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ABSTRACT

Diffusion language models (DLMs) enable parallel, order-agnostic generation
with iterative refinement, offering a flexible alternative to autoregressive large
language models (LLMs). However, adapting reinforcement learning (RL) fine-
tuning to DLMs remains an open challenge because of the intractable likelihood.
Pioneering work such as diffu-GRPO (Zhao et al., 2025) estimated token-level
likelihoods via one-step unmasking. While computationally efficient, this ap-
proach is severely biased. A more principled foundation lies in sequence-level
likelihoods, where the evidence lower bound (ELBO) serves as a surrogate. Yet,
despite this clean mathematical connection, ELBO-based methods have seen lim-
ited adoption due to the prohibitive cost of likelihood evaluation. In this work,
we revisit ELBO estimation and disentangle its sources of variance. This decom-
position motivates reducing variance through fast, deterministic integral approx-
imations along a few pivotal dimensions. Building on this insight, we introduce
Group Diffusion Policy Optimization (GDPO), a new RL algorithm tailored for
DLMs. GDPO leverages simple yet effective Semi-deterministic Monte Carlo
schemes to mitigate the variance explosion of ELBO estimators under vanilla
double Monte Carlo sampling, yielding a provably lower-variance estimator un-
der tight evaluation budgets. Empirically, GDPO achieves consistent gains over
pretrained checkpoints and outperforms diffu-GRPO, one of the state-of-the-art
baselines, on the majority of math, reasoning, and coding benchmarks.

1 INTRODUCTION

Large language models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al.,
2023; Dubey et al., 2024; Team, 2025) have have revolutionized modern science by providing ex-
ceptionally general-purpose representations and abstractions. Their training typically proceeds in
two stages: a pretraining stage, where vast corpora are used to optimize the next-token prediction
objective and endow the model with broad world knowledge and linguistic representations; and
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Figure 1: Across reasoning, planning and coding tasks our new Reinforcement Learning algorithm
for Diffusion Language Models (GDPO) significantly outperforms the baseline model (LLada) and
other RL methods (diffu-GRPO).
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a post-training stage, where alignment techniques adapt the raw model outputs for improved reli-
ability and usability (Bai et al., 2022). Among alignment methods, reinforcement learning (RL)
(OpenAI, 2024) has emerged as especially promising for post-tuning LLMs on complex tasks with
well-defined reward signals. DeepSeekMath (Shao et al., 2024) advances this direction by scaling
and stabilizing RL through Group Relative Policy Optimization (GRPO), showing that RL can re-
duce the computational burden of alignment (Guo et al., 2025; Team et al., 2025) while substantially
improving LLMs on reasoning-intensive tasks such as mathematics (Cobbe et al., 2021; Hendrycks
et al., 2021a), planning (Ye et al., 2025a; Liu et al., 2025a), and coding (Austin et al., 2021b). Nev-
ertheless, key limitations remain: inference is slow, generation is constrained to a left-to-right order,
and early mistakes cannot be revised, often leading to error propagation.

By contrast, discrete diffusion models (Campbell et al., 2022; Lou et al., 2024; Shi et al., 2024; Gat
et al., 2024; Sahoo et al., 2024; Nie et al., 2025; Ye et al., 2025b) — often referred to as Diffusion
Language Models (DLMs) — offer greater flexibility and versatility. DLMs support faster inference
(Arriola et al., 2025; Khanna et al., 2025; Song et al., 2025), iterative refinement through token
revisions and remasking (Wang et al., 2025), knowledge transfer via adaptation from autoregressive
models (Gong et al., 2025a), and demonstrate superior performance to autoregressive LLMs in low-
data regimes (Prabhudesai et al., 2025). These advantages have motivated growing efforts to adapt
RL methods originally developed for LLMs to DLMs (Zhao et al., 2025; Zhu et al., 2025; Gong
et al., 2025b; Zekri and Boullé, 2025). However, the absence of a straightforward autoregressive
structure complicates likelihood estimation at both the token and sequence levels — quantities that
many RL objectives fundamentally rely on.

Previous works have extended GRPO (Zhao et al., 2025; Gong et al., 2025b) and considered different
heuristics to approximate the token-level likelihood; such methods were computationally scalable,
but their connection to the mathematical foundations of DLMs remain unclear. A different approach
considered extending DPO (Zhu et al., 2025), however, their method required many network evalu-
ations, which limits its applicability.

In this paper, we introduce Group Diffusion Policy Optimization (GDPO), a novel RL algorithm
built to enhance reasoning for diffusion language models (DLMs). We analyze the variance de-
composition of the sequence-level ELBO, which clarifies why prior double Monte Carlo estimators
lead to a large variance issue and tend to be computationally expensive. Motivated by these find-
ings, we propose fast yet effective integral approximation strategies based on a Semi-deterministic
Monte Carlo scheme. This approach enables GDPO to solve complex reasoning tasks for DLMs
while provably reducing variance under tight evaluation budgets. Empirically, GDPO consistently
improves upon pretrained checkpoints and outperforms state-of-the-art baselines, including diffu-
GRPO (Zhao et al., 2025), across diverse math, reasoning, and coding benchmarks.

2 PRELIMINARIES

2.1 MASKED DIFFUSION LANGUAGE MODELS (MDMS)

Diffusion models (Ho et al., 2020; Song et al., 2021) have demonstrated remarkable success in
continuous domains such as image synthesis, but their extension to discrete spaces like text re-
mains less explored. To address this gap, discrete diffusion models (Austin et al., 2021a; Lou
et al., 2024; Shi et al., 2024; Sahoo et al., 2024)—often referred to as Diffusion Language Mod-
els (DLMs)—introduce masking noise to progressively corrupt sequences and are trained to model
the marginal distribution of the induced reverse dynamics. In what follows, we formally define the
forward and reverse processes along with the training objectives that characterize DLMs.

Forward process. Given a clean sequence data y0 ∼ πdata and timestamp t ∈ [0, 1], the forward
process yt ∼ πt|0(·|y0) factorizes as

πt|0(yt|y0) =
L∏

i=1

πt|0(y
i
t|yi0), πt|0(y

i
t|yi0) = Cat((1− t)eyi

0
+ teM ),
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where eyi
0

is the one-hot vector that encodes the position of token yi0 and eM is the one-hot vector
for the mask token M ; and Cat(·) denotes the categorical distribution. Thus, each coordinate yit is
independently replaced by the mask token with probability t and otherwise remains unchanged.

Reverse process. The reverse process aims to reconstruct the original sequence y0 from a cor-
rupted sequence yt. Given a probabilistic prediction of the a token yiθ, we can write down the
transition for any s < t as:

qs|t(ys|yt) =
L∏

i=1

qs|t(y
i
s|yt, yiθ), qs|t(y

i
s|yt, yiθ) =

{
Cat(eyi

t
), yit ̸= M,

Cat
(
s
t eM + t−s

t yiθ
)
, yit = M.

Denoising objective. With the linear noise schedule and time-independent conditional probabili-
ties (Ou et al., 2025), the reverse transition is often approximated by πθ(y

i
0|yt), trained via a simple

training objective (Zhu et al., 2025):

−Ey0∼pdataEt∼U [0,1]Eyt∼πt(·|y0)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i
0|yt)

]
. (1)

Notably, the loss function of diffusion language models provides a lower bound for the likelihood
known as evidence lower bound (ELBO):

LELBO(y|q) = Et∼U [0,1]Eyt∼π(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]
≤ log π(y|q) (2)

where q usually denotes a prompt and y is its answer. DLMs are conceptually similar to BERT
(Devlin et al., 2019) in that both rely on token masking to train language representations. However,
they differ in that BERT masks a fixed proportion of tokens and predicts them in a single step, while
DLMs adopt a time-varying masking schedule and iteratively denoise from full corruption, thus
yielding a true generative model.

2.2 REINFORCEMENT LEARNING WITHOUT VALUE NETWORKS

Policy gradients (Williams, 1992) have become the workhorse for post-training large language mod-
els (LLMs). Among them, proximal policy optimization (PPO) (Schulman et al., 2017) remains the
most widely used. However, PPO’s reliance on a value network for advantage estimation inevitably
increases both computational cost and training instability.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) addresses this limitation by elim-
inating the value network. Instead, it leverages a Monte Carlo (MC) estimator constructed from mul-
tiple sampled answers. For a given prompt q and candidate answers {yg}Gi=1, the GRPO objective
is:

LGRPO(θ) = ExEyg∼πold

 1

G

G∑
g=1

1

|yg|

|yg|∑
i=1

min
(
rigAg, clip(rig, 1− ϵ, 1 + ϵ)Ag

)
− βKL(πθ||πref)

 ,

where the importance ratio and normalized advantage are defined as:

rig(y) =
πθ(y

i
g|q, y<i

g )

πold(yig|q, y<i
g )

, Ag =
Rg −mean(R1, . . . , RG)

std(R1, . . . , RG)
, (3)

with Rg = R(q, yg) denoting the sequence-level reward. Notably, although likelihoods are defined
at the token level, rewards are assigned only at the sequence level.

