Under review as a conference paper at ICLR 2025

IMPROVING REASONING FOR DIFFUSION LANGUAGE
MODELS VIA GROUP DIFFUSION PoLICY OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion language models (DLMs) enable parallel, order-agnostic generation
with iterative refinement, offering a flexible alternative to autoregressive large
language models (LLMs). However, adapting reinforcement learning (RL) fine-
tuning to DLMs remains an open challenge because of the intractable likelihood.
Pioneering work such as diffu-GRPO (Zhao et al., 2025) estimated token-level
likelihoods via one-step unmasking. While computationally efficient, this ap-
proach is severely biased. A more principled foundation lies in sequence-level
likelihoods, where the evidence lower bound (ELBO) serves as a surrogate. Yet,
despite this clean mathematical connection, ELBO-based methods have seen lim-
ited adoption due to the prohibitive cost of likelihood evaluation. In this work,
we revisit ELBO estimation and disentangle its sources of variance. This decom-
position motivates reducing variance through fast, deterministic integral approx-
imations along a few pivotal dimensions. Building on this insight, we introduce
Group Diffusion Policy Optimization (GDPO), a new RL algorithm tailored for
DLMs. GDPO leverages simple yet effective Semi-deterministic Monte Carlo
schemes to mitigate the variance explosion of ELBO estimators under vanilla
double Monte Carlo sampling, yielding a provably lower-variance estimator un-
der tight evaluation budgets. Empirically, GDPO achieves consistent gains over
pretrained checkpoints and outperforms diffu-GRPO, one of the state-of-the-art
baselines, on the majority of math, reasoning, and coding benchmarks.

1 INTRODUCTION

Large language models (LLMs) (Radford et al., 2018; 2019; Brown et al., 2020; Achiam et al.,
2023; Dubey et al., 2024; Team, 2025) have have revolutionized modern science by providing ex-
ceptionally general-purpose representations and abstractions. Their training typically proceeds in
two stages: a pretraining stage, where vast corpora are used to optimize the next-token prediction
objective and endow the model with broad world knowledge and linguistic representations; and

GSM8K MATH500 Countdown 275 Sudoku H Eval MBPP
44 .

%0 P 70 67.2 | 250 24.2 | 44 55

225 42

85 40 38.6 60
81.1 812 | 38

50
80 36

20.0 40 50

17.5 38
45

Accuracy (%)

34 20 15.0 36

12,5
32

70 30

34
30 10.0 40
32
20| 195 75| 6.7

28

LLaDA mmm diffu-GRPO (d1) B GDPO (Ours)

Figure 1: Across reasoning, planning and coding tasks our new Reinforcement Learning algorithm
for Diffusion Language Models (GDPO) significantly outperforms the baseline model (LLada) and
other RL methods (diffu-GRPO).

Under review as a conference paper at ICLR 2025

a post-training stage, where alignment techniques adapt the raw model outputs for improved reli-
ability and usability (Bai et al., 2022). Among alignment methods, reinforcement learning (RL)
(OpenAl, 2024) has emerged as especially promising for post-tuning LLMs on complex tasks with
well-defined reward signals. DeepSeekMath (Shao et al., 2024) advances this direction by scaling
and stabilizing RL through Group Relative Policy Optimization (GRPO), showing that RL can re-
duce the computational burden of alignment (Guo et al., 2025; Team et al., 2025) while substantially
improving LLMs on reasoning-intensive tasks such as mathematics (Cobbe et al., 2021; Hendrycks
et al., 2021a), planning (Ye et al., 2025a; Liu et al., 2025a), and coding (Austin et al., 2021b). Nev-
ertheless, key limitations remain: inference is slow, generation is constrained to a left-to-right order,
and early mistakes cannot be revised, often leading to error propagation.

By contrast, discrete diffusion models (Campbell et al., 2022; Lou et al., 2024; Shi et al., 2024; Gat
et al., 2024; Sahoo et al., 2024; Nie et al., 2025; Ye et al., 2025b) — often referred to as Diffusion
Language Models (DLMs) — offer greater flexibility and versatility. DLMs support faster inference
(Arriola et al., 2025; Khanna et al., 2025; Song et al., 2025), iterative refinement through token
revisions and remasking (Wang et al., 2025), knowledge transfer via adaptation from autoregressive
models (Gong et al., 2025a), and demonstrate superior performance to autoregressive LLMs in low-
data regimes (Prabhudesai et al., 2025). These advantages have motivated growing efforts to adapt
RL methods originally developed for LLMs to DLMs (Zhao et al., 2025; Zhu et al., 2025; Gong
et al., 2025b; Zekri and Boullé, 2025). However, the absence of a straightforward autoregressive
structure complicates likelihood estimation at both the token and sequence levels — quantities that
many RL objectives fundamentally rely on.

Previous works have extended GRPO (Zhao et al., 2025; Gong et al., 2025b) and considered different
heuristics to approximate the token-level likelihood; such methods were computationally scalable,
but their connection to the mathematical foundations of DLMs remain unclear. A different approach
considered extending DPO (Zhu et al., 2025), however, their method required many network evalu-
ations, which limits its applicability.

In this paper, we introduce Group Diffusion Policy Optimization (GDPO), a novel RL algorithm
built to enhance reasoning for diffusion language models (DLMs). We analyze the variance de-
composition of the sequence-level ELBO, which clarifies why prior double Monte Carlo estimators
lead to a large variance issue and tend to be computationally expensive. Motivated by these find-
ings, we propose fast yet effective integral approximation strategies based on a Semi-deterministic
Monte Carlo scheme. This approach enables GDPO to solve complex reasoning tasks for DLMs
while provably reducing variance under tight evaluation budgets. Empirically, GDPO consistently
improves upon pretrained checkpoints and outperforms state-of-the-art baselines, including diffu-
GRPO (Zhao et al., 2025), across diverse math, reasoning, and coding benchmarks.

2 PRELIMINARIES

2.1 MASKED DIFFUSION LANGUAGE MODELS (MDMS)

Diffusion models (Ho et al., 2020; Song et al., 2021) have demonstrated remarkable success in
continuous domains such as image synthesis, but their extension to discrete spaces like text re-
mains less explored. To address this gap, discrete diffusion models (Austin et al., 2021a; Lou
et al., 2024; Shi et al., 2024; Sahoo et al., 2024)—often referred to as Diffusion Language Mod-
els (DLMs)—introduce masking noise to progressively corrupt sequences and are trained to model
the marginal distribution of the induced reverse dynamics. In what follows, we formally define the
forward and reverse processes along with the training objectives that characterize DLMs.

Forward process. Given a clean sequence data o ~ Tqa and timestamp ¢ € [0, 1], the forward
process y; ~ mo(-|yo) factorizes as

L
mo(elyo) = [[meoWils), myo(uilud) = Cat((1 = t)e,s + tear),
i=1

Under review as a conference paper at ICLR 2025

where ey is the one-hot vector that encodes the position of token yg and e,y is the one-hot vector

for the mask token M; and Cat(-) denotes the categorical distribution. Thus, each coordinate 3! is
independently replaced by the mask token with probability ¢ and otherwise remains unchanged.

Reverse process. The reverse process aims to reconstruct the original sequence yo from a cor-
rupted sequence ;. Given a probabilistic prediction of the a token %, we can write down the
transition for any s < t as:

L Cat(e 7.) yi * M
. . . . yi /o t ’
aoie(Wslye) = T aoreilye vo), aoie(wilye, vp) = { L _

i=1 Cat(fen +57y5) v = M.

Denoising objective. With the linear noise schedule and time-independent conditional probabili-
ties (Ou et al., 2025), the reverse transition is often approximated by 7 (y{|y.), trained via a simple
training objective (Zhu et al., 2025):

L
1 i i
~EyompneEtnta(0,11Eqs o, (0) [t > 1lyi = M]log 7Te(yolyt)] : ()
i=1
Notably, the loss function of diffusion language models provides a lower bound for the likelihood
known as evidence lower bound (ELBO):
1 L
LesoWlg) = Eenre0,1Ey,~n(1y) [t > 1y; = M]logm(y' |y, q)] <log7(yly) ()
i=1
where ¢ usually denotes a prompt and y is its answer. DLMs are conceptually similar to BERT
(Devlin et al., 2019) in that both rely on token masking to train language representations. However,
they differ in that BERT masks a fixed proportion of tokens and predicts them in a single step, while
DLMs adopt a time-varying masking schedule and iteratively denoise from full corruption, thus
yielding a true generative model.

2.2 REINFORCEMENT LEARNING WITHOUT VALUE NETWORKS

Policy gradients (Williams, 1992) have become the workhorse for post-training large language mod-
els (LLMs). Among them, proximal policy optimization (PPO) (Schulman et al., 2017) remains the
most widely used. However, PPO’s reliance on a value network for advantage estimation inevitably
increases both computational cost and training instability.

Group Relative Policy Optimization (GRPQ) (Shao et al., 2024) addresses this limitation by elim-
inating the value network. Instead, it leverages a Monte Carlo (MC) estimator constructed from mul-
tiple sampled answers. For a given prompt ¢ and candidate answers {yg}iazl, the GRPO objective
is:

G lyg|
1 1 (o P
LORPO() — B, E,, ., e Z i Z min (r{Ag, clip(r;, 1 —e,1+ €)Ay) — BKL(m||mrer) |
g=1 i=1
where the importance ratio and normalized advantage are defined as:
i M Ry, —mean(Ry,...,Rq) 3
g Toa(y3lg, yst) Y std(Ry,...,Rg)

with R, = R(q,y,) denoting the sequence-level reward. Notably, although likelihoods are defined
at the token level, rewards are assigned only at the sequence level.

Despite their wide adoption, LLMs face key limits: slow inference, rigid left-to-right generation,
and error propagation. DLMs mitigate these with parallel, iterative refinement, but their flexibility
complicates likelihood estimation and challenges RL-based post-training.

Diffu-GRPO: A pioneering effort in fine-tuning diffusion language models was made by Zhao
et al. (2025), who proposed Diffu-GRPO, an adaptation of GRPO for masked diffusion. They ap-
proximated the sequence-level likelihood via a fast but coarse mean-field network evaluation, and

Under review as a conference paper at ICLR 2025

introduced a practical scheme for this approximation. Specifically, their method starts by perturb-
ing the input prompt ¢ with random noise to obtain ¢’. They then consider fully masked sequence
qd M & --- @ M, where & denotes concatenation and M is the masked token, they perform a
single-step unmasking to estimate

logpo(yild ® M @ - @ M).

