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Figure 1: The Framework of VLA-RFT. A world model functions as a simulator that processes
multi-rollout VLA action sequences to generate corresponding future states. By incorporating veri-
fied rewards through a GRPO optimization framework, we perform end-to-end updates of the VLA.
Our approach achieves superior performance with remarkably fewer optimization steps—requiring
only 0.4K iterations compared to 150K iterations for a strongly supervised baseline—demonstrating
advantages in both standard and perturbed environments. Furthermore, the method exhibits en-
hanced execution-time robustness, characterized by reliable failure recovery and retry capabilities.

ABSTRACT

Vision-Language-Action (VLA) models enable embodied decision-making but
rely heavily on imitation learning, leading to compounding errors and poor ro-
bustness under distribution shift. Reinforcement learning (RL) can mitigate these
issues yet typically demands costly real-world interactions or suffers from sim-to-
real gaps. We introduce VLA-RFT, a Reinforcement Fine-Tuning framework that
leverages a data-driven world model as a controllable simulator. Trained from real
interaction data, the simulator predicts future visual observations conditioned on
actions, allowing policy rollouts with dense, trajectory-level rewards derived from
goal-achieving references. This design delivers an efficient and action-aligned
learning signal, drastically lowering sample requirements. With fewer than 400
fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves
greater efficiency than simulator-based RL. Moreover, it exhibits strong robust-
ness under perturbed conditions, sustaining stable task execution. Our results es-
tablish world-model-based RFT as a practical post-training paradigm to enhance
the generalization and robustness of VLA models.
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1 INTRODUCTION

Vision-Language-Action (VLA) models have recently achieved remarkable progress by building
upon large, pre-trained vision-language models (VLMs) (Li et al., 2025b; Karamcheti et al., 2024;
Driess et al., 2023). Leveraging the powerful perceptual generalization of VLMs allows these mod-
els to operate under diverse visual conditions. However, most existing VLAs (Brohan et al., 2022;
Zitkovich et al., 2023; Black et al., 2024; Bjorck et al., 2025; Kim et al., 2024) are trained purely
via imitation learning. This approach is prone to error accumulation under distribution shift, where
small deviations from expert demonstrations gradually drive the policy toward unfamiliar states and
weaken its robustness (Ross & Bagnell, 2010; De Haan et al., 2019; Foster et al., 2024).

In contrast, reinforcement learning (RL) offers a promising avenue to overcome these limitations
by explicitly optimizing beyond demonstrated behaviors and encouraging exploration (Liu et al.,
2025). Recent studies have increasingly incorporated RL into VLA training, demonstrating its crit-
ical role in enhancing generalization and long-horizon task performance through offline RL ap-
proaches (Zhang et al., 2025c; 2024), direct real-world RL (Xu et al., 2024; Guo et al., 2025b), and
simulation-based RL (Lu et al., 2025; Tan et al., 2025; Liu et al., 2025).

Yet, standard RL pipelines for VLA face steep challenges. Simulation-based RL (Chen & Li, 2025;
Chen et al., 2025b; Shu et al., 2025) often requires millions of interactions and suffers from a pro-
nounced sim-to-real gap. Real-world training (Xu et al., 2024; Mark et al., 2024; Guo et al., 2025c;
Chen et al., 2025a), on the other hand, is prohibitively costly and can raise safety concerns. Offline
RL also has inherent limitations: as noted by (Tan et al., 2025), without real environment interac-
tion, models are vulnerable to distribution shift and cannot learn from the consequences of their own
actions.

