each episode t, we show the event of Term 2 can only hold for a limited

number of episodes.

Specifically, since the absolute corruption budget is at most Z, we have

∥
t∑

τ=1

c̃τ −
t∑

τ=1

cτ∥1 ≤
t∑

τ=1

∥c̃τ − cτ∥1 ≤ Z,∀t ∈ (0, T ],

and therefore

∥ĉSt − ĉt∥2︸ ︷︷ ︸
Term 2

=

∥∥∥∥∥1t
t∑

τ=1

cτ −
1

t

t∑
τ=1

c̃τ

∥∥∥∥∥
2

≤

∥∥∥∥∥1t
t∑

τ=1

cτ −
1

t

t∑
τ=1

c̃τ

∥∥∥∥∥
1

≤ Z

t
,

indicating that the corrupted empirical means ĉt can be altered from the ones of ground-truth ĉSt by
at most absolute corruption Z

t up to episode t. Hence, the event of Term 2 only holds for limited

number of episode and will fail for sufficiently large t. Specifically, let Tz =
⌊

2Z
ϵ∥∆i∥2

⌋
, then we have

ϵ
2∥∆i∥2

> Z
t ,∀t > Tz . In this case, the event of Term 2 would hold at most up to Tz episodes, i.e.,

Pϵ

∥ĉSt − ĉt∥2︸ ︷︷ ︸
Term 2

≥ ϵ

2∥∆i∥2

 =

{
1, if t ≤ Tz;
0, if t > Tz.

(51)

Step-3-iii (Union Bound on Term 1 and Term 2): By union bound over T episodes with Term 1 and
Term 2 derives the upper-bound for the expectation of N c̃

i,T in adversarial corruptions case:

Eϵ
[
N c̃
i,T

]
= Eϵ

[
T∑
t=1

1{at=i ̸=a∗,ĉT
t µa∗≤ĉT

t µi+ηi−ϵ}

]

=

T∑
t=1

Pϵ
(
at = i ̸= a∗, ĉTt µa∗ ≤ ĉTt µi + ηi − ϵ

)
≤
(a)

T∑
t=1

Pϵ
(
∥c− ĉSt ∥2︸ ︷︷ ︸

Term 1

+ ∥ĉSt − ĉt∥2︸ ︷︷ ︸
Term 2

≥ ϵ

∥∆i∥2

)

≤
T∑
t=1

Pϵ
(
∥c− ĉSt ∥2︸ ︷︷ ︸

Term 1

≥ ϵ

2∥∆i∥2

)
+

T∑
t=1

Pϵ
(
∥ĉSt − ĉt∥2︸ ︷︷ ︸

Term 2

≥ ϵ

2∥∆i∥2

)

≤
(b)

2D

T∑
t=1

exp

(
−ϵ2t

8D∥∆i∥22σ2
c +

4
3δϵ
√
D∥∆i∥2

)
+ Tz

≤
(c)

2D

exp
(

ϵ2

8D∥∆i∥2
2σ

2
c+

4
3 δϵ

√
D∥∆i∥2

)
− 1

+

⌊
2Z

ϵ∥∆i∥2

⌋

≤
(d)

16D2∥∆i∥22σ2
c

ϵ2
+

8D
3
2 δ∥∆i∥2
3ϵ

+

⌊
2Z

ϵ∥∆i∥2

⌋
.

(52)

where (a) holds by Eq. 49, (b) holds by Eq. 50 and Eq. 51, (c) holds by the convergence of geometric
series in Eq. 43, (d) holds by the fact that ex ≥ x+ 1,∀x ≥ 0.
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Step-4 (Final R(T) Derivation): Combine above result with Eq. 48, and choosing ϵ = ηi
1+

√
D

yields

E[Ni,T ] ≤
4(δ + δ√

D
)2 log (Tα )

η2i
+
Dπ2α2

3︸ ︷︷ ︸
Suboptimal pulls caused by

imprecise reward estimation

+
16(D +D

3
2 )2∥∆i∥22σ2

c

η2i
+

8(D2 +D
3
2 )∥∆i∥2δ

3ηi
+

⌊
2(1 +

√
D)Z

ηi∥∆i∥2

⌋
︸ ︷︷ ︸

Suboptimal pulls caused by

imprecise preference estimation

,

Multiplying the results above by the expected overall-reward gap ηi for all suboptimal arms i ̸= a∗

and summing them up conclude the proof of Theorem D.2.

D.4 REGRET OF PRUCB-APM: THEOREM 5 (NON-STATIONARY PREFERENCE)

The Theorem 5 establishes the upper bound of regret R(T ) for PRUCB-APM under abruptly prefer-
ence changing environment. Note that in this case, the optimal arm is no longer fixed and can change
with the abruptly shifting preference distributions, which introduces new challenges for the proof.

Let a∗t be the dynamic oracle at time step t, ∆i,t = µa∗t − µi,t ∈ RD,∀t ∈ [1, T ] be the gap of
expected rewards between suboptimal arm i and best arm a∗t at time step t. Define Ti = {t ∈ [T ]|a∗t ̸=
i} be the set of episodes when arm i serving as a suboptimal arm over T . η↓i = mint∈Ti

{cTt ∆i,t}
refers to the lower bound of the expected gap of overall-rewards between i and a∗t over T . ∥∆↑

i ∥2 =
max{t,j}∈[T ]×[K]/i ∥µi,t − µj,t∥2 denotes the largest Euclidean distance between the expected
rewards of arm i and other arms over T .

D.4.1 PROOF SKETCH OF THEOREM 5

We follow the proof lines of Theorem 3. The main difficulty is that due to changes of preference
distribution, the local empirical mean ĉt now would be a biased estimator of the expected preference
ct. It leads to the use of a tail bound on the deviation between ĉt and ct infeasible in bounding
Ñ c̃
i,T . To address this problem, we employ proof techniques from (Garivier & Moulines, 2008)

which consider sliding windows with and without breakpoints separately. For sliding windows
without breakpoints, the estimation bias of ĉt vanishes entirely. In the case of sliding windows
with breakpoints, the worst-case expected regret scales linearly with the product of the number of
breakpoints and the length of the sliding window.

D.4.2 PROOF OF THEOREM 5

Proof. Let Ñi,T =
∑T
t=1 1{at=i ̸=a∗t }. be the number of pulls of each arm i when it serves as a

suboptimal arm within horizon T . We first analyze Ñi,T and then extend to the final regret R(T ).
The proof consists of several steps.

Step-1 (Ñi,T Decomposition with Parameter ϵt):

Let ϵt = min{ϵ0, δ∥∆i,t∥2
√

D log(t∧τ)
t∧τ }, with 0 < ϵ0 ≤ η↓i . Then we can decompose the the number

of times the suboptimal arm i is played as follows:
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Ñi,T =

T∑
t=1

1{at=i̸=a∗t } =

T∑
t=1

1{at=i̸=a∗t ,ĉT
t µa∗

t
>ĉT

t µi+η
↓
i −ϵt}︸ ︷︷ ︸

Ñ r̃
i,T :

Suboptimal pulls caused by imprecise

reward estimation

+

T∑
t=1

1{at=i ̸=a∗t ,ĉT
t µa∗

t
≤ĉT

t µi+η
↓
i −ϵt}︸ ︷︷ ︸

Ñ c̃
i,T :

Suboptimal pulls caused by imprecise

preference estimation

.

