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Abstract

Automated storytelling has long captured the001
attention of researchers for the ubiquity of nar-002
ratives in everyday life. However, it is chal-003
lenging to maintain coherence and stay on-004
topic toward a specific ending when generat-005
ing narratives with neural language models. In006
this paper, we introduce Story generation with007
Reader Models (StoRM), a framework in which008
a reader model is used to reason about the story009
should progress. A reader model infers what010
a human reader believes about the concepts,011
entities, and relations about the fictional story012
world. We show how an explicit reader model013
represented as a knowledge graph affords story014
coherence and provides controllability in the015
form of achieving a given story world state goal.016
Experiments show that our model produces sig-017
nificantly more coherent and on-topic stories,018
outperforming baselines in dimensions includ-019
ing plot plausibility and staying on topic. Our020
system also outperforms outline-guided story021
generation baselines in composing given con-022
cepts without ordering.023

1 Introduction024

Automated Story Generation is the challenge of025

designing an artificial intelligence system that can026

generate a natural language text that is perceived by027

readers as a story. Early work on story generation028

used symbolic planning (Meehan, 1976; Lebowitz,029

1987; Cavazza et al., 2003; Porteous and Cavazza,030

2009; Riedl and Young, 2010; Ware and Young,031

2010; Ware and Siler, 2021). These systems would032

be provided with a description of the initial world033

state—usually a list of predicates—and a goal—a034

description of what predicates should be true to035

be successful. These approaches had two benefits.036

First, the plots tended to be coherent because of037

logical constraints on the actions. Second, the plots038

were guaranteed to end in a state in which the goal039

held. However, these systems require substantial040

knowledge engineering of logical constraints, limit-041

continuation option 1

continuation option 2

continuation option 3

inferences

prompt
goal

Figure 1: The overview of StoRM system. Our goal
is to build a story world covering all the given con-
cepts . 1. A set of concepts and a prompt starts
the story generation process. 2. The system builds a
goal story world and prompt story world with
knowledge graph. 3. The system infers a graph of con-
cepts . 4. A language model generates continuation
options on inferences. 5. Topk continuations minimize
its difference with goal story world are added to story.

ing their generality, and don’t always generate plot 042

or stories in natural language. 043

Recently, neural language modeling approaches 044

(Roemmele, 2016; Khalifa et al., 2017; Mar- 045

tin et al., 2018; Clark et al., 2018; Yao et al., 046

2019; Rashkin et al., 2020; Fan et al., 2019; Am- 047

manabrolu et al., 2021a) have been applied to story 048

generation because they circumvent the need for 049

manual knowledge engineering and tend to produce 050

relatively fluent, varied, and naturalistic language. 051

Language models are, however, not goal-directed. 052

That is, one cannot natively provide both a context 053

prompt and a goal to be achieved after an arbi- 054

trary number of continuations. Further, language 055

models struggle with maintaining story coherence— 056

the logical progression of events—and may also 057

become repetitive. Large, pre-trained language 058

models improve fluency and generalization but do 059

not provide goal-directedness and stories generated 060
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can still be perceived as lacking in coherence in the061