To address these challenges, we propose VLA-RFT, a Reinforcement Fine-Tuning framework that
leverages a world model as a high-fidelity simulator for policy optimization. At its core, VLA-RFT
employs a controllable world simulator that, once trained on a dataset of robot interactions, can pre-
dict future visual observations conditioned on an action sequence. Unlike conventional simulation
environments restricted to handcrafted scenarios, this simulator is entirely data-driven, capturing the
diversity of real-world interactions while avoiding the prohibitive cost and safety risks of training di-
rectly in the physical world. For a given task, policy-proposed actions are rolled out within this sim-
ulator to generate predicted visual trajectories. These synthetic trajectories then enable the design of
a dense, task-grounded reward by comparing them against the visual trajectory from goal-achieving
reference trajectory. These rewards are then used to optimize the policy via Generalized Reinforce-
ment Policy Optimization (GRPO), enabling stable and efficient reinforcement fine-tuning.

This design provides a continuous, action-aligned learning signal that substantially reduces the sam-
ple complexity of reinforcement fine-tuning. Empirically, we show that with as few as 400 fine-
tuning steps, VLA-RFT not only outperforms strong supervised fine-tuning baselines (Wang et al.,
2025a) in both overall performance and compositional generalization, but also achieves markedly
higher efficiency than simulator-based RL algorithms that demand orders of magnitude more in-
teractions. Furthermore, in perturbed or adversarial scenarios, VLA-RFT exhibits superior action
robustness, sustaining stable task execution even under unexpected environmental variations. Taken
together, this combination of efficiency, generalization, and robustness underscores the practical
advantages of our framework for scalable VLA training.

Finally, we hope that our method, experiments, and analysis will motivate future research to harness
world models as a general and efficient post-training paradigm for VLAs, thereby substantially
enhancing their practicality and accelerating their real-world deployment.

2 RELATED WORK

Vision-Language-Action Models. Vision-Language-Action (VLA) models align visual and lin-
guistic inputs with actions through imitation learning on large-scale datasets (O’Neill et al., 2024;
Liu et al., 2023; Mees et al., 2022). Pre-trained VLMs provide generalization, while supervised fine-
tuning adapts them to task-specific action spaces (Li et al., 2025b; Karamcheti et al., 2024; Driess
et al., 2023). Recent studies further improve efficiency with lightweight adapters and post-training
techniques (Kim et al., 2025; Cui et al., 2025; Wang et al., 2025b; Fan et al., 2025; Gong et al.,

2
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2024; Ding et al., 2024; 2025). However, imitation learning alone is prone to error accumulation
under distribution shifts, where minor deviations from expert data push the policy into unfamiliar
states and reduce robustness. To address this, recent studies incorporate reinforcement learning to
improve VLA performance. Our work also falls into this line of research.

VLA with Reinforcement Learning. Reinforcement learning from human feedback has proven
highly effective in language models (Sheng et al., 2024; Ouyang et al., 2022), inspiring RL fine-
tuning for vision–language–action (VLA) systems. However, simulation-based RL (Chen & Li,
2025; Chen et al., 2025b; Shu et al., 2025) requires vast interactions and suffers from the sim-to-real
gap, while real-world training (Xu et al., 2024; Mark et al., 2024; Guo et al., 2025c; Chen et al.,
2025a) is expensive and unsafe. Offline RL also faces fundamental limitations: as highlighted by
(Tan et al., 2025), policies struggle with distribution shift and the inability to learn from its own
actions. To overcome these limits, we leverage a world model as a data-driven simulator, enabling
practical policy optimization without real-world costs or risks.

