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Estimating Temporal Post-Edit Effort for Grammar Error Correction
Tool Evaluation
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Abstract

Text editing can involve several iterations of
revision to improve the grammaticality and
fluency of the content. Incorporating an effi-
cient Grammar Error Correction (GEC) tool
in the initial editing stage can significantly
reduce the time and amount of post-editing
(PE) corrections. In this work, we present
the first experiment in estimating the Post-
Edit Effort in Time (PEET) for a GEC tool
based on edit type and sentence structure.
We further determine GEC edit types that
have the greatest impact on PE temporal ef-
fort. Finally, we evaluate PEET as a new
metric for assessing the quality of GEC tool
performance. As part of this work, we also
collect and release a new dataset with PE
time and corrections for two GEC tools on
the CONLL14 and BEA19 GEC Test sets.

1 Introduction

Text editing is an important part of document
writing and can result in several rounds of revi-
sions. Grammar Error Correction (GEC) is an
important step of the text editing process. There
has been a lot of work to build automated GEC
tools that can improve the structure and fluency of
text while also correcting language errors (Bryant
et al., 2023). Since GEC tool-assisted text editing
is an iterative process, an editor can make post-
edits to the tool prediction to obtain the target cor-
rection. Estimating the post-editing (PE) effort re-
quired to reach the target correction can be used as
a quality estimation metric for the tool.

PE effort for quality estimation has been stud-
ied extensively in Machine Translation (MT) (Spe-
cia et al., 2009b, 2010). Computer-aided trans-
lation systems that utilize tools like Translation
Memory (TM) or retrieval (Cai et al., 2021; Xu
et al., 2020) also benefit from human-in-the-loop

PE. PE in MT is defined as correcting MT out-
puts by a human translator (Senez, 1998), ensuring
that the translated text corresponds to the rules of
the target language and is reliable with no incon-
sistencies in meaning introduced by the MT sys-
tem. Although some work has explored computer-
assisted text editing and error correction systems,
indicating that human-in-the-loop editing is ben-
eficial (Basiron, 2012; Dagneaux et al., 1998; Li
et al., 2023), PE effort has not been studied exten-
sively for quality estimation of GEC tools.

The usefulness of a GEC tool depends inversely
on the PE its predictions require for further cor-
rection. PE effort in MT has been studied across
three levels (Krings, 2001): technical effort, which
is the number of edits; cognitive effort, which
denotes the psychological assessment required to
identify and correct the errors; temporal effort,
which is the total time taken to evaluate and per-
form post-edits (which includes technical and cog-
nitive effort).

In this work, we explore temporal PE effort for
quality estimation of a GEC tool. We design an ex-
periment to evaluate the predictions of two strong
GEC tools - GECToR (Omelianchuk et al., 2020)
and GEC-PD (Kiyono et al., 2019) on two popular
GEC Test sets - CONLL14 (Ng et al., 2014) and
BEA19 (Bryant et al., 2019) by professional hu-
man editors. The post-edited target correction and
time-to-correct value are used to create a new GEC
dataset for the Post Edit Effort in Time (PEET) es-
timation task for GEC tools. We also train mod-
els to estimate PEET (temporal effort) using the
count of different edit types (technical effort) and
sentence structure features. We further use this
dataset to determine edit types that have the great-
est impact on PEET. We compare the performance
of our PEET estimation model with GEC per-
ceived judgment rankings to explore the effective-
ness of PEET-based evaluation of GEC tools. This
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is the first work to study the temporal aspect of PE
effort for GEC quality estimation.

We make the following contributions:

1. We collect and present the first dataset to
study post-editing for GEC, consisting of
3 high-quality target corrections for two
GEC Test datasets (BEA19 and CONLL14)
- source sentence correction and post-edit for
two strong GEC Tools (GECToR and GEC-
PD) predictions, along with their respective
time-to-correct information.

2. We study the impact of GEC Tools in text-
editing, observing editor productivity and ef-
ficiency improvement. We also observed that
determining whether a sentence needs correc-
tions, paraphrasing, and punctuation changes
are the edits that tend to contribute the most
to increase PEET.

3. We design models to estimate time-to-correct
(PEET) based on the count and type of edits
(technical effort), and sentence structure.

4. Finally, we compare our best PEET estima-
tion model with various GEC human judg-
ment rankings, observing its effectiveness for
GEC evaluation based on the number and
type of corrections (technical effort).

2 Background Work

2.1 Grammar Error Correction (GEC) Tools

GEC tools can be broadly divided into supervised-
trained, LLM-based, and ensemble-ranked models
(Omelianchuk et al., 2024).

The supervised GEC tools can be divided
into edit-based and sequence-to-sequence models.
Edit-based models convert the task to a sequence-
tagging and editing approach where each token
in the input sentence is assigned an edit opera-
tion. Some tools that use this approach are the PIE
(Awasthi et al., 2019) and GECToR (Omelianchuk
et al., 2020; Tarnavskyi et al., 2022) models.
Sequence-to-Sequence (S2S) GEC models utilize
an encoder-decoder architecture where the cor-
rected sentence is generated for each input sen-
tence. The S2S models are often pre-trained with
monolingual corpora and synthetic datasets with
similar error distribution as the GEC training data
(Choe et al., 2019; Grundkiewicz et al., 2019; Kiy-
ono et al., 2019).

Large language models like Llama (Touvron
et al., 2023; Omelianchuk et al., 2024) and Chat-
GPT(Katinskaia and Yangarber, 2024), which
have been fine-tuned on large amounts of human
preference and instruction data, also perform well
for GEC (Zhang et al., 2023; Fang et al., 2023)
in different settings like - Zero-Shot, Few-Shot
and Fine-Tuning (Korniienko, 2024; Davis et al.,
2024; Raheja et al., 2023). The current state-of-
the-art GEC tools all rely on the approach of en-
sembling multiple strong GEC Tools, aggregating
them with methods like majority votes (Tarnavskyi
et al., 2022) and logistic regression (Qorib and Ng,
2023; Qorib et al., 2022).