This approach has two key virtues: it yields likelihood estimates for every token, and it does so
with only one forward pass of the network, ensuring computational efficiency. Empirically, Diffu-
GRPO achieves consistent performance gains across a wide range of tasks. However, the one-
step unmasking in the mean-field manner introduces significant bias: since tokens are generated
sequentially, important token correlations are discarded.

3 IMPROVING REASONING VIA GROUP DIFFUSION POLICY OPTIMIZATION

GRPO improves computational efficiency and training stability by estimating advantages from group
statistics rather than training a value network. In autoregressive LLMs, its effectiveness relies on
two factors: (1) accurate sequence likelihoods, naturally supported by the left-to-right factorization,
and (2) token-level importance ratios. In Diffusion Language Models (DLMs), however, the order-
agnostic generation paradigm (Ou et al., 2025; Kim et al., 2025) renders both sequence likelihoods
and token-level ratios intractable.

3.1 REVISITING SEQUENCE-LEVEL LIKELTHOOD FOR DLMS

To address these challenges, much of the field has focused on fast but coarse token-level approxi-
mations. Token-level methods leverage per-token probabilities to provide fine-grained control over
model updates and act as a stabilizing force during training. To make token-level training feasible
despite intractable likelihoods, Zhao et al. (2025) introduced heuristic mean-field approximations.
Although efficient and empirically effective, these methods fail to capture sequential dependencies
and often overweight individual tokens. Gong et al. (2025b) later improved the approximation by
incorporating two complementary random timesteps, yet a general solution remains elusive.

In contrast, sequence-level objectives provide more faithful training signals but are difficult to apply
in DLMs, since the order-agnostic generation paradigm precludes exact likelihood evaluation (Ou
et al., 2025). We review the evidence lower bound (ELBO) as a surrogate of the likelihood:

1L
=3 " 1fy; = MJlogme(y'lyr, q) | < logm(yla),

Etui0,1)Ey,om, (-Jy) n
i=1

which provides a principled avenue for extending sequence-level RL methods to DLMs. However,
the computational cost of this substitution remains unclear.

Variance—Cost Dilemma. Although more principled, sequence-level objectives face a fundamental
trade-off: accurate likelihood estimates demand expensive network evaluations, while cheaper ap-
proximations suffer from high variance or bias. For instance, Nie et al. (2025) report needing up to
128 samples for reliable estimates, incurring prohibitive cost; Zhu et al. (2025) reduces this to eight
evaluations, yet the overhead remains substantial, and a systematic understanding of the variance is
still lacking. This tension highlights a central challenge:

Designing estimators that are both efficient and low-variance remains an open problem.

3.2 DISENTANGLING VARIANCE IN ELBO

To tackle the variance—cost dilemma, we begin by analyzing the different sources of variance in
approximating the ELBO. From Eq.(2), two distinct sources of randomness emerge: (1) Random
Time: sampling ¢, which determines the overall masking level; and (2) Random Masking: se-
lecting which tokens are masked given that ratio, introducing additional variance. Our analysis
disentangles the contribution of each source to the variance of the loss function.

To investigate this we leverage 1000 different prompts pulled from the OpenWeb dataset. Figure 2
reports the mean and variance of the loss as functions of time, along with the percentage of variance

Under review as a conference paper at ICLR 2025

100 (a) Variance Decomposition (b) Mean Loss vs Time (c) Loss Variance vs Time
1200
~4— Mean * SD (n=16 ~#— Mean * SD (n=16
{) 20000 !)
1000
801 17500 4
~ | 15000 4
9 800 g
>~ 60 a c
2} S & 12500
% = =
8 < 600 S
g] 10000 4
% 40 - = 9
a 400 4 =~ 7500
204 5000 4
200
2500 4
T T 0 T T T T 0 T T T T
Random Time Random Masking 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Variance Variance Time (t) Time (t)

Figure 2: We plot the mean and variance of the loss functions as a function of the noise level ¢. (a)
We observe that most of the variance comes from picking the random time (b) The loss function
follows a simple, predictable shape across many prompts. (c) The loss variance varies highly at the
end but stabilizes for most times.

attributed to each source. A detailed derivation can be found in Appendix A. Several key observa-
tions are given next.

Random time dominates the variance: As shown in Figure 2(a), the majority of variance arises
from sampling the timestamps that control masking ratios. This is intuitive: varying the ratio dras-
tically changes the input—ranging from nearly unmasked to fully masked—which produces large
disparities in the loss and inflates variance.

The loss curve exhibits a simple structure: In Figure 2(b), the loss as a function of time reveals
a smooth, clear structure. Approximating the ELBO boils down to computing the area under this
curve, indicating that the problem is naturally suited for deterministic integral approximation to
suppress the variance.

Variance across timesteps is stable: As shown in Figure 2(c), variance peaks near ¢t = 0, stabilizes
across intermediate masking ratios, and decays to zero as inputs become fully masked. This aligns
with observations from Zhu et al. (2025) and indicates that only a small number of samples are
needed for the inner integral.

3.3 VARIANCE REDUCTION VIA SEMI-DETERMINISTIC MONTE CARLO

To achieve low-variance estimates under tight evaluation budgets, we limit naive Monte Carlo sam-
pling and adopt deterministic integration methods to avoid the slow MC convergence of O(N~1/2).

Deterministic time: Motivated by the observation in Figure 2(a), instead of considering the problem
as a double Monte Carlo problem, we consider it to be a time integral to eliminate the large variance
caused by random time:

L

1

1 i i

Leso(ylg) = / Eyinmiin) | 7 > 1fy; = M]logmo(y'|yr, q) | dt <logm(ylg). (4)
0 i=1

Numerical quadrature: We further approximate this integral using a standard quadrature with NV

points, then our estimate is of the form:

N K 1 L
=D 1) = Mlogmo(y'lys a) | -)

Lerso(ylq) = Z kz_l -

= 1=1

1(70;Y,q,tn)

where y[S ¢, (-ly) and {w,, }2_; are the associated weights and the inner expectation is approx-
imated usmg Monte-Carlo estimates.

Due to the deterministic—stochastic nature in the integration, we refer to it as a Semi-deterministic
Monte Carlo (SDMC) scheme.

Under review as a conference paper at ICLR 2025

200 (Note: Y-axis clipped to show detail‘_._ Double-MC
This representation serves several advantages, =m= SD-MC
firstly, it is guaranteed to approximate the 175]
ELBO when N and K are large enough. Sec- £ 50/
ondly, by fixing the time points in the first in- ‘7
tegral we significantly reduce the variance of 5123
our estimator. Thirdly, as observed in Figure § 1001%
2 (b), where the loss function is plotted for sev- <
eral different prompts, the loss function hasa § 7°1* o
simple shape, specifically, it is strictly increas- = sgq]| e
ing and convex, which makes it well-suited for
integral approximations via quadratures. Fur- 251
thermore as observed in Figure 2 (c) the vari- 0

2 4 6 8

ance remains relatively constant across many Number of Function Evaluations (NFES)

noise levels, which allows for stable computa-

tions and results. . S .
Figure 3: Estimation error and variance for Dou-

In practice, we opt for utilizing a simple and ef- ble Monte Carlo vs our Semi-deterministic Monte
fective Gaussian Quadratures, which are known Carlo method. SD-MC achieves lower bias and
to have fast convergence rates (Dahlquist and variance, with most benefits obtained using only
Bjorck, 2008). Furthermore, based on our vari- 2-3 points.

ance analysis we employ a single Monte-Carlo

estimate for the inner integral. Consequently,

the total number of network evaluations per likelihood computation matches exactly the number of
quadrature points V.

To evaluate our method in a controlled setting, we draw 1000 samples from the OpenWeb dataset
and estimate sequence likelihoods using both Monte Carlo and Gaussian quadrature with varying
numbers of function evaluations. For each sample, we repeat the estimation 16 times and measure
both the deviation from a ground-truth approximation (computed with 1024 Monte Carlo samples)
and the variance of the estimator. As shown in Figure 3, quadrature-based estimators via consistently
exhibit lower bias and variance, yielding accurate estimates of the ELBO. Notably, most of the gains
are achieved with as few as 2 or 3 quadrature points, which we adopt in practice.

With the flexibility to reconcile efficiency and statistical accuracy, we are ready to introduce Group
Diffusion Policy Optimization (GDPO), a policy gradient method tailored to diffusion language
models with group statistics. Compared with Diffu-GRPO (Zhao et al., 2025), which employs ef-
ficient but crude estimates of token likelihoods, GDPO uses sequence-level likelihoods, which are
made efficient through the SDMC scheme. This reformulation of the importance weights from the
token-level to the sequence-level has the added benefit of preserving the semantics of the advan-
tage estimates, and the ELBO-based objective fits naturally within the discrete diffusion framework
while retaining the merits of GRPO-style updates. Formally, the GDPO loss is defined as:

£OPP0(6) = E,E vormo | Z \y min (rgAg, clip(rg,1 —€,1 4 €)Ay) — FKL(7g||mrer) |
9

(6)

where the importance weights and advantage estimates are both done at the sequence level:

Lo (ye|7)
rg(z) = —/—>+—, A, =R, —mean(Ry,...,Rq).
! ['%13130 (ygl2) ! I
Here £L3% represents the ELBO evaluated under the old policy and R, = R(q,y,), and we utilize
unnormalized advantage estimates to avoid the bias (Liu et al., 2025b).

3.4 OVERVIEW OF THEORETICAL RESULTS

We provide a brief theoretical analysis for the proposed ELBO estimate that is based on a Semi-
deterministic Monte Carlo, with an emphasis on its asymptotic error bounds when the total number
of Monte Carlo samples K and the number of integration points /N become large. Note that a
“classic” alternative to this estimator would be a double Monte Carlo one, and its error bound (in
the form of MSE) would scale at O(ﬁ) For our proposed estimator, the analysis points to the
following results:

Under review as a conference paper at ICLR 2025

Algorithm 1 GDPO: Group Diffusion Policy Optimization for diffusion language models (DLMs),
with ELBO estimated via a Semi-deterministic Monte Carlo (SDMC) scheme.

