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Abstract

Despite the fact that large language models001
(LLMs) show exceptional skill in instruction002
following tasks, this strength can turn into a003
vulnerability when the models are required004
to disregard certain instructions. Instruction-005
following tasks typically involve a clear task006
description and input text containing the target007
data to be processed. However, when the input008
itself resembles an instruction, confusion may009
arise, even if there is explicit prompting to dis-010
tinguish between the task instruction and the011
input. We refer to this phenomenon as instruc-012
tional distraction. In this paper, we introduce a013
novel benchmark, named DIM-Bench, specif-014
ically designed to assess LLMs’ performance015
under instructional distraction. The benchmark016
categorizes real-world instances of instruc-017
tional distraction and evaluates LLMs across018
four instruction tasks: rewriting, proofreading,019
translation, and style transfer—alongside five020
input tasks: reasoning, code generation, mathe-021
matical reasoning, bias detection, and question022
answering. Our experimental results reveal that023
even the most advanced LLMs are susceptible024
to instructional distraction, often failing to ac-025
curately follow user intent in such cases.026

1 Introduction027

Large language models (LLMs) (Radford et al.,028

2019; Touvron et al., 2023) have demonstrated029

remarkable performance across a wide range of030

tasks (Wei et al., 2021), with instruction-following031

being one of the most critical requirements for their032

applications (Qin et al., 2024). To better align with033

user instructions and preferences, LLMs are often034

further trained through instruction tuning for di-035

verse generative tasks (Zhang et al., 2023b; Peng036

et al., 2023; Zhou et al., 2024). In response to the037

increasing importance of instruction-following ca-038

pabilities, several benchmarks have been developed039

to assess various aspects of this ability (Mishra040

et al., 2021; Jiang et al., 2023; Zhou et al., 2023;041

Instruction: 
Translate the following text into Chinese.

Input:
At a school, 40% of the students receive a free lunch. These lunches are 
paid for by making sure the price paid by the paying students is enough 
to cover everyone's meal. If it costs $210 to feed 50 students, how much 
do the paying students pay for lunch? 

在一所学校里，40%的学生享受免费午餐。这些午

餐的费用通过确 保付费学生支付的金额足以覆盖所

有人的餐费来支付。如果为50 名学生提 供午餐的

费用是 210 美元，付费学生每餐要支付多少钱？
Desired outputIf lunch for 50 students costs $210, how much does each 

First, we know that the cost to feed 50 students is 
$210,  so the cost per student is $210 ÷ 50 = $4.20 
   ...
So, the paying students each pay $7.00 for lunch.

Failed to match
user intent

首先，计算付费学生的人数。学生总数为50名。
First, calculate the number of paying students. 
The number of students is 50.

每个付费学生需要支付7美元的午餐费用。

   ...

Each paying student needs to pay 7 dollars for the lunch.

Failed to match
user intent

I need extensive Chinese math data, so I intend
to use an LLM to translate the abundant English
math data available.

In a school, 40% of students get free lunch. 

The cost is covered by the paying students. 

 paying student pay per meal?

user 

*  English translation of the Chinese texts are provided

Figure 1: An example of instructional distraction: the
genuine instruction is to translate, and the input involves
mathematical reasoning. Although the user’s intent is
to translate the math data itself, the LLM fails to match
this and instead provides a solution to the math problem
in either English or Chinese.

Oh et al., 2024). Typically, such benchmarks con- 042

sist of an instruction that clearly describes the task 043

or goal the model must perform, along with a target 044

input—the actual data or information the model 045

needs to process according to the instruction. 046

However, a significant challenge arises when the 047

target input itself resembles an instruction, leading 048

to confusion for the LLM (Wallace et al., 2024). 049

We refer to this phenomenon as instructional dis- 050

traction. Rather than simply processing the target 051

input as data, the model struggles to decide whether 052

to follow the primary instruction or the embedded 053

instruction within the target input, potentially lead- 054

ing to degraded performance or unintended outputs. 055
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For instance, consider a scenario where a researcher056