sense that they meander without direction.062

In this paper we consider the challenge of co-063

herent and controllable text generation for neu-064

ral language model based story generation. We065

hypothesize that neural language models, while066

powerful text-completion systems, are not natively067

well-suited for coherent story generation because068

a neural network trained with a cross-entropy loss069

function is unlikely to model the unfolding context070

of a story the same way as a human reader. Stud-071

ies of human reader comprehension (Zwaan and072

Radvansky, 1998) show that readers comprehend073

stories by tracking the relations between entities074

and events in ways that can be expressed as a graph.075

The perceived coherence of a story is a function076

of the connectedness of this graph (Graesser et al.,077

1994). Ensuring the causality between sentences078

can significantly improve the coherence of stories079

(Peng et al., 2021).080

Inspired by cognitive science, we aim to aug-081

ment neural language models with a reader model082

in which a story generation system infers a graph083

of concepts, entities, and relations that a reader is084

likely to believe about the story world as they read085

an incrementally generated story. The reader model086

enables the story generation algorithm to explicitly087

reason about the entities and relations and generate088

story continuations that use those entities to move089

the story forward; a reader can track how entities090

and relations change over time and thus perceive091

stories as more coherent. We use large language092

models to produce the continuation text of the story093

generation. However instead of providing the pre-094

vious story as context, our algorithm selects one095

or more entity from the world model and uses tem-096

plate filling to generates candidate continuations.097

This is a deviation from the typical way in which098

large language models are used to generate text099

continuations from a context prompt and possibly100

some additional external biases.101

The reader model doesn’t guarantee controlled102

text generation or goal-directedness but provides103

a means for directing the generation process. In104

addition to a starting context prompt, we require a105

goal to be given in the form of what the graphical106

reader’s model of the story world should be at the107

end of the story. In that way, the goal provides a108

rough outline of the entities and relations that need109

to be present in the story but without providing110

particulars about everything that must be in the111

story or the ordering in which they must occur. 112

Our contributions are as twofold: (1) we pro- 113

pose an automated story generation model with 114

Reader Models (StoRM) which maintain coher- 115

ence and controllability of generated stories at the 116

same time; and (2) we conduct a thorough exper- 117

imental study against strong baselines that shows 118

that StoRM produces significantly more coherent 119

and goal-directed story. 120

2 Related Work and Background 121

We situate our paper in the literature of neural 122

networks—recurrent and transformer-based—to 123

produce stories (Roemmele, 2016; Khalifa et al., 124

2017; Martin et al., 2018; Clark et al., 2018). There 125

are a few works that are highly related to our pro- 126

posed framework, in terms of the following two 127

dimensions: the generation controllability and the 128

usage of commonsense knowledge. The controlla- 129

bility in story generation focuses on how to enable 130

the generation process to adhere to the user’s in- 131

puts. Fan et al. (2018) proposes a hierarchical story 132

generation framework that divides the generation 133

process into two levels of hierarchy: generating a 134

writing prompt (premise) and then transforming it 135

into a passage of text conditioned on the prompt. 136

Similarly, Plan-And-Write (Yao et al., 2019) con- 137

ducts generation in two steps: planning a story out- 138

line based on a title (topic), then generating a story 139

based on the storyline. Plot Machines (Rashkin 140

et al., 2020) accepts as an input an un-ordered out- 141

line of concepts and conditions a language model. 142

Commonsense knowledge plays an important 143

role in story generation. The most popular way 144

of utilizing it is to train neural language models 145

(e.g. GPT-2 (Radford et al., 2019)) on common- 146

sense knowledge bases such as ConceptNet (Speer 147

and Havasi, 2013) and ATOMIC (Sap et al., 2019; 148

Hwang et al., 2021) which contains detailed in- 149

formation regarding well-known facts or causal 150

relationships. Thus the resulting language model, 151

named COMET (Bosselut et al., 2019; Hwang et al., 152

2021), becomes capable of inferring new common- 153

sense knowledge on novel phrases. Ammanabrolu 154

et al. (2021b) proposes Causal, Commonsense Plot 155

Ordering (C2PO) framework which takes advan- 156

tage of COMET to infer predecessor and successor 157

events and then bi-directionally search from pre- 158

specified start event to end event, however, C2PO 159

generates plots made up of highly constrained, tem- 160

plated text; Peng et al. (2021) leverages COMET to 161
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infer the character intentions and effects of actions162