Require: Reference model ¢, distribution over prompts D, completions per prompt G, inner
updates 1, quadrature points and weights {(¢,,, w,)},
1: Initialize from a reference model 7y < Tt
2: while not converged do
3: Moy < 7o

4: Draw a prompt sample g ~ D
5: Generate G completions y, ~ 7, (- | ¢), g € [G]
6: Estimate reward 7, and advantage A’; (7o) using Eq.(3) for each y,.
7: forn=1,...,udo > For each gradient update
8: forg=1,...,Gdo
9: Leipo(yglg) <0
10: forn=1,...,Ndo > Evaluate quadrature over time
11: Lo (Ygla) < Lero(Ygla) + wn - U(mo; Yg, q:tn)
12: end for
13: end for
14: Evaluate GDPO objective in Eq.(6) using { LeLso (yg]q) 151 -
15: Optimize 7y via AdamW.
16: end for

17: end while
18: return my

* decomposition of the MSE: the mean squared error of the estimator can be decomposed
into the sum of Monte Carlo variance and the square of the integration bias, which resem-
bles the classic variance-bias decomposition of statistical estimators;

* rates under very general conditions: the variance term scales as O(ﬁ); with a generic
integration scheme (e.g., the Riemann sum '), the squared integration bias scales as O(ﬁ);

* faster rate with additional assumptions on the log-likelihood: with an /NV-dependent
decay condition on its variance, the variance term would scale faster at the rate of O(ﬁ);

* quadrature rule for integration can make the bias practically negligible: when the inte-
grand is twice continuously differentiable and therefore one can use quadrature to perform
integration, the squared integration bias would scale either at the rate of O(5) or O(+),
depending on the exact integration scheme used. As such, this term becomes practically
negligible and the variance term becomes the dominating one.

The upshot is that under certain regularity assumptions of the log-likelihood, the proposed SDMC
estimator can attain a faster rate than a generic double Monte Carlo estimator due to the deterministic
integration. All details are deferred to Appendix B.

Table 1: Asymptotic Error Bounds in relation to Integration Points [NV and Monte Carlo Samples K.

Setting Variance Bias®
General conditions / Riemann sum O(1/NK) O(1/N?)
Additional assumption & smoothness / Quadrature | O(1/N?K) | O(1/N*) or O(1/N®)

As noted above, to perform integration using quadrature, the integrand needs to be sufficiently
smooth. To that end, properties of the integrand are further investigated. In particular, by relat-
ing the integrand in Eq.(5) to a KL form, it can be shown that such an KL form is indefinitely
differentiable (namely, living in C*°). Further, under some additional assumptions on the likelihood
ratio associated with the data distribution and the forward diffusion process, one can prove that the
integrand is convex and monotone in ¢. Such conditions can be understood conceptually as follows:
masking more tokens corresponds to removing more information, and the penalty grows as masking

. . Lo . 1 N .
'In the case of Riemann sum, the integration is approximated as [; g(t)dt ~ > ", g(cn)wn, where ¢y, is
any value within the nth interval; w,, = % when the intervals are equally spaced.

Under review as a conference paper at ICLR 2025

Table 2: Model performance on Mathematics and Planning Benchmarks based on N = 2
quadrature points. Green is the best performing model.

Model GSMSK MATHS500 Countdown Sudoku

128 256 512 128 256 512 128 256 512 128 256 512
LLaDA-8B- 68.7 7677 782 260 324 362 207 195 160 11.7 6.7 5.5
Instruct
+ diffu-GRPO 726 798 819 332 372 392 332 313 371 184 129 110
+ SFT + 732 81.1 821 338 38.6 40.2 348 320 422 221 167 9.5
diffu-GRPO
+ GDPO 75.06 81.20 82.26 31.4 38.0 38.2 4297 67.19 66.41 25.05 24.17 25.10

increases. The implication of these results are two-fold: (1) given the structure of the integrand,
the standard quadrature rules are well-suited for this problem; combined with results from the error
bound analysis, this justifies the observation that our ELBO estimator exhibits faster convergence
and lower variance than the double Monte Carlo one; and (2) the convex shape empirically observed
in Figure 2(b) supports the theoretical claim under the additional assumptions, albeit verifying these
assumptions can be non-trivial. Details for this part of the results are in Appendix C.

4 EXPERIMENTS

We conduct a comprehensive set of experiments. As our base model we use LLaDA-8B-Instruct
Zhu et al. (2025) which is a open sourced DLM that has been tuned to follow instructions, but no
specific post-training. We investigate the effect of applying GSPO with our SDMC estimator.

Tasks: We conduct experiments on mathematical reasoning, planning and coding benchmarks. For
(1) Mathematical reasoning: we use the GSM8K (Cobbe et al., 2021) which contains grade school
math problems, and MATHS00 (Lightman et al., 2023), containing 500 problems drawn from the
MATH dataset (Hendrycks et al., 2021b). (2) Planning: this includes two tasks: 4x4 Sudoku puzzles,
and Countdown in which given 3 numbers and a target the model must use arithmetic operations to
reach the target. (3) Coding: we use the HumanEval (Chen et al., 2021), a benchmark consisting of
164 manually designed Python algorithmic challenges and sanitized MBPP (Austin et al., 2021b),
which contains 257 crowd-sourced Python programming tasks.

4.1 MAIN RESULTS

GDPO consistently improves the check-
point and outperforms diffu-GRPO Ta- Typle 3: Model performance on Coding with N = 3
ble 2 demonstrates the performance of the gyadrature points. Green is best.

baseline model, as well as the two best
checkpoints as reported in Zhao et al.

(2025) both using just their diffu-GRPO al- Model HumanEval MBPP
gorithm and diffu-GRPO + SFT. Our results 128 256 512 128 256 512
demonstrate that we can better improve the LLaDA-8B- 274 355 37.8 362 412 404
baseline than the token-based algorithms. Instruct

GDPO outperforms existing methods + diffu-GRPO 293 39.0 348 420 455 41.6
even without SFT. As shown in Table 2, , gppO 262 39.6 39.0 43.6 50.6 47.1

GDPO surpasses existing RL baselines
without relying on supervised fine-tuning
(SFT). This is particularly notable since it outperforms methods that combine SFT with RL, high-
lighting the strength of GDPO as a standalone approach. Beyond performance, this property also
simplifies the fine-tuning pipeline by reducing the reliance on costly SFT stages.

GDPO enhances reasoning capabilities in coding tasks. We fine-tune the model on the KodCode-
Light-RL-10K dataset (Xu et al., 2025), which spans a wide range of coding problems at varying

Under review as a conference paper at ICLR 2025

difficulty levels, each validated through unit tests. We found that N = 3 led to slightly better results
than N = 2, and we report GDPO with N = 3 in Table 3. The results demonstrate that GDPO with
3 quadrature points consistently improves performance across most baselines. Most strikingly, on
the MBPP benchmark, RL fine-tuning achieves a substantial /0% accuracy gain over the pretrained
model without SFT.

GDPO improves performance beyond the training sequence length. Building on observations
by Zhao et al. (2025) that Diffu-GRPO enhances generalization to longer contexts, we find that
GDPO achieves this effect to an even greater extent. On 512-token sequences, GDPO consistently
outperforms all baselines while largely preserving performance at shorter lengths. We attribute this
to the use of sequence-level likelihoods, which promote more uniform improvements across token
positions, in contrast to token-level methods that retain generation-order biases, as noted by Gong
et al. (2025b).

GDPO is computationally efficient Notably we are able to obtain these remarkable results training
on only 2 H100 GPUs. With the only exception of the MATH dataset where we used 4 GPUs. For
coding tasks we used 8 GPUs. This is remarkable as practitioners often have a limited computational
budget and GDPO opens the opportunities to such needs.

Importance of the ELBO approximation: To

demonstrate that accurately approximating the GDPO Test Accuracy for different ELBO estimators
likelihood is of vital importance we fix our- e
selves to the Countdown dataset. We pick this 401 — somcs3

. . = Double-MC-4
one as we observed the greatest increases in nE

performances in such dataset which allows for
easier interpretation of the results. We train 4
models using the same set of hyperparameters,
only varying the ELBO approximation method.
We evaluate the test accuracy as a function of
the training iteration every 500 iterations.

N w w
o o @

Test Accuracy Countdown-256
~
o

As observed in Figure 4, estimators that are
more accurate result in better improvements on
the RL pipelines. Furthermore, the sheer num- ! ! ! ! ! !
ber of function evaluations is not enough to 000 eooe 71?'2?11ing eration 2000 10000
guarantee good results. For instance, SDMC-

3 can significantly outperform the naive Monte Figure 4: Test accuracy with different training it-
Carlo estimator even when it uses more eval- erations and ELBO estimators on the Countdown
vations. This demonstrates that accurately de- dataset.

signing the estimator is of vital importance in

GDPO.

151

5 CONCLUSION

We proposed Group Diffusion Policy Optimization (GDPO), an RL algorithm designed specifically
for diffusion language models (DLMs). By leveraging sequence-level likelihoods through the evi-
dence lower bound (ELBO), our approach disentangles and mitigates the major sources of variance
that hinder prior methods. In particular, we replace the inefficient double Monte Carlo estimation
with a simple and fast Semi-deterministic Monte Carlo sampling, yielding a provably lower-variance
and more computationally efficient estimator. Extensive experiments demonstrate that GDPO con-
sistently improves over pretrained checkpoints and surpasses strong baselines such as diffu-GRPO
across math, reasoning, and coding benchmarks. We expect even stronger performance with more
powerful pretrained checkpoints, though this remains outside the scope of the present study. Taken
together, these findings highlight GDPO as both a theoretically principled and practically effective
paradigm for aligning DLMs. We believe that the use of Semi-deterministic Monte Carlo sampling
offers a simple and viable path to handling the large variance issue in the sequence-level ELBO es-
timation of DLMs, and future work can explore more effective deterministic—stochastic integration
schemes with data-driven quadrature weights and locations to minimize the large variance further.

Under review as a conference paper at ICLR 2025

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, and et al. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774,
2023.

M. Arriola, A. K. Gokaslan, J. T. Chiu, Z. Yang, Z. Qi, J. Han, S. S. Sahoo, and V. Kuleshov.
Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models. In The
International Conference on Learning Representations (ICLR), 2025.

K. E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, 2008.

J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. Van Den Berg. Structured Denoising Diffusion
Models in Discrete State-Spaces. Advances in Neural Information Processing Systems (NeurIPS),
34:17981-17993, 2021a.

