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Abstract

Automated storytelling has long captured the
attention of researchers for the ubiquity of nar-
ratives in everyday life. However, it is chal-
lenging to maintain coherence and stay on-
topic toward a specific ending when generat-
ing narratives with neural language models. In
this paper, we introduce Story generation with
Reader Models (StoRM), a framework in which
a reader model is used to reason about the story
should progress. A reader model infers what
a human reader believes about the concepts,
entities, and relations about the fictional story
world. We show how an explicit reader model
represented as a knowledge graph affords story
coherence and provides controllability in the
form of achieving a given story world state goal.
Experiments show that our model produces sig-
nificantly more coherent and on-topic stories,
outperforming baselines in dimensions includ-
ing plot plausibility and staying on topic. Our
system also outperforms outline-guided story
generation baselines in composing given con-
cepts without ordering.

1 Introduction

Automated Story Generation is the challenge of
designing an artificial intelligence system that can
generate a natural language text that is perceived by
readers as a story. Early work on story generation
used symbolic planning (Meehan, 1976; Lebowitz,
1987; Cavazza et al., 2003; Porteous and Cavazza,
2009; Riedl and Young, 2010; Ware and Young,
2010; Ware and Siler, 2021). These systems would
be provided with a description of the initial world
state—usually a list of predicates—and a goal—a
description of what predicates should be true to
be successful. These approaches had two benefits.
First, the plots tended to be coherent because of
logical constraints on the actions. Second, the plots
were guaranteed to end in a state in which the goal
held. However, these systems require substantial
knowledge engineering of logical constraints, limit-
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Figure 1: The overview of StoRM system. Our goal
is to build a story world °3%" covering all the given con-
cepts O. 1. A set of concepts O and a prompt O starts
the story generation process. 2. The system builds a
goal story world % and prompt story world 3 with
knowledge graph. 3. The system infers a graph of con-
cepts O. 4. A language model generates continuation
options on inferences. 5. Topk continuations minimize
its difference with goal story world are added to story.

ing their generality, and don’t always generate plot
or stories in natural language.

Recently, neural language modeling approaches
(Roemmele, 2016; Khalifa et al.,, 2017; Mar-
tin et al., 2018; Clark et al., 2018; Yao et al,,
2019; Rashkin et al., 2020; Fan et al., 2019; Am-
manabrolu et al., 2021a) have been applied to story
generation because they circumvent the need for
manual knowledge engineering and tend to produce
relatively fluent, varied, and naturalistic language.
Language models are, however, not goal-directed.
That is, one cannot natively provide both a context
prompt and a goal to be achieved after an arbi-
trary number of continuations. Further, language
models struggle with maintaining story coherence—
the logical progression of events—and may also
become repetitive. Large, pre-trained language
models improve fluency and generalization but do
not provide goal-directedness and stories generated



can still be perceived as lacking in coherence in the
sense that they meander without direction.

In this paper we consider the challenge of co-
herent and controllable text generation for neu-
ral language model based story generation. We
hypothesize that neural language models, while
powerful text-completion systems, are not natively
well-suited for coherent story generation because
a neural network trained with a cross-entropy loss
function is unlikely to model the unfolding context
of a story the same way as a human reader. Stud-
ies of human reader comprehension (Zwaan and
Radvansky, 1998) show that readers comprehend
stories by tracking the relations between entities
and events in ways that can be expressed as a graph.
The perceived coherence of a story is a function
of the connectedness of this graph (Graesser et al.,
1994). Ensuring the causality between sentences
can significantly improve the coherence of stories
(Peng et al., 2021).

Inspired by cognitive science, we aim to aug-
ment neural language models with a reader model
in which a story generation system infers a graph
of concepts, entities, and relations that a reader is
likely to believe about the story world as they read
an incrementally generated story. The reader model
enables the story generation algorithm to explicitly
reason about the entities and relations and generate
story continuations that use those entities to move
the story forward; a reader can track how entities
and relations change over time and thus perceive
stories as more coherent. We use large language
models to produce the continuation text of the story
generation. However instead of providing the pre-
vious story as context, our algorithm selects one
or more entity from the world model and uses tem-
plate filling to generates candidate continuations.
This is a deviation from the typical way in which
large language models are used to generate text
continuations from a context prompt and possibly
some additional external biases.

The reader model doesn’t guarantee controlled
text generation or goal-directedness but provides
a means for directing the generation process. In
addition to a starting context prompt, we require a
goal to be given in the form of what the graphical
reader’s model of the story world should be at the
end of the story. In that way, the goal provides a
rough outline of the entities and relations that need
to be present in the story but without providing
particulars about everything that must be in the

story or the ordering in which they must occur.