In this work, we use two supervised GEC tools
for first-pass text editing: GECToR edit tagging
(Omelianchuk et al., 2020) and GEC-PseudoData
(GEC-PD) (Kiyono et al., 2019) model, which
was trained on a large synthetic corpus. The pre-
dictions made by these models are further cor-
rected by human editors while tracking the time-
to-correct (temporal effort). We use this tempo-
ral dataset to evaluate the impact of GEC tools for
text-editing, observing a reduction in post-editing
time and better quality final target correction (Sec-
tion 3.5). Even though the GEC Tools we selected
(GECToR and GEC-PD) are not the most recent,
they are on par with human-level performance as
demonstrated in Section 3.4 - Table 4.

2.2 Post Editing Effort and Grammar Error
Correction

We briefly review previous work that defines
and explores post-editing (PE) effort across three
levels (technical, cognitive and temporal effort)
(Krings, 2001). Technical effort has been calcu-
lated by edit distance metrics like - Translation
Edit Rate (TER) and Human TER (Snover et al.,
2006) as well as keystroke and edit operation log-
ging (Barrachina et al., 2009; O’Brien, 2005; Carl
et al., 2011). Cognitive effort has been studied in
terms of edit complexities (Temnikova, 2010; Ko-
ponen et al., 2012; Popović et al., 2014; Daems
et al., 2017) and human-assessed quality judgment
and ranking (Specia et al., 2009a, 2011; Kopo-
nen, 2012). Keystroke logs to determine pause in-
formation (O’Brien, 2005; Carl et al., 2011), eye
gaze tracking and pause fixation (Vieira, 2014;
Hvelplund, 2014; Daems et al., 2015) and Think-
ing Aloud Protocol (TAP) (Krings, 2001; Vieira,
2017; O’Brien, 2005) have also been proposed
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as measures of cognitive effort. The work on
Temporal Effort in MT estimates the relationship
between the time-to-correct and different evalua-
tion metrics (Tatsumi, 2009), source/target transla-
tion characteristics (Tatsumi and Roturier, 2010),
and quality estimation (Specia, 2011). Zaretskaya
et al. (2016) and Popović et al. (2014) study the av-
erage temporal effort required for each error type
by considering the time-to-correct and frequency
of error edits. Finally, similar to our work, Ye et al.
(2021) and Tezcan et al. (2019) train models to es-
timate MT PE time based on edit features. PE has
also been explored for Text Summarization Eval-
uation (Mani et al., 2002) and Natural Language
Generation (Sripada et al., 2004).

Technical Effort in PE has been explored for
GEC evaluation. GEC metrics and Quality Esti-
mation (QE) methods like ERRANT (Bryant et al.,
2017), M2 (Dahlmeier and Ng, 2012), GoTo-
Scorer (Gotou et al., 2020), and GLEU (Court-
ney et al., 2016) can be considered as Tech-
nical Effort estimators as they rely on compar-
ing edits for correction evaluation. Unlike met-
rics based on edit scores, PT-M2 (Gong et al.,
2022), Scribendi Score (Islam and Magnani,
2021), SOME (Yoshimura et al., 2020) and IM-
PARA (Maeda et al., 2022) rely on Neural mod-
els like BERT (Devlin, 2018) and GPT2 (Radford
et al., 2019) for generating sentence representa-
tions and perform QE.

Human-assessed judgment rankings of GEC
systems (Grundkiewicz et al., 2015; Kobayashi
et al., 2024; Napoles et al., 2019), used for eval-
uation metric assessment, are an estimate of per-
ceived cognitive effort in GEC. However, per-
ceived cognitive effort for PE does not always
agree with the actual PE effort (Moorkens et al.,
2015; Federico et al., 2014). Similar to MT, some
work in GEC has shown poor cognitive agree-
ment between editors. Tetreault et al. (2014) and
Tetreault and Chodorow (2008) asked 2 native En-
glish speakers to insert a preposition into 200 sen-
tences, from which a single preposition was re-
moved, obtaining an agreement score of just 0.7.
Rozovskaya and Roth (2010) asked three annota-
tors to evaluate and mark 200 sentences for cor-
rectness, showing a poor pairwise agreement be-
tween them (0.4, 0.23, 0.16). Gotou et al. (2020)
proposed a GEC evaluation approach based on edit
complexity, calculating complexity based on how
many GEC Tools performed the edit. Finally, there

has been some work considering the cognitive pro-
ficiency of the user interacting with a GEC Tool
(Nadejde and Tetreault, 2020) and the annotators
who create the evaluation references of GEC test
sets (Takahashi et al., 2022; Napoles et al., 2017).

Surprisingly, none of the above works in GEC
have considered using targeted corrections (the
closest correction to a GEC Tool output), which is
how PE effort is estimated in MT (like Translation
Edit Rate (TER) and Human-TER (Snover et al.,
2006)). Chollampatt and Ng (2018) proposed us-
ing TER edit score features to estimate the GEC
quality of an edit using untargeted references (ref-
erences that are not the result of correcting a GEC
tool output). In their work, the TER score is used
interchangeably with the HTER score. However,
it has been shown that the TER score correlates
poorly with HTER and human-judgment scores
(Snover et al., 2006). Apart from estimating the
post-editing effort, targeted references can also be
used for fine-tuning and aligning Large Language
Models (LLMs) with human preferences to gen-
erate better outputs (Li et al., 2024). Rozovskaya
and Roth (2021) compared the impact of using tar-
geted/untargeted references for GEC Tool evalua-
tion, generating targeted references for 100 sen-
tences from English and Russian GEC datasets.
Similarly, Östling et al. (2023) generated and pro-
posed using post-edited references to evaluate var-
ious Swedish GEC systems. In this paper, we
present the first work to study the Temporal Effort
in Post-Editing for GEC. We also present the first
large dataset of post-edited corrections for two
strong GEC tools - GECToR (Omelianchuk et al.,
2020) and GEC-PD (Kiyono et al., 2019) predic-
tions on two popular GEC Test sets - CONLL14
(Ng et al., 2014) and BEA19 (Bryant et al., 2019).