so as to guide the generation process, but they did163

not consider controllability. There are also other164

approaches that directly incorporate commonsense165

knowledge graphs into the encoding process (Mi-166

haylov and Frank, 2018; Guan et al., 2019). Their167

works paid more attention on improving coherence168

with the help of common-sense knowledge but did169

not take controllability into consideration.170

3 Story Generation with Reader Models171

In this section, we introduce a framework—Story172

generation with Reader Models (StoRM)—for gen-173

erating stories with models of what the reader will174

believe about the fictional story world. We hy-175

pothesize that the incorporation of a reader model176

into the story generation process will increase story177

coherence. We define story coherence as the ex-178

tent to which readers can identify connections179

between different events and entities in a story.180

In this work, the reader model is represented as181

a knowledge graph, a set of triples of the form182

⟨subject, relation, object⟩. By making the be-183

liefs about what the reader likely knows explicit,184

we provide mechanisms for selecting which entities185

to include in the continuation of the story.186

Because the StoRM framework maintains a187

knowledge graph that approximates the reader’s188

beliefs about the story world, we are able to com-189

pare the reader model to a desired world state, also190

described as a knowledge graph. The StoRM frame-191

work is thus controllable—a user can provide a192

story goal in the form of a knowledge graph (goal193

story world) that describes the story world at the194

conclusion of the story. This allows the system195

to make informed decisions about which possible196

story continuations are likely to achieve the desired197

goal state by inferring how each possible story con-198

tinuation changes the reader model to be closer to199

the desired goal story world200

Our framework starts with a prompt and a de-201

scription of the story outcome (See Figure 2). The202

prompt is transformed into a knowledge graph203

by extracting entities (§3.1). The entities are ex-204

panded using two commonsense techniques (§3.2).205

(1) ConceptNet (Speer and Havasi, 2013), a crowd-206

sourced knowledge base of concepts and relations,207

and (2) COMET20
20 (Hwang et al., 2021), a neural208

network that generates commonsense inferences.209

The generation technique selects different entities210

and uses templates to generate possible story con-211

tinuations (§3.3). By targeting different entities and 212

using template infilling, we reduce neural network 213

hallucination of new entities and create a diverse set 214

of story continuations. Each potential continuation 215

is scored based on how it changes the knowledge 216

graph relative to the goal, which is also transformed 217

into a knowledge graph. The selected continuation 218

starts the next iteration of the generation process. 219

3.1 Knowledge Graph Acquisition 220

With the automatic generation of the story, some 221

important information could be forgotten. The 222

knowledge graph is an explicit and persistent mem- 223

ory of entities mentioned or inferred from the story 224

text generated so far. Knowledge Graphs represent 225

information in the form of triples, consisting of a 226

subject entity, relation and object entity. For ex- 227

ample, “Jenny lived in Florida” is represented as 228

⟨jenny, live, florida⟩. The entities represent the 229

nodes of the graph and their relations act as edges. 230

To acquire the knowledge graph, we firstly 231

trained a Semantic Role Labeling (SRL) model 232

(Gildea and Jurafsky, 2002) on VerbAtlas (Di Fabio 233

et al., 2019)—a hand-crafted lexical-semantic re- 234

source whose goal is to bring together all ver- 235

bal synsets from WordNet (Fellbaum, 1998) into 236

semantically-coherent frames. This SRL model 237

provides the automatic identification and labeling 238

of argument structures of stories. Further detail can 239

be found in Appendix A.1. 240

StoRM then converts the output of VerbAtlas 241

SRL model into knowledge graph triples. Entities 242

represent the theme and attribute and VerbAtlas 243

frames act as edges. An example is shown in left 244

side of Fig. 2. Multiple character names, object 245

names and pronouns make the knowledge graph 246

representation hard to interpret. Hence, we adopt 247

a end-to-end Coreference Resolution model (Lee 248

et al., 2017) to find all expressions that refer to the 249

same entity in a story to minimize the entities. 250

StoRM starts with two knowledge graphs. The 251

first, G1, is the converted prompt (first sentence). 252

The second Ggoal is the converted goal description. 253

Ggoal can also optionally be generated from a tar- 254

get story, in which case each sentence is converted 255

to nodes and relations and incrementally added to 256

the graph. With the generation of the continuation 257

candidates, we will update the knowledge graph 258

Gt with new continuations to get new knowledge 259

graph Gt+1, where t is the index of the sentence in 260

the story. 261

3



Jenny lived in Florida with her family and
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Figure 2: The overall procedure of StoRM.

3.2 Graph Expansion262

Human readers use commonsense knowledge to in-263

fer the presence of entities and concepts not explic-264

itly mentioned in story text. For example, Florida265

has beaches and eating dinner implies dishes. In266

accordance, we use common-sense inferences of267

entities to expand the knowledge graph to provide268

entities for characters to interact with and thus drive269

the story forward. Because the presence of enti-270

ties and concepts are inferred from prior events,271

the reader should be able to track the connections272

between entities and events, thus supporting per-273

ceived story coherence.274

We use two inference techniques. We first con-275

sider ConceptNet5 (Speer and Havasi, 2013), a mul-276

tilingual knowledge base, representing words and277

phrases that people use and the common-sense rela-278

tions between them. We expand each entity except279

characters nodes with the inference extracted from280

ConceptNet5 to get inference entity set E1,t. Sec-281

ond, we repeat the process with COMET20
20 (Hwang282

et al., 2021), which is a transformer-based gener-283

ative model trained on the ATOMIC20
20 common-284

sense dataset (Hwang et al., 2021) to infer relations285

about sentences. We expand the knowledge graph286

with these inference on the current story to get infer-287

ence set E2,t. Finally, we obtain the updated knowl-288

edge graph G′
t = {e1,G′

t
, ..., el,G′

t
} and inference289

entities set Et = E1,t∪E2,t = {ê1,G′
t
, ..., êl,G′

t
} ⊂290

G′
t, where ê is an inferred entity and l is the number291

of the inference entities. 292

3.3 Continuation Candidate Generation 293

Given each entity in the knowledge graph including 294

inference entities (§3.2) and current story history, 295

we first generate a set of continuation candidates. 296

We consider the conditional sentence generation as 297

a infilling task (Taylor, 1953). 298

Templates. A set of templates Ti are gener- 299

ated on each entity ei,G′
t

(See Appendix A.2). 300

For example, one of the templates generated on 301

beach are [subject] <mask> <mask> beach 302

<mask>. The [subject] of the sentence is (1) the 303

same subject with the previous sentence, (2) no 304

fixed (<mask>), or (3) any characters in previous 305

story history. The number of <mask> before and 306

after inference entity ranges from 1 to 10. 307

Text Infilling. We fine-tune RoBERTa (Liu et al., 308

2019) on ROCStories (Mostafazadeh et al., 2016)— 309

a set of five-sentence stories involving common- 310

sense scenarios—to infill the mask tokens. De- 311

tails of training are shown in Appendix A.3. All 312

the templates Ti are filled by fine-tuned RoBERTa 313

and we obtain a number of continuation candidates 314

Si = {si,1, ...si,m} for each entity ei,G′
t

where m 315

is the number of templates of each entity. 316

Filtering. We fine-tune GPT-2 (Radford et al., 317

2019) on ROCStories (henceforth called GPT-2- 318

ROC) and filter the continuation candidates by cal- 319
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culating their conditional probability Ps with it:320