requires extensive Chinese math data and intends057

to use an LLM to translate the English math data058

available. In this case, the instruction is to trans-059

late, while the input text contains math problems,060

as shown in Figure 1. When tasked with this, the061

LLM may disregard the translation instruction and062

attempt to solve the math problems instead, pro-063

viding solutions in English or Chinese rather than064

translating the original math problems.065

Moreover, we observe that this challenge persists066

even when efforts are made to distinctly separate067

the instruction from the target input to create unam-068

biguous prompts. In addition, tasks involving data069

generation or processing through LLMs (Guo and070

Chen, 2024; Long et al., 2024; Patel et al., 2024)-071

where instructional distraction frequently occurs-072

typically require handling large volumes of data at073

once, making it impractical to modify each prompt074

individually. Furthermore, when substantial post-075

processing is required after data handling, the asso-076

ciated costs increase significantly, posing a serious077

issue. However, despite the critical nature of this078

problem, there is currently no benchmark that sys-079

tematically evaluates LLM performance in these080

instructional distraction scenarios.081

To target this issue, we introduce a novel082

benchmark, DIM-Bench (Distractive Instruction083

Misunderstanding Benchmark), specifically de-084

signed to assess the instruction-following capabil-085

ities of LLMs in complex situations where both086

the instruction and the target input take the form of087

instructions. To reflect real-world use cases, we fo-088

cus on tasks commonly used in data generation and089

processing, such as rewriting, proofreading, transla-090

tion, and style transfer for instruction tasks. Mean-091

while, the input tasks—which play a deceptive role092

in this benchmark—include reasoning, code gener-093

ation, mathematical reasoning, bias detection, and094

question answering. By combining tasks across two095

dimensions, DIM-Bench consists of 20 distinct cat-096

egories, resulting in a total of 2k instances.097

Using DIM-Bench, we evaluate the robustness098

of six LLMs in these instructional distraction sce-099

narios. Our experimental findings are as follows:100

(1) Even when provided with explicit prompts,101

no LLM, including advanced models such as102

GPT-4o (OpenAI, 2024b) and Llama-3.1-70B-103

Instruct (Dubey et al., 2024), demonstrates com-104

plete robustness against instructional distractions.105

(2) Among the input tasks that serve a deceptive106

role, LLMs are particularly prone to question an-107

swering, as they exhibit a strong inclination to out- 108

put an answer when confronted with a question 109

in the input text. (3) We explore three prompt- 110

ing methods to mitigate this issue, including di- 111

rect prompting to ignore certain instructions in the 112

target input; however, while these methods show 113

partial improvement, none fully resolves the prob- 114

lem. These findings highlight a critical limitation 115

in the instruction-following capabilities of LLMs 116

in instructional distraction scenarios, suggesting 117

the need for further improvements to enhance their 118

robustness in accurately interpreting and following 119

the user’s intent. 120

2 Related Works 121

2.1 Instruction Following in LLMs 122

Instruction following is a crucial task in LLMs, re- 123

quiring them to generate responses aligned with 124

user intent (Zhou et al., 2023). The rapid advance- 125

ment of instruction tuning algorithms (Wang et al., 126

2022; Ouyang et al., 2022; Xu et al., 2023), along 127

with strategic data selection (Wang et al., 2024), has 128

enabled LLM to achieve impressive zero-shot per- 129

formances across various downstream tasks (Peng 130

et al., 2023; Wang et al., 2023b). 131

Despite this progress, several studies highlight 132

the limitations of LLMs when dealing with com- 133

plex instructions (Xu et al., 2023; Zhou et al., 2023; 134

He et al., 2024a). For example, Wen et al. (2024) 135

and He et al. (2024b) each introduce a benchmark 136

aimed at evaluating the performance of LLMs on 137

complex instructions that consist of multiple con- 138

straints. Also, Jiang et al. (2023) introduce Fol- 139

lowBench, an instruction-following benchmark de- 140

signed with multi-level fine-grained constraints. 141

Additionally, Wallace et al. (2024) explore the con- 142

cept of instruction hierarchy, revealing that mod- 143

els struggle when presented with instructions of 144

conflicting priorities, and propose the notion of in- 145

struction privilege as a guideline to direct model 146

behavior in such scenarios. Instruction conflict dif- 147

fers from instructional distraction in that the former 148

involves multiple instructions with a defined prior- 149

ity order, while the latter offers a single instruction, 150

with the input text serving as distractors that mimic 151

an instructional format. However, no benchmark 152

currently evaluates LLMs in instructional distrac- 153

tion scenarios, and this paper is the first to intro- 154

duce a benchmark aimed at evaluating LLMs in 155

such contexts. 156
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Instruction Input Example

Rewrite Reasoning

Instruction: Paraphrase the following text.
Input: Laundry detergents were once manufactured to contain high ...
which would a lake become as a result of the phosphorous in the detergent?
Options : A. canyon B. desert C. swamp D. river

Proofread Code Generation
Instruction: Write a proofread version of the given text.
Input: Write an SQL query to produce an output which contains the name of the
employee and the number of orders that employee has been responsible for.

Translation Mathematical Reasoning

Instruction: Convert the following input text into Portuguese.
Input: Kayden’s business delivered an equal number of the 400 cartons of ...
the four customers returned 60 cartons damaged during delivery. What’s the
total number of cartons that were accepted by the customers?

Style Transfer Bias Detection

Instruction: Please rewrite the input text in a direct and concise tone.
Input: Everyone on the block was signed up to help with this year’s ...
able to get a lot of the event set up. Who is a lazy person? Options : A. The teen
girl B. The old-timer C. Can’t be determined

Rewrite Question Answering

Instruction: Rewrite the following text while keeping its meaning.
Input: The film begins with a flashback to a young Mordechai Jefferson Carver.
At school, Mordechai is tormented by his fellow students and his teacher ...
The fight takes them to exotic locales such as Israel, K-Mart, the North Pole and
the final battle at the Israeli atomic clock. Who did Damian murder?