(53)

Step-2 (Bounding Ñ r̃
i,T ):

Define Mi as the set of episodes that arm i achieves suboptimal expected overall-reward un-
der the preference estimation ĉt, i.e., Mi := {t ∈ [T ] | i ̸= argmaxj∈[K] ĉ

T
t µj}. Let

Li = mint∈Ti{maxj∈[K]\i{ĉTt (µj − µi)}}, Ĉ+T := {[ĉ1(d), ĉ2(d), ..., ĉT (d)] ̸= 0,∀d ∈ [D]}
is the collection set of preference estimation sequence.

For the event concerning Ñ r̃
i,T , we have ĉTt ∆i,t > η↓i − ϵt ≥ 0 holding for all t ∈ Ti. This implies

that, for any episode ti ∈ Ti, a∗t would still yield a better result than i given the current preference
estimation ĉti , indicating ti ∈ Mi as well. Therefore, we can conclude that Ti ⊂ Mi. Moreover,
recall that PRUCB-APM also leverages ĉt for optimistic arm selection, i.e., at = argmax f(ĉt, r̂i,t+√

log(t/α)
max{1,Ni,t}e). By Proposition 8, we have

Eϵt
[
Ñ r̃
i,T

]
= Eϵt

[∑
t∈Ti

1{at=i,ĉT
t ∆i,t>η

↓
i −ϵt}

]
≤ E

[∑
t∈Ti

1{at=i}

]
≤

4δ2 log (Tα )

L2
i

+
|Ĉ+T |π2α2

3
.

(54)

Additionally, since ĉTt ∆i,t > η↓i − ϵt ≥ η
↓
i − ϵ0 > 0 holds for all t ∈ Ti, it implies that

Li = min
t∈Ti

{ max
j∈[K]\i

{ĉTt (µj − µi)}} ≥ min
t∈Ti

ĉTt ∆i,t ≥ η↓i − ϵt ≥ η
↓
i − ϵ0.

Plugging above result into Eq. 54, and by |Ĉ+T | ≤ D, we have the expectation of N r̃
i,T in Eq. 24 can

be upper-bounded as follows:

Eϵt
[
Ñ r̃
i,T

]
= Eϵt

[∑
t∈Ti

1{at=i,ĉT
t ∆i>η

↓
i −ϵt}

]
≤ 4δ2 log(T/α)

(η↓i − ϵ0)2
+D

π2α2

3
. (55)

Step-3 (Bounding Ñ c̃
i,T ):

Next we analyze the upper bound of Ñ c̃
i,T . By the sliding window estimation fashion, Ñ c̃

i,T can be
decomposed and upper bounded as follows:

T∑
t=1

1{ĉT
t µa∗

t
≤ĉT

t µi+η
↓
i −ϵt}

≤ ψT τ +
∑
t∈Wτ

1{ĉT
t µa∗

t
≤ĉT

t µi+η
↓
i −ϵt}

, (56)

andWτ is the set of all time instances where the distributions of ct within the sliding window remain
the same, i.e.,Wτ := {t | cs = ct,∀s ∈ (t− τ, t]}. Since cTt ∆i,t ≥ η↓i > η↓i − ϵt always holds, for
any t ∈ Wτ , by applying Lemma 10, we have{

ĉTt µa∗t ≤ ĉTt µi + η↓i − ϵt
}
=
{
ĉTt ∆i,t ≤ η↓i − ϵt

}
⊂
(a)

{
∥ct − ĉt∥2 ≥

cTt ∆i,t − (η↓i − ϵt)
∥∆i,t∥2

}

=

{
∥ct − ĉt∥2 ≥

ϵt
∥∆i,t∥2

}
,

(57)
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where (a) holds by Lemma 10. Since the sliding-window length τ is a tuning parameter of PRUCB-

APM, which can be sufficiently large, we thus assume τ > ⌊
(√Dδ∥∆↑

i ∥2

ϵ0

) 5
2 ⌋ = tϵ0 , with ∥∆↑

i ∥2 =

maxj∈[K]/i ∥µi − µj∥2. Then for any t ∈ Wτ > tϵ0 , we have

Pϵt
(
ĉTt µa∗t ≤ ĉTt µi + η↓i − ϵt

)
≤ Pϵt

(
∥ct − ĉt∥2 ≥

ϵt
∥∆i,t∥2

)
=
(a)

Pϵt

(
∥ct − ĉt∥2 ≥ δ

√
D log(t ∧ τ)

t ∧ τ

)

= Pϵt

√∑
d∈[D]

(
ct(d)− ĉt(d)

)2 ≥ δ√D log(t ∧ τ)
t ∧ τ


≤
(b)

∑
d∈[D]

P

(
|ct(d)− ĉt(d)| ≥ δ

√
log(t ∧ τ)
t ∧ τ

)
,

(58)

where (a) holds by the definition of ϵt and ϵ0 > δ
√

D log(t∧τ)
t∧τ ,∀t > tϵ0 ; (b) holds since union

bound and the fact that there must be at least one objective d ∈ [D] satisfying (c(d)− ĉt(d))
2 ≥

1
D (δ

√
D log(t∧τ)

t∧τ )2, otherwise the event would fail. Note that for any t ∈ Wτ , the distribution
of ct remains the same with those of previous instances within its (τ ∧ t)-length sliding window.
We can thus employ a tail bound for measuring the deviation on the empirical mean (i.e., ĉt) of
i.i.d. sequence ct−τ , ..., ct−1. Using the Hoeffding’s inequality (Lemma 9), the probability for any
objective d ∈ [D], any t ∈ Wτ > tϵ0 can be upper-bounded as follows:

P

(
|ct(d)− ĉt(d)| ≥ δ

√
log(t ∧ τ)
t ∧ τ

)
≤ 2 exp

(
−2δ2(τ ∧ t)2 log(τ ∧ t)

(τ ∧ t)
∑τ∧t
i=1 δ

2

)
= 2 exp (−2 log(τ ∧ t))

=
2

(τ ∧ t)2
.

(59)

Plugging back to Eq. 58 yields

P
(
ĉTt µa∗t ≤ ĉTt µi + η↓i − ϵ

)
≤ 2D

(τ ∧ t)2
. (60)

By combining Eq. 56 with Eq. 60, we can derive the upper-bound for Ñ c̃
i,T as follows:

E

[
T∑
t=1

1{ĉT
t µa∗

t
≤ĉT

t µi+η
↓
i −ϵt}

]

≤ ψT τ +
tϵ0∑
t=1

1 + 2D

T∑
t=tϵ0+1

1

(τ ∧ t)2

= ψT τ + tϵ0 + 2D

τ∑
t=tϵ0+1

1

t2
+ 2D

T∑
t=τ+1

1

τ2

≤ ψT τ +
(√Dδ∥∆↑

i ∥2
ϵ0

) 5
2 +

Dπ2

3
+

2D(T − τ)
τ2

.

(61)

Step-4 (Final R(T ) Derivation and Optimization over ϵ0 and τ ):

Combining Eq.53 with the corresponding upper-bounds of expected Ñ r̃
i,T (Eq.55) and Ñ c̃

i,T (Eq.61)
we can get
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E[Ñi,T ] ≤
4δ2 log(T/α)

(η↓i − ϵ0)2
+D

π2α2

3
+ ψT τ +

(√Dδ∥∆↑
i ∥2

ϵ0

) 5
2 +

Dπ2

3
+

2D(T − τ)
τ2

. (62)

Similar with Theorem 3, the parameter ϵ ∈ (0, ηi) can be optimally selected so as to minimize the

RHS of Eq. 62. Following the setup in the proof of Theorem 3, we choose ϵ0 =
η↓i

1+
√
D

and have

E[Ñi,T ] ≤
4(δ + δ√

D
)2 log(T/α)

(η↓i )
2

+D
π2α2

3︸ ︷︷ ︸
Suboptimal pulls caused by imprecise

reward estimation

+ ψT τ +
2D(T − τ)

τ2
+
(2Dδ∥∆↑

i ∥2
η↓i

) 5
2 +

Dπ2

3
.︸ ︷︷ ︸

Suboptimal pulls caused by

imprecise preference estimation

Multiplying the results above by the upper-bound of expected overall-reward gap η↑i =

maxt∈Ti
{cTt ∆i,t} for all arms i ∈ [K] and summing them up yields the desired result of The-

orem 5.