Despite their wide adoption, LLMs face key limits: slow inference, rigid left-to-right generation,
and error propagation. DLMs mitigate these with parallel, iterative refinement, but their flexibility
complicates likelihood estimation and challenges RL-based post-training.

Diffu-GRPO: A pioneering effort in fine-tuning diffusion language models was made by Zhao
et al. (2025), who proposed Diffu-GRPO, an adaptation of GRPO for masked diffusion. They ap-
proximated the sequence-level likelihood via a fast but coarse mean-field network evaluation, and
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introduced a practical scheme for this approximation. Specifically, their method starts by perturb-
ing the input prompt q with random noise to obtain q′. They then consider fully masked sequence
q ⊕M ⊕ · · · ⊕M , where ⊕ denotes concatenation and M is the masked token, they perform a
single-step unmasking to estimate

log pθ(y
i
g|q′ ⊕M ⊕ · · · ⊕M).

This approach has two key virtues: it yields likelihood estimates for every token, and it does so
with only one forward pass of the network, ensuring computational efficiency. Empirically, Diffu-
GRPO achieves consistent performance gains across a wide range of tasks. However, the one-
step unmasking in the mean-field manner introduces significant bias: since tokens are generated
sequentially, important token correlations are discarded.

3 IMPROVING REASONING VIA GROUP DIFFUSION POLICY OPTIMIZATION

GRPO improves computational efficiency and training stability by estimating advantages from group
statistics rather than training a value network. In autoregressive LLMs, its effectiveness relies on
two factors: (1) accurate sequence likelihoods, naturally supported by the left-to-right factorization,
and (2) token-level importance ratios. In Diffusion Language Models (DLMs), however, the order-
agnostic generation paradigm (Ou et al., 2025; Kim et al., 2025) renders both sequence likelihoods
and token-level ratios intractable.

3.1 REVISITING SEQUENCE-LEVEL LIKELIHOOD FOR DLMS

To address these challenges, much of the field has focused on fast but coarse token-level approxi-
mations. Token-level methods leverage per-token probabilities to provide fine-grained control over
model updates and act as a stabilizing force during training. To make token-level training feasible
despite intractable likelihoods, Zhao et al. (2025) introduced heuristic mean-field approximations.
Although efficient and empirically effective, these methods fail to capture sequential dependencies
and often overweight individual tokens. Gong et al. (2025b) later improved the approximation by
incorporating two complementary random timesteps, yet a general solution remains elusive.

In contrast, sequence-level objectives provide more faithful training signals but are difficult to apply
in DLMs, since the order-agnostic generation paradigm precludes exact likelihood evaluation (Ou
et al., 2025). We review the evidence lower bound (ELBO) as a surrogate of the likelihood:

Et∼U [0,1]Eyt∼πt(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]
≤ log π(y|q),

which provides a principled avenue for extending sequence-level RL methods to DLMs. However,
the computational cost of this substitution remains unclear.

Variance–Cost Dilemma. Although more principled, sequence-level objectives face a fundamental
trade-off: accurate likelihood estimates demand expensive network evaluations, while cheaper ap-
proximations suffer from high variance or bias. For instance, Nie et al. (2025) report needing up to
128 samples for reliable estimates, incurring prohibitive cost; Zhu et al. (2025) reduces this to eight
evaluations, yet the overhead remains substantial, and a systematic understanding of the variance is
still lacking. This tension highlights a central challenge:

Designing estimators that are both efficient and low-variance remains an open problem.

3.2 DISENTANGLING VARIANCE IN ELBO

To tackle the variance–cost dilemma, we begin by analyzing the different sources of variance in
approximating the ELBO. From Eq.(2), two distinct sources of randomness emerge: (1) Random
Time: sampling t, which determines the overall masking level; and (2) Random Masking: se-
lecting which tokens are masked given that ratio, introducing additional variance. Our analysis
disentangles the contribution of each source to the variance of the loss function.

To investigate this we leverage 1000 different prompts pulled from the OpenWeb dataset. Figure 2
reports the mean and variance of the loss as functions of time, along with the percentage of variance

4
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Figure 2: We plot the mean and variance of the loss functions as a function of the noise level t. (a)
We observe that most of the variance comes from picking the random time (b) The loss function
follows a simple, predictable shape across many prompts. (c) The loss variance varies highly at the
end but stabilizes for most times.

attributed to each source. A detailed derivation can be found in Appendix A. Several key observa-
tions are given next.

Random time dominates the variance: As shown in Figure 2(a), the majority of variance arises
from sampling the timestamps that control masking ratios. This is intuitive: varying the ratio dras-
tically changes the input—ranging from nearly unmasked to fully masked—which produces large
disparities in the loss and inflates variance.

The loss curve exhibits a simple structure: In Figure 2(b), the loss as a function of time reveals
a smooth, clear structure. Approximating the ELBO boils down to computing the area under this
curve, indicating that the problem is naturally suited for deterministic integral approximation to
suppress the variance.

Variance across timesteps is stable: As shown in Figure 2(c), variance peaks near t = 0, stabilizes
across intermediate masking ratios, and decays to zero as inputs become fully masked. This aligns
with observations from Zhu et al. (2025) and indicates that only a small number of samples are
needed for the inner integral.

3.3 VARIANCE REDUCTION VIA SEMI-DETERMINISTIC MONTE CARLO

To achieve low-variance estimates under tight evaluation budgets, we limit naive Monte Carlo sam-
pling and adopt deterministic integration methods to avoid the slow MC convergence of O(N−1/2).

Deterministic time: Motivated by the observation in Figure 2(a), instead of considering the problem
as a double Monte Carlo problem, we consider it to be a time integral to eliminate the large variance
caused by random time:

LELBO(y|q) =
∫ 1

0

Eyt∼πt(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]
dt ≤ log π(y|q). (4)

Numerical quadrature: We further approximate this integral using a standard quadrature with N
points, then our estimate is of the form:

LELBO(y|q) ≈
N∑

n=1

wn

K∑
k=1

[
1

tn

L∑
i=1

1[(y
[k]
tn )

i = M ] log πθ(y
i|y[k]tn , q)

]
︸ ︷︷ ︸

l(πθ;y,q,tn)

. (5)

where y
[k]
tn ∼ πtn(·|y) and {wn}Nn=1 are the associated weights and the inner expectation is approx-

imated using Monte-Carlo estimates.

Due to the deterministic–stochastic nature in the integration, we refer to it as a Semi-deterministic
Monte Carlo (SDMC) scheme.

5
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Figure 3: Estimation error and variance for Dou-
ble Monte Carlo vs our Semi-deterministic Monte
Carlo method. SD-MC achieves lower bias and
variance, with most benefits obtained using only
2–3 points.

This representation serves several advantages,
firstly, it is guaranteed to approximate the
ELBO when N and K are large enough. Sec-
ondly, by fixing the time points in the first in-
tegral we significantly reduce the variance of
our estimator. Thirdly, as observed in Figure
2 (b), where the loss function is plotted for sev-
eral different prompts, the loss function has a
simple shape, specifically, it is strictly increas-
ing and convex, which makes it well-suited for
integral approximations via quadratures. Fur-
thermore as observed in Figure 2 (c) the vari-
ance remains relatively constant across many
noise levels, which allows for stable computa-
tions and results.

In practice, we opt for utilizing a simple and ef-
fective Gaussian Quadratures, which are known
to have fast convergence rates (Dahlquist and
Björck, 2008). Furthermore, based on our vari-
ance analysis we employ a single Monte-Carlo
estimate for the inner integral. Consequently,
the total number of network evaluations per likelihood computation matches exactly the number of
quadrature points N .

To evaluate our method in a controlled setting, we draw 1000 samples from the OpenWeb dataset
and estimate sequence likelihoods using both Monte Carlo and Gaussian quadrature with varying
numbers of function evaluations. For each sample, we repeat the estimation 16 times and measure
both the deviation from a ground-truth approximation (computed with 1024 Monte Carlo samples)
and the variance of the estimator. As shown in Figure 3, quadrature-based estimators via consistently
exhibit lower bias and variance, yielding accurate estimates of the ELBO. Notably, most of the gains
are achieved with as few as 2 or 3 quadrature points, which we adopt in practice.

With the flexibility to reconcile efficiency and statistical accuracy, we are ready to introduce Group
Diffusion Policy Optimization (GDPO), a policy gradient method tailored to diffusion language
models with group statistics. Compared with Diffu-GRPO (Zhao et al., 2025), which employs ef-
ficient but crude estimates of token likelihoods, GDPO uses sequence-level likelihoods, which are
made efficient through the SDMC scheme. This reformulation of the importance weights from the
token-level to the sequence-level has the added benefit of preserving the semantics of the advan-
tage estimates, and the ELBO-based objective fits naturally within the discrete diffusion framework
while retaining the merits of GRPO-style updates. Formally, the GDPO loss is defined as:

LGDPO(θ) = ExEyg∼πold

[
1

G

G∑
g=1

1

|yg|
min (rgAg, clip(rg, 1− ϵ, 1 + ϵ)Ag)− βKL(πθ||πref)

]
,

(6)
where the importance weights and advantage estimates are both done at the sequence level:

rg(x) =
LELBO(yg|x)
Lold

ELBO(yg|x)
, Ag = Rg −mean(R1, . . . , RG).