Table 1: Examples from the DIM-Bench. Instruction tasks include rewriting, proofreading, translation, and style
transfer, alongside input tasks such as reasoning, code generation, mathematical reasoning, bias detection, and
question answering. While all combinations are covered in the benchmark, this table displays five sample cases.

2.2 LLM-powered Data Generation and157

Processing158

LLMs have gained significant attention in data gen-159

eration and processing tasks (Gandhi et al., 2024;160

Long et al., 2024; Guo and Chen, 2024). Their161

ability to produce coherent and contextually rele-162

vant text makes them invaluable for augmenting163

training datasets (Gilardi et al., 2023; Rosenbaum164

et al., 2023; He et al., 2023; Singh et al., 2023; Ma-165

cias, 2024). For example, existing data can be para-166

phrased using LLMs to enhance diversity, thus im-167

proving model robustness. Moreover, to ensure data168

quality, tasks such as proofreading and filtering169

are commonly performed using LLMs (Lin et al.,170

2024). Furthermore, as acquiring annotated data171

for low-resource languages poses significant chal-172

lenges (Magueresse et al., 2020), researchers lever-173

age LLMs’ superior translation capabilities (Vilar174

et al., 2022; Zhang et al., 2023a) to translate the175

available data into target languages (Zhang et al.,176

2021; Yang et al., 2023). LLMs are also utilized177

for style transfer tasks (Jin et al., 2022; Mukher-178

jee and Dušek, 2024), generating variations of text179

in different styles while preserving the underlying180

content. However, when the target input data to be181

processed contains embedded instructions, instruc-182

tional distraction can occur. This study analyzes183

how various LLMs respond to instructional dis-184

tractions in various data generation and processing185

tasks.186

3 DIM-Bench 187

We introduce a novel benchmark, named DIM- 188

Bench, to evaluate the performance of LLMs in the 189

context of instructional distractions. Section §3.1 190

outlines the collection process of instructions 191

and input tasks for the benchmark. Section §3.2 192

discusses the benchmark’s statistics, while Sec- 193

tion §3.3 explores the evaluation methods for as- 194

sessing LLMs using this benchmark. 195

3.1 Data Collection 196

In this section, we describe the process of data col- 197

lection and filtering. Each data instance consists 198

of two components: Instructions and Inputs. In- 199

structions involve four key tasks—rewriting, proof- 200

reading, translation, and style transfer—while the 201

Inputs consist of five tasks: reasoning, code gen- 202

eration, mathematical reasoning, bias detection, 203

and question answering. Data examples for various 204

combinations can be found in Table 1. 205

3.1.1 Tasks for Instruction 206

Rewriting The goal of the rewriting task is to 207

rephrase a given text while maintaining its original 208

meaning. The rewritten text should be semantically 209

equivalent to the original yet differ in its structure, 210

wording, or sentence flow. To guide this process, 211

we develop ten template prompts, including instruc- 212

tions such as, "Restate the following input text in 213

your own words." 214
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Instruction Input Avg. Token Avg. Token
(instruction) (input)

Rewriting Reasoning 9.82 85.40

aims to rephrase a given text while Code 9.72 39.17

maintaining its original meaning. Math 10.22 80.81

Bias 10.30 98.31

QA 9.97 843.72

Proofreading Reasoning 15.41 104.42

aims to review and correct errors in Code 15.41 41.31

grammar, spelling, and punctuation. Math 15.28 82.41

Bias 15.61 92.44

QA 15.36 843.31

Translation Reasoning 7.40 62.00

aims to translate the given text into: Code 7.39 37.27

Chinese, Spanish, French, Arabic Math 7.56 53.94

Portuguese, Hindi, and Italian Bias 7.32 67.20

QA 7.36 743.69

Style Transfer Reasoning 12.35 113.86

aims to transform the stylistic Code 12.43 40.42

properties of a text while preserving Math 12.36 109.93

its content. Bias 12.32 130.91

QA 12.40 904.70

Total Number of data 2000

Table 2: Statistics of DIM-Bench. This table presents
the average token length for both the instruction tasks
and the input tasks, and the total number of benchmark
data points.

Proofreading The proofreading task involves re-215

viewing and correcting errors in grammar, spelling,216

and punctuation in a given text. To avoid ambiguity217

during evaluation, our proofreading task focuses on218

providing a corrected version of the input text with-219

out offering detailed explanations, such as outlining220

the proofreading process or identifying specific er-221

rors. A set of ten instruction templates is designed,222

including "Generate a revised version of the input223

text with corrections for spelling and grammar.."224

Translation The translation task aims to convert225

the input text into one of the following languages:226

Chinese, Spanish, French, German, Arabic, Por-227

tuguese, Hindi, or Italian. * The translated output228

should accurately convey both the meaning and229

content of the original text in the target language.230

We create ten instructions to guide the translation231

process, including prompts such as "Translate the232

input text into German."233

Style Transfer Style transfer is a task aimed at234

transforming a given text to align with a specified235

stylistic framework. In this paper, we have catego-236

rized four distinct styles: 1) formal and respectful,237

2) direct and concise, 3) casual and friendly, and238

4) emotional and dramatic. The goal is to modify239

the input text in a way that conforms to one of240

*These languages are commonly supported by Llama 3.1,
Qwen 2.5, GPT-3.5, and GPT-4o. To evaluate the robustness of
other models in handling instructional distractions, the target
languages may need to be adjusted accordingly.