Our contributions are as twofold: (1) we pro-
pose an automated story generation model with
Reader Models (StoRM) which maintain coher-
ence and controllability of generated stories at the
same time; and (2) we conduct a thorough exper-
imental study against strong baselines that shows
that StoRM produces significantly more coherent
and goal-directed story.

2 Related Work and Background

We situate our paper in the literature of neural
networks—recurrent and transformer-based—to
produce stories (Roemmele, 2016; Khalifa et al.,
2017; Martin et al., 2018; Clark et al., 2018). There
are a few works that are highly related to our pro-
posed framework, in terms of the following two
dimensions: the generation controllability and the
usage of commonsense knowledge. The controlla-
bility in story generation focuses on how to enable
the generation process to adhere to the user’s in-
puts. Fan et al. (2018) proposes a hierarchical story
generation framework that divides the generation
process into two levels of hierarchy: generating a
writing prompt (premise) and then transforming it
into a passage of text conditioned on the prompt.
Similarly, Plan-And-Write (Yao et al., 2019) con-
ducts generation in two steps: planning a story out-
line based on a title (topic), then generating a story
based on the storyline. Plot Machines (Rashkin
et al., 2020) accepts as an input an un-ordered out-
line of concepts and conditions a language model.

Commonsense knowledge plays an important
role in story generation. The most popular way
of utilizing it is to train neural language models
(e.g. GPT-2 (Radford et al., 2019)) on common-
sense knowledge bases such as ConceptNet (Speer
and Havasi, 2013) and ATOMIC (Sap et al., 2019;
Hwang et al., 2021) which contains detailed in-
formation regarding well-known facts or causal
relationships. Thus the resulting language model,
named COMET (Bosselut et al., 2019; Hwang et al.,
2021), becomes capable of inferring new common-
sense knowledge on novel phrases. Ammanabrolu
et al. (2021b) proposes Causal, Commonsense Plot
Ordering (C2PO) framework which takes advan-
tage of COMET to infer predecessor and successor
events and then bi-directionally search from pre-
specified start event to end event, however, C2PO
generates plots made up of highly constrained, tem-
plated text; Peng et al. (2021) leverages COMET to



infer the character intentions and effects of actions
so as to guide the generation process, but they did
not consider controllability. There are also other
approaches that directly incorporate commonsense
knowledge graphs into the encoding process (Mi-
haylov and Frank, 2018; Guan et al., 2019). Their
works paid more attention on improving coherence
with the help of common-sense knowledge but did
not take controllability into consideration.

3 Story Generation with Reader Models

In this section, we introduce a framework—Strory
generation with Reader Models (StoRM)—for gen-
erating stories with models of what the reader will
believe about the fictional story world. We hy-
pothesize that the incorporation of a reader model
into the story generation process will increase story
coherence. We define story coherence as the ex-
tent to which readers can identify connections
between different events and entities in a story.
In this work, the reader model is represented as
a knowledge graph, a set of triples of the form
(subject, relation, object). By making the be-
liefs about what the reader likely knows explicit,
we provide mechanisms for selecting which entities
to include in the continuation of the story.

Because the StoRM framework maintains a
knowledge graph that approximates the reader’s
beliefs about the story world, we are able to com-
pare the reader model to a desired world state, also
described as a knowledge graph. The StoRM frame-
work is thus controllable—a user can provide a
story goal in the form of a knowledge graph (goal
story world) that describes the story world at the
conclusion of the story. This allows the system
to make informed decisions about which possible
story continuations are likely to achieve the desired
goal state by inferring how each possible story con-
tinuation changes the reader model to be closer to
the desired goal story world

Our framework starts with a prompt and a de-
scription of the story outcome (See Figure 2). The
prompt is transformed into a knowledge graph
by extracting entities (§3.1). The entities are ex-
panded using two commonsense techniques (§3.2).
(1) ConceptNet (Speer and Havasi, 2013), a crowd-
sourced knowledge base of concepts and relations,
and (2) COMET%S (Hwang et al., 2021), a neural
network that generates commonsense inferences.
The generation technique selects different entities
and uses templates to generate possible story con-

tinuations (§3.3). By targeting different entities and
using template infilling, we reduce neural network
hallucination of new entities and create a diverse set
of story continuations. Each potential continuation
is scored based on how it changes the knowledge
graph relative to the goal, which is also transformed
into a knowledge graph. The selected continuation
starts the next iteration of the generation process.

3.1 Knowledge Graph Acquisition

With the automatic generation of the story, some
important information could be forgotten. The
knowledge graph is an explicit and persistent mem-
ory of entities mentioned or inferred from the story
text generated so far. Knowledge Graphs represent
information in the form of triples, consisting of a
subject entity, relation and object entity. For ex-
ample, “Jenny lived in Florida” is represented as
(jenny, live, florida). The entities represent the
nodes of the graph and their relations act as edges.