Ps =
n∏

j=1

P(Xj |X1, ...,Xj−1) (1)321

where n is the length of the sentence s and Xj is the322

jth token in sentence s. We only keep one sentence323

si ∈ Si with the highest probability for each entity324

ei,G′
t

and obtain the continuation candidates S′
t =325

{s1, ..., sl}.326

3.4 Graph Difference327

We achieve controllability of the continuation can-328

didates S′ by calculating the graph difference be-329

tween the candidate knowledge graph Gsi
t and the330

goal knowledge graph Ggoal. The candidate knowl-331

edge graph Gsi
t is obtained by updating knowledge332

graph Gt with continuation candidate si. We cal-333

culate the knowledge graph difference score:334

R(si) = (1− α)× r1(G
si
t ,Ggoal)335

+ α× r2(E
i
t ,G

′
goal) (2)336

where r1 is story entity overlapping score and337

r2 is inference overlapping score. α is a hyper-338

parameter to control the inference’s contribution339

on calculating overlapping rate.340

Story entity overlapping score (r1) calculates the341

overlapping rate between the candidate knowledge342

graph Gsi
t and the full knowledge graph Ggoal343

without considering inference nodes. We define344

a match as same entities (nodes) and their corre-345

sponding edges (relations) between two knowledge346

graph. Then calculate the story entity overlapping347

rate by348

r1(G
si
t ,Ggoal) =

∑
j

∑
k I(ej,Gsi

t
= ek,Ggoal

)

size of Ggoal
(3)349

where I(ej,Gsi
t

= ek,Ggoal
) = 1 when there is350

a match between entity ej,Gsi
t

∈ Gsi
t and entity351

ek,Ggoal
∈ Ggoal, otherwise 0.352

After updating knowledge graph Gt with si, we353

expand updated knowledge graph Gsi
t with infer-354

ence nodes Esi
t , which we repeat the process in355

Section 3.2 on Gsi
t . We calculate the overlapping356

rate between Esi
t and goal knowledge graph with357

inferences nodes, G′
goal , as inference overlapping358

score r2,359

r2(E
si
t ,G′

goal) =

∑
j

∑
k I(êj,Esi

t
= ek,G′

goal
)

size of G′
goal

(4)360

Prompt: Doug has always wanted to be married.

>>> Goal story world (without order):
<Doug, meet, women>, <Doug, ask, girl>
<Doug, marry, women>, <girl, is, nice>

StoRM:
He decides to go on a first date with his girlfriend.
Doug happily spends time with his girlfriend.
Doug loves every minute of her.
He is happy that he married a beautiful girl.

>>> Outline:
# too shy # ask out a nice girl # first date # marry

GPT-outline:
Doug decided to

:::
date

::::
Amy

::::
more

::::
than

:::::::
anything

:::
else.

He was shy and shy.
:::
She decided he must be more serious.

:::
She went on a date with him and

:::
two

::
of

::::
them

::
hit

::
it
::
off.

Later that night harry proposed to Amy and she said yes.

Yao et al. (2019):
Doug has always wanted to be married.
Doug was

:::::
natural

:::::
grown

::
in

:::
the

::
kid.

He met his girl someday.
Doug asked to

:::::
watch

::
her.

They started dating.
::::
They

::::
both

:::
will

:::::::
honestly

:::
meet

::::
new

:::::
friends

:::::::
together.

Table 1: Story examples generated by StoRM, GPT-
outline, and Yao et al. (2019). StoRM successfully finds
the correct order to follow a single topic (bolded)—
“meet a girl and marry”, and shows a good plot coher-
ence. The story generated by GPT-outline also follows
the outline(bolded) but suffers in repetition (in italic)
and lacks coherence (

:::::::::
underlined). Yao et al. (2019) suf-

fers in plot coherence (
:::::::::
underlined).

where êj,Esi
t

∈ Esi
t and ek,G′

goal
∈ G′

goal. 361

We obtain the topk continuation knowledge 362

graphs with the topk highest graph difference 363

scores. They will be used to produce continuations 364

further. We always keep a total of k knowledge 365

graphs (states) when generating stories for each 366

index of the sentence in the story. Thus the full 367

generation process is implemented as a form of 368

beam search through reader model space. 369

4 Experiments 370

We evaluated our system with four experiments. 371

The first experiment accesses whether the knowl- 372

edge graph acquisition technique captures the in- 373

formation that natural language story conveys. The 374

second experiment is an ablation study that assesses 375

how each component contributes to the story gener- 376

ation process in Figure 2. The third and fourth ex- 377

periments compare StoRM to two neural language 378

model story generators on the the dimensions of 379

coherence and controllability. Story examples can 380
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be found in Table 1.381