3 Dataset Collection and Processing

An important component of our work is creating
a high-quality dataset of post-edit corrections for
GEC, along with the time-to-correct (temporal ef-
fort) required for correction. This work is done in
collaboration with a professional text-editing com-
pany (Anonymous) who collected this data. This
section explains our dataset collection, filtering,
and quality estimation process.

3.1 Dataset Source

We use source sentences from two popular GEC
Benchmarks - CONLL14 (Ng et al., 2014) and
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BEA19 (Bryant et al., 2019) for the evaluation
(1312+4477 = 5789 sentences). Two GEC Tools
- GECToR (Omelianchuk et al., 2020) and GEC-
PD (Kiyono et al., 2019) (Section 2.1) were used
for first-pass source editing. 8 professional text
editors, employed by Anonymous, were asked to
evaluate and correct the source sentences and post-
edit the two GEC Tool output predictions. This
resulted in a dataset of 3 target corrections (one
for the source + two for the tool prediction cor-
rections) for each of the 5789 sentences (total of
5789∗3 = 17367 target corrections; see Appendix
A). The time-to-correct was recorded for each sen-
tence.

3.2 Editor Correction Framework

The source sentence and the GEC Tool predic-
tion serve as the basis for the editor’s post-editing.
This follows the natural setup of Text Editing,
since a GEC Tool prediction is evaluated for fur-
ther correction, compared to the original sentence.
The editors were given GEC post-editing (PE) in-
structions (Appendix D-2) and asked to perform
minimal edits and avoid rewrites. We used the
Qualtrics1 survey tool to collect post-edit correc-
tions and used the "Timing Question" feature to
log time-to-correct for each source sentence. All
other metadata logging was disabled.

The task of evaluating 17, 367 sentences was
performed in batches of 50 sentences each. Since
our dataset has 3 variations of the same sentence
- source sentence as well as GECToR and GEC-
PD prediction output, each sentence variation was
given to a different professional editor (in a pool
of 8 editors). This helped us eliminate any time-
to-correct bias. The editors were shown the source
sentence and the first-pass GEC Tool prediction
output (Appendix D-3). The final target correction
and time-to-correct were logged for each sentence.
For source sentence post-editing, only the original
sentence was presented.

3.3 Data Filtering

Using our collection framework, we collected tar-
get corrections for all 3 source sentence variations
(Appendix A). To improve the dataset quality, we
perform two stages of data filtering on the 3 tar-
get correction sets. In the first stage, we eliminate
outliers based on the time-to-correct. Snover et al.
(2006) showed that their editors took between 3-

1https://www.qualtrics.com/

Data Filtering Stages Data
Size

% of
Data

Original Corrections 17367 100%
Time-To-Correct < 250 sec 17033 98.08%

Averaging the Time
for Same Corrections

14112 81.26%

Table 1: Dataset size of collected corrections after
different filtering stages.

6 minutes for each correction. Considering this
and the distribution of the time-to-correct in this
work, we set 250 seconds as the threshold, fil-
tering out corrections with greater time-to-correct
values. Finally, we merge duplicate corrections
from our dataset by averaging the time-to-correct
values. This filtering allows us to retain 81.26% of
our dataset that we use as train and test sets (80:20
split). Table 1 contains the dataset size after each
filtering stage.

3.4 Correction Quality

We collect and present three new target corrections
for the CONLL14 (Ng et al., 2014) and BEA19
(Bryant et al., 2019) test datasets. Out of these,
two are post-edited target corrections after a first-
pass edit using GEC Tools, and one is a direct cor-
rection of the source sentence. We evaluate the
quality of these three target corrections by using
the official GEC competition metric and the Inter
Annotator Agreement (IAA) scores. Each target
correction set can be divided into CONLL14 and
BEA19 corrections. We evaluate the CONLL14
and BEA19 target corrections separately.

Bryant and Ng (2015) released 10 additional
target corrections for the CONLL14 test dataset.
We compare the quality scores of our 3 corrections
with theirs using the official CONLL14 competi-
tion - M2 Scorer (Ng et al., 2014) metric. Table 2
shows the M2 scores for all target correction sets -
Bryant and Ng (2015) corrections A1− A10, and
our corrections c1 − c3. Corrections A3 and A7
obtain near-perfect quality scores, since they were
generated by the 2 editors who created the official
CONLL14 competition target references (Bryant
and Ng, 2015). Ignoring these 2 outliers, we ob-
serve similar quality scores for our corrections.
This indicates that our 3 CONLL14 Target cor-
rections are of high quality. Unfortunately, there
are no public correction references available for
the BEA19 Test set (this work being the first to

https://www.qualtrics.com/
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Correction M2 Score (Precision : Recall)
A1 46.9 44.6 : 59.1
A2 53.0 51.7 : 59.5
A3* 98.6 98.7 : 98.3
A4 55.3 54.9 : 57.0
A5 52.8 51.3 : 59.7
A6 56.4 55.8 : 58.8
A7* 98.6 98.7 : 98.5
A8 53.5 53.8 : 52.6
A9 55.7 55.6 : 56.0
A10 52.8 51.3 : 59.4
c1 50.9 49.0 : 60.4
c2 52.3 50.5 : 61.0
c3 53.7 52.1 : 60.8

Table 2: The M2 precision and recall quality score
for all CONLL14 target correction sets on the of-
ficial CONLL14 competition task.

present 3 target correction sets), making it hard to
compare the quality scores directly.

To overcome this issue, we calculate the qual-
ity scores for the 3 target correction sets and the
GEC-Tool model output prediction on the official
BEA19 and CONLL14 competitions and compare
trends between the correction sets. We use the
BEA19 competition website scorer2 to evaluate
the performance of BEA19 target corrections. Ta-
ble 3 shows the quality scores for the GECToR and
GEC-PD Tool output prediction and the final edi-
tor target corrections (EC).