To acquire the knowledge graph, we firstly
trained a Semantic Role Labeling (SRL) model
(Gildea and Jurafsky, 2002) on VerbAtlas (Di Fabio
et al., 2019)—a hand-crafted lexical-semantic re-
source whose goal is to bring together all ver-
bal synsets from WordNet (Fellbaum, 1998) into
semantically-coherent frames. This SRL model
provides the automatic identification and labeling
of argument structures of stories. Further detail can
be found in Appendix A.1.

StoRM then converts the output of VerbAtlas
SRL model into knowledge graph triples. Entities
represent the theme and attribute and VerbAtlas
frames act as edges. An example is shown in left
side of Fig. 2. Multiple character names, object
names and pronouns make the knowledge graph
representation hard to interpret. Hence, we adopt
a end-to-end Coreference Resolution model (Lee
et al., 2017) to find all expressions that refer to the
same entity in a story to minimize the entities.

StoRM starts with two knowledge graphs. The
first, G1, is the converted prompt (first sentence).
The second G, is the converted goal description.
G goal can also optionally be generated from a tar-
get story, in which case each sentence is converted
to nodes and relations and incrementally added to
the graph. With the generation of the continuation
candidates, we will update the knowledge graph
G; with new continuations to get new knowledge
graph Gy, 1, where t is the index of the sentence in
the story.
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Figure 2: The overall procedure of StoRM.

3.2 Graph Expansion

Human readers use commonsense knowledge to in-
fer the presence of entities and concepts not explic-
itly mentioned in story text. For example, Florida
has beaches and eating dinner implies dishes. In
accordance, we use common-sense inferences of
entities to expand the knowledge graph to provide
entities for characters to interact with and thus drive
the story forward. Because the presence of enti-
ties and concepts are inferred from prior events,
the reader should be able to track the connections
between entities and events, thus supporting per-
ceived story coherence.

We use two inference techniques. We first con-
sider ConceptNet5 (Speer and Havasi, 2013), a mul-
tilingual knowledge base, representing words and
phrases that people use and the common-sense rela-
tions between them. We expand each entity except
characters nodes with the inference extracted from
ConceptNet5 to get inference entity set £ ;. Sec-
ond, we repeat the process with COMET%g (Hwang
et al., 2021), which is a transformer-based gener-
ative model trained on the ATOMIC33 common-
sense dataset (Hwang et al., 2021) to infer relations
about sentences. We expand the knowledge graph
with these inference on the current story to get infer-
ence set Fp ;. Finally, we obtain the updated knowl-
edge graph G} = {e; g, -, €, } and inference
entities set By = E1 UFEy; = {éLG? ey él,G;} C
G/, where é is an inferred entity and [ is the number

of the inference entities.

3.3 Continuation Candidate Generation

Given each entity in the knowledge graph including
inference entities (§3.2) and current story history,
we first generate a set of continuation candidates.
We consider the conditional sentence generation as
a infilling task (Taylor, 1953).

Templates. A set of templates 7; are gener-
ated on each entity e; g; (See Appendix A.2).
For example, one of the templates generated on
beach are [subject] <mask> <mask> beach
<mask>. The [subject] of the sentence is (1) the
same subject with the previous sentence, (2) no
fixed (<mask>), or (3) any characters in previous
story history. The number of <mask> before and
after inference entity ranges from 1 to 10.

Text Infilling. We fine-tune RoBERTa (Liu et al.,
2019) on ROCStories (Mostafazadeh et al., 2016)—
a set of five-sentence stories involving common-
sense scenarios—to infill the mask tokens. De-
tails of training are shown in Appendix A.3. All
the templates 7; are filled by fine-tuned RoOBERTa
and we obtain a number of continuation candidates
S; = {si1,...si,m } for each entity e; g, Where m
is the number of templates of each entity.

Filtering. We fine-tune GPT-2 (Radford et al.,
2019) on ROCStories (henceforth called GPT-2-
ROC) and filter the continuation candidates by cal-



culating their conditional probability Ps with it:
n
P, = [[P(X;1X1, - Xjo1) (1)
j=1

where 7 is the length of the sentence s and X; is the
jth token in sentence s. We only keep one sentence
s; € .S; with the highest probability for each entity
e;,c, and obtain the continuation candidates S =

{81, ceey Sl}.
3.4 Graph Difference

We achieve controllability of the continuation can-
didates S’ by calculating the graph difference be-
tween the candidate knowledge graph G;* and the
goal knowledge graph G,a1. The candidate knowl-
edge graph G;' is obtained by updating knowledge
graph G; with continuation candidate s;. We cal-
culate the knowledge graph difference score:

R(s;) = (1 —a) x r1(G}*, Ggoal)

+ a x ro(EL, Goal) ()

where 71 is story entity overlapping score and
ro is inference overlapping score. « is a hyper-
parameter to control the inference’s contribution
on calculating overlapping rate.