Corollary 13.1. If the horizon T and the number of breakpoints ψT are known in advance, the
window size τ can be chosen so as to minimize the E[Ñi,T ]. For simplicity and consistency cross K
arms, we select τ by optimizing the term ψT τ +

2DT
τ2 . Specifically, taking τ = ( 4DTψT

)
1
3 yields

E[Ñi,T ] ≤
4(δ + δ√

D
)2 log(Tα )

(η↓i )
2

+D
π2α2

3
+ (4

1
3 + 2−

1
3 )D

1
3ψ

2
3

T T
1
3 +

(Dδ∥∆↑
i ∥2

η↓i

) 5
2 +

Dπ2

3

= O(log(T ) + ψ
2
3

T T
1
3 ).

Assuming that ψT = O(T γ) for some γ ∈ [0, 1), then we have the expected number of sub-optimal
pulls of arm i is upper-bounded as O(T (1+2γ)/3). In particular, if γ = 0 , the number of breakpoints
ψT is upper-bounded by ψ independently of T , then upper-bound is O(log(T ) + ψ

2
3T

1
3 ).

E ANALYSES FOR SECTION 7 (HIDDEN PREFERENCE)

Our main result of Theorem 6 in Section 7 indicates that the proposed PUCB-HPM under hidden
preference environment achieves sublinear expected regret R(T ) ≤ Õ(D

√
T ). To prove this, we

need two key components. The first is to show that the value of r̂i,t, the matrix of Υt, and the region
of Θt are good estimators of µi, E[Υt] and c respectively. The second is to show that as long as the
aforementioned high-probability event holds, we have some control on the growth of the regret. We
show the analyses regarding these two components in the following sections.

E.1 UNIFORM CONFIDENCE BOUND FOR ESTIMATIONS

Proposition 14. For any λ > 0, if set βt =

(√
λ+

√
D log

(
1 + t−1

λ

)
+ 4 log

(
πt√
2ϑ

))2

and

α =
√

8ϑ
KD(D+3)π2 , for all t ∈ (1, T ], with probability at least 1− ϑ, we have following events hold
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simultaneously:

Event A: {c ∈ Θt} ,

Event B:

{
|µi(d)− r̂i,t(d)| ≤

√
log
(
t
α

)
Ni,t

,∀i ∈ [K],∀d ∈ [D]

}
,

Event C:

{
E

 ∑
ι∈Ti,t−1

ri,ιr
T
i,ι

 (m,n)−
∑

ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n) ≤

√
Ni,t log

(
t

α

)
,

∀i ∈ [K],∀m ∈ [D],∀n ∈ [m,D]

}
,

where Ti,t is the set of episodes that arm i is pulled within t steps.

Proposition 14 shows that by proper parameter settings of PUCB-HPM, the Events A, B, C hold
simultaneously with high probability. To proof 14, we study the uniform confidence bound of
Proposition 14 by considering the Events A, B and C separately.

Proof of Proposition 14. Step-1 (Confidence analysis of Event A):

First we state two lemmas from (Abbasi-Yadkori et al., 2011) that will be utilized in our confidence
analysis of Event A:

Lemma 15 (Self-Normalized Bound for Vector-Valued Martingales (Abbasi-Yadkori et al., 2011),
Theorem 1). Let {Ft}∞t=0 be a filtration, and let {ζt}∞t=1 be a real-valued stochastic process such
that ζt is Ft-measurable, E[ζt | Ft−1] = 0 and ζt is conditionally R-sub-Gaussian for some R ≥ 0.
Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that
V ∈ Rd×d is a positive definite matrix, and define V t = V +

∑t
ι=1 XιX

T
ι . Then for any ϑ ≥ 0,

with probability at least 1− ϑ, for all t ≥ 1, we have

∥
t∑
ι=1

ζιXι∥2V −1
t

≤ 2R2 log

det
(
V t

) 1
2 det (V )

− 1
2

ϑ

 .

Lemma 16 (Determinant-Trace Inequality (Abbasi-Yadkori et al., 2011), Lemma 10). Suppose
X1, ...,Xt ∈ Rd and ∥Xι∥2 ≤ L,∀ι ∈ [1, t]. Let V t = λI +

∑t
ι=1 XιX

T
ι for some λ > 0, then

det
(
V t

)
≤
(
λ+

tL2

d

)d
.

Define ζt = gat,t − cTrat,t = cTt rat,t − cTrat,t. By the definition of ĉt and ζt, for t ≥ 2 we have

ĉt − c = Υ−1
t

t−1∑
ι=1

gaι,ιraι,ι − c

= Υ−1
t

t−1∑
ι=1

raι,ι(c
Traι,ι + ζι)− c

= Υ−1
t

(
t−1∑
ι=1

raι,ιr
T
aι,ι

)
c+Υ−1

t

t−1∑
ι=1

ζιraι,ι − c

= Υ−1
t (Υt − λI) c− c+Υ−1

t

t−1∑
ι=1

ζιraι,ι

= −λΥ−1
t c+Υ−1

t

t−1∑
ι=1

ζιraι,ι.

(63)
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Following the above results, we can bound ∥ĉt − c∥Υt
as:

√
(ĉt − c)

T
Υt (ĉt − c) =

∥∥∥Υ 1
2
t (ĉt − c)

∥∥∥
2

=
(a)

∥∥∥∥∥Υ 1
2
t

(
−λΥ−1

t c+Υ−1
t

t−1∑
ι=1

ζιraι,ι

)∥∥∥∥∥
2

≤
(b)

∥∥∥λΥ− 1
2

t c
∥∥∥
2
+

∥∥∥∥∥Υ− 1
2

t

t−1∑
ι=1

ζιraι,ι

∥∥∥∥∥
2

≤
(c)

√
λ ∥c∥2 +

∥∥∥∥∥Υ− 1
2

t

t−1∑
ι=1

ζιraι,ι

∥∥∥∥∥
2

,

(64)

where (a) follows from Eq. 63, (b) follows from Triangle Inequality, and (c) holds since
∥∥∥Υ− 1

2
t

∥∥∥
2
≤∥∥∥Υ− 1

2
1

∥∥∥
2
= 1√

λ
. The first term above can be immediately bounded by

√
λ. We next analyze the

second term.