J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, and C. Sutton. Program Synthesis With Large Language Models. arXiv preprint
arXiv:2108.07732, 2021b.

Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, and et al. Training a Helpful and Harmless Assistant with Reinforcement Learning
From Human Feedback. arXiv preprint arXiv:2204.05862, 2022.

J. Benton, Y. Shi, V. De Bortoli, G. Deligiannidis, and A. Doucet. From Denoising Diffusions to
Denoising Markov Models. Journal of the Royal Statistical Society Series B: Statistical Method-
ology, 86(2):286-301, 2024.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language Models
are Few-Shot Learners. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

A. Campbell, J. Benton, V. De Bortoli, T. Rainforth, G. Deligiannidis, and A. Doucet. A Continuous
Time Framework for Discrete Denoising Models. Advances in Neural Information Processing
Systems, 35:28266-28279, 2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph,
G. Brockman, et al. Evaluating Large Language Models Trained on Code. arXiv preprint
arXiv:2107.03374, 2021.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek,
J. Hilton, R. Nakano, et al. Training Verifiers to Solve Math Word Problems. arXiv preprint
arXiv:2110.14168, 2021.

G. Dahlquist and A. Bjorck. Numerical Methods in Scientific Computing, Volume I. SIAM, 2008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 4171-4186, 2019.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sravankumar, A. Korenev,
A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, and et al. The LLaMA 3 Herd of
Models. arXiv preprint arXiv:2407.21783, 2024.

I. Gat, T. Remez, N. Shaul, F. Kreuk, R. T. Q. Chen, G. Synnaeve, Y. Adi, and Y. Lipman. Discrete
Flow Matching. In Advances in Neural Information Processing Systems (NeurIPS), volume 37,
pages 133345-133385, 2024.

S. Gong, S. Agarwal, Y. Zhang, J. Ye, L. Zheng, M. Li, C. An, P. Zhao, W. Bi, J. Han, H. Peng, and
L. Kong. Scaling Diffusion Language Models via Adaptation from Autoregressive Models. In
The Thirteenth International Conference on Learning Representations (ICLR), 2025a.

10

Under review as a conference paper at ICLR 2025

S. Gong, R. Zhang, H. Zheng, J. Gu, N. Jaitly, L. Kong, and Y. Zhang. DiffuCoder: Understanding
and Improving Masked Diffusion Models for Code Generation. arXiv preprint arXiv:2506.20639,
2025b.

D. Guo, D. Yang, H. Zhang, T. DeepSeek, and W. Liang. DeepSeek-R1 Incentivizes Reasoning in
LLMs through Reinforcement Learning. Nature, 645:633-638, 2025.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt.
Measuring Mathematical Problem Solving With the MATH Dataset. In Advances in Neural In-
formation Processing Systems (NeurIPS), Datasets and Benchmarks Track, 2021a.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Mea-
suring Mathematical Problem Solving With The Math Dataset. arXiv preprint arXiv:2103.03874,
2021b.

J. Ho, A. N. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pages 6840-6851, 2020.

S. Khanna, S. Kharbanda, S. Li, H. Varma, E. Wang, S. Birnbaum, Z. Luo, Y. Miraoui, A. Pal-
recha, S. Ermon, A. Grover, and V. Kuleshov. Mercury: Ultra-Fast Language Models Based on
Diffusion. arXiv preprint arXiv:2506.17298, 2025.

J. Kim, K. Shah, V. Kontonis, S. M. Kakade, and S. Chen. Train for the Worst, Plan for the Best:
Understanding Token Ordering in Masked Diffusions. In Proceedings of the 42nd International
Conference on Machine Learning (ICML), 2025.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, J. Leike, J. Schulman,
I. Sutskever, and K. Cobbe. Let’s Verify Step by Step. In The Twelfth International Conference
on Learning Representations, 2023.

S. Liu, J. Nam, A. Campbell, H. Stark, Y. Xu, T. Jaakkola, and R. Gémez-Bombarelli. Think
While You Generate: Discrete Diffusion with Planned Denoising. In International Conference on
Learning Representations (ICLR), 2025a.

Z. Liu, C. Chen, W. Li, P. Qi, T. Pang, C. Du, W. S. Lee, and M. Lin. Understanding r1-zero-like
training: A critical perspective. arXiv preprint arXiv:2503.20783, 2025b.

A. Lou, C. Meng, and S. Ermon. Discrete Diffusion Modeling by Estimating The Ratios of the Data
Distribution. International Conference on Machine Learning (ICML), 2024.

S. Nie, F. Zhu, Z. You, X. Zhang, J. Ou, J. Hu, J. ZHOU, Y. Lin, J.-R. Wen, and C. Li. Large
Language Diffusion Models. In Advances in Neural Information Processing Systems (NeurIPS),
2025.

OpenAl. OpenAl ol System Card. arXiv:2412.16720, 2024. URL https://openai.com/
index/learning-to-reason-with-11ms/. Accessed: 2025-09-22.

J. Ou, S. Nie, K. Xue, F. Zhu, J. Sun, Z. Li, and C. Li. Your Absorbing Discrete Diffusion Se-
cretly Models the Conditional Distributions of Clean Data. International Conference on Learning
Representations (ICLR), 2025.

M. Prabhudesai, M. Wu, A. Zadeh, K. Fragkiadaki, and D. Pathak. Diffusion Beats Autoregressive
in Data-Constrained Settings. arXiv preprint arXiv:2507.15857, 2025.

A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving Language Understanding by
Generative Pre-Training. OpenAl Technical Report, 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language Models are Unsuper-
vised Multitask Learners. OpenAl Technical Report, 2019.

S. Sahoo, M. Arriola, Y. Schiff, A. Gokaslan, E. Marroquin, J. Chiu, A. Rush, and V. Kuleshov.
Simple and Effective Masked Diffusion Language Models. Advances in Neural Information Pro-
cessing Systems, 37:130136-130184, 2024.

11

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2025

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al. DeepSeek-
Math: Pushing the Limits of Mathematical Reasoning in Open Language Models. arXiv preprint
arXiv:2402.03300, 2024.

J. Shi, K. Han, Z. Wang, A. Doucet, and M. Titsias. Simplified and Generalized Masked Diffu-
sion for Discrete Data. Advances in Neural Information Processing Systems, 37:103131-103167,
2024.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-Based Genera-
tive Modeling through Stochastic Differential Equations. In International Conference on Learn-
ing Representations (ICLR), 2021.

Y. Song, Z. Zhang, C. Luo, P. Gao, F. Xia, H. Luo, Z. Li, Y. Yang, H. Yu, X. Qu, Y. Fu, J. Su,
G. Zhang, W. Huang, M. Wang, L. Yan, X. Jia, J. Liu, W.-Y. Ma, Y.-Q. Zhang, Y. Wu, and
H. Zhou. Seed Diffusion: A Large-Scale Diffusion Language Model with High-Speed Inference.
arXiv preprint arXiv:2508.02193, 2025.

K. Team, A. Du, B. Gao, B. Xing, C. Jiang, C. Chen, C. Li, C. Xiao, C. Du, C. Liao, and et al. Kimi
K1.5: Scaling Reinforcement Learning with LLMs. arXiv preprint arXiv:2501.12599, 2025.

Q. Team. QwQ-32B: Embracing the Power of Reinforcement Learning, March 6 2025.

L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, N. Lambert, S. Huang, K. Rasul, and
Q. Gallouédec. TRL: Transformer Reinforcement Learning, 2020.

G. Wang, Y. Schiff, S. S. Sahoo, and V. Kuleshov. Remasking Discrete Diffusion Models with
Inference-Time Scaling. In Advances in Neural Information Processing Systems (NeurIPS), 2025.

R.J. Williams. Simple Statistical Gradient-following Algorithms for Connectionist Reinforcement
Learning. Machine Learning, 8(3):229-256, 1992.

Z.Xu, Y. Liu, Y. Yin, M. Zhou, and R. Poovendran. KodCode: A Diverse, Challenging, and Verifi-
able Synthetic Dataset for Coding. In Proceedings of the 63rd Annual Meeting of the Association
for Computational Linguistics (ACL), 2025.

J. Ye, J. Gao, S. Gong, L. Zheng, X. Jiang, Z. Li, and L. Kong. Beyond Autoregression: Dis-
crete Diffusion for Complex Reasoning and Planning. In International Conference on Learning
Representations (ICLR), 2025a.

J. Ye, Z. Xie, L. Zheng, J. Gao, Z. Wu, X. Jiang, Z. Li, and L. Kong. Dream 7b: Diffusion Large
Language Models. arXiv preprint arXiv:2508.15487, 2025b.

O. Zekri and N. Boullé. Fine-Tuning Discrete Diffusion Models with Policy Gradient Methods. In
Advances in Neural Information Processing Systems (NeurIPS), 2025.

S. Zhao, D. Gupta, Q. Zheng, and A. Grover. dl: Scaling Reasoning in Diffusion Large Lan-
guage Models via Reinforcement Learning. Advances in Neural Information Processing Systems
(NeurIPS), 2025.

F. Zhu, R. Wang, S. Nie, X. Zhang, C. Wu, J. Hu, J. Zhou, J. Chen, Y. Lin, J.-R. Wen, et al. LLaDA
1.5: Variance-Reduced Preference Optimization for Large Language Diffusion Models. arXiv
preprint arXiv:2505.19223, 2025.

12

Under review as a conference paper at ICLR 2025

Supplementary Material for “Improving Reasoning for Diffusion Language
Models via Group Diffusion Policy Optimization”

In this supplementary material, we present additional details on variance decomposition in §A, pro-
vide a theoretical analysis of asymptotic error bounds in §B, justify key properties of the integrand
in §C, describe the experimental setup in §D, and include representative generated samples in §E.

A MORE DETAILS ON VARIANCE DECOMPOSITION

We start by studying the different sources of variance in approximating the ELBO, in the case of
masked diffusion models the equation is given by:

BBy, r(.ly) Zl MJlogmo(y'lye, q) | < logm(ylq) (7)

From looking at this expression we observe that there are two sources of variance, (1) Time Sam-
pling: we must sample ¢ which determines the noise level, and (2) Random Masking: we must
sample y; which injects noise to the clean xy. We start by analyzing how each source of randomness
affects the variance of an estimator. To simplify our discussion, we will rewrite the integrand in a
simplified way:

EtEy, o (a,ly) [Z(t 21)] < log7(ylg), (8)

where Z(t,y;) = 1 Zle 1[y; = M]logmy(y*|ys, q) is a random variable w.r.t. the joint distribu-
tion of (t,y:). We are interested in studying Var(Z(¢,y;)) and how it decomposes with respect to
t, y:, by the law of total variance we can decompose this as:

Var(Z(t,y:)) = Ei[Var(Z | t)] + Var(E[Z | t]).)