Story entity overlapping score (r1) calculates the
overlapping rate between the candidate knowledge
graph G}’ and the full knowledge graph Ggoal
without considering inference nodes. We define
a match as same entities (nodes) and their corre-
sponding edges (relations) between two knowledge
graph. Then calculate the story entity overlapping
rate by

Z] Zk’ H(e‘],Gfl = ek7Ggoal)
size of Ggoal

rl( fia Ggoal) =

3)
where H(eLG:i = €,Gua) = 1 When there is
a match between entity e jasi € G}’ and entity
€k,G gomt € G goal, otherwise 0.

After updating knowledge graph G; with s;, we
expand updated knowledge graph G;* with infer-
ence nodes E;?, which we repeat the process in
Section 3.2 on G}'. We calculate the overlapping
rate between E; and goal knowledge graph with
inferences nodes, G’ as inference overlapping

goal °
score ro,

Zj 2k H(éj,Efi = €k,G/ )

goal
: /
size of G goal

rQ(Efiv /goal) =
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Prompt: Doug has always wanted to be married.

>>> Goal story world (without order):
<Doug, meet, women>, <Doug, ask, girl>
<Doug, marry, women>, <girl, is, nice>

StoRM:

He decides to go on a first date with his girlfriend.
Doug happily spends time with his girlfriend.
Doug loves every minute of her.

He is happy that he married a beautiful girl.

>>> Outline:
# too shy # ask out a nice girl # first date # marry

GPT-outline:

Doug decided to date Amy more than anything else.

He was shy and shy.

_She decided he must be more serious.

_She went on a date with him and two of them hit it off.
Later that night harry proposed to Amy and she said yes.

Yao et al. (2019):

Doug has always wanted to be married.
Doug was natural grown in the kid.

He met his girl someday.

Doug asked to watch her.

They started dating.

They both will honestly meet new friends together.

Table 1: Story examples generated by StoRM, GPT-
outline, and Yao et al. (2019). StoRM successfully finds
the correct order to follow a single topic (bolded)—
“meet a girl and marry”, and shows a good plot coher-
ence. The story generated by GPT-outline also follows
the outline(bolded) but suffers in repetition (in ifalic)
and lacks coherence (underlined). Yao et al. (2019) suf-
fers in plot coherence (underlined).

where é; i € E;" and €rGl,, € Gioal-

We obtain the fopk continuation knowledge
graphs with the ropk highest graph difference
scores. They will be used to produce continuations
further. We always keep a total of k£ knowledge
graphs (states) when generating stories for each
index of the sentence in the story. Thus the full
generation process is implemented as a form of

beam search through reader model space.

4 Experiments

We evaluated our system with four experiments.
The first experiment accesses whether the knowl-
edge graph acquisition technique captures the in-
formation that natural language story conveys. The
second experiment is an ablation study that assesses
how each component contributes to the story gener-
ation process in Figure 2. The third and fourth ex-
periments compare StoRM to two neural language
model story generators on the the dimensions of
coherence and controllability. Story examples can



be found in Table 1.

Datasets. We conduct the experiments on the
ROCStories corpus (Mostafazadeh et al., 2016).
It contains 98, 159 five-sentence stories involving
common-sense scenarios. We additionally extract
outlines for ROCStories using the RAKE algo-
rithm (Rose et al., 2010) for use controlling the
baseline models.

Baselines. For fair comparison to baselines, we
require story generation systems that operate on
un-ordered outlines that abstractly indicate events
that should appear in the story, and/or goal states as
inputs.! We selected two strong baselines. The first
is GPT-2-small (Radford et al., 2019) fine-tuned
on ROCStories (Mostafazadeh et al., 2016) with
outlines. GPT-2 is fed into outlines with the for-
mat of {topic_1 # topic_2 #...#}, and then
minimizes the cross entropy loss between network
output logits and golden truth story from which
the topics were extracted. Training details can be
found in Appendix A.4.

The second baseline is the system by Yao
et al. (2019), which trained RNN based conditional
generation models on ROCStories to generate story
on outline. Their Plan-and-Write system is capable
of generating its own outline of topics. However,
for fair comparison, we provide the system with the
outline of topics extracted from our dataset. This
controls for goal-seeking behavior because the out-
lines are extracted from the same stories that are
used to generate goal knowledge graphs for StoRM.
Training details can be found in Appendix A.S.

4.1 Knowledge Graph Acquisition Evaluation

We assess whether knowledge graph can acquire
the story world state accurately and compre-
hensively. We randomly select 125 sentences
from ROCStories and convert them into knowl-
edge graph triples. Human participants were
asked to validate each graph triples given the sen-
tence and then write down the missing informa-
tion. For example, they need to check whether
(jenny, LIK E, beach) given “Jenny likes beach
and sunshine” is correct and write down the miss-
ing concept, “sunshine”. The detail of this study
is shown in Appendix B.1 and B.2.