Here Lold
ELBO represents the ELBO evaluated under the old policy and Rg = R(q, yg), and we utilize

unnormalized advantage estimates to avoid the bias (Liu et al., 2025b).

3.4 OVERVIEW OF THEORETICAL RESULTS

We provide a brief theoretical analysis for the proposed ELBO estimate that is based on a Semi-
deterministic Monte Carlo, with an emphasis on its asymptotic error bounds when the total number
of Monte Carlo samples K and the number of integration points N become large. Note that a
“classic” alternative to this estimator would be a double Monte Carlo one, and its error bound (in
the form of MSE) would scale at O( 1

NK ). For our proposed estimator, the analysis points to the
following results:

6
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Algorithm 1 GDPO: Group Diffusion Policy Optimization for diffusion language models (DLMs),
with ELBO estimated via a Semi-deterministic Monte Carlo (SDMC) scheme.

Require: Reference model πref, distribution over prompts D, completions per prompt G, inner
updates µ, quadrature points and weights {(tn, wn)}Nn=1

1: Initialize from a reference model πθ ← πref
2: while not converged do
3: πθold ← πθ

4: Draw a prompt sample q ∼ D
5: Generate G completions yg ∼ πθold(· | q), g ∈ [G]
6: Estimate reward rg and advantage Ak

g(πθold) using Eq.(3) for each yg .
7: for n = 1, . . . , µ do ▷ For each gradient update
8: for g = 1, . . . , G do
9: LELBO(yg|q)← 0

10: for n = 1, . . . , N do ▷ Evaluate quadrature over time
11: LELBO(yg|q)← LELBO(yg|q) + wn · ℓ(πθ; yg, q, tn)
12: end for
13: end for
14: Evaluate GDPO objective in Eq.(6) using {LELBO(yg|q)}Gg=1.
15: Optimize πθ via AdamW.
16: end for
17: end while
18: return πθ

• decomposition of the MSE: the mean squared error of the estimator can be decomposed
into the sum of Monte Carlo variance and the square of the integration bias, which resem-
bles the classic variance-bias decomposition of statistical estimators;

• rates under very general conditions: the variance term scales as O( 1
NK ); with a generic

integration scheme (e.g., the Riemann sum 1), the squared integration bias scales as O( 1
N2 );

• faster rate with additional assumptions on the log-likelihood: with an N -dependent
decay condition on its variance, the variance term would scale faster at the rate of O( 1

N2K );
• quadrature rule for integration can make the bias practically negligible: when the inte-

grand is twice continuously differentiable and therefore one can use quadrature to perform
integration, the squared integration bias would scale either at the rate of O( 1

N4 ) or O( 1
N8 ),

depending on the exact integration scheme used. As such, this term becomes practically
negligible and the variance term becomes the dominating one.

The upshot is that under certain regularity assumptions of the log-likelihood, the proposed SDMC
estimator can attain a faster rate than a generic double Monte Carlo estimator due to the deterministic
integration. All details are deferred to Appendix B.

Table 1: Asymptotic Error Bounds in relation to Integration Points N and Monte Carlo Samples K.

Setting Variance Bias2

General conditions / Riemann sum O(1/NK) O(1/N2)
Additional assumption & smoothness / Quadrature O(1/N2K) O(1/N4) or O(1/N8)

As noted above, to perform integration using quadrature, the integrand needs to be sufficiently
smooth. To that end, properties of the integrand are further investigated. In particular, by relat-
ing the integrand in Eq.(5) to a KL form, it can be shown that such an KL form is indefinitely
differentiable (namely, living in C∞). Further, under some additional assumptions on the likelihood
ratio associated with the data distribution and the forward diffusion process, one can prove that the
integrand is convex and monotone in t. Such conditions can be understood conceptually as follows:
masking more tokens corresponds to removing more information, and the penalty grows as masking

1In the case of Riemann sum, the integration is approximated as
∫ 1

0
g(t)dt ≈

∑N
n=1 g(cn)wn, where cn is

any value within the nth interval; wn ≡ 1
N

when the intervals are equally spaced.
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Table 2: Model performance on Mathematics and Planning Benchmarks based on N = 2
quadrature points. Green is the best performing model.

Model GSM8K MATH500 Countdown Sudoku

128 256 512 128 256 512 128 256 512 128 256 512

LLaDA-8B-
Instruct

68.7 76.7 78.2 26.0 32.4 36.2 20.7 19.5 16.0 11.7 6.7 5.5

+ diffu-GRPO 72.6 79.8 81.9 33.2 37.2 39.2 33.2 31.3 37.1 18.4 12.9 11.0

+ SFT +
diffu-GRPO

73.2 81.1 82.1 33.8 38.6 40.2 34.8 32.0 42.2 22.1 16.7 9.5

+ GDPO 75.06 81.20 82.26 31.4 38.0 38.2 42.97 67.19 66.41 25.05 24.17 25.10

increases. The implication of these results are two-fold: (1) given the structure of the integrand,
the standard quadrature rules are well-suited for this problem; combined with results from the error
bound analysis, this justifies the observation that our ELBO estimator exhibits faster convergence
and lower variance than the double Monte Carlo one; and (2) the convex shape empirically observed
in Figure 2(b) supports the theoretical claim under the additional assumptions, albeit verifying these
assumptions can be non-trivial. Details for this part of the results are in Appendix C.

4 EXPERIMENTS

We conduct a comprehensive set of experiments. As our base model we use LLaDA-8B-Instruct
Zhu et al. (2025) which is a open sourced DLM that has been tuned to follow instructions, but no
specific post-training. We investigate the effect of applying GSPO with our SDMC estimator.

Tasks: We conduct experiments on mathematical reasoning, planning and coding benchmarks. For
(1) Mathematical reasoning: we use the GSM8K (Cobbe et al., 2021) which contains grade school
math problems, and MATH500 (Lightman et al., 2023), containing 500 problems drawn from the
MATH dataset (Hendrycks et al., 2021b). (2) Planning: this includes two tasks: 4x4 Sudoku puzzles,
and Countdown in which given 3 numbers and a target the model must use arithmetic operations to
reach the target. (3) Coding: we use the HumanEval (Chen et al., 2021), a benchmark consisting of
164 manually designed Python algorithmic challenges and sanitized MBPP (Austin et al., 2021b),
which contains 257 crowd-sourced Python programming tasks.

4.1 MAIN RESULTS

Table 3: Model performance on Coding with N = 3
quadrature points. Green is best.

Model HumanEval MBPP

128 256 512 128 256 512

LLaDA-8B-
Instruct

27.4 35.5 37.8 36.2 41.2 40.4

+ diffu-GRPO 29.3 39.0 34.8 42.0 45.5 41.6

+ GDPO 26.2 39.6 39.0 43.6 50.6 47.1

GDPO consistently improves the check-
point and outperforms diffu-GRPO Ta-
ble 2 demonstrates the performance of the
baseline model, as well as the two best
checkpoints as reported in Zhao et al.
(2025) both using just their diffu-GRPO al-
gorithm and diffu-GRPO + SFT. Our results
demonstrate that we can better improve the
baseline than the token-based algorithms.

GDPO outperforms existing methods
even without SFT. As shown in Table 2,
GDPO surpasses existing RL baselines
without relying on supervised fine-tuning
(SFT). This is particularly notable since it outperforms methods that combine SFT with RL, high-
lighting the strength of GDPO as a standalone approach. Beyond performance, this property also
simplifies the fine-tuning pipeline by reducing the reliance on costly SFT stages.

GDPO enhances reasoning capabilities in coding tasks. We fine-tune the model on the KodCode-
Light-RL-10K dataset (Xu et al., 2025), which spans a wide range of coding problems at varying

8
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difficulty levels, each validated through unit tests. We found that N = 3 led to slightly better results
than N = 2, and we report GDPO with N = 3 in Table 3. The results demonstrate that GDPO with
3 quadrature points consistently improves performance across most baselines. Most strikingly, on
the MBPP benchmark, RL fine-tuning achieves a substantial 10% accuracy gain over the pretrained
model without SFT.

GDPO improves performance beyond the training sequence length. Building on observations
by Zhao et al. (2025) that Diffu-GRPO enhances generalization to longer contexts, we find that
GDPO achieves this effect to an even greater extent. On 512-token sequences, GDPO consistently
outperforms all baselines while largely preserving performance at shorter lengths. We attribute this
to the use of sequence-level likelihoods, which promote more uniform improvements across token
positions, in contrast to token-level methods that retain generation-order biases, as noted by Gong
et al. (2025b).