World Models and Verified Rewards World Models learn environment dynamics for planning and
control, either via explicit physics (Song et al., 2024; Li et al., 2024; Sancaktar et al., 2022) or latent
predictive representations (Hafner et al., 2019b;a; 2023). Recent extensions integrate multi-modal
inputs and guide RL with high-dimensional predictions (Wu et al., 2023; Li et al., 2025a). Advances
in generative modeling (Ho et al., 2022; Blattmann et al., 2023; Liu et al., 2024) have enabled
large-scale video-based World Models (Bardes et al., 2023; Assran et al., 2025), later specialized
for robotics (Zhou et al., 2024a;b). Emerging works further link these models with instruction-
conditioned action generation (Hu et al., 2024; Cen et al., 2025; Zhong et al., 2025; Zhang et al.,
2025a). While these approaches explore diverse downstream applications, scaling World Models
for VLA remains under-explored. VLA models—owing to high-dimensional visual and language
inputs paired with fine-grained action outputs—require substantial data to scale effectively. Similar
to the trajectory of LLM development, verified rewards (i.e., rewards that are deterministically com-
putable and task-independent) are often more stable and reliable than learned reward models, which
may suffer from task-specific overfitting, poor generalization, or reward hacking (Wen et al., 2025;
Lambert et al., 2024; Guo et al., 2025a; Yue et al., 2025). Although some recent efforts explore
training World Models using verifiable reward signals, none of these works leverage such rewards
for reinforcement fine-tuning of VLA policies (Wu et al., 2025). In this work, our world model
simultaneously acts as a dynamics simulator and as a source of verifiable reward signals for pol-
icy optimization, enabling reliable, fast, and scalable reinforcement fine-tuning of VLAs—without
requiring human annotations, task-specific reward modeling, or online environment interaction.

3 METHOD

In this section, we begin by presenting the motivation behind our approach and outlining both the key
challenges and the intuitive foundation of our pipeline. We then provide a formal problem definition
and describe each component of the framework in detail. Finally, we present a comprehensive
illustration of the two training phases, which is shown in Figure 2.

Stage I: World Model (WM) and Policy Pretraining. In the first stage, we pretrain the world
model on offline datasets so that it can capture environment dynamics. In parallel, we pretrain the
VLA policy to produce stable action chunks, which serve as a reliable initialization for subsequent
optimization.

Stage II: VLA Optimization through WM Interaction. In the second stage, given an initial
frame and a language instruction, the VLA rolls out n action chunks. The world model then interac-
tively generates trajectories conditioned on these actions and provides verified rewards. Using these
feedback signals, the VLA is fine-tuned with GRPO to progressively improve policy performance.

3.1 PROBLEM FORMULATION

In this work, we investigate how to train a dual-system VLA policy equipped with a flow-matching
action head, using both a WM and a verified reward mechanism. Specifically, we formulate the
entire training process as a Partially Observable Markov Decision Process (POMDP). The training
pipeline is formally defined by the tuple

M := (O, S, A, L).

3
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Figure 2: Training Paradigm of VLA-RFT. In the pre-training stage, both the world model and
VLA policy are initialized, where the world model takes a 7-dimensional action input that is con-
sistent in format with the VLA’s action output. In the reinforcement fine-tuning stage, the VLA
generates action chunks based on an initial frame and language instruction, which are rolled out
in the world model to predict future states. Verified rewards are then computed from the predicted
states and used to optimize the VLA via GRPO Optimization.

where Observations O represents the perceptual space of the agent, including real images captured
from the environment. States S denotes the robot’s proprioceptive state. Actions A is the action
space. Language L refers to natural language instructions provided to the agent.

The VLA policy is expected to generate a sequence of T actions with indices t ∈ [T ] = {0, . . . , T},
conditioned on the first observed real image oi, the initial language instruction li, and the initial
robot state si. This process is factorized as

âi:i+T−1 ∼ πθ
(
· | oi, li, si

)
= πθfm

(
· | zi, si

)
, zi = fVLM(oi, li). (1)

where fVLM denotes the vision–language large model that encodes multimodal inputs into latent
representations zi, and πθfm represents the flow-matching policy head that generates the correspond-
ing action chunk.

The world model acts as an interactive simulator that generates rollouts conditioned on the first
image ot and the policy-generated action sequence at:t+T−1. By comparing the generated trajectory
against ground-truth images or ground-truth-action-induced rollouts, we obtain a verified reward
signal:

ôi+t+1 =

{
gϕ(oi, ai), t = 0,

gϕ(oi:i+t, ai:i+t), t = 1, . . . , T − 1.
(2)

where gϕ denotes the autoregressive world model. In particular, the first prediction is generated
from the initial frame ot and the first action at, while subsequent predictions (i ≥ 1) are produced
autoregressively by conditioning on both the previously generated frames ot:t+i and the executed
actions at:t+i.