"Two potential baselines were considered but not pursued.
The system by Tambwekar et al. (2019) is goal-driven but
does not produce natural language without manual interven-
tion. The system by Rashkin et al. (2020) accepts unordered
outline terms but the results of the original paper could not be

Precision % | Recall % | # of triplets

81.96" | 72.89% | 255

Table 2: Results of evaluating knowledge graph triplets.
I indicates x > 0.4 or moderate agreement.

Table 2 shows the accuracy (precision) and sen-
sitivity (recall) of the extracted knowledge graph
triples. We treat the majority vote from human
participants as the ground-truth. Precision is the
fraction of extracted triples that are correct rated
by human participants. Recall is the fraction of
the triples that are successfully extracted from sto-
ries. Precision, 81.96%, shows that the knowledge
graph can represent the information in sentences
accurately. Recall, 72.89%, proved that the knowl-
edge graph can represent most of the information
in sentences. Both of these two metrics have mod-
erate agreement. This indicates that the knowledge
graph extracted from sentences matches reader ex-
pectations and can be used as story world state
upon which to base further story generation.

4.2 Ablation Study

We perform ablation studies to validate the contri-
butions of different components in Figure 2. We
build goal story world states (§3.1) on stories from
ROCStories (Mostafazadeh et al., 2016) to guide
the story generation process. StoRM keeps gen-
erating story continuations until knowledge graph
difference score R(s) reaches 0.8. We measure the
following two metrics:

* Average story length (Avg. len): Calculate the
average story length which is required to reach
R(s) = 0.8 (8§3.4). Smaller average story length
stands for faster, and thus more direct, goal
achievement. We stop generation when story
length reaches 10.

» Sentence transformer cosine similarity (S-
F) (Reimers and Gurevych, 2019): Evaluate
the semantic similarity between generation and
golden truth story by calculating embedding co-
sine similarity. Higher S-F score indicates higher
similarity between generation and gold story.

Table 3 shows the result of the ablation study. Re-
moving ConceptNet and COMET%), which infer
nodes in the reader model, significantly increases
average story length and reduces similarity score. It
indicates with the help of these two inference tech-

reproduced at the time of writing.



Model | Avg.len| | S-F % 1

=050 | 796 £0.73 | 77.54 £4.27
StoRM | ¢

lé’un a=1.00 | 896+0.65° | 74.67 + 3.25°
a=025 | 9.084+0.65* | 70.12 4+ 5.28°
COMET3) only 8.96 +0.74% | 70.10 + 4.06°
ConceptNet only | 8.85+0.69° | 73.71 & 4.12°
BART Candidates | 8.08£0.69 | 73.14 +3.90*

Table 3: Results of the ablation study. ConceptNet
only and COMET3) only indicate StoRM model only
using ConceptNet or COMET3) for inferring nodes.
BART shows the result of replacing the whole candidate
generation module with BART. « is tuning the inference
contribution when calculating graph difference. ¢ and ®
indicate StoRM(a = 0.5) results are significant better
at p < 0.05 and p < 0.01 using the Mann-Whitney U
test, respectively.

nique, StoRM is faster to achieve a better goal. Ab-
lating the candidate generation module (Blue box
in Figure 2) by replacing our technique with BART
likewise diminishes similarity between gold story
and generated story significantly. We experiment
with three values of « in our StoRM framework.
The best performing model has o = 0.5, balanc-
ing between inference-node-guided and goal-node-
guided story generation, where larger « indicates
more inference-node-driven.

4.3 Story Coherence Evaluation

Having established that knowledge graph is able to
represent the story, we seem to understand whether
StoRM improves the coherence and quality of the
generated story. In this paper, we evaluate coher-
ence using human participant evaluation, asking a
set of questions that includes dimensions such a
logical coherence, loyalty to plot, and enjoyabil-
ity. Variations of these questions have been used
to evaluate other story generation systems (Purdy
et al., 2018; Tambwekar et al., 2019; Ammanabrolu
et al., 2020, 2021a; Castricato et al., 2021; Peng
et al., 2021). We focus on dimensions involving
overall perceptions of narrative coherence:

* Logical Sense: Get at narrative coherence with-
out using the term “coherence” which can some-
times also be confused with grammaticality.

* Follows A Single Topic: Query about coherence
since incoherent plots can look like an intertwin-
ing of several unrelated topics.

* Repetition: Measure which story has less repeti-
tive words.

* Interesting Language: Focus on wording.

StoRM vs. GPT-outline
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Figure 3: Human evaluation results comparing StoRM
with two baselines, * indicates p < 0.05, ** indicates
p < 0.01, { indicates x > 0.2 or fair agreement. I
indicates x > 0.4 or moderate agreement.