Datasets. We conduct the experiments on the382

ROCStories corpus (Mostafazadeh et al., 2016).383

It contains 98, 159 five-sentence stories involving384

common-sense scenarios. We additionally extract385

outlines for ROCStories using the RAKE algo-386

rithm (Rose et al., 2010) for use controlling the387

baseline models.388

Baselines. For fair comparison to baselines, we389

require story generation systems that operate on390

un-ordered outlines that abstractly indicate events391

that should appear in the story, and/or goal states as392

inputs.1 We selected two strong baselines. The first393

is GPT-2-small (Radford et al., 2019) fine-tuned394

on ROCStories (Mostafazadeh et al., 2016) with395

outlines. GPT-2 is fed into outlines with the for-396

mat of {topic_1 # topic_2 #...#}, and then397

minimizes the cross entropy loss between network398

output logits and golden truth story from which399

the topics were extracted. Training details can be400

found in Appendix A.4.401

The second baseline is the system by Yao402

et al. (2019), which trained RNN based conditional403

generation models on ROCStories to generate story404

on outline. Their Plan-and-Write system is capable405

of generating its own outline of topics. However,406

for fair comparison, we provide the system with the407

outline of topics extracted from our dataset. This408

controls for goal-seeking behavior because the out-409

lines are extracted from the same stories that are410

used to generate goal knowledge graphs for StoRM.411

Training details can be found in Appendix A.5.412

4.1 Knowledge Graph Acquisition Evaluation413

We assess whether knowledge graph can acquire414

the story world state accurately and compre-415

hensively. We randomly select 125 sentences416

from ROCStories and convert them into knowl-417

edge graph triples. Human participants were418

asked to validate each graph triples given the sen-419

tence and then write down the missing informa-420

tion. For example, they need to check whether421

⟨jenny, LIKE, beach⟩ given “Jenny likes beach422

and sunshine” is correct and write down the miss-423

ing concept, “sunshine”. The detail of this study424

is shown in Appendix B.1 and B.2.425

1Two potential baselines were considered but not pursued.
The system by Tambwekar et al. (2019) is goal-driven but
does not produce natural language without manual interven-
tion. The system by Rashkin et al. (2020) accepts unordered
outline terms but the results of the original paper could not be

Precision % Recall % # of triplets

81.96‡ 72.89‡ 255

Table 2: Results of evaluating knowledge graph triplets.
‡ indicates κ > 0.4 or moderate agreement.

Table 2 shows the accuracy (precision) and sen- 426

sitivity (recall) of the extracted knowledge graph 427

triples. We treat the majority vote from human 428

participants as the ground-truth. Precision is the 429

fraction of extracted triples that are correct rated 430

by human participants. Recall is the fraction of 431

the triples that are successfully extracted from sto- 432

ries. Precision, 81.96%, shows that the knowledge 433

graph can represent the information in sentences 434

accurately. Recall, 72.89%, proved that the knowl- 435

edge graph can represent most of the information 436

in sentences. Both of these two metrics have mod- 437

erate agreement. This indicates that the knowledge 438

graph extracted from sentences matches reader ex- 439

pectations and can be used as story world state 440

upon which to base further story generation. 441

4.2 Ablation Study 442

We perform ablation studies to validate the contri- 443

butions of different components in Figure 2. We 444

build goal story world states (§3.1) on stories from 445

ROCStories (Mostafazadeh et al., 2016) to guide 446

the story generation process. StoRM keeps gen- 447

erating story continuations until knowledge graph 448

difference score R(s) reaches 0.8. We measure the 449

following two metrics: 450

• Average story length (Avg. len): Calculate the 451

average story length which is required to reach 452

R(s) = 0.8 (§3.4). Smaller average story length 453

stands for faster, and thus more direct, goal 454

achievement. We stop generation when story 455

length reaches 10. 456

• Sentence transformer cosine similarity (S- 457

F) (Reimers and Gurevych, 2019): Evaluate 458

the semantic similarity between generation and 459

golden truth story by calculating embedding co- 460

sine similarity. Higher S-F score indicates higher 461

similarity between generation and gold story. 462

Table 3 shows the result of the ablation study. Re- 463

moving ConceptNet and COMET20
20, which infer 464

nodes in the reader model, significantly increases 465

average story length and reduces similarity score. It 466

indicates with the help of these two inference tech- 467

reproduced at the time of writing.
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Model Avg. len ↓ S-F % ↑

StoRM
Full

α = 0.50 7.96 ± 0.73 77.54 ± 4.27
α = 1.00 8.96± 0.65b 74.67± 3.25a

α = 0.25 9.08± 0.65a 70.12± 5.28b

COMET20
20 only 8.96± 0.74a 70.10± 4.06b

ConceptNet only 8.85± 0.69b 73.71± 4.12a

BART Candidates 8.08± 0.69 73.14± 3.90a

Table 3: Results of the ablation study. ConceptNet
only and COMET2020 only indicate StoRM model only
using ConceptNet or COMET20

20 for inferring nodes.
BART shows the result of replacing the whole candidate
generation module with BART. α is tuning the inference
contribution when calculating graph difference. a and b

indicate StoRM(α = 0.5) results are significant better
at p < 0.05 and p < 0.01 using the Mann-Whitney U
test, respectively.