Var given by Z|¢ Var given by ¢

The above expression indicates that we can understand variance as the sum of two components,
where each term corresponds to a distinct source of variance. We argue that most of the variance
comes from selecting the noise level £. When the noise level is ¢ = 0 we range from fully unmasked
to fully masked, creating a large disparity in the noise samples and subsequently causing large
swings in the variance.

To test this we evaluate each term in 9 for 1000 different prompts pulled from the OpenWeb dataset.
We plot the mean and variance as function of time in Figure 2. This figure reveals very important
facts:

1. Most of the variance is coming from randomly selecting the timestamps/ noise levels and
not from injecting noise into the text.

2. The loss function when observed as a function of time yields a simple structure.

For this reason, we advocate for fixed timestamps for likelihood approximation and embracing a
Semi-deterministic Monte Carlo sampler instead of the naive double Monte Carlo approximations.

B ANALYSIS OF ASYMPTOTIC ERROR BOUNDS

In this section, we analyze the error bound of approximating the ELBO via the proposed Semi-
Deterministic Monte Carlo scheme, focusing on the training objective given in Eq.(2), namely,

LeLso (Y|9) = Eitsjo,1)Ey, o, (-|y) Z 1[y; = M]log 7o (y' |y, q)

13

Under review as a conference paper at ICLR 2025

Notation and definition. We proceed by first defining the relevant quantities that will be used in
the ensuing technical analysis. Define

L
Z M]log 7o (y’|ys, q),

w\»—l

which is a random variable with respect to the distribution of y;, where y; ~ m;(-|y). Let

g(t) = Ey{,’\/ﬂ't(‘ |y)(Zt)a (10)
and the Monte Carlo approximation of g(t) be guc(t) := + ZkK 1 (Z [k]) where Z; K] are iid draws
of Z;. For convenience, we let Z(y:) = {i € {1,- } = M} and ¢; = |Z(y:)|, the

cardinality of Z(y;). Note that Z; can be rewritten as Zt =7 Zveﬂt) log po (v |y, q)-

With these definitions, the training objective of interest is given by

1
Lo (y]q) = Etri0,1)(9(1)) :/0 g(t)dt, (11)

and its approximation via a Semi-deterministic Monte Carlo scheme (namely, Eq.(5)) can be written
as

Leiso(ylq) : Z wygmc(t (12)

which is a numerical approximation of the integral in the Monte Carlo approximation Leiso (ylg) :=

1
ﬁ) gmcdt at points t,,,n = 1,--- | N. For the time being, we assume a generic numerical approxi-
mation of the integral, and using the notation involving w,, .

The approximation error of Eq.(12) is given by

N 2 N 1 ?
E <[£ELBO — L:ELBO} > = nz::l Wngmc (tn) — -/0 g(t)dt] (13)

2 N 1 2
(Z wngmc(t Z wrg(t > + (Z wng(tn) — /0 g(t)dt) ;

n=1

; . A . o
MC variance integration bias

this holds due to the independence of Monte Carlo samples, since

E{Téwnm()= zwn clt zwng

and therefore the second term boils down to the integration bias. It can be seen that this becomes the
classical mean-squared-error of an estimator, which can be decomposed into the variance (from a
total of K Monte Carlo samples) and the bias? (from the approximation of the integral) at N points
t1,- -+ ,tn. The bounds of these two terms will be analyzed separately in the sequel.

B.1 THE VARIANCE TERM

To analyze this term, we start with the pointwise Monte Carlo error.
Lemma B.1. Assume the following conditions hold:

Cl. E,., (c1) < o0, Eg(c?) < oo;
C2. 36>0:6< mo(y' | ye,q) < 1— 6, forall zb, x4.

Then, the following holds

2
E(g(t) - gMc(t)) = to*(t), where o?(t) := Var(Zy). (14)

14

Under review as a conference paper at ICLR 2025

Proof. To establish the results in Eq.(14), the following assumptions need to hold:

Al. Measurability: Z; is jointly measurable in ¢ and y;

A2. Integrability: E(|Z;]) < oo, YVt € [0,1];

A3. Finite variance: 02(t) < oo, ¥t € [0,1].
By writing Z; as Z; = % ZieI(y,,) log 7o (y" | v, q), it can be verified that C1 and C2 are sufficient
for A1-A3 to hold. O

Remark B.1. Interpretation of conditions C1 and C2 are given as follows: CI requires the number
of masked tokens to be controlled, and C2 requires the conditional likelihood to be well behaved.

Coming back to the variance term, by Lemma B.1, at each time point ¢ (i.e., t,,’s), the Monte
Carlo estimate gyc(t,) introduces random error whose pointwise variance is given by %02 (t;,).

Consequently, the variance of the estimator EELBO is given by

(angMC ang)2 - (zjj: — guc(t)))2

n=1

=U,

N 1 N
=E(Y waw) = (Z wiaQ(tn)); (15)
n=1 n=1

the last equality holds since for t¢,, # t,,, due to the independence of MC samples across n, we have
that Cov(uy,, tm,) = 0 for n # m; further note that E(u,) = 0 and Eu? = £02(t,,).

Proposition B.1 shows that under a refinement of condition C1, Eq.(15) is bounded and therefore its
rate can be derived accordingly.

Proposition B.1. Suppose the following condition holds for c; (defined identically to that in
Lemma B.1):

CIl'. E.,(ct) < Cot? for some constant Cy > 0.

Assume also that w, = O(1/N) and t,, are approximately equally spaced. Then, the following
holds:

1, Con 11 &
?;wna (tn)gf;wntn:O(E-ﬁ;tn): KN2N/ tdt))
(16)
Remark B.2. Condition C1’ guarantees that fol o%(t) < oo, which then implies the finiteness of

ZN L w2o?(t,) as N — oo, provided that the weights w,, corresponds to a valid integration

scheme; i.e., w, > 0, Zﬁlzl wy, = 1 and the mesh of the points t,, becomes finer as N — oo.
Empirically, C1’ can be operationalized by considering a masking scheme where token x! is masked
independently across i = 1,--- | L with probability t, and ¢; ~ Bin(L,t). Finally, the assumption
on weights w, = O(%) and that t,,’s being roughly equally spaced are both fairly reasonable for
all integration schemes (simple Riemann, midpoint, trapezoid, Simpson).

The next proposition shows that when an N-dependent decay condition is satisfied by the log-
likelihood, then a rate faster than the one established in Eq.(16) can be obtained.

Proposition B.2. Suppose the following condition holds
Cl”. E,, (Ct) < Cloken for some positive constant Cipien.

In addition, assume the log-likelihood satisfies the following, for some positive constant Ciog.jix:

2

Var(log mo(y'|ye, q)) < Clog-likﬁ~

15

Under review as a conference paper at ICLR 2025

Then, the following holds

1, 1
E;wna (tn) =0 332) - (17)

Proof. Given the definition of UQ(t) (see, e.g., Eq.(14)), under condition C1”, one has

C2 n 7
o?(t) < =5 Var(log mo (y'[ye, 0)) -

Then, for weights max,, w,, = O(%) (which are the weights for all standard integration rules) and
t, = &, we get

N7
2 Ct%)ken ti 1 2
o (tn) < 5 Clog—likN = CONy where Co = Cyoyen Cloglik-
Hence, we have a uniform bound on 0'2(tn) < CO% for every n = 1,--- , N. Using the above
uniform bound, we obtain
N N
C C 1 C
2 2 0 2 _ Y0 _ +0
2 wio(tn) < 3 D i = N[NN2] =3

O

Some intuition behind the N-dependent decay condition is given as follows. Specifically, for the
log-likelihood to satisfy such a condition, one compatible specification is given by

. t
log 7o (y* |y, q) = h(t) + \/—Net, where E(e;) =0, Var(e;) < og for some og > 0; Vit;

h(t) is a smooth Lipschitz function. Under this specification, the fluctuation of the likelihood is
small for small ¢ (little masking) and increases for large ¢.

B.2 THE BIAS TERM

Next, we analyze the bias term induced by approximating the integral fol g(t)dt via numerical inte-
gration schemes.

The next lemma provides the rate of the bias for the case where some quadrature rule is used, under
certain assumptions of g(t).

Lemma B.2. Suppose that g(t) : (0,1] — R is a deterministic and continuously twice differentiable
function (i.e., in C?). Further, suppose we use some quadrature rule (midpoint, trapezoidal, Simpson,
etc.) to approximate its integral at points {t,}_, € [0,1]; i.e.,

1 N
/ g(t)dt ~ ang(tn), (18)
0 n=1

where weights w,,’s are chosen according to the specific quadrature rule in use. Then, such an
approximation scheme introduces deterministic integration bias, given by

1 N
Pn(o) = [o)t =3 woa(t,) |

and it scales as follows:

* for midpoint or trapezoidal rule, as O(+);

16

Under review as a conference paper at ICLR 2025

* for Simpson, as O(5k).

Proof. These are standard results from numerical analysis; see, e.g., Dahlquist and Bjorck (2008);
Atkinson (2008). O

The above lemma directly yields the following result: for the integration bias? that appears in the
decomposition of Eq.(13), it follows that for midpoint or trapezoidal rule,

(;wng(tn)—/o g(t)dt) =0(%);

and for Simpson, the rate is given by O ().

Remark B.3. The above rates suggest that by applying a quadrature rule—provided that ¢(t) sat-
isfies certain properties—the integration bias® has become practically negligible, relative to the
variance term that dominates. However, if one uses a generic integration scheme instead, such as
the Riemann sum, the integration bias would scale at the rate of O(;) and thus the bias® at O ().

As it can be seen from Remark B.3, the “gain” by considering a Semi-Deterministic Monte Carlo
scheme is partly built on the fact that the integration bias? can be practically negligible, which hinges
on whether one can use quadrature rules for integration. However, to apply such rules, g(¢) needs to
be continuously twice differentiable, and its properties are further studied in Appendix C.