Each human participant reads a randomly se-
lected subset of story pairs, comprised of one story
from StoRM and one from baselines—GPT-outline
or Yao et al.. For the above four questions, par-
ticipants answered which story best met the crite-
ria. Details can be found in Appendix B.3. We
build a goal knowledge graph story world to guide
StoRM and use outlines extracted from the same
story to seed baselines. The baselines have an ad-
vantage over StoRM; they use outlines that are or-
dered which should correlate with story coherence
whereas our system must intuit the order of events
that achieves the goal.

The results are shown in Figure 3, which indicate
that StoRM performs significantly better than base-
lines on the the dimensions of “Logical Sense” and
“Single Topic”. These are the primary dimensions
that ask about story coherence. We conclude that
our system improves the perception of narrative co-
herence of generated narratives and stays more on
topic, while retaining comparably interesting lan-
guage and avoidance of repetition (neither of which
are statistically significantly different from the base-
line). Since GPT-outline and Yao et al.(2019) are



Model |[KG-0% 1 |B2% | |B3%||B4%)|SM%*|SF%?|R1%*|R2%1|RL%?
StoRM 53.21 30.96 12.21 5.41 7.64 74.54 50.06 23.89 48.74
GPT-outline || 47.24% 27.48° 11.06 456 7.38 74.04 42.88* | 21.13 41.61¢
Yao et al. 31.67° 27.68% | 9.56° 3.98 4.90° 66.66° | 35.49° 7.81° 33.83°

Table 4: Evaluation on goal-guided story generation. Columns show average score of each model’s generated
summaries according to various metrics. ¢ and ? indicate StoRM results are significant different at p < 0.05 and
p < 0.01 using the Mann-Whitney U test. A large ROUGE score together with a low self-BLEU score demonstrate
a model’s ability to generate realistic looking as well as diverse generations.

both guided by outlines, which are used as prompt
to seed the neural language model, StoRM over-
comes a disadvantage in that it must figure out how
to reasonably order concept nodes in the goal story
world and compose a coherent story.

4.4 Controllability Evaluation

We assess whether StoRM is able to achieve the
given goal, as measured by the coverage of all the
given concepts in goal story state with the follow-
ing five metrics.

* Knowledge graph overlapping rate (KG-0): Gen-
erated stories are transformed into knowledge
graph (§3.1). Calculate the overlapping rate of
knowledge graph nodes between generated story
and the golden truth story.

» Sentence transformer cosine similarity (S-F)
(Reimers and Gurevych, 2019): Evaluate se-
mantic similarity between generation and golden
truth by calculating embedding cosine similarity.

» Sentence mover’s similarity (Clark et al., 2019):
Evaluate stories in a continuous space using word
and sentence embeddings.

* Self-BLEU score (B-2, B-3, and B-4) (Pap-
ineni et al., 2002; Zhu et al., 2018): 2-gram, 3-
gram and 4-gram self-BLEU scores are reported.
These evaluate the diversity of generated stories.

* ROUGE (R-1,R-2, and R-L) (Lin, 2004): Higher
ROUGE score indicates more coverage.

Table 4 shows the result of all the systems. We
first convert all the generated stories of StoRM
and baselines to knowledge graph and then calcu-
late their knowledge graph overlapping rate (KG-
0) with goal story world. Higher KG-o indicates
better controllability. StoRM performs statistical
significantly better than baselines in this dimen-
sion and “ROUGE”. Similarity between generated
story and golden truth is also considered a way to
evaluate controllability. StoRM outperforms Yao
et al.(2019) in “sentence transformer similarity”
and “sentence mover’s similarity” but comparable

to GPT-outline. Without seeding outlines to the
language model like baselines, StoRM is able to
cover most of the concepts in the goal story state.
Lower self-BLEU score indicates more diversity
in generated stories. The constraints imposed for
controllability also impose constraints on diversity,
though generally diversity is secondary to overall
story quality. Yao et al. (2019) shows better diver-
sity at the expense of controllability.

5 Conclusions

Neural language models are widely used to pro-
duce text, including stories. However, they strug-
gle with maintaining story coherence—the logical
progression of events—and goal-directedness. Our
framework—Story Generation with Reader Models
(StoRM)— augments neural language models with
a reader model. This reader model—in this case
an explicit knowledge graph—approximates the
reader’s beliefs about the story world. StoRM in-
creases the story coherence by expanding the reader
model with commonsense technique and produc-
ing continuations by selecting entities in this reader
model. In order to achieve goal-directedness, the
reader model enables the system to make informed
decisions about which possible story continuations
are likely to achieve the desired goal state by infer-
ring how each possible story continuation changes
the reader model to be closer to the desired goal.

A thorough experimental study shows that
StoRM produces significantly more coherent and
goal-directed stories than two strong baselines. The
goal-directness results are significant because the
StoRM framework takes a goal as a knowledge
graph, which can be thought of as an unordered
outline of concepts that should appear in the story;
our system does well to find an appropriate se-
quencing of events. Thus a reader model based
approach provides improved story coherence while
providing users a powerful means of control.