GDPO is computationally efficient Notably we are able to obtain these remarkable results training
on only 2 H100 GPUs. With the only exception of the MATH dataset where we used 4 GPUs. For
coding tasks we used 8 GPUs. This is remarkable as practitioners often have a limited computational
budget and GDPO opens the opportunities to such needs.
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Figure 4: Test accuracy with different training it-
erations and ELBO estimators on the Countdown
dataset.

Importance of the ELBO approximation: To
demonstrate that accurately approximating the
likelihood is of vital importance we fix our-
selves to the Countdown dataset. We pick this
one as we observed the greatest increases in
performances in such dataset which allows for
easier interpretation of the results. We train 4
models using the same set of hyperparameters,
only varying the ELBO approximation method.
We evaluate the test accuracy as a function of
the training iteration every 500 iterations.

As observed in Figure 4, estimators that are
more accurate result in better improvements on
the RL pipelines. Furthermore, the sheer num-
ber of function evaluations is not enough to
guarantee good results. For instance, SDMC-
3 can significantly outperform the naive Monte
Carlo estimator even when it uses more eval-
uations. This demonstrates that accurately de-
signing the estimator is of vital importance in
GDPO.

5 CONCLUSION

We proposed Group Diffusion Policy Optimization (GDPO), an RL algorithm designed specifically
for diffusion language models (DLMs). By leveraging sequence-level likelihoods through the evi-
dence lower bound (ELBO), our approach disentangles and mitigates the major sources of variance
that hinder prior methods. In particular, we replace the inefficient double Monte Carlo estimation
with a simple and fast Semi-deterministic Monte Carlo sampling, yielding a provably lower-variance
and more computationally efficient estimator. Extensive experiments demonstrate that GDPO con-
sistently improves over pretrained checkpoints and surpasses strong baselines such as diffu-GRPO
across math, reasoning, and coding benchmarks. We expect even stronger performance with more
powerful pretrained checkpoints, though this remains outside the scope of the present study. Taken
together, these findings highlight GDPO as both a theoretically principled and practically effective
paradigm for aligning DLMs. We believe that the use of Semi-deterministic Monte Carlo sampling
offers a simple and viable path to handling the large variance issue in the sequence-level ELBO es-
timation of DLMs, and future work can explore more effective deterministic–stochastic integration
schemes with data-driven quadrature weights and locations to minimize the large variance further.

9
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Supplementary Material for “Improving Reasoning for Diffusion Language
Models via Group Diffusion Policy Optimization”

In this supplementary material, we present additional details on variance decomposition in §A, pro-
vide a theoretical analysis of asymptotic error bounds in §B, justify key properties of the integrand
in §C, describe the experimental setup in §D, and include representative generated samples in §E.

A MORE DETAILS ON VARIANCE DECOMPOSITION

We start by studying the different sources of variance in approximating the ELBO, in the case of
masked diffusion models the equation is given by:

EtEyt∼π(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]
≤ log π(y|q) (7)

From looking at this expression we observe that there are two sources of variance, (1) Time Sam-
pling: we must sample t which determines the noise level, and (2) Random Masking: we must
sample yt which injects noise to the clean x0. We start by analyzing how each source of randomness
affects the variance of an estimator. To simplify our discussion, we will rewrite the integrand in a
simplified way:

EtEyt∼π(xt|y) [Z(t, xt)] ≤ log π(y|q), (8)

where Z(t, yt) :=
1
t

∑L
i=1 1[y

i
t = M ] log πθ(y

i|yt, q) is a random variable w.r.t. the joint distribu-
tion of (t, yt). We are interested in studying Var(Z(t, yt)) and how it decomposes with respect to
t, yt, by the law of total variance we can decompose this as:

Var(Z(t, yt)) = Et[Var(Z | t)]︸ ︷︷ ︸
Var given by Z|t

+ Vart(E[Z | t])︸ ︷︷ ︸
Var given by t

. (9)

The above expression indicates that we can understand variance as the sum of two components,
where each term corresponds to a distinct source of variance. We argue that most of the variance
comes from selecting the noise level t. When the noise level is t = 0 we range from fully unmasked
to fully masked, creating a large disparity in the noise samples and subsequently causing large
swings in the variance.

To test this we evaluate each term in 9 for 1000 different prompts pulled from the OpenWeb dataset.
We plot the mean and variance as function of time in Figure 2. This figure reveals very important
facts:

1. Most of the variance is coming from randomly selecting the timestamps/ noise levels and
not from injecting noise into the text.

2. The loss function when observed as a function of time yields a simple structure.

For this reason, we advocate for fixed timestamps for likelihood approximation and embracing a
Semi-deterministic Monte Carlo sampler instead of the naı̈ve double Monte Carlo approximations.

B ANALYSIS OF ASYMPTOTIC ERROR BOUNDS

In this section, we analyze the error bound of approximating the ELBO via the proposed Semi-
Deterministic Monte Carlo scheme, focusing on the training objective given in Eq.(2), namely,

LELBO(y|q) = Et∼U [0,1]Eyt∼πt(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]
.
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Notation and definition. We proceed by first defining the relevant quantities that will be used in
the ensuing technical analysis. Define

Zt :=
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q),

which is a random variable with respect to the distribution of yt, where yt ∼ πt(·|y). Let

g(t) := Eyt∼πt(· |y)(Zt), (10)

and the Monte Carlo approximation of g(t) be gMC(t) :=
1
K

∑K
k=1(Z

[k]
t ), where Z

[k]
t are iid draws

of Zt. For convenience, we let I(yt) := {i ∈ {1, · · · , L} : yit = M} and ct = |I(yt)|, the
cardinality of I(yt). Note that Zt can be rewritten as Zt ≡ 1

t

∑
i∈I(t) log pθ(y

i|yt, q).

With these definitions, the training objective of interest is given by

LELBO(y|q) = Et∼U [0,1]

(
g(t)

)
=

∫ 1

0

g(t)dt, (11)

and its approximation via a Semi-deterministic Monte Carlo scheme (namely, Eq.(5)) can be written
as

L̂ELBO(y|q) :=
N∑

n=1

wngMC(tn), (12)

which is a numerical approximation of the integral in the Monte Carlo approximation L̃ELBO(y|q) :=∫ 1

0
gMCdt at points tn, n = 1, · · · , N . For the time being, we assume a generic numerical approxi-

mation of the integral, and using the notation involving wn.

The approximation error of Eq.(12) is given by

E
([
L̂ELBO − LELBO

]2)
= E

[ N∑
n=1

wngMC(tn)−
∫ 1

0

g(t)dt

]2 (13)

= E

( N∑
n=1

wngMC(tn)−
N∑

n=1

wng(tn)

)2


︸ ︷︷ ︸
MC variance

+

(
N∑

n=1

wng(tn)−
∫ 1

0

g(t)dt

)2

︸ ︷︷ ︸
integration bias2

;

this holds due to the independence of Monte Carlo samples, since

E
[ N∑
n=1

wngMC(tn)

]
=

N∑
n=1

wnE[gMC(tn)] =

N∑
n=1

wng(tn),

and therefore the second term boils down to the integration bias. It can be seen that this becomes the
classical mean-squared-error of an estimator, which can be decomposed into the variance (from a
total of K Monte Carlo samples) and the bias2 (from the approximation of the integral) at N points
t1, · · · , tN . The bounds of these two terms will be analyzed separately in the sequel.

B.1 THE VARIANCE TERM

To analyze this term, we start with the pointwise Monte Carlo error.
Lemma B.1. Assume the following conditions hold:

C1. Ext
(ct) <∞, Ext

(c2t ) <∞;

C2. ∃ δ > 0 : δ < πθ(y
i | yt, q) < 1− δ, for all xi

0, xt.

Then, the following holds

E
(
g(t)− gMC(t)

)2

= 1
Kσ2(t), where σ2(t) := Var(Zt). (14)
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Proof. To establish the results in Eq.(14), the following assumptions need to hold:

A1. Measurability: Zt is jointly measurable in t and yt;

A2. Integrability: E(|Zt|) <∞, ∀ t ∈ [0, 1];

A3. Finite variance: σ2(t) <∞, ∀ t ∈ [0, 1].

By writing Zt as Zt =
1
t

∑
i∈I(yt)

log πθ(y
i | yt, q), it can be verified that C1 and C2 are sufficient

for A1-A3 to hold.

Remark B.1. Interpretation of conditions C1 and C2 are given as follows: C1 requires the number
of masked tokens to be controlled, and C2 requires the conditional likelihood to be well behaved.

Coming back to the variance term, by Lemma B.1, at each time point t (i.e., tn’s), the Monte
Carlo estimate gMC(tn) introduces random error whose pointwise variance is given by 1

Kσ2(tn).
Consequently, the variance of the estimator L̂ELBO is given by

E

( N∑
n=1

wngMC(tn)−
N∑

n=1

wng(tn)

)2
 = E

( N∑
n=1

wn

(
g(tn)− gMC(tn)

)︸ ︷︷ ︸
:=un

)2
= E

( N∑
n=1

wnun

)2
=

1

K

( N∑
n=1

w2
nσ

2(tn)

)
; (15)

the last equality holds since for tn ̸= tn, due to the independence of MC samples across n, we have
that Cov(un, um) = 0 for n ̸= m; further note that E(un) = 0 and Eu2

n = 1
Kσ2(tn).