Similar patterns are observed between the
CONLL14 and BEA19 target correction sets. We
observe a significant increase in Recall scores for
the EC compared to the initial GEC Tool predic-
tion output. This indicates the final EC target con-
tains additional post-edit corrections missed by the
GEC Tool. The reduction in the precision score for
EC is consistent with the 10 CONLL14 target cor-
rections released by Bryant and Ng (2015) since
post-editing often leads to subjective paraphras-
ing and rewrite edits, which may not be present in
the official competition target reference. The final
EC obtained better Recall scores compared to the
State-of-the-Art (SOA) GEC Tool - GRECO (as of
writing this paper) (Qorib and Ng, 2023) for both
datasets. Observing similar quality score trends
for the GEC Tool predictions and our target EC

2BEA19 GEC competition website - https:
//codalab.lisn.upsaclay.fr/competitions/
4057

across both - CONLL14 and BEA19 Test competi-
tion, and better Recall than the SOA GRECO tool,
we can infer that the 3 target corrections collected
by us in this work are of high quality.

We also use the GEC Inter Annotator Agree-
ment (IAA) framework proposed by Bryant and
Ng (2015) and compare the target correction sets
for both datasets with themselves to ensure bet-
ter consistency and quality. The IAA framework
proposes that the F0.5 multi-reference score, used
to evaluate a GECTool-vs-human corrections, can
similarly evaluate human-vs-human corrections,
and serve as the IAA score. When comparing mul-
tiple annotator corrections, a single correction set
can be compared against the rest as a reference to
get quality scores, the final IAA score being the
average of all annotator correction quality scores.
We use the ERRANT tool (Bryant et al., 2017) to
perform the IAA evaluation. We evaluate 3 target
correction sets:

A = {A1−A10} The 10 target corrections for
CONLL14 by Bryant and Ng (2015).

C = {c1, c2, c3} The 3 CONLL14 target correc-
tions collected by us.

B = {b1, b2, b3} The 3 BEA19 target corrections
collected by us.

To compare IAA scores, we conduct a 1-vs-2
target correction evaluation. For each correction
in A, we randomly select 2 corrections from the
remaining 9 as the reference. Scores for each cor-
rection in B and C are calculated using the re-
maining 2 corrections as target references. Table 5
shows the average IAA scores for A,B,C correc-
tion sets. We observe better Avg-IAA scores for
the C and B correction sets collected by us in this
work, compared to A.

The Avg-IAA and official GEC competition
quality scores indicate that the 3 target corrections
that we collect for BEA19 and CONLL14 have
similar or better quality than other public target
corrections.

To ensure we choose strong GEC Tools (Sec-
tion 2.1) to obtain first-pass output predictions, we
compare the quality of the GEC Tool predictions
and the subsequent human EC. We consider the
Source Sentence EC (collected by us) as the tar-
get reference for the BEA19 and CONLL14 Test
sets. The F0.5 quality scores obtained in Table 4
show similar performance between the GECToR

https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057
https://codalab.lisn.upsaclay.fr/competitions/4057
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Candidate Set BEA19 Test
(P : R : F0.5)

CONLL14 Test
(P : R : F0.5)

Source Sentence - -
Source Sentence EC 45.30 : 66.08 : 48.34 49.05 : 60.45 : 50.97

GECToR Output 66.81 : 58.42 : 64.94 63.97 : 45.94 : 59.31
GECToR Output EC 48.24 : 71.38 : 51.59 50.50 : 61.09 : 52.31

GEC-PD Output 66.20 : 61.48 : 65.20 64.06 : 44.92 : 59.03
GEC-PD Output EC 47.33 : 70.54 : 50.66 52.17 : 60.86 : 53.71

GRECO Model Output 86.45 : 63.13 : 80.50 79.36 : 48.69 : 70.48

Table 3: Quality Scores of the 2 GEC Tools output prediction, target Editor Corrections (EC) and the
State-of-the-Art GEC Tool - GRECO (Qorib and Ng, 2023) on the official BEA19 and CONLL14 com-
petition.

Candidate Set BEA19 Test
(P : R : F0.5)

CONLL14 Test
(P : R : F0.5)

GECToR Output 52.59 : 28.59 : 45.03 57.74 : 25.10 : 45.82
GECToR Output EC 45.47 : 47.91 : 45.94 44.31 : 43.53 : 44.15

GEC-PD Output 49.88 : 26.37 : 42.33 56.49 : 23.13 : 43.85
GEC-PD Output EC 45.90 : 48.31 : 46.36 46.14 : 42.64 : 45.39

Table 4: Quality Scores of the 2 GEC Tools output predictions and their final target Editor Corrections
(EC) using the BEA19 and CONLL14 - Source Sentence EC as target reference.

Human Annotation Set Reference Set and Size IAA Score - F0.5

A1 |{RAND(2) ∈ {A−A1}| = 2 36.21
A2 |{RAND(2) ∈ {A−A2}| = 2 45.48
A3 |{RAND(2) ∈ {A−A3}| = 2 46.72
A4 |{RAND(2) ∈ {A−A4}| = 2 40.54
A5 |{RAND(2) ∈ {A−A5}| = 2 46.01
A6 |{RAND(2) ∈ {A−A6}| = 2 50.85
A7 |{RAND(2) ∈ {A−A7}| = 2 42.72
A8 |{RAND(2) ∈ {A−A8}| = 2 49.46
A9 |{RAND(2) ∈ {A−A9}| = 2 52.0
A10 |{RAND(2) ∈ {A−A10}| = 2 48.57
Avg-IAA {A} {A}, 2 45.85
c1 |{C − c1}| = 2 54.11
c2 |{C − c2}| = 2 57.36
c3 |{C − c3}| = 2 59.14
Avg-IAA {C} {C}, 2 56.87
b1 |{B − b1}| = 2 57.94
b2 |{B − b2}| = 2 59.39
b3 |{B − b3}| = 2 59.81
Avg-IAA {B} {B}, 2 59.05

Table 5: Inter Annotator Agreement (IAA) scores for the different A,B,C annotation sets using the
ERRANT F0.5 metric. RAND(n) represents a random selection of "n" items from the respective set.

and GEC-PD Tool prediction output and the sub-
sequent EC, indicating that GECToR and GEC-PD
are strong first-pass GEC Tools.

3.5 Impact of GEC Tools

Comparing the time-to-correct source sentences
versus the GEC Tool first-pass predictions, we can
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study the impact of using GEC Tools in Text Edit-
ing.