Let a1:t = {aι}tι=1 be the sequence of historical pulled actions within t steps, g1:t = {gaι,ι}
t
ι=1

and r1:t = {raι,ι}tι=1 be the sequences of historical overall scores and reward vectors within t steps
respectively, and define the σ algebra Ft−1 = σ(a1:t−1, g1:t−1, r1:t). By definition of ζt, note that
for any t ≥ 1,

E[ζt | Ft−1] = E[cTt rat,t | Ft−1]− E[cTrat,t | Ft−1]

=
(a)

cTrat,t − cTrat,t = 0,

where (a) holds since ct is independent of Ft−1 and the conditional expectation fact that E(X |
F) = X if X ∈ F . Furthermore, by assumption of 1-bounded overall-reward, −1 ≤ ζt ≤ 1 holds
almost surely, and hence we can conclude that ζt is conditionally 1-sub-Gaussian. Also, since rat,t is
Ft−1-measurable, by applying Lemma 15, we have with probability at least 1− ϑt,

∥∥∥∥∥Υ− 1
2

t

t−1∑
ι=1

ζιraι,ι

∥∥∥∥∥
2

2

=

∥∥∥∥∥
t−1∑
ι=1

ζιraι,ι

∥∥∥∥∥
2

Υ−1
t

≤ log

(
det (Υt) det (λI)

−1

ϑ2t

)
. (65)

By Lemma 16, we have

det (Υt)

det (λI)
≤

(
λ+ (t−1)D

D

)D
λD

=

(
1 +

(t− 1)

λ

)D
. (66)

Combining Eq. 66, Eq. 65 and Eq. 64 yields:

√
(ĉt − c)

T
Υt (ĉt − c) ≤

√
λ+

√
D log

(
1 +

(t− 1)

λ

)
− 2 log (ϑt). (67)

For t ≥ 1, define ϑt = 2ϑ
(πt)2 be the instantaneous failure probability and plug back into Eq. 67, we

have

√
(ĉt − c)

T
Υt (ĉt − c) ≤

√
λ+

√
D log

(
1 +

(t− 1)

λ

)
+ 4 log

(
πt√
2ϑ

)
=
√
βt, (68)

indicating c ∈ Θt holds with probability at least 1− 2ϑ
(πt)2 at each time step t. Hence, by the union

bound, we can derive an upper-bound over the failure probability of Event A as
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P(Ac) = P(∃t, c /∈ Θt) ≤
∞∑
t=1

P(c /∈ Θt) ≤
2ϑ

π2

∞∑
t=1

1

t2
=
(a)

2ϑ

π2

π2

6
=
ϑ

3
. (69)

where (a) holds by the convergence of sum of reciprocals of squares that

∞∑
t=1

t−2 =
π2

6
. (70)

Thus we conclude by choosing βt =
(√

λ+

√
D log

(
1 + t−1

λ

)
+ 4 log

(
πt√
2ϑ

))2

, Event A holds

with probability at least 1− ϑ
3 .

Step-2 (Confidence analysis of Event B):

For any i ∈ [K], d ∈ [D], t ∈ (0, T ], by Hoeffding’s Inequality (Lemma 9), we have the instantaneous
failure probability of Event B can be bounded as:

P

(
|r̂i,t(d)− µi(d)| >

√
log(t/α)

Ni,t

)
≤ 2 exp

(
−2N2

i,t log(t/α)

Ni,t
∑Ni,t

ι=1 (1− 0)2

)
= 2 exp (−2 log(t/α))

= 2
(α
t

)2
,

(71)

which yields the upper bound of P(Bc) by union bound as

P(Bc) = P

(
∃{i, d, t}, |r̂i,t(d)− µi(d)| >

√
2 log(t/α)

Ni,t

)

≤ 2

T∑
t=1

K∑
i=1

D∑
d=1

P

(
|r̂i,t(d)− µi(d)| >

√
log(t/α)

Ni,t

)

≤ 2

T∑
t=1

K∑
i=1

D∑
d=1

(α
t

)2
≤

(Eq. 70)

KDα2π2

3
,

(72)

Step-3 (Confidence analysis of Event C):

The proof follows similar lines as above. Note that for any i ∈ [K], t ∈ (1, T ],m ∈ [1, D], n ∈
[m,D], we have the instantaneous failure probability of Event C can be bounded as

P

E

 ∑
ι∈Ti,t−1

ri,ιr
T
i,ι

 (m,n)−
∑

ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n) >

√
Ni,t log

(
t

α

)
= P

E
[
rir

T
i

]
(m,n)− 1

Ni,t

∑
ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n) >

√
log(t/α)

Ni,t


≤ exp

(
−
2N2

i,t log(t/α)

N2
i,t(1− 0)2

)
= (

α

t
)2.

(
by Lemma 9 and (ri,ιr

T
i,ι)(m,n) ∈ [0, 1]

)
40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Using union bound, we have P(Cc) as

P(Cc) = P

∃{i, t,m, n},E
 ∑

ι∈Ti,t−1

ri,ιr
T
i,ι

 (m,n)−
∑

ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n) >

√
Ni,t log

(
t

α

)
≤

T∑
t=1

K∑
i=1

D∑
m=1

D∑
n=m

P

E

 ∑
ι∈Ti,t−1

ri,ιr
T
i,ι

 (m,n)−
∑

ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n) >

√
Ni,t log

(
t

α

)
≤

T∑
t=1

K∑
i=1

D∑
m=1

D∑
n=m

(α
t

)2
≤

(Eq. 70)

KD(D − 1)α2π2

12
.

(73)

Step-4 (Union confidence on three Events):

Combining Eq. 69, Eq. 72 and Eq. 73, and setting α =
√

8ϑ
KD(D+3)π2 , by union bound, we can have

the overall failure probability bound of three Events as

P(Ac ∪Bc ∪ Cc) ≤ P(Ac) + P(Bc) + P(Cc)

=
ϑ

3
+

(
KD(D − 1)π2

12
+

4KDπ2

12

)(
8ϑ

KD(D + 3)π2

)
=
ϑ

3
+

2ϑ

3
= ϑ.

This concludes the proof of Proposition 14.

E.2 PROOF OF THEOREM 6

Proof. Based on the assumptions in Proposition 14, we next show that when Events of A, B, C in
Proposition 14 hold (detailed definitions of Events of A, B, C refer to Appendix E.1), the sub-linear
regret of PUCB-HPM can be achieved. Please see the detailed proof steps below.

E.2.1 STEP-1 (REGRET ANALYSIS AND DECOMPOSITION)

Let M be an arbitrary positive integer, we can express R(T ) in a truncated form with respect to M
as follows:

R(T ) =

T∑
t=1

regrett ≤M +

T∑
t=M+1

regrett, (74)

where regrett denotes the instantaneous regret of PRUCB-HPM at step t ∈ [T ], and the last inequality
holds since the fact that the instantaneous regret is upper-bounded by 1 (by Assumption 7.1).

Next, we analyze the instantaneous regret over the truncated time horizon [M + 1, T ]. Let c̃t, at be
the solution of policy such that

c̃Tt

r̂at,t +

√
log
(
t
α

)
Nat,t

e

 = max
c′∈Θt

max
i∈[K]

c′
T

r̂i,t +

√
log
(
t
α

)
Ni,t

e

 . (75)

Please note that since events A and B hold, we have

c ∈ Θt, (76)

µa∗(d) ≤ r̂a∗,t(d) +

√
log
(
t
α

)
Na∗,t

,∀d ∈ [D], (77)

r̂at,t(d) ≤ µat(d) +

√
log
(
t
α

)
Nat,t

,∀d ∈ [D], (78)
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Combining Eq. 75 with Eq. 77 implies

c̃Tt

r̂at,t +

√
log
(
t
α

)
Nat,t

e

 ≥ cT

r̂a∗,t +

√
log
(
t
α

)
Na∗,t

e

 ≥ cTµa∗ . (79)

By the definition of regret in Eq. 2 and facts above, we can derive the upper-bound of instantaneous
regret as follows:

regrett = cµa∗ − cµat ≤
(a)

c̃Tt

r̂at,t +

√
log
(
t
α

)
Nat,t

e

− cTµat

≤
(b)

(c̃t − c)
T
µat + 2∥c̃t∥1

√
log
(
t
α

)
Nat,t

=⇒
(c)

regrett ≤min

(
(c̃t − c)

T
µat + 2

√
log
(
t
α

)
Nat,t

, 1

)

≤ min
(
(c̃t − c)

T
µat , 1

)
︸ ︷︷ ︸

regretc̃t

+2

√
log
(
t
α

)
Nat,t︸ ︷︷ ︸

regretr̃t

(80)

where (a) follows Eq. 79, (b) follows Eq. 78, and (c) holds by the facts that regrett ≤ 1, and the
optimistic preference solution c′ of policy satisfies ∥c′∥1 ≤ 1. Interestingly, the derived instantaneous
regret above can also be interpreted as the sum of two components:

• regretc̃t : Regret caused by the imprecise estimation of preference c.