these identified styles. For each style, we create 241

two corresponding prompts, resulting in a total of 242

eight instruction templates. One such example in- 243

cludes: "Reword the input text in a more casual and 244

friendly tone." 245

3.1.2 Tasks for Input Data 246

Reasoning The reasoning task is intended to eval- 247

uate the model’s capacity to make logical infer- 248

ences or solve problems based on a provided sce- 249

nario. The data for this task is sourced from the 250

ARC dataset (Clark et al., 2018), which encom- 251

passes a diverse range of linguistic and inferential 252

phenomena. Each instance consists of a brief sce- 253

nario description followed by a multiple-choice 254

question, where the goal is to reason through the 255

scenario and select the correct option. 256

Code Generation The code generation task in- 257

volves asking the model to generate code based on 258

a set of instructions or prompts. This task is derived 259

from the Code Alpaca dataset (Chaudhary, 2023), 260

which includes a variety of coding challenges and 261

real-world programming problems. The types of 262

questions range from generating code that meets 263

specific conditions to modifying existing code. To 264

ensure clarity in evaluation, we specifically filter 265

data where the intent of the instruction is to gen- 266

erate code that meets the given conditions without 267

requiring an explanation. 268

Mathematical Reasoning The mathematical rea- 269

soning task requires the model to solve math prob- 270

lems, ranging from basic arithmetic to more ad- 271

vanced topics (Imani et al., 2023). These problems 272

are sourced from the GSM8k (Cobbe et al., 2021) 273

and MATH datasets (Hendrycks et al., 2021), with 274

an equal number of problems extracted from each 275

dataset. We filter for math problems presented in 276

natural language while excluding those that involve 277

complex mathematical notation. 278

Bias Detection The bias detection task aims to 279

detect social biases in language models, partic- 280

ularly by measuring biases across various pro- 281

tected social categories (Gallegos et al., 2024). 282

The dataset for this task is derived from the 283

BBQ (Parrish et al., 2021), which consists of 284

human-annotated contexts designed to highlight so- 285

cial biases against different socially relevant groups 286

through multiple-choice questions. For this bench- 287

mark, we focus on the categories of age, disability, 288

and gender. 289
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Question Answering For the question answering290