C PROPERTIES OF THE INTEGRAND IN THE NUMERICAL QUADRATURE

For this section, we will denote py a probability distribution on [M]” and denote p; the ¢ marginal of
the forward process under masked diffusion and 7, the learned marginal. Our goal is to state some
conditions under which the loss function would be well-suited for numerical quadratures. We start
by noting that from Proposition 1 of Benton et al. (2024) we can write the ELBO in the following
form:

L
1
Lerpo(Y|q) = Eenrio,11Ey, ~n(-1y) lt E 1[y; = M]logmo(y'|ye, q)
=1

/JEWI?%)]M

o1 d
~ [SKLlma+C.
0

dt

where & is the score matching operator introduced in Benton et al. (2024). This calculation allows
to realize that to study the integrand it is enough to study KL(p||m;) =: f(¢). Note that with this
definition, the integrand ¢(t) defined in the previous section satisfies g(t) = f’(¢) + C for some
constant C'. By Proposition (1.1) in Benton et al. (2024) we know that & > 0, therefore f’(¢) > 0.

Notation: We first introduce the following notation: let ¢ denotes the probability distribution ¢
marginalized over the entries not in S. The following lemma states that we can write f(¢) as a
polynomial with coefficients relating to the average KL under different levels of masking.

Lemma C.1. The KL divergence for two distributions over time evolving according to masked
diffusion is C*° as a function of t and we can write:

L(pe||me) = Z Z (1 —)P KL(p§ ||75)

k=18C[D]
|Sl=k

ick<)t’“ 1-t)P-

17

Under review as a conference paper at ICLR 2025

where:

= T Z KL Po||7T0)
(k) Sc[D]
|S|=k

is the average KL divergence over sets of size k.

Proof. The proof relies on fundamental combinatorial facts and the definition of the forward pro-

| > tatos (245)

zE[]W]D

25 X wens(20)

k=1SC[D] z:xi=
|S|=k <:>zes

D k‘ D—k, S
D k S o (1-1) o ()
kz:zi%%j é_}g{g o)l g((lt)DkWS(I))

KL(p¢|m¢)

> k D—k S pbg(x)
=Y S a0t B e)
=18C[D] z:xi =M 0 (.’E)
|S|=k = i€S
D
:Z tk D kKL(PoHWO)
k:lSC[D]
|S]=

Using this, we can rewrite the KL as:

D
KL(pil|me) = > > (1 =)P *KL(pf||m5)
k=18c[D]
|Sl=k
D
D
k=1
which gives the result. O

Given this lemma, it becomes clear that to understand the properties of the integrand, it is enough to
understand the following polynomial:
D
Ch (k > th(1 —)P+

CkBk7D(t)

WE

ft) =

=
Il
—

I
NE

>
Il
—

This is a Bernstein polynomial, and its properties have been studied before.

Forward differences and Bernstein derivatives. When looking at the derivatives of Bernestein
polynomials, the differences of the coefficients appear; to this end denote:

Acy = Cpq1 — C

18

Under review as a conference paper at ICLR 2025

A’c = cig — 2¢k11 + ek = (Chi2 — Cr1) — (ki1 — ck) = Apr1 — Ay,
N3¢, = Ck+3 — 3Cky2 + 3Cht1 — Ck = Aﬁﬂ — A%

Then it is easy to check that:

Lemma C.2 (Derivative formulas). Forallt € [0,1],

D—1
f(t)=D Y Ack Brp-1(t), (19)
k=0
D—-2
f"(t)=D(D —1) Y A?c, Byp.p_aot), (20)
k=0
D-3
FP() = DD - 1)(D=2) Y A’cy By,p-s(t). @1)
k=0

Because By ,(t) > 0 on [0, 1], the signs of f(")(t) are controlled by the signs of the averaged
forward differences A"cy.

One-step representation via KL chain rule. Let F(S) = KL(p§||r§), we are now able to
obtain simple, intuitive explanations of the meaning of each coefficient Al. For i ¢ S, define the
(nonnegative) one-step gain

Ai(S) = F(SU{i}) - F(S)=E [KL(Po(X;| Xs) || Qo(X:| Xs))] > 0.

Xg~P®
The above quantity represents the average KL that we obtain by masking an extra token to a given
set. Intuitively we expect Ay to be increasing, as masking more tokens reduces the amount of
information that we have (This in fact, holds already without extra assumptions). Similarly, we can
obtain the iterated differences:

Acy =]E\Sé:k[Ai(S)]v (22)
igs
Ay, = E\Sl;k[Ai(s U{j}) — Ai(S)], (23)
i,j¢S
A’y =E ik [A(S U 0}) = Ai(SU{5}) — Ai(SU{e}) + Ai(S)]- 24)
1,5,0¢S

If such quantities are positive, this will immediately imply that the derivatives in C.2 will be positive,
implying important consequences on the loss function. Intuitively, such coefficients being positive
correspond to the idea that masking one token when K are masked results in more loss of informa-
tion than masking a token when L. < K are masked. We require these as assumptions and explain
the sufficient conditions for them to hold in the following Proposition:

Proposition C.1 (Sufficient conditions for convexity and increasing integrand). For all t € [0,1]:
1. (Integrand is positive) For any Py, Qo, the set function F' is monotone: S C T = F(S) <

F(T) (data processing under marginalization). Hence A;(S) > 0, Acy > 0, and by
Eq.(19) we have

7 = SRUPIQ) > 0 |

2. (Integrand is increasing in t) If the Increasing Conditional Divergence (ICD) condition
holds:
A(S) < A(T) forall S CT C[D]\{i},

then A%c;, > 0 by Eq.(23), and Eq.(20) yields

d2
f”(t):@KL(PtHQt) >0 |

19

Under review as a conference paper at ICLR 2025

3. (Integrand has convexity in t) If, in addition, the second-order ICD condition holds:
(Ai(SU{G}H) —Ai(S)) < (Ai(SU{4,0}) —Ai(Su{e))
for all distinct i, j,¢ and S C [D]\ {i, j, £}, then Acy, > 0 by Eq.(24), and Eq.(21) gives
3

d
~ TEKLEIQ) = 0|

£

D EMPIRICAL DETAILS

D.1 TRAINING DETAILS
We leverage the codebase from Zhao et al. (2025) which in itself leverages the TRL library (von
Werra et al., 2020). For our hyperparameters we keep most of the default parameters from Zhao

et al. (2025) without any hyperparameter search. We leverage a Low-Rank Adaptation with rank
r = 128 and scaling factor o = 64.

Across all runs we utilize the AdamW optimizer with parameters 5; = 0.9, 2 = 0.99 with a weight
decay of 0.1 and gradient clipping at 0.2. We leverage flash attention and 4—bit quantization. We
found that GDPO usually requires a smaller learning rate than diffu-GRPO and otherwise it can
result in diverging models. We save checkpoints every 300 or 500 iterations and stop our runs
when the reward function has plateaued, for the countdown dataset we observe that the reward
function continuous increasing for a very long time, while for the math dataset we observed high-
performing checkpoints around 9000 iterations, but report the best one, which happened later in
training. We present the learning rate as well as other hyperparameters in Table 4. We present the
reward function for the different datasets in Figure 5 and observe that GDPO can offer a steady
growth before plateauing.

Math GSM8K Countdown
1.7 0.7
25

1.6 0.6

15 20 05
E 14 E 15 E 04

13 0.3
& & 10 &

1.2 0.2

11 05 0.1

1.0 0.0 0.0

5000 10000 15000 20000 25000 30000 1000 2000 3000 4000 5000 6000 7000 2500 5000 7500 10000 12500 15000
Gradient Update Steps Gradient Update Steps Gradient Update Steps
Sudoku KodCode

15

1.4

13

Reward

1.1

1.0

0.9

1000 2000 3000 4000
Gradient Update Steps

5000 500 1000 1500 2000 2500 3000 3500 4000

Gradient Update Steps

Figure 5: Reward curves during RL training for the models reported in Table 2.

D.2 REWARD FUNCTIONS

To provide a self-contained exposition, we summarize the reward functions used in RL-based post-
training. The design incorporates task-specific incentives that promote formatting fidelity, logical
consistency, and solution correctness, with their structure tailored to the demands of each task. This
formulation is largely consistent with prior work (Zhao et al., 2025), and our exposition follows
established conventions.

GSMB8K The setup uses a composite reward function composed of several components, including

20

Under review as a conference paper at ICLR 2025

* Correctness: Reward for the parsed answer aligning with the ground truth (+2.0 points).
 Integer Answer: Reward for producing a valid integer as the parsed answer (+0.5).

* Soft Format: Reward for responses in the pattern <reasoning>...</reasoning>
<answer>...</answer> (+0.5 points).

* Strict Format: Reward for outputs matching the strict format and line breaks (+0.5 points)

* XML Format: Reward for correct placement of reasoning and answer tags, with +0.125
points per matched pair.

MATHS500

* Correctness: Reward for the parsed answer given in \boxed{} and consistent with the
ground truth (+2.0).

* Soft Format: Reward for the use of <answer> tags and \boxed, assigned as:

— +1.00 point when answer tags are included and enclose \boxed.

— +0.75 point when answer tags are included but without \boxed.

— +0.50 point when answer tags are omitted yet \boxed is provided.
— +0.25 point when both answer tags and \boxed are missing.

Countdown

* Soft Correctness: Reward for equations relative to the target value:

— +1.0 point when the equation reaches the target using only the provided numbers.
— +0.1 point when the equation does not reach the target but uses the correct numbers.
— +0 point when both criteria fail.

Sudoku
* Cell Accuracy: Reward for the fraction of originally empty cells filled correctly.
Coding (Gong et al., 2025b)

* Format: Reward for generated code adhering to the required Python code-block structure:

— 1.0 point when the code is enclosed in a valid Python code block ** ‘python ‘%,
and the snippet parses without syntax errors.
— 0.5 point when the output is well-formatted but contains Python syntax errors.
— 0.0 point when the format is invalid or no code block is detected.
* Code Execution: Reward for generated code that passes unit tests:
— Score equals the fraction of test cases passed by executing the code.
— 0.0 point when the code fails formatting or does not run successfully.