6 Broader Impact

Our system faces the same potential pitfalls as
other contemporary language learning systems. It
is prone to echoing the biases present in the dataset
(Sheng et al., 2019) and generate non-normative
text (i.e. in violation of social norms). No existing
automated storytelling systems is able to entirely
eliminate these biases, though stories can be used
to teach language models to reduce non-normative
continuations (Peng et al., 2020). Fictional stories
that are presented to readers as non-fictional can
be used to influence (Green and Brock, 2000) or
misinform. Future work may enable real-world
facts to be injected into the knowledge graph of a
similar system for the purposes of journalism or
misinformation. However, because our graph ex-
pansion method relies on ConceptNet5 (Speer and
Havasi, 2013) and COMET3) (Hwang et al., 2021)
for inference, our system is prone to process and
produce simple stories.

The ability to produce coherent and goal-
directed stories has downstream applications be-
yond automated story-telling. Our work is also
applicable to figure out how to reasonably order
concept nodes and validate whether there exists a
multi-hop explanation for how two concepts are
related.
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A Implementation Details

A.1 Semantic Role Labeling Using VerbAtlas

The SRL model provides the automatic identi-
fication and labeling of argument structures of
stories. For example, it extracts ‘verbatlas’:
‘EXIST_LIVE’, ‘args_words’: {‘Theme’:
‘Jenny’, ‘Attribute’: f‘Florida’} from
“Jenny lived in Florida”. Verbs in the story will be
represented as the VerbAtlas frame. For example,
“live” is represented as “EXIST_LIVE”.

For the semantic role labeling model (SRL), we
use a fine-tuned transformer model proposed by
(Shi and Lin, 2019) which is the current state-
of-the-art for English SRL. It is a BERT (Devlin
et al., 2019) model with a linear classification layer
trained on the Ontonotes 5.0 dataset to predict Prop-
Bank SRL. We use an open-source implementation
2 which is based on the official AllenNLP BERT-
SRL model 3. Trained with the following hyperpa-
rameters:

* Batch size: 32

* Dropout for the input embeddings: 0.1

* Learning rate: 5>

* Optimizer: Adam

* Total Epochs: 15

Then, we use the mappings from Propbank
frames to VerbAtlas (Di Fabio et al., 2019) classes
to return the correct corresponding VerbAtlas
classes instead of Propbank’s (Palmer et al., 2005).
The direct mapping is possible because, for every
VerbAtlas class, there is only one ProbBank frame,
which allows us to utilize the rich content provided
by VerbAtlas while using the same model initially
trained to predict ProbBank.

A.2 Continuation Candidate Generation
Details

For each entity ¢; g/, we generate 5 x 10 x (¢ +1)
templates, where c is the number of subjects in the
story history. Rules of making the templates are as
follows,
* The first token in the template has two
choices: (1) Previous subject, i.e. “Jenny”;
(2) (mask).
* Between the first token and the entity €i,G}>
we put 0 ~ 4 (mask).
* After the entity e; g/, we put 0 ~ 10 (mask)
tokens
Examples are as follows when ¢; g/

“beach”,

“https://github.com/Riccorl/transformer-srl
*https://demo.allennlp.org/semantic-role-labeling
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e Jenny <mask> beach <mask>.

e Jenny <mask> <mask> beach.

e Jenny <mask> <mask> beach <mask>
<mask> <mask>.

A.3 RoBERTa Fine-tuning

We fine-tune RoBERTa (Liu et al., 2019) on ROC-
Stories (Mostafazadeh et al., 2016) to infill the
mask tokens in the given text template. We pre-
process the ROCStories by masking 15% of all the
tokens randomly, concatenating all texts together,
and splitting them into chunks of the same length
(equal to 128). Each chunk is then used as one
training sample.

During fine-tuning, we use the AdamW opti-
mizer (Loshchilov and Hutter, 2017) to train the
RoBERTza for 3 epochs with batch size = 8. Other
optimizer-related hyperparameters are attached as
follows.