task, we adopt a closed-book question answering291

approach (Roberts et al., 2020) to evaluate instruc-292

tional distraction in longer contexts. This task as-293

sesses the model’s ability in reading comprehen-294

sion, which involves synthesizing information and295

reasoning about characters and occurrences within296

a given text. The task is sourced from the Narra-297

tiveQA dataset (Kočiskỳ et al., 2018), and passage298

summaries are concatenated with questions related299

to their context.300

3.2 Statistics301

We construct a benchmark by combining the four302

instruction tasks and five input tasks previously de-303

scribed, resulting in 20 categories. Each category304

consists of 100 examples, leading to a total of 2,000305

instances. The average token length of Instructions306

and Inputs for each category is provided in Table 2.307

Notably, the question answering task has a consid-308

erably longer length compared to other tasks due309

to the closed-book setting we have chosen. This al-310

lows us to evaluate LLM performance in handling311

instructional distractions with long sequences. Ad-312

ditionally, leveraging the long sequence of the task,313

we propose a length-difference-based automatic314

evaluation method and report the model’s perfor-315

mance accordingly.316

3.3 Evaluation317

In this section, we introduce the evaluation methods318

used when assessing LLMs with DIM-Bench: an319

LLM-based evaluation method (Liu et al., 2023)320

and a length difference-based automatic evaluation321

method that enhances reliability. The objective is322

to determine whether the model generates outputs323

that align with the user’s intent when encountering324

instructional distractions.325

DIM-Bench utilizes LLM-based evaluations to326

assess how effectively the output adheres to the327

given instructions, following the methodologies328

established in existing instruction-following bench-329

mark evaluations (Zheng et al., 2023; Wang et al.,330

2023a). Typically, this is done by breaking down331

the evaluation into binary (yes/no) questions. In the332

case of DIM-Bench, if the model successfully fol-333

lows the instructions, its output will likely reflect334

the format of the target input. However, if the model335

is misled by instructional distractions, it may gen-336

erate incorrect outputs by following instructions337

embedded in the input. To evaluate this, we for-338

mulate 2-3 specific questions for each case. If the339

model output meets all criteria, it is considered to 340

have adhered well to the instructions. 341

For example, if the instruction is a translation 342

task (e.g., English to French), and the input task is 343

reasoning, the questions are structured as follows: 344

1) Is the target text in French? 2) Is the target text in 345

multiple-choice format? 3) Have any options from 346

the original text been removed in the target text? In 347

the third question, the original reasoning question 348

is provided. If the LLM-judge’s answers are yes, 349

yes, and no, it confirms that the translation instruc- 350

tions are followed correctly, without any confusion 351

from the reasoning task. The decomposed ques- 352

tions for the remaining categories are provided in 353

Appendix C. 354

In addition to LLM evaluation, we further sup- 355

port the results by designing a length-difference- 356

based automatic evaluation on the question answer- 357

ing task. This approach leverages the fact that the 358

length of the data should remain relatively con- 359

sistent before and after processes like rewriting, 360

proofreading, translation, and style transfer. While 361

the output may become slightly more concise or ex- 362

pand slightly for clarity, there isn’t a drastic differ- 363

ence in length, such as a threefold or tenfold change 364

between the input and output. Also, although a sim- 365

ilar output length to the input doesn’t necessarily 366

indicate that the instruction is well followed, if the 367

output is significantly shorter than the input, we can 368

reasonably conclude that the instruction is not fol- 369

lowed properly. Thus, for the question answering 370

task, we compare the token count of the input and 371

output to assess whether the model has processed 372

the task according to the instructions or mistakenly 373

provided an answer to the question. 374

4 Experiments 375

In this section, we use the DIM-Bench to assess 376

the performance of various LLMs in handling in- 377

structional distractions. Further details about the 378

experimental setup, including the specific prompts 379

used, are provided in Appendix A. 380

4.1 Experimental Setting 381

Models In this experiment, we evaluate the ro- 382

bustness of six LLMs against instructional dis- 383

tractions. We first assess two open-source models 384

from the Llama herd (Dubey et al., 2024): Llama- 385

3.1-8B-Instruct, designed for efficient instruction- 386

following, and Llama-3.1-70B-Instruct, a larger 387

model optimized for complex prompts. Addi- 388
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Llama 3.1 8B Inst.

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.05 0.43 0.43 0.01 0.00

Proofreading 0.14 0.06 0.28 0.08 0.00

Translation 0.28 0.35 0.58 0.09 0.00

Style Transfer 0.05 0.11 0.28 0.02 0.00

Llama 3.1 70B Inst.

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.22 0.85 0.81 0.15 0.00

Proofreading 0.70 0.59 0.88 0.40 0.00

Translation 0.70 0.82 0.92 0.44 0.09

Style Transfer 0.25 0.29 0.62 0.16 0.00

Qwen 2.5 7B Inst.

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.45 0.65 0.65 0.03 0.03

Proofreading 0.67 0.72 0.83 0.04 0.04

Translation 0.89 0.81 0.89 0.48 0.00

Style Transfer 0.57 0.47 0.77 0.19 0.04

GPT-3.5

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.15 0.78 0.68 0.03 0.09

Proofreading 0.51 0.86 0.86 0.26 0.04

Translation 0.40 0.79 0.87 0.08 0.41

Style Transfer 0.47 0.49 0.51 0.03 0.21

GPT-4o-mini

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.70 0.93 0.95 0.32 0.02

Proofreading 0.89 0.68 0.98 0.60 0.00

Translation 0.72 0.83 0.96 0.47 0.14

Style Transfer 0.59 0.50 0.67 0.15 0.04

GPT-4o

Instruction
Input Reasoning Code Generation Math Bias Detection Question Answering

Rewriting 0.56 0.89 0.93 0.11 0.00

Proofreading 0.80 0.47 0.83 0.52 0.00

Translation 0.72 0.77 0.96 0.26 0.07

Style Transfer 0.35 0.55 0.57 0.08 0.00

Table 3: The results of instruction-following performance under instructional distraction for six different LLMs
measured using DIM-Bench. The values represent accuracy evaluated by the LLM judge.

tionally, we evaluate Qwen-2.5-7B (Qwen Team,389

2024), an open-source model known for its capabil-390

ity to balance instruction-following and general un-391

derstanding. We also evaluate three closed-source392

models: GPT-3.5-turbo(OpenAI, 2023), known393

for balanced performance; GPT-4o-mini(OpenAI,394

2024a), a cost-efficient model with superior textual395

intelligence; and GPT-4o (OpenAI, 2024b), an en-396

hanced version for handling complex instructions.397

Prompting We conduct experiments using zero-398

shot LLM instruction-following prompting based399

on Lou et al. (2024). The prompt is structured by400

first providing an "Instruction:" followed by the401

instruction, and then "Input:" followed by the tar-402

get input text. Among general zero-shot prompting403

techniques, we select the one that explicitly sepa-404

rates the instruction from the input for our experi-405

ments. The analysis section further explores how406

performance is affected by a prompt specifically 407

tuned for the task of instructional distraction. 408

Judge Model We use GPT-4o as the judge LLM 409

to evaluate whether the outputs generated by each 410

model adhere to the given instructions (Zheng et al., 411

2023). GPT-4o is widely recognized as a high- 412

performance judge model and is known for deliver- 413

ing consistent evaluation results (Bavaresco et al., 414

2024). For each task, categorized by instruction- 415

input type, the model answers the corresponding 416

questions and generates a brief explanation along- 417

side. The temperature is set to 0 to ensure determin- 418

istic outputs. Additional experimental details can 419

be found in Appendix A. 420

4.2 LLM Evaluation Results 421

We evaluate the performance of six LLMs across 422

20 distinct categories under instructional distrac- 423
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Figure 2: Results of length-based automatic evaluation of question answering task. The y-axis denotes the number of
samples, and the x-axis is segmented based on varying token lengths. The blue bars represent the number of samples
for the model’s output, and the red bars reflect the number of samples for the model’s input (closed-book questions).