Table 4: Hyperparameters for different training runs

Model GSMSK MATHS500 Countdown Sudoku KodCode-Light-RL
Learning Rate le—6 3e—T le—6 3e—17 le—6
Number of 2 4 2 2 8

GPUs

Per-GPU-Batch 6 6 6 6 6

Size

Number of 2 2 2 2 3
Quadrature

Points

Number of 6600 29500 17000 2100 3800

iterations of
best checkpoint

21

Under review as a conference paper at ICLR 2025

E SAMPLE GENERATIONS

E.1 GENERATION ON SUDOKU

For the sudoku task we leverage the following prompt and we present samples at 512 tokens.

Sample Generations

Prompt

<|startoftext|><|start_header_id|>user<|end_header_id|>
Please solve the following 4x4 Sudoku puzzle. The puzzle is
— provided as a l6-character string reading left-to-right,
— top-to-bottom, where '0O' represents empty cells.
Rules:
- Fill empty cells with digits 1-4
— Each row must contain digits 1-4 exactly once
— Each column must contain digits 1-4 exactly once
— Each 2x2 box must contain digits 1-4 exactly once
Important: Your solution must be a COMPLETE l6-character
— string with only the digits 1-4, representing your final
— solved grid.
Respond in this exact format:
<reasoning>
Your step-by-step solving process
</reasoning>
<answer>
[l6-character solution string with no spaces or separators]
</answer>

22

Under review as a conference paper at ICLR 2025

Sample Generations

Question
Solve the following Sudoku puzzle: 4320004330100004

Model Generation

To solve the 4x4 Sudoku puzzle, we need to fill in empty
cells with digits 1-4 such that each row, column, and 2x2
box contains all digits exactly once. We's start by
analyzing the given puzzle and filling in the grid step
by step.
1. xxIdentify the empty cellsxx:
— The first row: 43 20
— The second row: 00 43
— The third row: 30 10
— The fourth row: 00 04
2. »xFill the first columnx*x:
— The first column already has 4, 0, 3, and 0. The only
— digits left are 1, 2, and 3.
- Fill the first column: 1 2 3 4
3. xxFill the second columnx*x:
— The second column already has 3, 4, 0, and 0. The only
— digits left are 1, 2, and 4.
— Fill the second column: 1 2 4 4
4. xxFill the third columnx*x*:
— The third column already has 2, 3, 1, and 4. The only
— digits left are 1, 2, and 3.
- Fill the third column: 1 2 3 4
5. »xFill the fourth columnx*x:
- The fourth column already has 0, 0, 0, and 4. The only
— digits left are 1, 2, and 3.
- Fill the fourth column: 1 2 3 4
Now, let's fill the 2x2 boxes:
— The first 2x2 box: 1 2 3 4
— The second 2x2 box: 1 2 4 4
— The third 2x2 box: 1 2 3 4
— The fourth 2x2 box: 1 2 3 4
</reasoning>
<>
</>
<answer>
123124
12444
123124
123124
</answer><|eot_id|><|endoftext |>

Ground Truth
4321124334122134

s
=~
s
.

23

Under review as a conference paper at ICLR 2025

Sample Generations

Question
Solve the following Sudoku puzzle: 3014002020004130
Model Generation

To solve the 4x4 Sudoku puzzle, we need to fill in empty
cells with digits 1-4 such that each row, column, and 2x2
box contains all digits exactly once. We's start by
analyzing the given puzzle and filling in the grid step
by step.
1. xxIdentify the initial digitsxx*:
- The first row is \"3014\".
— The second row is \"0020\".
— The third row is \"2000\".
— The fourth row is \"4130\".
2. x»xFill the first columnx*x:
— The first column is \"3014\".
— The second column is \"0020\".
— The third column is \"2000\".
— The fourth column is \"4130\".
3. »xFill the second columnxx*:
— The second column is \"0020\".
— The second column is \"0020\".
— The third column is \"0020\".
— The fourth column is \"0130\".
4. xxFill the third columnx*x*:
— The third column is \"2000\".
— The third column is \"2000\".
— The third column is \"2000\".
— The fourth column is \"0030\".
5. »xFill the fourth columnxx*:
— The fourth column is \"4130\".
— The fourth column is \"4130\".
— The fourth column is \"4130\".
— The fourth column is \"0334\".
Now, let's fill in the 2x2 boxes:
— The first 2x2 box is \"3014\".
— The second 2x2 box is \"2020\".
— The third 2x2 box is \"2000\".
— The fourth 2x2 box is \"4134\".
Finally, we can verify that all rows, columns, and boxes are
— filled correctly according to the Sudoku rules.
</reasoning>
<answer>
12131421221122141334
</answer><|eot_id|><|endoftext |>

Ground Truth
3214142323414132

s
=~
s
.

24

Under review as a conference paper at ICLR 2025

Sample Generations

Question
Solve the following Sudoku puzzle: 0000100420013142
Model Generation

To solve the 4x4 Sudoku puzzle, we need to fill in the grid
— with digits 1-4 such that each row, column, and 2x2 box
— contains all the digits exactly once. Let's the

— step-by-step process:

**xIdentify the missing digits*x: Start by identifying the
missing digits in the grid. In this case, the missing
digits are 1, 2, 3, and 4.

**xAnalyze the grids*: Look at the grid and identify the
positions of the missing digits. The this puzzle, the
missing digits are in the first row, first column, and
the first 2x2 box.

**Fill in the first rowxx: The first row must contain the
digits 1-4 exactly once. The first row should be 1, 2, 3,
4.

Fill in the first columnx: The first column must
contain the digits 1-4 exactly once. The first column
should be 1, 2, 3, 4.

*%F111l in the first 2x2 box**: The first 2x2 box must
contain the digits 1-4 exactly once. The first 2x2 box
should be 1, 2, 3, 4.

**Fill in the second rowxx: The second row must contain
the digits 1-4 exactly once. The second row should be 2,
3, 4, 1.

**Fill in the second columnx*x*: The second column must
contain the digits 1-4 exactly once. The second column
should be 2, 3, 4, 1.

+**xFill in the second 2x2 box*x: The second 2x2 box must
contain the digits 1-4 exactly once. The second 2x2 box
should be 2, 3, 4, 1.

**Fill in the third rowxx: The third row must contain the
— digits 1-4 exactly once. The third row should be 3, 4, 1,
- 2.

By following these steps, we can solve the 4x4 Sudoku puzzle.
</reasoning>
<answer>
123412341123413412
</answer><|eot_id|><|endoftext|>",

Ground Truth
4213132424313142

D A A A A I A A A A A

E.2 GSMS8K SAMPLES

For the gsm8k task we leverage the following prompt and we present generations at 256 tokens.

25

Under review as a conference paper at ICLR 2025

Sample Generations

Prompt

<|startoftext |><|start_header_id|>user<|end_header_id|>

You are a math expert. You will be given a question to solve.
— Solve it step by step. Wrap the final answer in a

— \\boxed{}.

Respond in the following format:

<reasoning>

Your reasoning here

</reasoning>

<answer>

\\boxed{...}

</answer>

Sample Generations

Question

Janet\u2019s ducks lay 16 eggs per day. She eats three for

— Dbreakfast every morning and bakes muffins for her friends
— every day with four. She sells the remainder at the

— farmers' market daily for $2 per fresh duck egg. How much
— 1n dollars does she make every day at the farmers'

— market?

Model Generation

To determine how much Janet makes every day at the farmers'
— market, we need to follow these steps:

1. Calculate the total number of eggs laid by Janet's ducks
— per day.

2. Subtract the number of eggs she eats for breakfast and
— bakes for her friends.

3. Multiply the remaining eggs by the price at which she

— sells them.

First, we know that Janet's ducks lay 16 eggs per day.

Next, we account for the eggs she eats for breakfast and
— bakes for her friends:

— She eats 3 eggs for breakfast.

— She bakes 4 eggs for her friends.

So, the total number of eggs she uses is:

NN 3 + 4 =7 \\]

The number of eggs left to sell is:
NN 16 = 7 = 9 \\]

Janet sells each egg for $2. Therefore, her daily earnings
— are:
A\ 9 \\times 2 = 18 \\]

Thus, Janet makes $18 every day at the farmers' market.
</reasoning>

<answer>
\\boxed{18}
</answer><|eot_id|><|endoftext|>",

Ground Truth
18.0

Under review as a conference paper at ICLR 2025

Sample Generations

Question

Every day, Wendi feeds each of her chickens three cups of
mixed chicken feed, containing seeds, mealworms and
vegetables to help keep them healthy. She gives the
chickens their feed in three separate meals. In the
morning, she gives her flock of chickens 15 cups of feed.
In the afternoon, she gives her chickens another 25 cups
of feed. How many cups of feed does she need to give her
chickens in the final meal of the day if the size of
Wendi's flock is 20 chickens?

0

reerood

Model Generation

<|startoftext|><|start_header_id|>user<|end_header_id|>

You are a math expert. You will be given a question to solve.
— Solve it step by step. Wrap the final answer in a

— \\boxed{}.

Respond in the following format:

<reasoning>

Your reasoning here

</reasoning>

<answer>

\\boxed{...}

</answer>

Every day, Wendi feeds each of her chickens three cups of
mixed chicken feed, containing seeds, mealworms and

— vegetables to help keep them healthy. She gives the

— chickens their feed in three separate meals. In the

— morning, she gives her flock of chickens 15 cups of feed.
— In the afternoon, she gives her chickens another 25 cups
N
s
N
</

!

of feed. How many cups of feed does she need to give her

chickens in the final meal of the day if the size of

Wendi's flock is 20 chickens?
eot_id|><|start_header_id|>assistant<|end_header_id|>

<reasoning>",

"generations": "

To determine how many cups of feed Wendi needs to give her
chickens in the final meal of the day, we first need to

<
— calculate the total amount of feed required for the

— entire day. Wendi has 20 chickens, and each chicken needs
— 3 cups of feed per day. Therefore, the total amount of

— feed needed for the day is:

\\[20 \\text{ chickens} \\times 3 \\text{ cups/chicken} = 60
— A\\text{ cups} \\]

Next, we know that Wendi has already given her chickens 15

— cups in the morning and 25 cups in the afternoon. So, the
— total amount of feed given so far is:

\\[15 \\text{ cups} + 25 \\text{ cups} = 40 \\text{ cups}

= \\]

To find out how many cups are needed for the final meal, we
— subtract the amount of feed already given from the total
— amount required:

\\[60 \\text{ cups} - 40 \\text{ cups} = 20 \\text{ cups}
= \\]

</reasoning>

<answer>

\\boxed {20}

</answer><|eot_id|>

Ground Truth

20.0 27

Under review as a conference paper at ICLR 2025

Sample Generations

Question

John drives for 3 hours at a speed of 60 mph and then turns
around because he realizes he forgot something very
important at home. He tries to get home in 4 hours but
spends the first 2 hours in standstill traffic. He
spends the next half-hour driving at a speed of 30mph,
before being able to drive the remaining time of the 4
hours going at 80 mph. How far is he from home at the
end of those 4 hours?