nique, StoRM is faster to achieve a better goal. Ab-468

lating the candidate generation module (Blue box469

in Figure 2) by replacing our technique with BART470

likewise diminishes similarity between gold story471

and generated story significantly. We experiment472

with three values of α in our StoRM framework.473

The best performing model has α = 0.5, balanc-474

ing between inference-node-guided and goal-node-475

guided story generation, where larger α indicates476

more inference-node-driven.477

4.3 Story Coherence Evaluation478

Having established that knowledge graph is able to479

represent the story, we seem to understand whether480

StoRM improves the coherence and quality of the481

generated story. In this paper, we evaluate coher-482

ence using human participant evaluation, asking a483

set of questions that includes dimensions such a484

logical coherence, loyalty to plot, and enjoyabil-485

ity. Variations of these questions have been used486

to evaluate other story generation systems (Purdy487

et al., 2018; Tambwekar et al., 2019; Ammanabrolu488

et al., 2020, 2021a; Castricato et al., 2021; Peng489

et al., 2021). We focus on dimensions involving490

overall perceptions of narrative coherence:491

• Logical Sense: Get at narrative coherence with-492

out using the term “coherence” which can some-493

times also be confused with grammaticality.494

• Follows A Single Topic: Query about coherence495

since incoherent plots can look like an intertwin-496

ing of several unrelated topics.497

• Repetition: Measure which story has less repeti-498

tive words.499

• Interesting Language: Focus on wording.500

(a) StoRM vs. GPT-outline

(b) StoRM vs. Yao et al.(2019)

Figure 3: Human evaluation results comparing StoRM
with two baselines, ∗ indicates p < 0.05, ∗∗ indicates
p < 0.01, † indicates κ > 0.2 or fair agreement. ‡
indicates κ > 0.4 or moderate agreement.

Each human participant reads a randomly se- 501

lected subset of story pairs, comprised of one story 502

from StoRM and one from baselines—GPT-outline 503

or Yao et al.. For the above four questions, par- 504

ticipants answered which story best met the crite- 505

ria. Details can be found in Appendix B.3. We 506

build a goal knowledge graph story world to guide 507

StoRM and use outlines extracted from the same 508

story to seed baselines. The baselines have an ad- 509

vantage over StoRM; they use outlines that are or- 510

dered which should correlate with story coherence 511

whereas our system must intuit the order of events 512

that achieves the goal. 513

The results are shown in Figure 3, which indicate 514

that StoRM performs significantly better than base- 515

lines on the the dimensions of “Logical Sense” and 516

“Single Topic”. These are the primary dimensions 517

that ask about story coherence. We conclude that 518

our system improves the perception of narrative co- 519

herence of generated narratives and stays more on 520

topic, while retaining comparably interesting lan- 521

guage and avoidance of repetition (neither of which 522

are statistically significantly different from the base- 523

line). Since GPT-outline and Yao et al.(2019) are 524
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Model KG-o % ↑ B-2 % ↓ B-3 % ↓ B-4 % ↓ S-M % ↑ S-F % ↑ R-1 % ↑ R-2 % ↑ R-L % ↑

StoRM 53.21 30.96 12.21 5.41 7.64 74.54 50.06 23.89 48.74
GPT-outline 47.24a 27.48b 11.06 4.56 7.38 74.04 42.88a 21.13 41.61a

Yao et al. 31.67b 27.68a 9.56b 3.98a 4.90b 66.66b 35.49b 7.81b 33.83b

Table 4: Evaluation on goal-guided story generation. Columns show average score of each model’s generated
summaries according to various metrics. a and b indicate StoRM results are significant different at p < 0.05 and
p < 0.01 using the Mann-Whitney U test. A large ROUGE score together with a low self-BLEU score demonstrate
a model’s ability to generate realistic looking as well as diverse generations.