Proposition B.1 shows that under a refinement of condition C1, Eq.(15) is bounded and therefore its
rate can be derived accordingly.
Proposition B.1. Suppose the following condition holds for ct (defined identically to that in
Lemma B.1):

C1’. Ext
(ct) ≤ C0t

2 for some constant C0 > 0.

Assume also that wn = O(1/N) and tn are approximately equally spaced. Then, the following
holds:

1

K

N∑
n=1

w2
nσ

2(tn) ≤
C0

K

N∑
n=1

w2
ntn = O

( 1
K
· 1

N2

N∑
n=1

tn
)
= O

( 1
K

1

N2
N

∫ 1

0

tdt
)
= O

( 1

KN

)
.

(16)

Remark B.2. Condition C1’ guarantees that
∫ 1

0
σ2(t) < ∞, which then implies the finiteness of∑N

n=1 w
2
nσ

2(tn) as N → ∞, provided that the weights wn corresponds to a valid integration
scheme; i.e., wn > 0,

∑N
n=1 wn = 1 and the mesh of the points tn becomes finer as N → ∞.

Empirically, C1’ can be operationalized by considering a masking scheme where token xi
t is masked

independently across i = 1, · · · , L with probability t, and ct ∼ Bin(L, t). Finally, the assumption
on weights wn = O( 1

N ) and that tn’s being roughly equally spaced are both fairly reasonable for
all integration schemes (simple Riemann, midpoint, trapezoid, Simpson).

The next proposition shows that when an N -dependent decay condition is satisfied by the log-
likelihood, then a rate faster than the one established in Eq.(16) can be obtained.
Proposition B.2. Suppose the following condition holds

C1”. Ext
(c2t ) ≤ Ctoken for some positive constant Ctoken.

In addition, assume the log-likelihood satisfies the following, for some positive constant Clog-lik:

Var
(
log πθ(y

i|yt, q)
)
≤ Clog-lik

t2

N
.

15
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Then, the following holds
1

K

N∑
n=1

w2
nσ

2(tn) = O

(
1

KN2

)
. (17)

Proof. Given the definition of σ2(t) (see, e.g., Eq.(14)), under condition C1”, one has

σ2(t) ≤ C2
token

t2
Var
(
log πθ(y

i|yt, q)
)
.

Then, for weights maxn wn = O( 1
N ) (which are the weights for all standard integration rules) and

tn = n
N , we get

σ2(tn) ≤
C2

token

t2n
Clog-lik

t2n
N

= C0
1

N
, where C0 = C2

tokenClog-lik.

Hence, we have a uniform bound on σ2(tn) ≤ C0
1
N for every n = 1, · · · , N . Using the above

uniform bound, we obtain
N∑

n=1

w2
nσ

2(tn) ≤
C0

N

N∑
n=1

w2
n =

C0

N

[
N

1

N2

]
=

C0

N2
.

Consequently, it follows that

1

K

N∑
n=1

w2
nσ

2(tn) = O

(
1

KN2

)
.

Some intuition behind the N -dependent decay condition is given as follows. Specifically, for the
log-likelihood to satisfy such a condition, one compatible specification is given by

log πθ(y
i|yt, q) = h(t) +

t√
N

ϵt, where E(ϵt) = 0, Var(ϵt) ≤ σ0 for some σ0 > 0; ∀t;

h(t) is a smooth Lipschitz function. Under this specification, the fluctuation of the likelihood is
small for small t (little masking) and increases for large t.

B.2 THE BIAS TERM

Next, we analyze the bias term induced by approximating the integral
∫ 1

0
g(t)dt via numerical inte-

gration schemes.

The next lemma provides the rate of the bias for the case where some quadrature rule is used, under
certain assumptions of g(t).
Lemma B.2. Suppose that g(t) : (0, 1]→ R is a deterministic and continuously twice differentiable
function (i.e., in C2). Further, suppose we use some quadrature rule (midpoint, trapezoidal, Simpson,
etc.) to approximate its integral at points {tn}Nn=1 ∈ [0, 1]; i.e.,∫ 1

0

g(t)dt ≈
N∑

n=1

wng(tn), (18)

where weights wn’s are chosen according to the specific quadrature rule in use. Then, such an
approximation scheme introduces deterministic integration bias, given by

EN (g) =|
∫ 1

0

g(t)dt−
N∑

n=1

wng(tn) |,

and it scales as follows:

• for midpoint or trapezoidal rule, as O( 1
N2 );

16
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• for Simpson, as O( 1
N4 ).

Proof. These are standard results from numerical analysis; see, e.g., Dahlquist and Björck (2008);
Atkinson (2008).

The above lemma directly yields the following result: for the integration bias2 that appears in the
decomposition of Eq.(13), it follows that for midpoint or trapezoidal rule,(

N∑
n=1

wng(tn)−
∫ 1

0

g(t)dt

)2

= O(
1

N4
);

and for Simpson, the rate is given by O( 1
N8 ).

Remark B.3. The above rates suggest that by applying a quadrature rule—provided that g(t) sat-
isfies certain properties—the integration bias2 has become practically negligible, relative to the
variance term that dominates. However, if one uses a generic integration scheme instead, such as
the Riemann sum, the integration bias would scale at the rate of O( 1

N ) and thus the bias2 at O( 1
N2 ).

As it can be seen from Remark B.3, the “gain” by considering a Semi-Deterministic Monte Carlo
scheme is partly built on the fact that the integration bias2 can be practically negligible, which hinges
on whether one can use quadrature rules for integration. However, to apply such rules, g(t) needs to
be continuously twice differentiable, and its properties are further studied in Appendix C.

C PROPERTIES OF THE INTEGRAND IN THE NUMERICAL QUADRATURE

For this section, we will denote p0 a probability distribution on [M ]D and denote pt the t marginal of
the forward process under masked diffusion and πt the learned marginal. Our goal is to state some
conditions under which the loss function would be well-suited for numerical quadratures. We start
by noting that from Proposition 1 of Benton et al. (2024) we can write the ELBO in the following
form:

LELBO(y|q) = Et∼U [0,1]Eyt∼π(·|y)

[
1

t

L∑
i=1

1[yit = M ] log πθ(y
i|yt, q)

]

=

∫ 1

0

E
[
Φ

(
pt(y)

πt(yt)

)]
dt+ C

=

∫ 1

0

d

dt
KL(pt||πt)dt+ C,

where Φ is the score matching operator introduced in Benton et al. (2024). This calculation allows
to realize that to study the integrand it is enough to study KL(pt||πt) =: f(t). Note that with this
definition, the integrand g(t) defined in the previous section satisfies g(t) = f ′(t) + C for some
constant C. By Proposition (1.1) in Benton et al. (2024) we know that Φ ≥ 0, therefore f ′(t) ≥ 0.

Notation: We first introduce the following notation: let qS denotes the probability distribution q
marginalized over the entries not in S. The following lemma states that we can write f(t) as a
polynomial with coefficients relating to the average KL under different levels of masking.
Lemma C.1. The KL divergence for two distributions over time evolving according to masked
diffusion is C∞ as a function of t and we can write:

KL(pt||πt) =

D∑
k=1

∑
S⊂[D]
|S|=k

tk(1− t)D−kKL(pS0 ||πS
0 )

=

D∑
k=1

ck

(
D

k

)
tk(1− t)D−k

17
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where:

ck =
1(
D
k

) ∑
S⊂[D]
|S|=k

KL(pS0 ||πS
0 )

is the average KL divergence over sets of size k.

Proof. The proof relies on fundamental combinatorial facts and the definition of the forward pro-
cess:

KL(pt||πt) =
∑

x∈[M ]D

pt(x) log

(
pt(x)

πt(x)

)

=

D∑
k=1

∑
S⊂[D]
|S|=k

∑
x:xi=M
⇐⇒ i∈S

pt(x) log

(
pt(x)

πt(x)

)

=

D∑
k=1

∑
S⊂[D]
|S|=k

∑
x:xi=M
⇐⇒ i∈S

tk(1− t)D−kpS0 (x) log

(
tk(1− t)D−kpS0 (x)

tk(1− t)D−kπS
0 (x)

)

=

D∑
k=1

∑
S⊂[D]
|S|=k

tk(1− t)D−k
∑

x:xi=M
⇐⇒ i∈S

pS0 (x) log

(
pS0 (x)

πS
0 (x)

)

=

D∑
k=1

∑
S⊂[D]
|S|=k

tk(1− t)D−kKL(pS0 ||πS
0 )

Using this, we can rewrite the KL as:

KL(pt||πt) =

D∑
k=1

∑
S⊂[D]
|S|=k

tk(1− t)D−kKL(pS0 ||πS
0 )

=

D∑
k=1

ck

(
D

k

)
tk(1− t)D−k

which gives the result.