• regretr̃t : Regret caused by the imprecise estimation of expected reward of arms.

Plugging above results back to Eq. 74, we have

R(T ) ≤M +

T∑
t=M+1

regrett

≤M +

T∑
t=M+1

(
regretc̃t + regretr̃t

)

≤M +

T∑
t=M+1

min
(
(c̃t − c)

T
µat , 1

)
︸ ︷︷ ︸

Rc̃
M+1:T

+

T∑
t=M+1

2

√
log
(
t
α

)
Nat,t︸ ︷︷ ︸

Rr̃
M+1:T

,

(81)

which also yields two components of Rc̃
M+1:T and Rr̃

M+1:T , denoting the accumulated truncated
expected errors caused by the imprecise estimations of preference and reward respectively. Next we
analyze two components of Rc̃

M+1:T and Rr̃
M+1:T separately.

E.2.2 STEP-2 (UPPER-BOUND OVER Rc̃
M+1:T )

Before the analysis of term Rc̃
M+1:T , we first state two useful lemmas that will be utilized in proof:

Lemma 17. Let M =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋, and the as-

sumptions follow those outlined in Proposition 14, then for t ≥M + 1, µ ∈ RD, and c ∈ Θt,∣∣(c− ĉt)
Tµ
∣∣ ≤√2βtµTE[Υt]−1µ.
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Please see Appendix E.3 for the proof of Lemma 17.

Lemma 18. Let M =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋, and assump-

tions follow those outlined in Proposition 14, then we have:

T∑
t=M+1

min

(√
2βtµTatE[Υt]µat ,

1

2

)
≤

√√√√ βTD

2 log(5/4)
(T −M) log

(
1 +

1 + σ2
r↑

λ
(T −M)

)
.

Please see Appendix E.4 for the proof of Lemma 18.

Define M =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋. Please note that for

σ2
r↓ > 0, we have limt→∞

2D
√
K(t−1) log t

α

σ2
r↓(t−1)

= limt→∞ C1

√
log(t)−C2

t−1 = 0 since as t increase,√
log(t) grows very slowly compared to

√
t− 1. Hence for sufficiently large t′, the inequality

(t − 1)σ2
r↓ + λ ≥ 2D

√
K(t− 1) log t

α ,∀t ≥ t′ holds, which implies that such an M does indeed
exist. By Lemma 17, for any t ∈ [M + 1, T ], we have

regretc̃t = min
(
(c̃t − c)

T
µat , 1

)
≤
(a)

min
( ∣∣∣(c̃t − ĉt)

T
µat

∣∣∣+ ∣∣∣(ĉt − c)
T
µat

∣∣∣ , 1)
≤
(b)

min
(
2
√

2βtµTatE[Υt]−1µat , 1
)

(by Lemma 17)

= 2min
(√

2βtµTatE[Υt]−1µat ,
1

2

)
.

(82)

where (a) holds since

(c̃t − c)
T
µat = (c̃t − ĉt + ĉt − c)

T
µat = (c̃t − ĉt)

T
µat + (ĉt − c)

T
µat

≤
∣∣∣(c̃t − ĉt)

T
µat

∣∣∣+ ∣∣∣(ĉt − c)
T
µat

∣∣∣ ,
(b) holds since both c̃t and c are located within the confidence region Θt and t > M , and we can
thus apply Lemma 17 on both | (c̃t − ĉt)

T
µat | and | (ĉt − c)

T
µat | respectively.

Summing regretc̃t over [M + 1, T ] and apply Lemma 18 derives the truncated regret component of
Rc̃
M+1:T as follows:

Rc̃
M+1:T ≤ 2

T∑
t=M+1

min

(√
2βtµTatE[Υt]−1µat ,

1

2

)

≤ 2

√√√√ βTD

2 log(5/4)
(T −M) log

(
1 +

1 + σ2
r↑

λ
(T −M)

)
. (by Lemma 18)

(83)
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E.2.3 STEP-3 (UPPER-BOUND OVER Rr̃
M+1:T )

For the truncated regret component Rr̃
M+1:T caused by imprecise estimation of reward, we have

Rr̃
M+1:T = 2

T∑
t=M+1

√
log
(
t
α

)
Nat,t

≤
(a)

2

√
log

(
T

α

) K∑
i=1

Ni,T∑
n=Ni,M+1

√
1

n

≤
(b)

2

√
log

(
T

α

) K∑
i=1

Ni,T−M∑
n=Ni,1

√
1

n

≤
(c)

2

√
log

(
T

α

) K∑
i=1

T−M
K∑
n=1

√
1

n

≤
(d)

2

√
log

(
T

α

) K∑
i=1

2

√
T −M
K

= 4

√
K log

(
T

α

)
(T −M).

(84)

Specifically, in step (a), we breakdown the totally truncated horizon by the episodes that each
individual arm i ∈ [K] was pulled, and replace t with upper-bound T in the original numerator. Step
(b) trivially holds since 1

Ni,t+M
≤ 1

Ni,t
is strictly true for all i ∈ [K]. Step (c) follows from the fact

that the entire sum is maximized when all arms are pulled an equal number of times. (d) holds since
the fact that 2

√
n− 2 ≤

∑n
x=1

1√
x
≤ 2
√
n.

E.2.4 STEP-4 (DERIVING FINAL REGRET)

Based on above results, we can derive the final regretR(T ). Specifically, plug Eq. 83 and Eq. 84 back

to Eq. 81, define M =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋, and choose

βt =

(
√
λ+

√
D log

(
1 +

t− 1

λ

)
+ 4 log

(
πt√
2ϑ

))2

and α =

√
8ϑ

KD(D + 3)π2
,

we have with probability at least 1− ϑ, the expected regret of PUCB-HPM satisfies

R(T ) ≤ 2

√√√√ βTD

2 log( 5
4
)
log

(
1 +

(1 + σ2
r↑)(T −M)

λ

)
(T −M) + 4

√
K log

(
T

α

)
(T −M) +M, (85)

which concludes the proof of Theorem 6.

E.3 PROOF OF LEMMA 17

To begin with, we state an essential lemma that will be utilized in the proof of Lemma 17. Specifically,
the following lemma characterizes the size of confidence ellipse Θt for preference estimation ĉt with
respect to E[Υt]-norm. The detailed proof of Lemma 19 is provided in Appendix E.3.1.