both guided by outlines, which are used as prompt525

to seed the neural language model, StoRM over-526

comes a disadvantage in that it must figure out how527

to reasonably order concept nodes in the goal story528

world and compose a coherent story.529

4.4 Controllability Evaluation530

We assess whether StoRM is able to achieve the531

given goal, as measured by the coverage of all the532

given concepts in goal story state with the follow-533

ing five metrics.534

• Knowledge graph overlapping rate (KG-o): Gen-535

erated stories are transformed into knowledge536

graph (§3.1). Calculate the overlapping rate of537

knowledge graph nodes between generated story538

and the golden truth story.539

• Sentence transformer cosine similarity (S-F)540

(Reimers and Gurevych, 2019): Evaluate se-541

mantic similarity between generation and golden542

truth by calculating embedding cosine similarity.543

• Sentence mover’s similarity (Clark et al., 2019):544

Evaluate stories in a continuous space using word545

and sentence embeddings.546

• Self-BLEU score (B-2, B-3, and B-4) (Pap-547

ineni et al., 2002; Zhu et al., 2018): 2-gram, 3-548

gram and 4-gram self-BLEU scores are reported.549

These evaluate the diversity of generated stories.550

• ROUGE (R-1, R-2, and R-L) (Lin, 2004): Higher551

ROUGE score indicates more coverage.552

Table 4 shows the result of all the systems. We553

first convert all the generated stories of StoRM554

and baselines to knowledge graph and then calcu-555

late their knowledge graph overlapping rate (KG-556

o) with goal story world. Higher KG-o indicates557

better controllability. StoRM performs statistical558

significantly better than baselines in this dimen-559

sion and “ROUGE”. Similarity between generated560

story and golden truth is also considered a way to561

evaluate controllability. StoRM outperforms Yao562

et al.(2019) in “sentence transformer similarity”563

and “sentence mover’s similarity” but comparable564

to GPT-outline. Without seeding outlines to the 565

language model like baselines, StoRM is able to 566

cover most of the concepts in the goal story state. 567

Lower self-BLEU score indicates more diversity 568

in generated stories. The constraints imposed for 569

controllability also impose constraints on diversity, 570

though generally diversity is secondary to overall 571

story quality. Yao et al. (2019) shows better diver- 572

sity at the expense of controllability. 573

5 Conclusions 574

Neural language models are widely used to pro- 575

duce text, including stories. However, they strug- 576

gle with maintaining story coherence—the logical 577

progression of events—and goal-directedness. Our 578

framework—Story Generation with Reader Models 579

(StoRM)— augments neural language models with 580

a reader model. This reader model—in this case 581

an explicit knowledge graph—approximates the 582

reader’s beliefs about the story world. StoRM in- 583

creases the story coherence by expanding the reader 584

model with commonsense technique and produc- 585

ing continuations by selecting entities in this reader 586

model. In order to achieve goal-directedness, the 587

reader model enables the system to make informed 588

decisions about which possible story continuations 589

are likely to achieve the desired goal state by infer- 590

ring how each possible story continuation changes 591

the reader model to be closer to the desired goal. 592

A thorough experimental study shows that 593

StoRM produces significantly more coherent and 594

goal-directed stories than two strong baselines. The 595

goal-directness results are significant because the 596

StoRM framework takes a goal as a knowledge 597

graph, which can be thought of as an unordered 598

outline of concepts that should appear in the story; 599

our system does well to find an appropriate se- 600

quencing of events. Thus a reader model based 601

approach provides improved story coherence while 602

providing users a powerful means of control. 603
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6 Broader Impact604

Our system faces the same potential pitfalls as605

other contemporary language learning systems. It606

is prone to echoing the biases present in the dataset607

(Sheng et al., 2019) and generate non-normative608

text (i.e. in violation of social norms). No existing609

automated storytelling systems is able to entirely610

eliminate these biases, though stories can be used611

to teach language models to reduce non-normative612

continuations (Peng et al., 2020). Fictional stories613

that are presented to readers as non-fictional can614

be used to influence (Green and Brock, 2000) or615

misinform. Future work may enable real-world616

facts to be injected into the knowledge graph of a617

similar system for the purposes of journalism or618

misinformation. However, because our graph ex-619

pansion method relies on ConceptNet5 (Speer and620

Havasi, 2013) and COMET20
20 (Hwang et al., 2021)621

for inference, our system is prone to process and622

produce simple stories.623

The ability to produce coherent and goal-624

directed stories has downstream applications be-625

yond automated story-telling. Our work is also626

applicable to figure out how to reasonably order627

concept nodes and validate whether there exists a628

multi-hop explanation for how two concepts are629

related.630
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A Implementation Details855

A.1 Semantic Role Labeling Using VerbAtlas856

The SRL model provides the automatic identi-857

fication and labeling of argument structures of858

stories. For example, it extracts ‘verbatlas’:859

‘EXIST_LIVE’, ‘args_words’: {‘Theme’:860

‘Jenny’, ‘Attribute’: ‘Florida’} from861

“Jenny lived in Florida”. Verbs in the story will be862

represented as the VerbAtlas frame. For example,863

“live” is represented as “EXIST_LIVE”.864

For the semantic role labeling model (SRL), we865

use a fine-tuned transformer model proposed by866

(Shi and Lin, 2019) which is the current state-867

of-the-art for English SRL. It is a BERT (Devlin868

et al., 2019) model with a linear classification layer869

trained on the Ontonotes 5.0 dataset to predict Prop-870

Bank SRL. We use an open-source implementation871
2, which is based on the official AllenNLP BERT-872

SRL model 3. Trained with the following hyperpa-873

rameters:874

• Batch size: 32875

• Dropout for the input embeddings: 0.1876

• Learning rate: 5e−5877

• Optimizer: Adam878

• Total Epochs: 15879

Then, we use the mappings from Propbank880

frames to VerbAtlas (Di Fabio et al., 2019) classes881

to return the correct corresponding VerbAtlas882

classes instead of Propbank’s (Palmer et al., 2005).883

The direct mapping is possible because, for every884

VerbAtlas class, there is only one ProbBank frame,885

which allows us to utilize the rich content provided886

by VerbAtlas while using the same model initially887

trained to predict ProbBank.888

A.2 Continuation Candidate Generation889

Details890

For each entity ei,G′
t
, we generate 5× 10× (c+1)891

templates, where c is the number of subjects in the892

story history. Rules of making the templates are as893

follows,894

• The first token in the template has two895

choices: (1) Previous subject, i.e. “Jenny”;896

(2) ⟨mask⟩.897

• Between the first token and the entity ei,G′
t
,898

we put 0 ∼ 4 ⟨mask⟩.899

• After the entity ei,G′
t
, we put 0 ∼ 10 ⟨mask⟩900

tokens901

Examples are as follows when ei,G′
t
=“beach”,902

2https://github.com/Riccorl/transformer-srl
3https://demo.allennlp.org/semantic-role-labeling