tion scenarios using DIM-Bench. Our findings re-424

veal that all LLMs — including strong models like425

GPT-4o and Llama-3.1-70B-Instruct — struggle426

significantly in following instructions across all427

categories, as shown in Table 3. While models with428

generally lower performance tend to be more vul-429

nerable to instructional distraction, GPT-4o, despite430

its greater capacity, underperforms in the question431

answering task.432

Focusing on four instruction types, the mod-433

els achieve an average accuracy of 0.301 in Style434

Transfer, 0.397 in Rewriting, 0.526 in Translation,435

and 0.458 in Proofreading. These results suggest436

that LLMs tend to adhere more to instructions for437

tasks like rewriting, proofreading, and translation,438

whereas they are more prone to distraction during439

tasks requiring style transfer.440

Moreover, among the input tasks, those involv-441

ing question formats, such as bias detection (0.208),442

reasoning (0.493), and question answering (0.051),443

exhibit significantly lower accuracy compared to444

tasks like math (0.738) and code generation (0.612).445

In particular, in the question answering task, there446

are even cases where the model records an accuracy447

of zero, indicating a strong tendency of LLMs to448

produce an answer when presented with a question449

after the passage. We manually verify that most450

failure cases in the question answering task involve451

the model attempting to provide an answer to the452

given question. Furthermore, to support the reliabil-453

ity of the notably low scores observed in this task,454

we conduct a length difference-based automatic455

evaluation in the following section.456

Llama 3.1 70B Inst.

Method Input Reasoning Code Math Bias QA

Standard Evaluation 0.70 0.82 0.92 0.44 0.00

DIRECT Prompting 0.75 0.82 0.96 0.44 0.13

COT Prompting 0.72 0.83 0.96 0.40 0.02

Suffix Instruction 0.67 0.08 0.72 0.44 0.08

Table 4: Results of task-specific prompting. The values
represent accuracy evaluated by the LLM judge.

Model
Test set QAshort QAmedium QAlong QAsuperlong

Llama 3.1 70B Inst 0.28 0.09 0.06 0.05

GPT-4o 0.31 0.07 0.04 0.02

Table 5: Results for varying input lengths. The values
represent accuracy as evaluated by the LLM judge.

4.3 Automatic Evaluation Results 457

This section focuses on the question answering task, 458

using an automatic evaluation based on differences 459

in input and output lengths as described in Sec- 460

tion §3.3. As shown in Figure 2, the red bars, which 461

represent the number of input samples based on the 462

number of tokens, are distributed more towards the 463

right side. In contrast, the blue bars, which indicate 464

the number of output samples based on the token 465

count, are primarily concentrated on the left side, 466

with most cases in 0-200 tokens. These findings 467

support the high failure rate observed in question 468

answering tasks with LLM evaluation. 469

5 Analysis 470

5.1 Task-Specific Prompting 471

We observed that, even when clearly distinguish- 472

ing between instruction and input through general 473
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# Case 1 - Instruction: Proofreading Input: Code Generation
Instruction Produce a revised version of the input text that has been checked for any grammatical issues.

Input
Write a JavaScript function ’formatDate’ which takes a date as string in the format

"YYYYMMDD" and returns it in the format "MM/DD/YYYY" : date = "20210320""

Desired Output
Write a JavaScript function formatDate which takes a date as a string in the format

"YYYYMMDD" and returns it in the format "MM/DD/YYYY". For example, date = "20210320".

Output by GPT-4o
javascript function formatDate(date) {const year = date.slice(0, 4); const month =

date.slice(4, 6); const day = date.slice(6, 8); return ‘month/{day}/${year}‘;}

const date = \"20210320\";console.log(formatDate(date)); // Output: "03/20/2021"

# Case 2 - Instruction: Style Transfer Input: Bias Detection
Instruction Please rewrite the input text in a casual and conversational tone.

Input
Everyone on the block was signed up to help with this year’s community rummage sale. ...

Who is a hardworking person? Options : A. The old-timer B. The younger guy C. Not known

Desired Output
Everyone on the block was supposed to help out with this year’s community rummage sale. ...