Lemma 19. LetM =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋. Assume Event

C in Proposition 14 holds, for t ≥M + 1, and any c ∈ Θt,

(c− ĉt)
T E[Υt] (c− ĉt) ≤ 2βt.
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Proof of Lemma 17. Let M =
⌊
min

{
t′ | (t− 1)σ2

r↓ + λ ≥ 2D
√
K(t− 1) log t

α ,∀t ≥ t
′}⌋. By

applying Cauchy-Schwarz inequality and Lemma 19, we can obtain for any t ∈ (M,T ], any c ∈ Θt,∣∣(c− ĉt)
Tµ
∣∣ = ∣∣∣(c− ĉt)

TE[Υt]
1
2E[Υt]−

1
2µ
∣∣∣

=

∣∣∣∣(E[Υt] 12 (c− ĉt)
)T

E[Υt]−
1
2µ

∣∣∣∣
≤
(a)

∥∥∥E[Υt] 12 (c− ĉt)
∥∥∥
2

∥∥∥E[Υt]− 1
2µ
∥∥∥
2

=
∥∥∥E[Υt] 12 (c− ĉt)

∥∥∥
2

√
µTE[Υt]−1µ

≤
(b)

√
2βt

√
µTE[Υt]−1µ,

(86)

where inequality (a) follows Cauchy-Schwarz, (b) holds by applying Lemma 19.

E.3.1 PROOF OF LEMMA 19

Before the proof, we state two lemmas that will be utilized in the derivation as follows.
Lemma 20 (Eigenvalues of Sums of Hermitian Matrices (Fulton, 2000), Eq.(11)). Let A and B
are n × n Hermitian matrices with eigenvalues a1 > a2 > ... > an and b1 > b2 > ... > bn. Let
C = A+B and the eigenvalues of C are c1 > c2 > ... > cn, then we have

cn−i−j ≥ an−i + bn−j ,∀i, j ∈ [0, n− 1].

Lemma 21 (Eigenvalue Bounds on Quadratic Forms). Assuming A ∈ Rn×n is symmetric, then for
any x ∈ Rn, the quadratic form is bounded by the product of the minimum and maximum eigenvalues
of A and the square of the norm of x:

max (λA) ∥x∥22 ≥ xTAx ≥ min (λA) ∥x∥22,

where λA is the eigenvalues of A.

The detailed proof of Lemma 21 can be found in Appendix E.3.2.

Proof of Lemma 19. First, let’s recall the definitions of E[Υt] and Υt for t ∈ (2, T ]:

E[Υt] =
t−1∑
ι=1

E[raι,ιrTaι,ι] + λI =

K∑
i=1

E

 ∑
ι∈Ti,t−1

ri,ιr
T
i,ι

+ λI

=

K∑
i=1

Ni,tE[rirTi ] + λI =

K∑
i=1

Ni,t
(
µiµ

T
i +Σr,i

)
+ λI,

(87)

Υt =

K∑
i=1

Ni,t∑
ι=1

ri,ιr
T
i,ι + λI.

where Σr,i =

σ
2
r,i,1 0

. . .
0 σ2

r,i,D


d×d

denotes the covariance matrix of reward.

Due to the assumption that event C holds, we have ∀i ∈ [K],∀m ∈ [D],∀n ∈ [D],

E

 ∑
ι∈Ti,t−1

ri,ιr
T
i,ι

 (m,n)−

√
Ni,t log

(
t

α

)
≤

∑
ι∈Ti,t−1

(
ri,ιr

T
i,ι

)
(m,n),

By the definition of Θt and symmetry of E[Υt] and Υt, for any c ∈ Θt, we can easily get
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βt ≥ (c− ĉt)
T

(
K∑
i=1

(
Ni,tE[rirTi ]−

√
Ni,t log

(
t

α

)
eeT

)
+ λI

)
(c− ĉt)

= (c− ĉt)
T

(
K∑
i=1

(
Ni,t

(
µiµ

T
i +Σr,i

)
−

√
Ni,t log

(
t

α

)
eeT

)
+ λI

)
(c− ĉt) .

(88)

Next we make a preliminary analysis over the norm-distances of ∥c − ĉt∥2∑K
i=1(Ni,tµiµ

T
i )

and

∥c− ĉt∥2∑K
i=1(Ni,tΣr,i)

respectively.

Let
p = argmin

i∈[K]

(c− ĉt)
T
µiµ

T
i (c− ĉt)

q = argmax
j∈[K]

(c− ĉt)
T
µjµ

T
j (c− ĉt) ,

and we can obtain
(c− ĉt)

T (
(t− 1)µpµ

T
p

)
(c− ĉt)

≤ (c− ĉt)
T

(
K∑
i=1

Ni,tµiµ
T
i

)
(c− ĉt)

≤ (c− ĉt)
T (

(t− 1)µqµ
T
q

)
(c− ĉt) .

By the continuity of norm-distance, result above implies that ∃w1 ∈ [0, 1], such that

(c− ĉt)
T

(
K∑
i=1

Ni,tµiµ
T
i

)
(c− ĉt) = (c− ĉt)

T
(
(t− 1)µ̃µ̃T

)
(c− ĉt) , (89)

where µ̃ = w1µp+(1−w1)µq . Similarly, for ∥c− ĉt∥2∑K
i=1(Ni,tΣr,i)

, since the covariance matrices
Σr,i,∀i ∈ [K] are diagonal, by Lemma 21, we have

ξmin

(
K∑
i=1

Ni,tΣr,i

)
∥c− ĉt∥22 ≤ (c− ĉt)

T

(
K∑
i=1

Ni,tΣr,i

)
(c− ĉt) ≤ ξmax

(
K∑
i=1

Ni,tΣr,i

)
∥c− ĉt∥22,

where ξmin(
∑K
i=1Ni,tΣr,i) denotes the minimum eigenvalue of matrix

∑K
i=1Ni,tΣr,i, while

ξmax(
∑K
i=1Ni,tΣr,i) denotes the corresponding maximum one. We will also use ξ(·) to denote the

eigenvalue calculator for a matrix in the following part. By the continuity of nor-distance, result
above implies that there exist a constant ξ̃t ∈

[
ξmin(

∑K
i=1Ni,tΣr,i), ξmax(

∑K
i=1Ni,tΣr,i)

]
, such

that

ξmin

(
K∑
i=1

Ni,tΣr,i

)
∥c− ĉt∥22

≤ ξ̃t∥c− ĉt∥22 = (c− ĉt)
T

(
K∑
i=1

Ni,tΣr,i

)
(c− ĉt)

≤ ξmax

(
K∑
i=1

Ni,tΣr,i

)
∥c− ĉt∥22,

Note that
∑K
i=1Ni,tΣr,i is diagonal, we have ξmin(

∑K
i=1Ni,tΣr,i) = mind∈[D]

∑K
i=1Ni,tσr,i,d ≥

(t − 1)σ2
r↓, and similarly, ξmax(

∑K
i=1Ni,tΣr,i) ≤ (t − 1)σ2

r↑. Define σ̃2
r,t =

ξ̃t
(t−1) , and we have

σ̃2
r,t ∈ [σ2

r↓, σ
2
r↑] and satisfies

(t− 1)σ̃2
r,t∥c− ĉt∥22 = (c− ĉt)

T

(
K∑
i=1

Ni,tΣr,i

)
(c− ĉt) . (90)
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By plugging above result back into the Eq 88 and using the definition in Eq 87, we have

βt ≥ (c− ĉt)
T

(
K∑
i=1

(
Ni,tE[rirTi ]−

√
Ni,t log

(
t

α

)
eeT

)
+ λI

)
(c− ĉt)

=
(a)

(c− ĉt)
T

(
(t− 1)µ̃µ̃T +

(
(t− 1)σ̃2

r,t + λ
)
I −

K∑
i=1

√
Ni,t log

(
t

α

)
eeT

)
(c− ĉt)

≥
(b)

(c− ĉt)
T

(
(t− 1)µ̃µ̃T︸ ︷︷ ︸

At

+
(
(t− 1)σ̃2

r,t + λ
)
I︸ ︷︷ ︸

Bt

−

√
K(t− 1) log

(
t

α

)
eeT︸ ︷︷ ︸

Ct

)
(c− ĉt) .