* learning rate: v = 2 x 107
* betas: 51 = 0.9, 5o = 0.999
* epsilon: € = 1078

» weight decay: A = 0.01

A.4 Baselines—GPT-outline

We use the small version of GPT-2 (Radford
et al.,, 2019) with 124M parameters as the
base for all fine-tuned models. We converted
the data as the following format: topic_1 #
topic_2 # ...# topic_n # Stories. Forex-
ample, Florida # beach # Jenny lived in
Florida. She loves beach. When fine-
tuning GPT-2 on ROCStories and the common-
sense knowledge resources (done separately), we
train with a batch-size of 16, a learning rate of
0.00005, and using the Adam optimizer with gradi-
ent clipping at a max norm of 1. GPT-2 is fed into
outlines with the format of {topic_1 # topic_2
#...#}, and then minimizes the cross entropy loss
between network output logits and gold truth story
from which the topics were extracted. All models
were trained on single GeForce RTX 2080 GPUs
in Pytorch using the Huggingface Transformers
library.*

A.5 Baselines—Yao et al.(2019)

We replicate the Plan and Write model using the
code published on the paper’s public repository >

*https://huggingface.co/transformers/
Shttps://bitbucket.org/VioletPeng/language-model/


https://huggingface.co/transformers/

to train our baseline (Yao et al., 2019). We first
filtered the training dataset, removing our test story
outlines to prevent data leakage. Then we train the
model with the hyperparameters specified in their
documentation. Below are those hyperparameter
values:

* Dropout for input embedding: 0.4

* Dropout for the RNN layers: 0.25

* Random Seed: 141

* Total Epochs: 500

* Word Embedding size: 1000

* Hidden units size per RNN layer: 1000

* Batch size: 80

* Learning rate: 30

* Optimizer: SGD

* Sequence Length: 70

However, the best checkpoint was around 100
epochs as the validation loss stopped decreasing at
2.85.
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B Human Evaluation Details

B.1 Task Instruction

We ask participants a set of questions to make sure
they understand our task. The details can be found
in Figure 4.

You will be asked to read a sentence, and then answer questions about
triplets based on that.

Triplets are composed of (entity_1,relation,entity_2).
Any sentence can be represented as several triplets.

For example, 'Jenny loves beach and sunshine ' can be represented as
<Jenny, LOVE, beach> and <Jenny, LOVE, sunshine>.

PS: entity_1 and entity_2's order can be swapped. For
example, <Jenny, LOVE, beach> gl <beach, LOVE, Jenny>

>> What is the goal of this survey?

Please select the correct triplet to represent " Linda graduate from
college in the USA".
(Multiple choices, select all that apply)

[ (USA, IN, college)
|:| (Linda, GRADUATE, college)

[ (LINDA, LEAVE, USA)

Please write down the friplets to represent "Jenny lived in Florida"

No need to worry about format, you can use <aa, bbb, cc>

Figure 4: Screenshot of the human study instruction.

B.2 Knowledge Graph Acquisition Evaluation
Set-up

We assess whether knowledge graph can acquire
the story world state accurately and comprehen-
sively. We randomly select 125 sentences from
ROCStories and convert them into knowledge
graph triplets. We recruited 30 participants on
a crowdsourcing platform. Each participant read
a randomly selected subset of knowledge graph
triplets (20 sentences per participant). They were
asked to validate each graph triplets given the sen-
tence and then write down the missing information.
An example is shown in Figure 5. At least 3 crowd
workers validate each triple and we take the major-
ity vote as the result.
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For each triplet, please check whether it is correct given the following
sentence:

Glen was told about a first game against a rival school

Correct Wrong

<'school! 's', fival’> O (@)
<Glen', 'ell', 'game'> O O
<Glen', tell, 'school'> O (@)

Please write down the triplets you think are missing.
If not, please write down N/A.

Figure 5: Screenshot of Knowledge Graph Acquisition
evaluation.

B.3 Story Coherence Evaluation Set-up

We evaluate coherence using human participant
evaluation, asking a set of questions that includes
dimensions such a logical coherence, loyalty to
plot, and enjoyability. Example of human study
is shown in Figure 6. We ask the following four
questions:

* Which story makes better logical sense?

* Which story follows a single topic?

* Which story avoids repetition?

* Which story uses more interesting language?

We recruited 40 participants and each partici-
pant reads a randomly selected subset of 10 story
pairs, comprised of one story from StoRM and one
from baselines—GPT-outline or Yao et al.. For the
above four questions, participants answered which
story best met the criteria. Our study was approved
by our Institutional Review Board, and we payed
participants the equivalent of $15/hr. To generate
the stories, we randomly selected 25 stories from
the ROCStories corpus.



For each question, please rate which story best fits.

Eric loved ice cream
He got a cone

He went to eat it Eric loved ice cream
He got distracted and ate too much Eric really fat
Eric got fat because of it He didn't want to burn his fat
Eric began to lose weight Eric's doctor told him to start exercising to burn fat
Eric is no longer ice cream obsessed Eric wanted to be fit and fat again
Eric now says he needs to start using other foods more Eric started exercising and losing weight
Eric is glad he stopped eating ice cream After 10 months of exercise jim no longer felt fat and felt great
1. Which story makes better
Logical Sense? o o
2. Which story Follows A Single
Topic better? 9 9
3. Which story Avoids Repetition
more? O O
4. Which story uses more
@] @]

Interesting Language?

Figure 6: Screenshot of the human study on evaluating coherence.
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