EC quality scores presented in Table 3 show that
GEC Tool output EC, has better values compared
to the Source Sentence EC. In Table 6, we com-
pare the time taken (in seconds) by a human ed-
itor to correct the set of BEA19 and CONLL14
sentences with and without first-pass editing by a
GEC tool. We observe that GEC Tools also help
in reducing the post-editing time by roughly 4 sec-
onds per sentence. Combined insights from these
results indicate that incorporating GEC Tools in
the text-editing workflow reduces editing time and
generates better final target corrections. Thus,
GEC Tools can help improve editor efficiency and
overall productivity.

Sentence
Source

Average Time
per Sentence

Average Time
per Word

Source
Sentence

31.16 1.91

GECToR
Output

26.82 1.57

GEC-PD
Output

27.46 1.67

Table 6: The average time to correct (in seconds)
for a sentence and word; correcting the source and
after first-pass GEC Tool editing.

4 Methodology

In this work, we design models that estimate post-
editing effort in time (PEET) for a source sentence
given the target correction. We train statistical and
neural network (Language Model (LM)) models
that can predict the temporal effort in terms of the
number and type of edits and sentence structure.

The dataset that we collected contains 3 iter-
ations for each sentence - source (SRC), model
(GEC Tool) output (MO) prediction and post-
edited target correction (TRG). Different training
features in terms of edits and sentence structure
can be selected and extracted from a subset of each
SRC, MO and TRG triple (Appendix E).

PEET models trained on features selected
from [MO,TRG] sentences performed better
than models trained on fine-grained features
from [SRC,MO, TRG] sentences (Appendix F).
Hence, we only discuss the features and results
of the model trained using the [MO,TRG] sen-
tences, referring to MO as the source.

4.1 ERRANT Edit Feature Extraction

We use ERRANT (Bryant et al., 2017) to align and
extract edit features between the source and tar-
get corrections (Appendix B). Apart from the edit
category - Removal(R), Missing(M) and Unneces-
sary(U), the feature also includes the type. Figure
1 lists the different edit categories and their syn-
tactic type generated by ERRANT.

Figure 1: ERRANT edit category and types.

We use the number and type of edits as features
for our statistical models. Similar to the edit type
hierarchy used by Yuan et al. (2021), consider-
ing category, type and their combination can pro-
vide 4, 25 or 55 edit features. For instance, if we
only consider the 3 edit categories, then our 4 edit
features are Replacement(R), Missing(M), Unnec-
essary(U) and Correct/Incorrect (binary feature).
Using the 24 edit types (Figure 1) and Correct/In-
correct gives us 25 edit features. Similarly, com-
bining edit categories with their possible types, we
get 55 edit features (see Table 18 in Appendix G).
We train separate models for all three edit levels
(4, 25, 55).

4.2 Sentence Structure Features

Sentence word length and the number of edited
words (Technical PE effort) can have an impact
on PE effort (Specia, 2011). So, we use the word
length of source (Model Output - MO) and target
correction sentences as additional training features
for the statistical PEET model, while the number
of edited words is used as a feature for both statis-
tical and Neural-LM PEET models.

Since semantics and syntax structure have been
shown to impact PE effort (Tezcan et al., 2016;
Bangalore et al., 2015), we train neural-LM PEET
models using flattened constituency parse trees
(Kitaev and Klein, 2018) and part-of-speech syn-
tax structure features for the source and target cor-
rections, generated using the spaCy library (Hon-
nibal and Montani, 2017). Pretrained LMs can
also capture syntax structure internally (Dai et al.,
2021), so we also train neural-LM models using
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only source-target sentence embeddings as fea-
tures to estimate PEET.

4.3 PEET Estimation Models

We design Linear Regression (LR) and Support
Vector Regression (SVR) PEET models using the
ERRANT Edit count and different type levels (4,
25, 55), number of edited words, source sentence
length and target corrections as features. For train-
ing BERT-Large (Devlin, 2018) and RoBERTa-
Large (Liu et al., 2019), we consider 4 different
set of features described in Section 4.2 and listed
in Table 7. The details of each model and the hy-
perparameters are presented in Appendix C.

The PEET estimation task has a continuous
range of prediction values - time (in seconds). We
report the mean absolute error (MAE) and Pear-
son correlation (r) between the predicted time and
the target time. We note that MAE does not take
into account the sign of the error, while correlation
does (Graham, 2015; Tezcan et al., 2019), which
is why we report correlation and use it to compare
model performance.

5 Experiment Results

5.1 Performance of the PEET Estimation
Models

The results for the Statistical - Linear Regression
(LR) and SVR PEET models, with count of dif-
ferent edit feature levels (4,25,55), sentence word
length and number of word edits as features (Sec-
tion 4.1), are presented in Table 8. Results for the
neural BERT-Large and RoBERTa-Large PEET
models, trained on sentence structure features (Ta-
ble 7, are presented in Table 9.

The statistical models considering edit type in-
formation (25,55 labels) perform better than us-
ing minimal substitution, deletion and insertion
edit category labels (Figure 1). This indicates that
the syntax type of the edit impacts post-editing
effort. For neural-LM, flattened syntax tree and
part-of-speech features, along with the number
of edited words, perform better for BERT, while
RoBERTa models trained on sentence embedding
and syntax-based features perform better.

Comparing the best statistical and neural PEET
estimation models (Table 8 and 9), we observe
similar performance in terms of the r-score. We
obtain a correlation of r = 0.565 for the best mod-
els (LR 25 edit features).

5.2 Impact of Error Types on Post-Edit
Effort

We follow the work by Ye et al. (2021), using re-
gression coefficients of a Linear Regression (LR)
model to estimate the PEET impact of edit fea-
tures. To make the coefficients interpretable, we
center and standardize all edit-features by sub-
tracting the mean and dividing by the standard de-
viation (except the binary/categorical edit feature
- Correct/Incorrect) (Schielzeth, 2010).