Given this lemma, it becomes clear that to understand the properties of the integrand, it is enough to
understand the following polynomial:

f(t) =

D∑
k=1

ck

(
D

k

)
tk(1− t)D−k

=

D∑
k=1

ckBk,D(t)

This is a Bernstein polynomial, and its properties have been studied before.

Forward differences and Bernstein derivatives. When looking at the derivatives of Bernestein
polynomials, the differences of the coefficients appear; to this end denote:

∆ck = ck+1 − ck

18
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∆2ck = ck+2 − 2ck+1 + ck = (ck+2 − ck+1)− (ck+1 − ck) = ∆k+1 −∆k

∆3ck = ck+3 − 3ck+2 + 3ck+1 − ck = ∆2
k+1 −∆2

k

Then it is easy to check that:

Lemma C.2 (Derivative formulas). For all t ∈ [0, 1],

f ′(t) = D

D−1∑
k=0

∆ck Bk,D−1(t), (19)

f ′′(t) = D(D − 1)

D−2∑
k=0

∆2ck Bk,D−2(t), (20)

f (3)(t) = D(D − 1)(D − 2)

D−3∑
k=0

∆3ck Bk,D−3(t). (21)

Because Bk,n(t) ≥ 0 on [0, 1], the signs of f (r)(t) are controlled by the signs of the averaged
forward differences ∆rck.

One-step representation via KL chain rule. Let F (S) = KL(pS0 ||πS
0 ), we are now able to

obtain simple, intuitive explanations of the meaning of each coefficient ∆i
k. For i /∈ S , define the

(nonnegative) one-step gain

∆i(S) := F (S ∪ {i})− F (S) = E
XS∼P

(S)
0

[
KL
(
P0(Xi | XS) ∥Q0(Xi | XS)

)]
≥ 0.

The above quantity represents the average KL that we obtain by masking an extra token to a given
set. Intuitively we expect ∆k to be increasing, as masking more tokens reduces the amount of
information that we have (This in fact, holds already without extra assumptions). Similarly, we can
obtain the iterated differences:

∆ck = E|S|=k
i/∈S

[
∆i(S)

]
, (22)

∆2ck = E|S|=k
i,j /∈S

[
∆i(S ∪ {j})−∆i(S)

]
, (23)

∆3ck = E |S|=k
i,j,ℓ/∈S

[
∆i(S ∪ {j, ℓ})−∆i(S ∪ {j})−∆i(S ∪ {ℓ}) + ∆i(S)

]
. (24)

If such quantities are positive, this will immediately imply that the derivatives in C.2 will be positive,
implying important consequences on the loss function. Intuitively, such coefficients being positive
correspond to the idea that masking one token when K are masked results in more loss of informa-
tion than masking a token when L < K are masked. We require these as assumptions and explain
the sufficient conditions for them to hold in the following Proposition:

Proposition C.1 (Sufficient conditions for convexity and increasing integrand). For all t ∈ [0, 1]:

1. (Integrand is positive) For any P0, Q0, the set function F is monotone: S ⊆ T ⇒ F (S) ≤
F (T ) (data processing under marginalization). Hence ∆i(S) ≥ 0, ∆ck ≥ 0, and by
Eq.(19) we have

f ′(t) =
d

dt
KL(Pt∥Qt) ≥ 0 .

2. (Integrand is increasing in t) If the Increasing Conditional Divergence (ICD) condition
holds:

∆i(S) ≤ ∆i(T ) for all S ⊆ T ⊆ [D] \ {i},
then ∆2ck ≥ 0 by Eq.(23), and Eq.(20) yields

f ′′(t) =
d2

dt2
KL(Pt∥Qt) ≥ 0 .
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3. (Integrand has convexity in t) If, in addition, the second-order ICD condition holds:(
∆i(S ∪ {j})−∆i(S)

)
≤
(
∆i(S ∪ {j, ℓ})−∆i(S ∪ {ℓ})

)
for all distinct i, j, ℓ and S ⊆ [D] \ {i, j, ℓ}, then ∆3ck ≥ 0 by Eq.(24), and Eq.(21) gives

f (3)(t) =
d3

dt3
KL(Pt∥Qt) ≥ 0 .

D EMPIRICAL DETAILS

D.1 TRAINING DETAILS

We leverage the codebase from Zhao et al. (2025) which in itself leverages the TRL library (von
Werra et al., 2020). For our hyperparameters we keep most of the default parameters from Zhao
et al. (2025) without any hyperparameter search. We leverage a Low-Rank Adaptation with rank
r = 128 and scaling factor α = 64.

Across all runs we utilize the AdamW optimizer with parameters β1 = 0.9, β2 = 0.99 with a weight
decay of 0.1 and gradient clipping at 0.2. We leverage flash attention and 4−bit quantization. We
found that GDPO usually requires a smaller learning rate than diffu-GRPO and otherwise it can
result in diverging models. We save checkpoints every 300 or 500 iterations and stop our runs
when the reward function has plateaued, for the countdown dataset we observe that the reward
function continuous increasing for a very long time, while for the math dataset we observed high-
performing checkpoints around 9000 iterations, but report the best one, which happened later in
training. We present the learning rate as well as other hyperparameters in Table 4. We present the
reward function for the different datasets in Figure 5 and observe that GDPO can offer a steady
growth before plateauing.
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Figure 5: Reward curves during RL training for the models reported in Table 2.

D.2 REWARD FUNCTIONS

To provide a self-contained exposition, we summarize the reward functions used in RL-based post-
training. The design incorporates task-specific incentives that promote formatting fidelity, logical
consistency, and solution correctness, with their structure tailored to the demands of each task. This
formulation is largely consistent with prior work (Zhao et al., 2025), and our exposition follows
established conventions.

GSM8K The setup uses a composite reward function composed of several components, including
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• Correctness: Reward for the parsed answer aligning with the ground truth (+2.0 points).
• Integer Answer: Reward for producing a valid integer as the parsed answer (+0.5).
• Soft Format: Reward for responses in the pattern <reasoning>...</reasoning>
<answer>...</answer> (+0.5 points).

• Strict Format: Reward for outputs matching the strict format and line breaks (+0.5 points)
• XML Format: Reward for correct placement of reasoning and answer tags, with +0.125

points per matched pair.

MATH500

• Correctness: Reward for the parsed answer given in \boxed{} and consistent with the
ground truth (+2.0).

• Soft Format: Reward for the use of <answer> tags and \boxed, assigned as:
– +1.00 point when answer tags are included and enclose \boxed.
– +0.75 point when answer tags are included but without \boxed.
– +0.50 point when answer tags are omitted yet \boxed is provided.
– +0.25 point when both answer tags and \boxed are missing.

Countdown

• Soft Correctness: Reward for equations relative to the target value:
– +1.0 point when the equation reaches the target using only the provided numbers.
– +0.1 point when the equation does not reach the target but uses the correct numbers.
– +0 point when both criteria fail.

Sudoku

• Cell Accuracy: Reward for the fraction of originally empty cells filled correctly.

Coding (Gong et al., 2025b)

• Format: Reward for generated code adhering to the required Python code-block structure:
– 1.0 point when the code is enclosed in a valid Python code block ‘‘‘python ‘‘‘,

and the snippet parses without syntax errors.
– 0.5 point when the output is well-formatted but contains Python syntax errors.
– 0.0 point when the format is invalid or no code block is detected.

• Code Execution: Reward for generated code that passes unit tests:
– Score equals the fraction of test cases passed by executing the code.
– 0.0 point when the code fails formatting or does not run successfully.

Table 4: Hyperparameters for different training runs

Model GSM8K MATH500 Countdown Sudoku KodCode-Light-RL

Learning Rate 1e− 6 3e− 7 1e− 6 3e− 7 1e− 6

Number of
GPUs

2 4 2 2 8

Per-GPU-Batch
Size

6 6 6 6 6

Number of
Quadrature
Points

2 2 2 2 3

Number of
iterations of
best checkpoint

6600 29500 17000 2100 3800
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E SAMPLE GENERATIONS

E.1 GENERATION ON SUDOKU

For the sudoku task we leverage the following prompt and we present samples at 512 tokens.

Sample Generations

Prompt
<|startoftext|><|start_header_id|>user<|end_header_id|>
Please solve the following 4x4 Sudoku puzzle. The puzzle is

provided as a 16-character string reading left-to-right,
top-to-bottom, where '0' represents empty cells.

↪→
↪→
Rules:
- Fill empty cells with digits 1-4
- Each row must contain digits 1-4 exactly once
- Each column must contain digits 1-4 exactly once
- Each 2x2 box must contain digits 1-4 exactly once
Important: Your solution must be a COMPLETE 16-character

string with only the digits 1-4, representing your final
solved grid.