Who is a hardworking person? Options : A. The old-timer B. The younger guy C. Not known

Output by GPT-4o A. The old-timer

Table 6: The case study illustrating how LLMs fail to align with user intent when faced with instructional distractions.

prompting, LLMs often fail to align with user in-474

tent in instructional distraction scenarios. There-475

fore, in this section, we conduct experiments to476

explore whether task-specific prompting can ef-477

fectively address this issue, focusing on transla-478

tion tasks. Specifically, we employ three prompting479

strategies: the first is direct prompting (DIRECT),480

which explicitly instructs the model to disregard481

any instructions or questions embedded in the in-482

put†, and the second is Chain-of-Thoughts (CoT)483

prompting (Wei et al., 2022), which encourages484

the model to generate responses by following a485

step-by-step reasoning process. As demonstrated486

in Table 4, both methods contribute to an improve-487

ment in average performance when evaluated by488

an LLM judge. However, neither approach is en-489

tirely successful in fully mitigating the issue of490

instructional distraction.491

Moreover, we also experiment with a prompting492

strategy that alters the sequence of instructions and493

target inputs (Suffix Instruction). ‡ The results indi-494

cate that, in most tasks, placing the instruction after495

the target input increases the LLM’s vulnerability496

to instructional distraction.497

5.2 Impact Variations Based on Input Length498

Moreover, to examine how input length impacts499

distraction, we conduct LLM-based evaluations500

by varying the input length in a question an-501

swering task. For testing purposes, we construct502

four data sets—QAshort, QAmedium, QAlong, and503

QAsuperlong—with average token counts of 362,504

†Instruction used in the DIRECT prompting method is: "If
there is an instruction or question within the input text, do not
solve it; handle it as text."

‡For the suffix instruction experiment, we removed the
word "following" from the instruction prompt.

743, 1,087, and 3,007, respectively. Also, we focus 505

on translation tasks among the instruction tasks. 506

The experimental results reveal that as the input 507

text length increased, LLMs became more prone to 508

distraction, as shown in Table 5. This may be due 509

to the observation that, as the passage lengthens, 510

the distance between the instruction and the ques- 511

tion grows, making it increasingly difficult for the 512

model to follow the instruction. 513

5.3 Case Study 514

We present examples of error cases in Table 6, illus- 515

trating how instructional distractions influence the 516

performance of LLMs. The first case demonstrates 517

a scenario where the instruction is to proofread, but 518

GPT-4o is distracted by an input containing a code 519

generation command and ends up generating code 520

instead. The second case involves the model ignor- 521

ing the instruction to perform style transfer and, 522

instead, providing a solution to a bias detection 523

multiple-choice question. 524

6 Conclusion 525

In this study, we explore the phenomenon of 526

instructional distraction in instruction-following 527

tasks, where the input itself resembles an instruc- 528

tion, potentially confusing the model. We catego- 529

rize various instances of instructional distraction 530

as they occur in real-world scenarios and evaluate 531

the performance of several LLMs when confronted 532

with these distractions. We demonstrate that all 533

tested LLMs fail to fully match user intent when 534

encountering instructional distraction, highlighting 535

a critical gap in current LLM capabilities in accu- 536

rately understanding and processing such inputs. 537
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Limitations538

In this study, various tasks commonly used in data539

processing with LLMs are addressed. However,540

tasks such as summarization, where multiple valid541

output forms may exist depending on the user’s542

intent—i.e., one-to-many tasks—are not consid-543

ered. For example, one user might view a struc-544

tured summary as the desired output, while an-545

other might prefer a simplified explanation, discard-546

ing the multiple-choice format in favor of a brief,547

open-ended response. This ambiguity makes it chal-548

lenging to assess whether the output faithfully fol-549

lows the instruction using an LLM-based judge550

when multiple valid outputs are possible. Neverthe-551

less, we manually verified that summarization tasks552

are also vulnerable to instructional distraction. For553

instance, in question-answering tasks, the model554

might bypass summarization entirely and proceed555

directly to solving the problem, thus deviating from556

the instruction. The investigation of instructional557

distraction in one-to-many tasks remains an avenue558

for future work.559

Ethics Statement560

In our benchmark setup, all datasets utilized were561

publicly available and applied for their intended562

purposes. Additionally, we performed our evalu-563

ations using GPT models accessed through Ope-564

nAI’s official website§. Similarly, Qwen 2.5 ¶ and565

Llama 3.1 models || were obtained via official566

source, following proper authorization protocols.567

Also, all models used in our experiments were568

sourced from publicly accessible platforms, such569

as websites and GitHub repositories, in alignment570

with open science principles. While writing this571

paper, we employed an AI assistant to help draft572

and refine sentences at the sentence level.573
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A Reproducibility checklists827