The edit category OTHER, which corresponds
to paraphrasing or rewriting text, and modifying
punctuation has the highest impact on post editing
time. Deciding whether a particular sentence is
incorrect also contributes significantly to the post-
editing effort. The coefficients to study the impact
of the 25 edit features are shown in Table 10. Co-
efficients for the other edit granularities (4 labels
and 55 labels) and sentence features are provided
in Appendix G.

5.3 PEET Model for GEC Quality
Estimation

The Post-Edit Effort in Time (PEET) models can
utilize sentence and edit type features to estimate
the time-to-correct (in seconds) a GEC Tool pre-
diction into the final target. Since an efficient
GEC Tool would require lower post-editing (PE)
time, the PEET can be used to evaluate the qual-
ity of a GEC Tool (Specia, 2011). To determine
the feasibility of using a method as a GEC qual-
ity estimation tool, the method’s ranking is com-
pared to human judgment rankings (HJR) (Section
2.2). However, HJR, which corresponds to human
perception (rating) of PE effort, is not always a
reliable predictor of the actual post-editing effort
(Moorkens et al., 2015).

To observe the correlation between Temporal
and perceived PE effort, we compare the PEET-
Linear Regression (25 Edit Features) model (Sec-
tion 4.1) estimation ranking with 3 GEC HJR.

• Grundkiewicz-C14(EW) - ranking of 12 GEC
systems that participated in the official
CONLL-14 - GEC Task (Ng et al., 2014) by
Grundkiewicz et al. (2015).

• SEEDA-C14-All(TS) - ranking of 15 newer
and stronger GEC Tools on the CONLL-
14 test dataset by Kobayashi et al. (2024).
SEEDA-C14-NO(TS) denotes the subset of
12 GEC tools without the 3 outliers.
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Model Type Input Format
Sentence Edit [MO] <mo-sentence> [TRG] <trg- sentence>

Syntactic Variation <mo-constituency-parse> [TO] <trg-constituency-parse>
#EW + Syntactic Variation #EW - <mo-constituency-parse> [TO] <trg-constituency-parse>
#EW + Syntax Structure #EW - <trg-part-of-speech-tag>

Table 7: The training data format for the BERT and RoBERTa LM. The example considers a sentence
pair - <mo-sentence> and <trg- sentence> where "mo" is the Model Output correction made by a GEC
Tool and the "trg" is the post-edited target correction for "mo". The special tokens [MO], [TRG] and
[TO] denote sentence breaks in the input. #EW denotes the number of edited words between mo and trg.

Statistical
Model

Edit Feature
Level r MAE

Linear
Regression

4 0.559 18.92
25 0.565 18.74
55 0.563 18.75

SVR Linear
4 0.558 16.40
25 0.564 16.19
55 0.565 16.15

Table 8: Average PEET estimation performance
for the Statistical Models over 50 runs (different
train-test data seed). The results are presented as
the Pearson Correlation (r), Mean Absolute Error
(MAE) loss.

Model Features BERT-L RoBERTa-L
r MAE r MAE

Sentence Edit 0.552 17.73 0.56 17.97
Syntactic
Variation 0.528 19.35 0.564 18.05

#EW + Syntactic
Variation 0.564 17.16 0.561 16.88

#EW + Syntax
Structure 0.565 18.57 0.565 18.74

Table 9: Performance of Neural PEET models us-
ing different sequence model features over 5 runs.
The results are shown as Pearson Correlation (r)
and Mean Absolute Error (MAE) loss.

• Napoles-FCE and Napoles-Wiki - ranking
of 6 Seq2Seq GEC models on the FCE
(Yannakoudakis et al., 2011) and WikiEd
(Grundkiewicz and Junczys-Dowmunt,
2014) datasets by Napoles et al. (2019).

The Grundkiewicz-C14 and SEEDA-C14 hu-
man ranking calculation was conducted using the
Expected Wins (EW) (Bojar et al., 2013) and
TrueSkill (TS) (Herbrich et al., 2006) method,
which tracks relative ranking based on a setwise

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

OTHER 10.15 ORTH 2.34 ADJ 0.97
PUNCT 4.55 CONJ 2.03 CONTR 0.78
PREP 4.03 MORPH 1.89 VERB:INFL 0.63
VERB 3.37 SPELL 1.87 PART 0.47

Sentence
Correct -3.31 ADV 1.79 ADJ:FORM 0.39

NOUN 3.23 VERB:FORM 1.66 NOUN:INFL -0.30
DET 3.08 WO 1.63 NOUN:POSS 0.25

NOUN:NUM 2.52 VERB:SVA 1.16 - -
VERB:TENSE 2.35 PRON 1.10 - -

Table 10: The standardized regression coefficients
of the LR model trained on the medium (25) edit
features to measure the impact of each effort on
PEET estimation.

Human Judgment Ranking PEET Metric WER
ρ r ρ r

Grundkiewicz - C14 (EW) 0.48 0.26 0.28 0.18
SEEDA - C14 - All (TS) 0.18 0.63 0.18 0.65
SEEDA - C14 - NO (TS) -0.1 -0.27 -0.1 -0.33
Napoles - FCE -0.96 -0.94 -0.96 -0.88
Napoles - Wiki -0.71 -0.63 -0.93 -0.88

Table 11: Evaluating the correlation of our PEET
model ranking with human-judgment rankings
(HJR). We also provide the correlation of the HJR
with the Word Edit Rate (WER) metric. Spear-
man (ρ) and Pearson (r) correlation scores are
used for comparison. Negative correlation indi-
cates a lower time-to-correct score corresponds to
a higher human judgment ranking.

comparison of a subset of all GEC Tool correc-
tions. The EW and TS rankings were selected
for the final Grundkiewicz-C14 and SEEDA-C14
rankings, respectively. The Napoles - FCE and
Napoles - Wiki human ranking addressed the issue
of partial comparison and relative ranking for GEC
systems by using the partial ranking with scalars
(PRWS) method (Sakaguchi and Van Durme,
2018), collecting a quality score (0-100) for each
sentence to infer the final rankings.

Table 11 shows the Pearson (r) and Spearman
(ρ) correlation scores of the HJRs with the PEET
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model ranking and the Word Error Rate (WER)
(Snover et al., 2006), which tracks the number of
edits required to correct a GEC Tool prediction.