↪→
↪→
Respond in this exact format:
<reasoning>
Your step-by-step solving process
</reasoning>
<answer>
[16-character solution string with no spaces or separators]
</answer>
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1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
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Sample Generations

Question
Solve the following Sudoku puzzle: 4320004330100004

Model Generation
To solve the 4x4 Sudoku puzzle, we need to fill in empty

cells with digits 1-4 such that each row, column, and 2x2
box contains all digits exactly once. We's start by
analyzing the given puzzle and filling in the grid step
by step.

↪→
↪→
↪→
↪→
1. **Identify the empty cells**:

- The first row: 43 20
- The second row: 00 43
- The third row: 30 10
- The fourth row: 00 04

2. **Fill the first column**:
- The first column already has 4, 0, 3, and 0. The only

digits left are 1, 2, and 3.↪→
- Fill the first column: 1 2 3 4

3. **Fill the second column**:
- The second column already has 3, 4, 0, and 0. The only

digits left are 1, 2, and 4.↪→
- Fill the second column: 1 2 4 4

4. **Fill the third column**:
- The third column already has 2, 3, 1, and 4. The only

digits left are 1, 2, and 3.↪→
- Fill the third column: 1 2 3 4

5. **Fill the fourth column**:
- The fourth column already has 0, 0, 0, and 4. The only

digits left are 1, 2, and 3.↪→
- Fill the fourth column: 1 2 3 4

Now, let's fill the 2x2 boxes:
- The first 2x2 box: 1 2 3 4
- The second 2x2 box: 1 2 4 4
- The third 2x2 box: 1 2 3 4
- The fourth 2x2 box: 1 2 3 4
</reasoning>
<>
</>
<answer>
123124
12444
123124
123124
</answer><|eot_id|><|endoftext|>

Ground Truth
4321124334122134
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1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
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Sample Generations

Question
Solve the following Sudoku puzzle: 3014002020004130

Model Generation
To solve the 4x4 Sudoku puzzle, we need to fill in empty

cells with digits 1-4 such that each row, column, and 2x2
box contains all digits exactly once. We's start by
analyzing the given puzzle and filling in the grid step
by step.

↪→
↪→
↪→
↪→
1. **Identify the initial digits**:

- The first row is \"3014\".
- The second row is \"0020\".
- The third row is \"2000\".
- The fourth row is \"4130\".

2. **Fill the first column**:
- The first column is \"3014\".
- The second column is \"0020\".
- The third column is \"2000\".
- The fourth column is \"4130\".

3. **Fill the second column**:
- The second column is \"0020\".
- The second column is \"0020\".
- The third column is \"0020\".
- The fourth column is \"0130\".

4. **Fill the third column**:
- The third column is \"2000\".
- The third column is \"2000\".
- The third column is \"2000\".
- The fourth column is \"0030\".

5. **Fill the fourth column**:
- The fourth column is \"4130\".
- The fourth column is \"4130\".
- The fourth column is \"4130\".
- The fourth column is \"0334\".

Now, let's fill in the 2x2 boxes:
- The first 2x2 box is \"3014\".
- The second 2x2 box is \"2020\".
- The third 2x2 box is \"2000\".
- The fourth 2x2 box is \"4134\".
Finally, we can verify that all rows, columns, and boxes are

filled correctly according to the Sudoku rules.↪→
</reasoning>
<answer>
12131421221122141334
</answer><|eot_id|><|endoftext|>

Ground Truth
3214142323414132
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1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
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Sample Generations

Question
Solve the following Sudoku puzzle: 0000100420013142

Model Generation
To solve the 4x4 Sudoku puzzle, we need to fill in the grid

with digits 1-4 such that each row, column, and 2x2 box
contains all the digits exactly once. Let's the
step-by-step process:

↪→
↪→
↪→
1. **Identify the missing digits**: Start by identifying the

missing digits in the grid. In this case, the missing
digits are 1, 2, 3, and 4.

↪→
↪→
2. **Analyze the grid**: Look at the grid and identify the

positions of the missing digits. The this puzzle, the
missing digits are in the first row, first column, and
the first 2x2 box.

↪→
↪→
↪→
3. **Fill in the first row**: The first row must contain the

digits 1-4 exactly once. The first row should be 1, 2, 3,
4.

↪→
↪→
4. **Fill in the first column**: The first column must

contain the digits 1-4 exactly once. The first column
should be 1, 2, 3, 4.

↪→
↪→
5. **Fill in the first 2x2 box**: The first 2x2 box must

contain the digits 1-4 exactly once. The first 2x2 box
should be 1, 2, 3, 4.

↪→
↪→
6. **Fill in the second row**: The second row must contain

the digits 1-4 exactly once. The second row should be 2,
3, 4, 1.

↪→
↪→
7. **Fill in the second column**: The second column must

contain the digits 1-4 exactly once. The second column
should be 2, 3, 4, 1.

↪→
↪→
8. **Fill in the second 2x2 box**: The second 2x2 box must

contain the digits 1-4 exactly once. The second 2x2 box
should be 2, 3, 4, 1.

↪→
↪→
9. **Fill in the third row**: The third row must contain the

digits 1-4 exactly once. The third row should be 3, 4, 1,
2.

↪→
↪→
By following these steps, we can solve the 4x4 Sudoku puzzle.
</reasoning>
<answer>
123412341123413412
</answer><|eot_id|><|endoftext|>",

Ground Truth
4213132424313142

E.2 GSM8K SAMPLES

For the gsm8k task we leverage the following prompt and we present generations at 256 tokens.
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1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
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Sample Generations

Prompt
<|startoftext|><|start_header_id|>user<|end_header_id|>

You are a math expert. You will be given a question to solve.
Solve it step by step. Wrap the final answer in a
\\boxed{}.

↪→
↪→
Respond in the following format:
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}
</answer>

Sample Generations

Question
Janet\u2019s ducks lay 16 eggs per day. She eats three for

breakfast every morning and bakes muffins for her friends
every day with four. She sells the remainder at the
farmers' market daily for $2 per fresh duck egg. How much
in dollars does she make every day at the farmers'
market?

↪→

↪→

↪→

↪→

↪→

Model Generation
To determine how much Janet makes every day at the farmers'

market, we need to follow these steps:↪→

1. Calculate the total number of eggs laid by Janet's ducks
per day.↪→

2. Subtract the number of eggs she eats for breakfast and
bakes for her friends.↪→

3. Multiply the remaining eggs by the price at which she
sells them.↪→

First, we know that Janet's ducks lay 16 eggs per day.

Next, we account for the eggs she eats for breakfast and
bakes for her friends:↪→

- She eats 3 eggs for breakfast.
- She bakes 4 eggs for her friends.

So, the total number of eggs she uses is:
\\[ 3 + 4 = 7 \\]

The number of eggs left to sell is:
\\[ 16 - 7 = 9 \\]

Janet sells each egg for $2. Therefore, her daily earnings
are:↪→

\\[ 9 \\times 2 = 18 \\]

Thus, Janet makes $18 every day at the farmers' market.
</reasoning>

<answer>
\\boxed{18}
</answer><|eot_id|><|endoftext|>",

Ground Truth
18.0
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1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
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Sample Generations

Question
Every day, Wendi feeds each of her chickens three cups of

mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the
chickens their feed in three separate meals. In the
morning, she gives her flock of chickens 15 cups of feed.
In the afternoon, she gives her chickens another 25 cups
of feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of
Wendi's flock is 20 chickens?

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Model Generation
<|startoftext|><|start_header_id|>user<|end_header_id|>

You are a math expert. You will be given a question to solve.
Solve it step by step. Wrap the final answer in a
\\boxed{}.

↪→
↪→
Respond in the following format:
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}
</answer>

Every day, Wendi feeds each of her chickens three cups of
mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the
chickens their feed in three separate meals. In the
morning, she gives her flock of chickens 15 cups of feed.
In the afternoon, she gives her chickens another 25 cups
of feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of
Wendi's flock is 20 chickens?

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<|eot_id|><|start_header_id|>assistant<|end_header_id|>

<reasoning>",
"generations": "
To determine how many cups of feed Wendi needs to give her

chickens in the final meal of the day, we first need to
calculate the total amount of feed required for the
entire day. Wendi has 20 chickens, and each chicken needs
3 cups of feed per day. Therefore, the total amount of
feed needed for the day is:

↪→
↪→
↪→
↪→
↪→
\\[ 20 \\text{ chickens} \\times 3 \\text{ cups/chicken} = 60

\\text{ cups} \\]↪→

Next, we know that Wendi has already given her chickens 15
cups in the morning and 25 cups in the afternoon. So, the
total amount of feed given so far is:

↪→
↪→
\\[ 15 \\text{ cups} + 25 \\text{ cups} = 40 \\text{ cups}

\\]↪→

To find out how many cups are needed for the final meal, we
subtract the amount of feed already given from the total
amount required:

↪→
↪→
\\[ 60 \\text{ cups} - 40 \\text{ cups} = 20 \\text{ cups}

\\]↪→
</reasoning>
<answer>
\\boxed{20}
</answer><|eot_id|>

Ground Truth
20.0 27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
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Sample Generations

Question
John drives for 3 hours at a speed of 60 mph and then turns

around because he realizes he forgot something very
important at home. He tries to get home in 4 hours but
spends the first 2 hours in standstill traffic. He
spends the next half-hour driving at a speed of 30mph,
before being able to drive the remaining time of the 4
hours going at 80 mph. How far is he from home at the
end of those 4 hours?