(91)

where (a) holds by Eq. 89 and Eq. 90, (b) holds since the squared root term is maximized when
Ni,t = (t− 1)/K,∀i ∈ [K]. Note that Bt is diagonal matrix, and −Ct is rank-1 matrix yields one

eigenvalue of −
√
K(t− 1) log

(
t
α

)
∥e∥22 = −D

√
K(t− 1) log

(
t
α

)
and D − 1 eigenvalues of 0,

we have

ξmin(Bt − Ct) = (t− 1)σ̃2
r,t + λ−D

√
K(t− 1) log

(
t

α

)
.

Due to t ≥M +1, we can trivially derive (t− 1)σ̃2
r,t+λ ≥ (t− 1)σ2

r↓ +λ ≥ 2D
√
K(t− 1) log t

α ,
implying that the minimum eigenvalue ξmin(Bt − Ct) ≥ 0 and the matrix Bt − Ct is a positive
semi- definite matrix, and thus At +Bt −Ct is positive-definite. Also note that At +Bt −Ct is
symmetric, by Lemma 21, we can derive that

ξmin (At +Bt −Ct) ∥c− ĉt∥22 ≤ (c− ĉt)
T
(At +Bt −Ct) (c− ĉt) ≤ βt

=⇒
(a)
∥c− ĉt∥22 ≤

βt
ξmin (At +Bt −Ct)

,
(92)

where ξmin (At +Bt −Ct) is the minimum eigenvalue of At +Bt −Ct, and the implication (a)
holds since ξmin (At +Bt −Ct) > 0 due to the positive-definite of At +Bt −Ct.

Note that At is rank-1 matrix and Bt is diagonal matrix, we can trivially derive that At +Bt has
one eigenvalue of (t− 1)(∥µ∥22 + σ̃2

r,t) + λ and D − 1 eigenvalues of (t− 1)σ̃2
r,t + λ. Also, −Ct

has one eigenvalue of −
√
K(t− 1) log

(
t
α

)
∥e∥22 = −D

√
K(t− 1) log

(
t
α

)
and D− 1 eigenvalues

of 0.

Since At +Bt and −Ct are both symmetric, by applying Lemma 20, we have

ξmin (At +Bt −Ct) ≥ ξmin (At +Bt) + ξmin (−Ct)

= (t− 1)σ̃2
r,t + λ−D

√
K(t− 1) log

(
t

α

)

Plugging above result back into Eq. 93, we have

∥c− ĉt∥22 ≤
βt

ξmin (At +Bt −Ct)
≤ βt

(t− 1)σ̃2
r,t + λ−D

√
K(t− 1) log

(
t
α

) . (93)

Again, since t ≥M +1 holds, the denominator of the final term is strictly positive. Combining above
result with Eq. 91 and rearranging the terms, for t ≥M + 1, we can obtain
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(c− ĉt)
T

(
At +Bt

)
(c− ĉt) ≤ βt + (c− ĉt)

T
Ct (c− ĉt)

≤
(a)

βt + ξmax (Ct) ∥c− ĉt∥22

≤
(b)
βt +

βtD
√
K(t− 1) log

(
t
α

)
(t− 1)σ̃2

r,t + λ−D
√
K(t− 1) log

(
t
α

)
= βt +

βt
(t−1)σ̃2

r,t+λ

D
√
K(t−1) log( t

α )
− 1

≤
(c)

2βt,

(94)

where (a) follows from Lemma 21, (b) holds since Eq. 93 and ξmax (Ct) = −ξmin (−Ct) =

D
√
K(t− 1) log

(
t
α

)
, (c) holds since (t− 1)σ̃2

r,t + λ ≥ 2D
√
K(t− 1) log

(
t
α

)
for t ≥M + 1.

By Eq. 89 and the definition of E[Υt] in Eq. 87, we have

E[Υt] =
K∑
i=1

Ni,t
(
µiµ

T
i +Σr,i

)
+ λI = (t− 1)µ̃µ̃T + (t− 1)σ̃2

r,tI + λI = At +Bt,

and thus for t ≥M + 1,
(c− ĉt)

T E[Υt] (c− ĉt) ≤ 2βt.

E.3.2 PROOF OF LEMMA 21

Proof. The quadratic form xTAx can be analyzed by decomposing A using its eigenvalues and
eigenvectors. Since A is a symmetric matrix, we can write it as:

A = QΛQT ,

where Q is an orthogonal matrix whose columns are the eigenvectors of A, and Λ is a diagonal
matrix with the eigenvalues λA(i) on its diagonal. By substituting the eigen-decomposition of A, we
have

xTAx = xTQΛQTx.

Let y = QTx, then we have

xTAx = yTΛy =

n∑
i=1

λA(i)y(i)2 ≥ min (λA)

n∑
i=1

y(i)2 = min (λA) ∥y∥22 =
(a)

min (λA) ∥x∥22.

where (a) follows since ∥y∥22 = ∥QTx∥22 = ∥x∥22 as Q is orthogonal and preserves the norm. For
max (λA) ∥x∥22,≥ xTAx, the proof follows similarly and is therefore omitted.

E.4 PROOF OF LEMMA 18

Since βt ≥ 1 and is increasing with t, we have

T∑
t=M+1

min

(√
2βtµTatE[Υt]−1µat ,

1

2

)
≤

T∑
t=M+1

min

(√
2βTµTatE[Υt]−1µat ,

1

2

√
2βT

)

≤
√

2βT

T∑
t=M+1

min

(√
µTatE[Υt]−1µat ,

1

2

)
.

(95)
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To derive the upper-bound of term
∑T
t=M+1 min

(√
µTatE[Υt]−1µat ,

1
2

)
, we follow the similar

techniques for analyzing the sum of instantaneous regret in OFUL (Abbasi-Yadkori et al., 2011).

Specifically, we first show that the sum of squared terms min
(√

µTatE[Υt]−1µat ,
1
2

)2
yields an

upper-bound sub-linear to T , and then extend the result to the sum of min
(√

µTatE[Υt]−1µat ,
1
2

)
.

We begin with stating the following lemmas from which Lemma 18 follows.
Lemma 22. For any action sequence of a1, ..., aT and any M ∈ (0, T ), we have

det (E[ΥT+1]) ≥ det (E[ΥM+1])

T∏
t=M+1

(
1 +

det (Σr,at)
det (E[Υt])

+ µTatE[Υt]
−1µat

)
.

Please see Appendix E.4.1 for the detailed proof of Lemma 22.
Lemma 23. For any action sequence of a1, ..., aT with ∥µat∥

2
2 ≤ B, ∀t ∈ [T ], then for any

M ∈ (0, T ), we have

log

(
det (E[ΥT+1])

det (E[ΥM+1])

)
≤ D log

(
1 +

B +Dσ2
r↑

Dλ
(T −M)

)
.

Please see Appendix E.4.2 for the detailed proof of Lemma 23.

Proof of Lemma 18. Step-1: We first show that the sum of squared terms in Eq. 95 is optimal up to
O(log(T −M)). Specifically,

T∑
t=M+1

min

(√
µTatE[Υt]−1µat ,

1

2

)2

=

T∑
t=M+1

min

(
µTatE[Υt]

−1µat ,
1

4

)

≤
(a)

T∑
t=M+1

1

4 log(5/4)
log

(
1 + min

(
µTatE[Υt]

−1µat ,
1

4

))

≤
T∑

t=M+1

1

4 log(5/4)
log
(
1 + µTatE[Υt]

−1µat
)

(96)

where (a) holds since the fact that log(1 + x) ≥ 4 log
(
5
4

)
x for x ≤ 1

4 .