We observe a good alignment (high negative
correlation) between the PEET ranking and the
Napoles HJR and a poor alignment (positive cor-
relation) with the other HJRs. The PEET rank-
ing shows better alignment to HJRs dependent on
WER scores (Technical PE effort - Section 2.2).
We also observe a better alignment of WER and
PEET with the HJRs collected using the PRWS
method, rather than TS or EW.

These results suggest that our PEET model can
be an effective GEC evaluation tool when the GEC
Tool prediction quality depends on the Technical
Post-Editing Effort (WER and type of edits) re-
quired to obtain the final correction. However,
the PEET model does not provide a reliable GEC
quality estimation tool when the evaluation is de-
pendent on the perceived PE efforts.

6 Conclusion

In this work, we perform the first study on Post-
Edit Effort Estimation in Time (PEET) for the task
of Grammar Error Correction (GEC). As part of
this study, we collect and present the first high-
quality large dataset of GEC post-edit corrections
along with their respective time-to-correct values.
We also analyze this data to study the impact of
GEC Tools in Text Editing, observing an improve-
ment in editor efficiency and productivity.

We extract various automated sentence struc-
ture and edit category features from the source-
correction sentence pairs to train models that es-
timate the PEET for a GEC Tool prediction. Com-
paring the impact of different edit types on the
post-editing (PE) effort, we find that rewrites,
paraphrases and modifying punctuation had the
highest impact on PEET. It was also observed that
determining whether a sentence is correct or not is
a time-consuming task that significantly impacts
time-to-correct values.

Finally, we observe that our PEET model can
be an effective GEC evaluation tool when the cor-
rection quality is dependent on the Technical PE
Effort (type and amount of edits). However, simi-
lar to work in Machine Translation, it is inconsis-
tent with quality estimation based on perceived PE
efforts.

7 Future Work and Limitations

Since we present the first study and dataset of
Post-Editing Effort in Time for GEC, our goal is to
provide a baseline for future work in this area. An
interesting area of future work is exploring post-
editing features to train stronger PEET models.
Our work is currently limited to features generated
by the ERRANT toolkit (Bryant et al., 2017). Re-
cently, there has been some work in the area of
Grammar Error Explanation to define and predict
descriptive error types (Fei et al., 2023; Ye et al.,
2025) and use LLMs for error explanation (Song
et al., 2023; Li et al., 2025). It would be interest-
ing to explore these descriptive edits as features
for the PEET model.

Evaluating our PEET model as a GEC qual-
ity estimation tool shows that it is effective when
the correction quality is dependent on the techni-
cal post-editing effort and not perceived cognitive
effort. Studying actual cognitive effort for GEC
post-editing and comparing it with technical and
temporal effort is another interesting direction for
future work.

Finally, we acknowledge that our work is lim-
ited to the English language. Future work on post-
editing GEC for other languages can show the im-
pact of language type on PEET for GEC.
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A PEET Dataset Distribution

Sentence
Set Type

CONLL14
Test Set

BEA19
Test Set Total

Source
Sentence

1312 4477 5789

GECToR
Correction

1312 4477 5789

GEC-PD
Correction

1312 4477 5789

Total 3936 13431 17367

Table 12: Distribution of human editor post-edit target correction counts by dataset and source type. We
collect and present a dataset of 17367 Target corrections.

B GEC Evaluation File Example and Format

The evaluation of a GEC Model requires a Source (S), Target (T) and Model Output (MO) sentence.
Table 13 gives an example of such a triple. GEC evaluation generates M2 file for a pair of sentences
(e.g., S and T), which lists the edits that can convert sentence S into sentence T and the positions of those
edits. The evaluation process generates two M2 files : (Source - Target) and (Source - Model Output).
The M2 edits are compared to evaluate the Model Output quality.

Source : Surrounded by such concerns,
it is very likely that we are
distracted to worry about these
problems.

Target : Surrounded by such concerns, it
is very likely that we will be too
distracted to worry about these
problems.

Model
Output :

Surrounded by such concerns,
it is very likely that we are
distracted from worrying about
these problems.

Table 13: Source, Target and example Model Output
made by a GEC Model.

• Source-Target M2 File:
S Surrounded by such concerns , it is
very likely that we are distracted to
worry about these problems .
A 13 14|||R:OTHER|||and|||REQUIRED|||
-NONE-|||0
A 11 12|||R:VERB:TENSE|||will
be|||REQUIRED||| -NONE-|||1
A 12 12|||M:ADV|||too|||REQUIRED|||
-NONE-|||1
• Source-Model Output M2 File:
S Surrounded by such concerns , it is
very likely that we are distracted to
worry about these problems .
A 13 14|||R:PART|||from|||REQUIRED|||
-NONE-|||0
A 14 15|||R:VERB:FORM|||worrying|||
REQUIRED||| -NONE-|||0

The M2 file format was part of the GEC-M2 Scorer evaluation tool proposed by (Dahlmeier and Ng,
2012). The tool generated an alignment and detection of atomic edits between a pair of sentences. Further
improvement to the M2 tool was done by Bryant et al. (2017), resulting in the ERRANT evaluation tool.
The ERRANT tool retained the overall M2 file format, but added the use of syntactic and linguistic
features in text to extract better-aligned and tagged edits between 2 sentences (as shown above).

C Predictive Model Parameters

We train different statistical and neural predictive models to estimate the post-editing temporal effort.
We use this section to describe the predictive models as well as the training parameters for the regression
task.
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Linear Regression: We use the Linear Regression (LR) model provided by the Scikit-Learn library3.
To keep the weights of the features from getting arbitrarily high, we used the RidgeLinear model
that also adds an L2 Regularizer to the model. We trained the model with default training parameters
and alpha = 1.0.

Support Vector Regression: We also train Support Vector Regression (SVR) models from scikit-learn
with the default training parameters and the "linear" kernel.