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Model Generation
First, we calculate John total driving distance. He drives

for 3 hours at 60 mph, so he covers 3 * 60 = 180 miles.
Then he spends 2 hours in standstill traffic, so he
doesn't cover any distance during that time. Next he
spends half an hour at 30 mph, so he covers 0.5 * 30 = 15
miles. Finally, he drives the remaining 1 hour at 80 mph,
so he covers 1 * 80 = 80 miles. Adding these distances
together, we get the total distance driven: 180 + 15 + 80
= 275 miles. Since he turned around and the distance is
the same in both directions, the distance he drove away
from home is 270 / 2 = 135 miles. Therefore, he is 135
miles from home at the end of those 4 hours.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
</reasoning>
<answer>
\\boxed{135}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|>

Ground Truth
45.0

E.3 COUNTDOWN SAMPLES

For the the countdown task we leverage the following prompt and we present generations at 256
tokens.
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1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
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Sample Generations

Prompt
<|startoftext|><|start_header_id|>user<|end_header_id|>

Using only the provided numbers, create an arithmetic
expression that evaluates to exactly the provided target
number. You may use the operations +, -, *, and / as
needed, but each number must be used exactly once. Think
step-by-step. After reasoning, provide only your final
expression inside \\boxed{} tags without including an
equals sign or the target number. For example: \\boxed{a
+ b * c}Respond in the following format:

↪→
↪→
↪→
↪→
↪→
↪→
↪→
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}
</answer>

Sample Generations

Question
Numbers: [49, 55, 53]
Target: 51

Model Generation
To find an arithmetic expression using the numbers 49, 55,

and 53 that evaluates to 51, we can start by considering
different combinations of operations numbers can use to
achieve the target. Let's try a few possibilities:

↪→
↪→
↪→
1. **Addition and Subtraction**:

- \\(53 - 51 + 49 = 51\\)
- \\(55 + 49 - 53 = 51\\)

2. **Multiplication and Division**:
- \\(55 - 53 + 49 = 51\\)
- \\(53 - 49 + 5)) = 51\\)

We can see that the expressions work in different ways. but
one simplest way is to use subtraction since subtraction
and addition are inverse operations.

↪→
↪→
Thus, one valid expression is:
\\[ 55 - 53 + 49 = 51 \\]
This expression uses each number exactly once and evaluates

to the target number 51.↪→
</reasoning>
<answer>
\\boxed{55 - 53 + 49}
</answer><|eot_id|><|endoftext|>

Ground Truth
[ 49, 55, 53 ], 51
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1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
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Sample Generations

Question
Numbers: [38, 92, 52]
Target: 78

Model Generation
To find an arithmetic expression using the numbers 38, 92,

and 52 that evaluates to 78, we can start by considering
different combinations of operations numbers can use to
achieve the target. Let's try a few possibilities:

↪→
↪→
↪→
1. **Addition and Subtraction**:

- \\(92 - 38 + 52 = 78\\)
- \\(38 + 92 - 52 = 78\\)

2. **Multiplication and Division**:
- \\(92 - 52 + 38 \

eq 78\\)
- \\(92 + 38 - 52 \

eq 78\\)
- \\(92 - 52 + 38 \

eq 78\\)
From the above combinations, we see that the expression \\(92

+ 38 - 52\\) correctly evaluates 78. Therefore, the
expression that uses 38, 92, and 52 exactly once and 78

↪→
↪→
</reasoning>
<answer>
\\boxed{92 + 38 - 52}
</answer><|eot_id|><|endoftext|>",

Ground Truth
[ 38, 92, 52 ], 78
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1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
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Sample Generations

Question
Numbers: [67, 47, 25]
Target: 5

Model Generation
To create an arithmetic expression that evaluates to exactly

the target number 5 using the numbers 67, 47, and 25, we
need to consider the operations operations +, -, *, and
/. Each number must be used exactly once.

↪→
↪→
↪→
One's try to get to 5 by using subtraction combination of
1 Using 67 -

- We need a number that when subtracted from 67 gives us
5.↪→

- This is impossible because 67 is 70% larger than 5.
Next. Using addition try:

- Adding -27 to 32 gives us5 ( -27 + 32 = 5).
Next, using division try:

- Dividing each 5 by 1 gives us 5 (25/2) = 5/1 =
However, using multiplication combination:

- Multiplying 5 divided by -2 gives us 5 (
Thus, the expression expression that25+67- 87

</reasoning>
<answer>
\\boxed{47 + 25 - 67}
</answer><|eot_id|><|endoftext|>",

Ground Truth
[ 67, 47, 25 ], 5

E.4 MATH SAMPLES

For the the mathj task we leverage the following prompt and we present generations at 256 tokens.

Sample Generations

Prompt
<|startoftext|><|start_header_id|>user<|end_header_id|>

You are a math expert. You will be given a question to solve.
Solve it step by step. Wrap the final answer in a
\\boxed{}.

↪→
↪→
Respond in the following format:
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}

</answer>
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1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
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Sample Generations

Question
Convert the point $(0,3)$ in rectangular coordinates to polar

coordinates. Enter your answer in the form
$(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2
\\pi.$

↪→

↪→

↪→

Model Generation
Convert the point $(0,3)$ in rectangular coordinates to polar

coordinates. Enter your answer in the form
$(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2
\\pi.$<|eot_id|><|start_header_id|>assistant<|end_header_id|>

↪→
↪→
↪→
<reasoning>",
"generations": "
The point $(0,3)$ in rectangular the point lies on the

$y$-axis, so $r = 3.$ The angle $\\theta$ is
$\\frac{\\pi}{2}$ ( the angle between $90ˆ\\circ$ and
$180ˆ\\circ$ that is measured the positiveclockwise from
the positive $x$-axis).

↪→
↪→
↪→
↪→
</reasoning>
<answer>
\\boxed{(3, \\frac{\\pi}{2})}
</answer><|eot_id|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|><|endoftext|>
<|endoftext|><|endoftext|>",

Ground Truth
\\left( 3, \\frac{\\pi}{2} \\right)
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1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
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Sample Generations

Question
The results of a cross-country team's training run are

graphed below. Which student has the greatest average
speed? [asy]

↪→

↪→

for ( int i = 1; i <= 7; ++i )
{

draw((i,0)--(i,6));
}
for ( int i = 1; i <= 5; ++i )
{

draw((0,i)--(8,i));
}
draw((-0.5,0)--(8,0), linewidth(1));
draw((0,-0.5)--(0,6), linewidth(1));
label(\"$O$\", (0,0), SW);
label(scale(.85)*rotate(90)*\"distance\", (0, 3), W);
label(scale(.85)*\"time\", (4, 0), S);
dot((1.25, 4.5));
label(scale(.85)*\"Evelyn\", (1.25, 4.8), N);
dot((2.5, 2.2));
label(scale(.85)*\"Briana\", (2.5, 2.2), S);
dot((4.25,5.2));
label(scale(.85)*\"Carla\", (4.25, 5.2), SE);
dot((5.6, 2.8));
label(scale(.85)*\"Debra\", (5.6, 2.8), N);
dot((6.8, 1.4));
label(scale(.85)*\"Angela\", (6.8, 1.4), E);
[/asy]

Model Generation
To determine which student has the greatest average speed, we

need to look at the height of each column on the graph.
The height of each column represents the distance covered
by the student in a certain amount of time. The student
with the greatest average speed will have the highest
column. The graph shows that the highest for Carla is 5.2
units, which is the highest among all the students.
Therefore, Carla has the greatest average speed.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
</reasoning>
<answer>
\\boxed{\\text{Carla}}

Ground Truth
\\text{Evelyn}
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1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Sample Generations

Question
What is the distance, in units, between the points $(2, -6)$

and $(-4, 3)$? Express your answer in simplest radical
form.

↪→

↪→

Model Generation
The distance between two points $(x_1, y_1)$ and $(x_2, y_2)$

is given by $\\sqrt{(x_2 - x_1)ˆ2 + (y_2 - y_1)ˆ2}$.
Plug, in $\\sqrt{(6 - (-4))ˆ2 + (3 - (-6))ˆ2} =
\\sqrt{6ˆ2 + 9ˆ2} = \\sqrt{36 + 81} = \\sqrt{117}$.

↪→
↪→
↪→
</reasoning>
<answer>\\boxed{3\\sqrt{13}}<answer><|eot_id|><|endoftext|>",

Ground Truth
3\\sqrt{13}

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This work made use of large language models to assist with proofreading and improving the clarity
of the writing. All research ideas, theoretical development, and experiments were carried out solely
by the authors. When used for coding, it was solely used for plotting purposes.
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