!

rregfoyl

Model Generation

First, we calculate John total driving distance. He drives
for 3 hours at 60 mph, so he covers 3 % 60 = 180 miles.
Then he spends 2 hours in standstill traffic, so he
doesn't cover any distance during that time. Next he
spends half an hour at 30 mph, so he covers 0.5 % 30 = 15
miles. Finally, he drives the remaining 1 hour at 80 mph,
so he covers 1 x 80 = 80 miles. Adding these distances
together, we get the total distance driven: 180 + 15 + 80
= 275 miles. Since he turned around and the distance is
the same in both directions, the distance he drove away
from home is 270 / 2 = 135 miles. Therefore, he is 135
miles from home at the end of those 4 hours.

</reasoning>

<answer>

\\boxed {135}

</answer><|eot_id|><|endoftext |><|endoftext |>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext|>

<|endoftext |><|endoftext |><|endoftext|>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext|>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |>

Ground Truth
45.0

L A (A

E.3 COUNTDOWN SAMPLES

For the the countdown task we leverage the following prompt and we present generations at 256
tokens.

28

Under review as a conference paper at ICLR 2025

Sample Generations

Prompt

<|startoftext|><|start_header_id|>user<|end_header_id|>

Using only the provided numbers, create an arithmetic
expression that evaluates to exactly the provided target
number. You may use the operations +, -, *, and / as
needed, but each number must be used exactly once. Think
step-by-step. After reasoning, provide only your final
expression inside \\boxed{} tags without including an
equals sign or the target number. For example: \\boxed{a
+ b % c}Respond in the following format:
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}
</answer>

reeerny

Sample Generations

Question
Numbers: [49, 55, 53]
Target: 51

Model Generation

To find an arithmetic expression using the numbers 49, 55,

— and 53 that evaluates to 51, we can start by considering
— different combinations of operations numbers can use to
— achieve the target. Let's try a few possibilities:

1. x»xAddition and Subtractionxx:
- \\ (53 = 51 + 49 = 51\\)
- \\ (55 + 49 - 53 = 51\\)
2. xxMultiplication and Divisionxx:

- \\ (55 - 53 + 49 = 51\\)
- \\ (53 - 49 + 5)) = 51\\)
We can see that the expressions work in different ways. but
— one simplest way 1s to use subtraction since subtraction
— and addition are inverse operations.
Thus, one valid expression is:
N[55 = 53 + 49 = 51 \\]
This expression uses each number exactly once and evaluates
— to the target number 51.
</reasoning>
<answer>
\\boxed{55 - 53 + 49}
</answer><|eot_id|><|endoftext |>

Ground Truth
[49, 55, 53], 51

29

Under review as a conference paper at ICLR 2025

Sample Generations

Question
Numbers: [38, 92, 52]
Target: 78

Model Generation

To find an arithmetic expression using the numbers 38, 92,
— and 52 that evaluates to 78, we can start by considering
— different combinations of operations numbers can use to
— achieve the target. Let's try a few possibilities:

1. *xAddition and Subtractionxx:
- \\ (92 - 38 + 52 = 78\\)
- \\ (38 + 92 - 52 = 78\\)
2. *xxMultiplication and Divisionxx:
- \\ (92 - 52 + 38 \
eq 78\\)
- \\ (92 + 38 - 52 \
eq 78\\)
- \\ (92 - 52 + 38 \
eq 78\\)

From the above combinations, we see that the expression \\ (92
< + 38 - 52\\) correctly evaluates 78. Therefore, the

— expression that uses 38, 92, and 52 exactly once and 78
</reasoning>

<answer>

\\boxed{92 + 38 - 52}

</answer><|eot_id|><|endoftext|>",

Ground Truth
[38, 92, 52], 78

30

Under review as a conference paper at ICLR 2025

Sample Generations

Question

Numbers: [67, 47, 25]
Target: 5

Model Generation

To create an arithmetic expression that evaluates to exactly
— the target number 5 using the numbers 67, 47, and 25, we
— need to consider the operations operations +, -, x, and
— /. Each number must be used exactly once.
One's try to get to 5 by using subtraction combination of
1 Using 67 -

— We need a number that when subtracted from 67 gives us

— 5.

— This is impossible because 67 is 70% larger than 5.
Next. Using addition try:

- Adding -27 to 32 gives usb5 (—-27 + 32 = 5).
Next, using division try:

- Dividing each 5 by 1 gives us 5 (25/2) = 5/1 =
However, using multiplication combination:

— Multiplying 5 divided by -2 gives us 5 (

Thus, the expression expression that25+67- 87

</reasoning>
<answer>
\\boxed{47 + 25 - 67}
</answer><|eot_id|><|endoftext|>",

Ground Truth
[67, 47, 25 1, 5

E.4 MATH SAMPLES

For the the mathj task we leverage the following prompt and we present generations at 256 tokens.

Sample Generations

Prompt

<|startoftext |><|start_header_id|>user<|end_header_id|>
You are a math expert. You will be given a question to solve.
— Solve it step by step. Wrap the final answer in a
— \\boxed{}.
Respond in the following format:
<reasoning>
Your reasoning here
</reasoning>
<answer>
\\boxed{...}
</answer>

31

Under review as a conference paper at ICLR 2025

Sample Generations

Question
Convert the point $(0,3)$ in rectangular coordinates to polar
— coordinates. Enter your answer in the form

— S$(r,\\theta),$ where $r > 05 and $0 \\le \\theta < 2
— \ \p i.$
Model Generation

Convert the point $(0,3)$ in rectangular coordinates to polar

< coordinates. Enter your answer in the form

— $(r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2

— \\pi.$<|eot_id|><|start_header_id|>assistant<|end_header_id|
<reasoning>",
"generations":
The point $(0,3)$ in rectangular the point lies on the

— Sy$-axis, so $r = 3.$ The angle $\\theta$ is

— S\\frac{\\pi}{2}$ (the angle between $90°\\circ$ and

— $1807°\\circ$ that is measured the positiveclockwise from
— the positive x-axis).

</reasoning>

<answer>

\\boxed{ (3, \\frac{\\pi}{2})}
</answer><|eot_id|><|endoftext|><|endoftext |>

<|endoftext |><|endoftext |><|endoftext|>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext|>
<|endoftext|><|endoftext |><|endoftext |>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext |>

<|endoftext |><|endoftext|><|endoftext|>

<|endoftext |><|endoftext |><|endoftext |>

<|endoftext |><|endoftext|>",

Ground Truth
\\left (3, \\frac{\\pi}{2} \\right)

"

32

Under review as a conference paper at ICLR 2025

Sample Generations

Question

The results of a cross-country team's training run are
— graphed below. Which student has the greatest average
— speed? [asy]
for (int i = 1; 1 <= 7; ++1i)
{
draw ((i,0)-=(1,6));
}
for (int i = 1; 1 <= 5; ++i)
{
draw ((0,1)--(8,1));
}

draw((-0.5,0)——(8,0), linewidth(1l));
draw((0,-0.5)--(0,6), linewidth(1l));

label (\"$0OS\", (0,0), SW);

label (scale (. *rotate (90) *\"distance\", (0, 3), W);

85)
label (scale (. 85)*\"t1me\" (4, 0), 9S);
dot ((1.25, 4.5));
label(scale(85) x\"Evelyn\", (1.25, 4.8), N);
dot ((2.5, 2));
label(scale(85) *\"Briana\", (2.5, 2.2), 9S);
dot ((4.25,5.2));
label(scale(85)
dot ((5.6, 8));
label(scale(85)
dot ((6.8, 1.4));
label (scale (.85)

[/asy]
Model Generation

*\"Carla\", (4.25, 5.2), SE);
*\"Debra\", (5.6, 2.8), N);

) *\"Angela\", (6.8, 1.4), E);

To determine which student has the greatest average speed, we
— need to look at the height of each column on the graph.
— The height of each column represents the distance covered
— by the student in a certain amount of time. The student
— with the greatest average speed will have the highest
— column. The graph shows that the highest for Carla is 5.2
— units, which is the highest among all the students.
— Therefore, Carla has the greatest average speed.
</reasoning>
<answer>
\\boxed{\\text {Carla}}

Ground Truth

\\text {Evelyn}

33

Under review as a conference paper at ICLR 2025

Sample Generations

Question

What is the distance, in units, between the points $(2, -6)$
— and $(-4, 3)$? Express your answer in simplest radical
— form.

Model Generation

The distance between two points (x_1, y_1) and (x_2, y_2)

— 1is given by $\\sqgrt{(x_2 - x_1)"2 + (y_2 — y_1)"2}S.

— Plug, in $\\sqgrt{(6 — (-4))"2 + (3 - (-6))"2} =

< \\sgrt{6°2 + 9°2} = \\sqrt{36 + 81} = \\sqrt{1l1l7}$.

</reasoning>

<answer>\\boxed{3\\sqgrt {13} }<answer><|eot_id|><|endoftext|>",
Ground Truth

3\\sqrt {13}

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

This work made use of large language models to assist with proofreading and improving the clarity
of the writing. All research ideas, theoretical development, and experiments were carried out solely

by the authors. When used for coding, it was solely used for plotting purposes.

34

	Introduction
	Preliminaries
	Masked Diffusion Language Models (MDMs)
	Reinforcement Learning without Value Networks

	Improving Reasoning via Group Diffusion Policy Optimization
	Revisiting Sequence-Level Likelihood for DLMs
	Disentangling Variance in ELBO
	Variance Reduction via Semi-deterministic Monte Carlo
	Overview of Theoretical Results

	Experiments
	Main Results

	Conclusion
	More Details on Variance decomposition
	Analysis of Asymptotic Error Bounds
	The variance term
	The bias term

	Properties of the integrand in the numerical quadrature
	Empirical Details
	Training Details
	Reward Functions

	Sample Generations
	Generation on Sudoku
	GSM8K Samples
	Countdown Samples
	Math Samples