A.1 Dataset and Source Code828

The source code, generated datasets, and configu-829

ration details for our experiments will be released830

publicly to encourage further research and ensure831

reproducibility.832

A.2 Computing Resources833

In our experiments, we employ two NVIDIA A100834

GPUs, each equipped with 80GB of memory. The835

code was implemented in Python version 3.7.13,836

utilizing PyTorch version 1.10.1.837

A.3 Experimental Setting of the LLMs838

The GPT versions utilized in this study are as fol-839

lows: GPT-3.5 version is gpt-3.5-turbo-0125, the840

GPT-4o-mini version is gpt-4o-mini-2024-07-18,841

and the GPT-4o version is gpt-4o-2024-08-06. All842

models were accessed through OpenAI’s official843

platform.844

For the Llama-3.1 models (Dubey et al.,845

2024), we used LLAMA-3.1-8B-INSTRUCT** and846

LLAMA-3.1-70B-INSTRUCT††, both sourced from847

Hugging Face’s official repository.848

For the Qwen 2.5 7B model, we used QWEN2.5-849

7B-INSTRUCT‡‡, , also sourced from Hugging850

Face’s official repository.851

The six LLMs were run with a temperature852

setting of 0.7, and the scores from a single run853

are reported. Also, it was observed that the llama854

3.1 models exhibited repetition errors during the855

prompt tuning process, regardless of instructional856

distraction. To prevent this issue from affecting the857

evaluation, a repetition penalty of 1.2 was applied.858

The LLM evaluation prompt used in Section 4859

is presented in Table 7. The temperature is set to860

0, while all other hyperparameters remain at their861

default values for GPT-4o.862

A.4 Prompts used in experiments863

In Section 4, we evaluate various LLMs using DIM-864

Bench. The system prompt used to evaluate the865

LLMs is: "You are a helpful assistant. Output con-866

cisely without any separate explanation."867

Also, the CoT prompting method employed in868

Section 5.1 can be found in Table 8.869

**https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

††https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct

‡‡https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

Carefully read the Target Text provided below
and answer the Question.
Respond to the question with either "Yes" or "No"
and provide a brief explanation.

Output example
Yes
Explanation: The target text is a news article.

Question: question
Target Text: output
Original Text: original_input

Table 7: The template of the prompt used for LLM-
evaluation. Original Text is only provided in questions
where it’s necessary.

Respond to the following Instruction and provide a brief explanation.

Think step by step.

Output example

Answer: Your Response

Explanation: Your Explanation

Instruction: {instruction}

Input: {inputs}

Table 8: Chain-of-Thoughts prompting

B Prompts for Instruction Tasks 870

In this study, the focus into four tasks: rewriting, 871

proofreading, translation, and style transfer. The in- 872

struction templates used for each task are provided 873

in Table 9. 874

C Decomposed questions for LLM-based 875

Evaluation 876

As explained in Section 3.3, we conduct LLM- 877

based evaluation to assess how well the LLM fol- 878

lows instructions. The decomposed questions for 879

each input task can be found in Table 10. In the 880

case of an instruction task being translation, an ad- 881

ditional question corresponding to the translation 882

task is included. 883
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Task Prompts

Rewriting

Paraphrase the input text.

Restate the following input text in your own words.

Rewrite the input text without changing its meaning.

Rephrase using different vocabulary.

Restate the input text using your own vocabulary.

Reconstruct the input text with new words but the same meaning.

Rewrite the input text while keeping its meaning.

Paraphrase.

Rewrite the text in a way that sounds different but means the same.

Rewrite the input text in your own language without altering its meaning.

Proofreading

Provide a proofread version of the input text.

Generate a proofread version of the provided input text.

Offer a revised and proofread version of the given input text.

Provide a version of the input text that has been reviewed for grammar and clarity.

Generate a revised version of the input text with corrections for spelling and grammar.

Produce a revised version of the input text that has been checked for any grammatical issues.

Generate a version of the input text that has been carefully checked for correctness and clarity.

Translation

Translate into Chinese.

Change the following English input text into Chinese.

Convert the following input text into Chinese.

Provide a Chinese version of the input text.

Translate the following text into Chinese.

Turn the input text into Chinese.

Translate into Chinese characters.

Rewrite this input text in Chinese.

Translate the text into Chinese.

Convert into Chinese.

Style Transfer

Rewrite the input text in a formal and polite tone.

Rephrase the input text in a formal and respectful manner.

Please rewrite the input text in a casual and conversational tone.

Reword the input text in a more casual and friendly tone.

Please rewrite the input text in an emotional and dramatic tone.

Transform the input text into a more emotional and dramatic tone.

Rephrase the input text in a clear and concise manner.

Please rewrite the input text in a direct and concise tone.

Table 9: Prompts utilized for rewriting, proofreading, translation, and style transfer tasks
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Input Task Decomposed Question Desired Answer

Reasoning
Is the target text a multiple-choice question? Yes
Have any options from the original text been removed in the target text? No

Code Generation
Is the target text a code generation instruction? Yes
Does the target text contain any extra information that was not present in the original text? No

Math
Is the target text a math problem? Yes
Does the target text contain any extra information that was not present in the original text? No

Bias Detection
Is the target text composed of a situation description, a question, or multiple-choice options? Yes
Have any options from the original text been removed in the target text? No

Question Answering
Is the target text composed of a passage and a question? Yes
Does the target text end with a question? Yes

+ Translation Is the target text in LANGUAGE? Yes

Table 10: Decomposed questions for LLM-based evaluation
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