• Jenny <mask> beach <mask>. 903

• Jenny <mask> <mask> beach. 904

• Jenny <mask> <mask> beach <mask> 905

<mask> <mask>. 906

A.3 RoBERTa Fine-tuning 907

We fine-tune RoBERTa (Liu et al., 2019) on ROC- 908

Stories (Mostafazadeh et al., 2016) to infill the 909

mask tokens in the given text template. We pre- 910

process the ROCStories by masking 15% of all the 911

tokens randomly, concatenating all texts together, 912

and splitting them into chunks of the same length 913

(equal to 128). Each chunk is then used as one 914

training sample. 915

During fine-tuning, we use the AdamW opti- 916

mizer (Loshchilov and Hutter, 2017) to train the 917

RoBERTa for 3 epochs with batch size = 8. Other 918

optimizer-related hyperparameters are attached as 919

follows. 920

• learning rate: γ = 2× 10−5 921

• betas: β1 = 0.9, β2 = 0.999 922

• epsilon: ϵ = 10−8 923

• weight decay: λ = 0.01 924

A.4 Baselines—GPT-outline 925

We use the small version of GPT-2 (Radford 926

et al., 2019) with 124M parameters as the 927

base for all fine-tuned models. We converted 928

the data as the following format: topic_1 # 929

topic_2 # ...# topic_n # Stories. For ex- 930

ample, Florida # beach # Jenny lived in 931

Florida. She loves beach. When fine- 932

tuning GPT-2 on ROCStories and the common- 933

sense knowledge resources (done separately), we 934

train with a batch-size of 16, a learning rate of 935

0.00005, and using the Adam optimizer with gradi- 936

ent clipping at a max norm of 1. GPT-2 is fed into 937

outlines with the format of {topic_1 # topic_2 938

#...#}, and then minimizes the cross entropy loss 939

between network output logits and gold truth story 940

from which the topics were extracted. All models 941

were trained on single GeForce RTX 2080 GPUs 942

in Pytorch using the Huggingface Transformers 943

library.4 944

A.5 Baselines—Yao et al.(2019) 945

We replicate the Plan and Write model using the 946

code published on the paper’s public repository 5 947

4https://huggingface.co/transformers/
5https://bitbucket.org/VioletPeng/language-model/
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to train our baseline (Yao et al., 2019). We first948

filtered the training dataset, removing our test story949

outlines to prevent data leakage. Then we train the950

model with the hyperparameters specified in their951

documentation. Below are those hyperparameter952

values:953

• Dropout for input embedding: 0.4954

• Dropout for the RNN layers: 0.25955

• Random Seed: 141956

• Total Epochs: 500957

• Word Embedding size: 1000958

• Hidden units size per RNN layer: 1000959

• Batch size: 80960

• Learning rate: 30961

• Optimizer: SGD962

• Sequence Length: 70963

However, the best checkpoint was around 100964

epochs as the validation loss stopped decreasing at965

2.85.966
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B Human Evaluation Details967

B.1 Task Instruction968

We ask participants a set of questions to make sure969

they understand our task. The details can be found970

in Figure 4.971

Figure 4: Screenshot of the human study instruction.

B.2 Knowledge Graph Acquisition Evaluation972

Set-up973

We assess whether knowledge graph can acquire974

the story world state accurately and comprehen-975

sively. We randomly select 125 sentences from976

ROCStories and convert them into knowledge977

graph triplets. We recruited 30 participants on978

a crowdsourcing platform. Each participant read979

a randomly selected subset of knowledge graph980

triplets (20 sentences per participant). They were981

asked to validate each graph triplets given the sen-982

tence and then write down the missing information.983

An example is shown in Figure 5. At least 3 crowd984

workers validate each triple and we take the major-985

ity vote as the result.986

Figure 5: Screenshot of Knowledge Graph Acquisition
evaluation.

B.3 Story Coherence Evaluation Set-up 987

We evaluate coherence using human participant 988

evaluation, asking a set of questions that includes 989

dimensions such a logical coherence, loyalty to 990

plot, and enjoyability. Example of human study 991

is shown in Figure 6. We ask the following four 992

questions: 993

• Which story makes better logical sense? 994

• Which story follows a single topic? 995

• Which story avoids repetition? 996

• Which story uses more interesting language? 997

We recruited 40 participants and each partici- 998

pant reads a randomly selected subset of 10 story 999

pairs, comprised of one story from StoRM and one 1000

from baselines—GPT-outline or Yao et al.. For the 1001

above four questions, participants answered which 1002

story best met the criteria. Our study was approved 1003

by our Institutional Review Board, and we payed 1004

participants the equivalent of $15/hr. To generate 1005

the stories, we randomly selected 25 stories from 1006

the ROCStories corpus. 1007
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Figure 6: Screenshot of the human study on evaluating coherence.
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