BERT, RoBERTa Neural Models: To train stronger neural predictive models, we fine-tuned the BERT-
Large (Devlin, 2018) and RoBERTa-Large (Liu et al., 2019) with a regression head. The models
were trained using the Pfeiffer bottleneck adapters (Pfeiffer et al., 2020a) which allowed us to reduce
the training time. We utilized the AdapterHub library4 for training the models with the default
Pfeiffer adapter configuration (Pfeiffer et al., 2020b). Training was done for 50 epochs with a 10-
epoch and .05 loss threshold early stopping. A learning rate of 1e−04 was used. To train the models
for the regression task, we added a one-label regression head and used the mean-square-error loss
(MSELoss), which is part of the Huggingface5 training pipeline.

D GEC Post Editing Instructions and Survey Example

Figure 2: Survey instructions for the editor to per-
form post editing, and obtain target corrections for
our dataset.

Figure 3: Example source sentence and its first-
pass edit from the Survey. The editor can make
further improvements in the text box. Submitting
the final target correction.

E Different Sources for Training Feature Selection and Extraction

Our dataset has 3 iterations for each sentence. We have the original sentence - source (SRC), the first-
pass correction by a GEC Tool - Model Output (MO) and the final targeted editor correction - target
(TRG). Out of our 3 correction sets, 2 sets have a first-pass correction performed by a GEC Tool, and
1 set has the correction for the source sentence. For source sentence correction, we consider the Model
Output to be the Source Sentence (MO = SRC). This can be summarized as using a GEC Tool that
makes 0 edits to a source.

Figure 4 shows the editing iterations for the source sentence. Each arc represents a sentence transition
pairing and can be used to extract intermediate edit features. To extract features, the following sentence
pairings can be considered:
(a) MO (b) SRC - MO (c) MO - TRG (d) SRC - MO - TRG
Strong post-editing features can be extracted from the SRC −MO − TRG and MO − TRG sentence

3https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
4https://adapterhub.ml/
5https://huggingface.co/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://adapterhub.ml/
https://huggingface.co/
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Figure 4: Sentence correction edits extracted using the ERRANT toolkit.

pairings. The source sentence can be further used to divide correction edits into ignored and incorrect
edits.

• SRC - MO - TRG: We consider and extract the set of edits - A and C (Figure 4) for the model
features. We further use these edits to create 2 categories - Incorrect and Ignored edits.

– Incorrect: |A− C|

– Ignored: |C −A|

• MO - TRG: We consider only edit set - B (Figure 4) as the input for the trained models.

We found that the performance of models trained on these 2 feature sources was comparable (Ap-
pendix F). This also indicates that the model can get most of the information from the post-editing
correction stage - B. In our work, we only present and discuss the results of the model trained using the
MO − TRG sentence features.

F PEET Models using SRC, MO and TRG Sentence Features

Statistical
Model

Edit Feature
Level r MAE

Linear
Regression

10 0.558 18.92
106 0.557 18.89

SVR Linear
10 0.556 16.39
106 0.561 16.21

Table 14: PEET Statistical Model performance over
50 runs (different train-test data seed) using Incor-
rect and Ignored separated Edit features (Appendix
E) extracted from SRC, MO and TRG sentence
triples. The results are presented as the Pearson
Correlation (r), Mean Absolute Error (MAE) loss.

Model Features BERT-L RoBERTa-L
r MAE r MAE

Sentence Edit 0.513 19.10 0.54 17.82

Table 15: Neural PEET model performance over 5
runs using the source (SRC), GEC Model Output
(MO) and Target Correction (TRG) sentence fea-
tures. The results are shown as Pearson Correlation
(r) and Mean Absolute Error (MAE) loss.
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G Feature Impact on Post-Editing Time using Regression Coefficients

Model Features PEET - r Regression
Coefficient

# of words in TRG 0.43 14.07
Substitutions (R) 0.47 6.76
# of Edited Words 0.52 6.46
# of Words in MO 0.43 -5.86
Deletions (U) 0.32 3.85
Sentence Correct (C) -0.3 -2.63
Insertions (M) 0.28 0.66

Table 16: The correlation of the features used to
train the small-edits(4) Linear Regression (LR)
model in Table 8. We also list the standardized re-
gression coefficients of the LR model to measure
the impact of each effort on PEET estimation.

Model Features Regression
Coefficient

Substitutions (R) 14.05
Deletions (U) 6.71
Insertions (M) 5.28
Sentence Correct (C) -2.33

Table 17: The standardized regression coefficients
of the LR model trained on the small (4) edit fea-
tures to measure the impact of each effort on PEET
estimation.

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

R:OTHER 7.73 M:DET 2.03 M:VERB 1.49 U:VERB 1.07 M:ADJ 0.36
U:OTHER 4.53 M:OTHER 1.98 R:VERB:FORM 1.48 M:ADV 0.93 R:CONJ 0.30

Sentence Correct -3.11 R:DET 1.94 U:PUNCT 1.36 U:ADJ 0.79 U:NOUN:POSS 0.29
R:PREP 2.85 M:PREP 1.93 U:ADV 1.32 R:VERB:INFL 0.58 U:VERB:TENSE 0.25

R:PUNCT 2.84 R:MORPH 1.77 M:VERB:TENSE 1.32 R:ADV 0.53 M:PART 0.18
M:PUNCT 2.80 U:PREP 1.69 M:VERB:FORM 1.29 M:NOUN:POSS 0.52 U:PART 0.10
R:VERB 2.71 R:SPELL 1.66 U:NOUN 1.26 R:ADJ 0.51 R:NOUN:POSS -0.06
R:NOUN 2.64 U:CONJ 1.64 M:NOUN 1.22 M:PRON 0.49 U:PRON 0.06

R:NOUN:NUM 2.32 U:DET 1.62 R:PRON 1.14 R:PART 0.42 U:VERB:FORM 0.05
R:ORTH 2.22 R:WO 1.58 R:VERB:SVA 1.11 R:ADJ:FORM 0.41 M:CONTR 0.02

R:VERB:TENSE 2.08 M:CONJ 1.52 U:CONTR 1.10 R:NOUN:INFL -0.37 R:CONTR 0.02

Table 18: The standardized regression coefficients of the LR model trained on all the big (55) edit features
to measure the impact of each effort on PEET estimation.