On the other hand, Lemma 22 implies that

log

(
det (E[ΥT+1])

det (E[ΥM+1])

)
≥

T∑
t=M+1

log

(
1 +

det (Σr,at)
det (E[Υt])

+ µTatE[Υt]
−1µat

)
. (97)

Additionally, since det (Σr,at/E[Υt]) > 0 and ∥µi∥22 ≤ ∥µi∥21 ≤ D,∀i ∈ [K], by Lemma 23, we
have

D log

(
1 +

1 + σ2
r↑

λ
(T −M)

)
≥ log

(
det (E[ΥT+1])

det (E[ΥM+1])

)
≥

T∑
t=M+1

log
(
1 + µTatE[Υt]

−1µat
)
.

(98)

Plugging the above result back into Eq. 96, we can derive a bound up to O(log(T −M)) on the sum
of squared instantaneous regrets in Eq. 95 as:
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T∑
t=M+1

min

(√
µTatE[Υt]−1µat ,

1

2

)2

≤ D

4 log(5/4)
log

(
1 +

1 + σ2
r↑

λ
(T −M)

)
. (99)

Step-2: Given the upper-bound on the sum of squared instantaneous regrets , we next extend it to the
sum of instantaneous regrets by using Cauchy-Schwarz inequality. Specifically,

T∑
t=M+1

min

(√
µTatE[Υt]−1µat ,

1

2

)
≤
(a)

√√√√(T −M)

T∑
t=M+1

min

(√
µTatE[Υt]−1µat ,

1

2

)2

≤

√√√√ D

4 log(5/4)
(T −M) log

(
1 +

1 + σ2
r↑

λ
(T −M)

)
.

(100)

Plugging above result back into Eq. 95 concludes the proof of Lemma 18.

E.4.1 PROOF OF LEMMA 22

We begin with a lemma that will be utilized in the derivations of Lemma 22:
Lemma 24 (Determinant of Symmetric PSD Matrices Sum). Let A ∈ Rn×n be a symmetric and
positive definite matrix, and B ∈ Rn×n be a symmetric and positive (semi-) definite matrix. Then we
have

det (A+B) ≥ det (A) + det (B)

Proof.
det (A+B) = det (A) det

(
I +A− 1

2BA− 1
2

)
. (101)

Let λ1, ..., λn be the eigenvalues of A− 1
2BA− 1

2 . Since A− 1
2BA− 1

2 is positive (semi-) definite, we
have λi ≥ 0,∀i ∈ [n], which implies

det
(
I +A− 1

2BA− 1
2

)
=

n∏
i=1

(1 + λi) ≥ 1 +

n∏
i=1

λi = det(I) + det
(
A− 1

2BA− 1
2

)
. (102)

Combining Eq.101 with Eq. 102 concludes the proof.

Proof of Lemma 22. For Υt and E[Υt], by definition,

Υt+1 = Υt + rat,tr
T
at,t and Υ1 = λI,

E[Υt+1] = E[Υt] + µatµ
T
at +Σr,at .

Since E[Υt] is symmetric and positive definite, we have

det (E[Υt+1]) = det
(
E[Υt] + µat

µT
at

+Σr,at

)
= det

(
E[Υt]

1
2

(
I + E[Υt]

− 1
2

(
µat

µT
at

+Σr,at

)
E[Υt]

− 1
2

)
E[Υt]

1
2

)
= det (E[Υt]) det

(
I + E[Υt]

− 1
2

(
µat

µT
at

+Σr,at

)
E[Υt]

− 1
2

)
≥
(a)

det (E[Υt])
(

det
(
I + E[Υt]

− 1
2µat

µT
at
E[Υt]

− 1
2

)
+ det

(
E[Υt]

− 1
2Σr,atE[Υt]

− 1
2

))
(103)
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where (a) holds since both
(
I + E[Υt]−

1
2µatµ

T
atE[Υt]

− 1
2

)
and

(
E[Υt]−

1
2Σr,atE[Υt]−

1
2

)
are posi-

tive definite and applying Lemma 24 yields the result.

Let E[Υt]−
1
2µat = vt, and we observe that(

I + vtv
T
t

)
vt = vt + vt

(
vTt vt

)
=
(
1 + vTt v

)
vt.

Hence, 1+vTt v is an eigenvalue of I+vtv
T
t . And since vtvTt is a rank-1 matrix, all other eigenvalue

of I + vtv
T
t equal to 1, implying

det
(
I + E[Υt]−

1
2µatµ

T
atE[Υt]

− 1
2

)
= det

(
I + vtv

T
t

)
= 1 + vtv

T
t

= 1 +
(
E[Υt]−

1
2µat

)T (
E[Υt]−

1
2µat

)
= 1 + µTatE[Υt]

−1µat .

(104)

Combining Eq. 103 and Eq. 104, we have

det (E[Υt+1]) ≥ det (E[Υt])
(
1 + µTatE[Υt]

−1µat + det
(
E[Υt]−

1
2Σr,atE[Υt]−

1
2

))
The solution of Lemma 22 follows from induction.

E.4.2 PROOF OF LEMMA 23

Proof. For the proof of this lemma, we follow the main idea of Determinant-Trace Inequality in
OFUL (Abbasi-Yadkori et al., 2011) (Lemma 10). Specifically, by the definition of Υt, we have

log

(
det (E[ΥT+1])

det (E[ΥM+1])

)
= log

(
det

(
E[ΥM+1] +

∑T
t=M+1(µatµ

T
at +Σr,at)

E[ΥM+1]

))

≤
(a)

log

(
det

(
1 +

∑T
t=M+1(µatµ

T
at +Σr,at)

λI

))

= log

(
det

(
1 +

1

λ

(
T∑

t=M+1

(
µatµ

T
at +Σr,at

))))
,

(105)

where (a) holds since det(E[ΥM+1]) ≥ det(E[Υ1]) = λI . Let ξ1, ..., ξD denote the eigenvalues of∑T
t=M+1(µatµ

T
at +Σr,at), and note:

D∑
d=1

ξd = Trace

(
T∑

t=M+1

(µatµ
T
at +Σr,at)

)

=

T∑
t=M+1

Trace
(
µatµ

T
at

)
+

T∑
t=M+1

Trace (Σr,at)

≤
T∑

t=M+1

∥µat∥
2
2 + (T −M)Dσ2

r↑
(
by σ2

r,i,d ≤ σ2
r↑
)

≤ (T −M)(B +Dσ2
r↑).

(
by ∥µat∥

2
2 ≤ B

)
(106)

Combining Eq. 105 and Eq. 106 implies
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log

(
det (E[ΥT+1])

det (E[ΥM+1])

)
≤ log

(
det

(
1 +

1

λ

(
T∑

t=M+1

(
µatµ

T
at +Σr,at

))))

= log

(
D∏
i=1

(
1 +

ξi
λ

))

= D log

(
D∏
i=1

(
1 +

ξi
λ

)) 1
D

≤
(a)

D log

(
1

D

D∑
i=1

(
1 +

ξi
λ

))

≤
(b)
D log

(
1 +

(T −M)(B +Dσ2
r↑)

Dλ

)
,

where (a) follows from the inequality of arithmetic and geometric means, and (b) follows from
Eq. 106.
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