3.2 STAGE I: WM PRETRAINING AND VLA PRETRAINING

To reduce reinforcement learning instability and prevent early collapse, we pretrain the world model
and policy on offline datasets, providing a stable initialization for subsequent optimization.

World Model Training. To obtain dense verified rewards more efficiently, and inspired by recent
advances in video generation models (e.g., iVideoGPT (Wu et al., 2024)), we train an interactive
video prediction model to serve as the world model. This design avoids the limitations of implicit
world models, such as sparse reward signals and the lack of verifiable environment dynamics. It

4
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consists of a pretrained tokenizer and an autoregressive Transformer backbone. During pretraining,
the WM is optimized via maximum likelihood (MLE):

LWM
MLE(ϕ) = −E

[
log pϕ(oi+1 | oi, ai) +

T−1∑
t=1

log pϕ(oi+t+1 | oi:i+t, ai:i+t)
]
. (3)

where pϕ(·) denotes the predictive distribution of future observations parameterized by the world
model with parameters ϕ.

VLA Pretraining. In this stage, we aim to ensure that the VLA produces stable actions. Since the
flow-matching action head provides stable training for continuous actions, we pretrain the upstream
VLM encoder and the flow-matching head on the expert demonstration dataset D.

LVLA
MSE(θ) = E(ai:i+T−1,oi,li,si)∼D

[
∥vθ(oi, li, si, aτi:i+T−1)− uτ∥22

]
. (4)

where τ ∼ Beta(α, β) is the flow-matching timestep, vθ(·) denotes the flow predicted by the action
head parameterized by θ, aτt:t+T−1 = τat:t+T−1 + (1 − τ)ϵ is the noise-perturbed action chunk,
uτ = at:t+T−1− ϵ is the target flow field defined by the noisy action interpolation, and ϵ ∼ N (0, I)
is standard Gaussian noise.

3.3 STAGE II: VLA OPTIMIZATION THROUGH WM INTERACTION

To achieve stable and efficient fine-tuning, we adopt an Stochastic Differential Equation (SDE)-
based policy formulation optimized with GRPO, which offers reliable gradient estimates. The Stage
I world model serves as an interactive simulator, providing verified rewards that further enhance
training stability.

SDE-Policy: Policy Parameterization via Flow and Sigma. Since flow matching is inherently a
deterministic Ordinary Differential Equation (ODE) process, it has limitations in directly obtaining
log-likelihood. To address this, we build upon prior work on flow-matching reinforcement learn-
ing(e.g. ReinFlow (Zhang et al., 2025d)) by extending the framework into a stochastic formulation,
thereby enabling exploration during training. In Stage II, we introduce a Sigma Net, whose archi-
tecture mirrors that of the flow-matching head, and which outputs a variance vector that parameter-
izes the stochasticity of the policy. Concretely, at inference time, we discretize the integration into
K = 10 steps, with k ∈ [0, 1, 2, . . . , 10]. Actions are generated by integrating the learned vector
field from τ = 0 to τ = 1, initialized from random noise aτ=0

i:i+T−1 ∼ N (0, I). We apply the forward
Euler method:

µk = akδi:i+T−1 + δvθ(oi, li, si, a
kδ
i:i+T−1), (5)

where δ = 0.1 is the integration step size. For each integration steps k, Sigma Net takes as input
(zi, si, k) and outputs a variance vector σkψ , while the flow-matching action head simultaneously
predicts the flow µk. Together, these two components define a Gaussian conditional distribution
from which the next action chunk is sampled, thereby generalizing the deterministic Flow Matching
(FM)-ODE formulation into a SDE process:

akδi:i+T−1 ∼ N (µk,Σk), (6)

where
Σk = (σkψ)

2. (7)

Within the same rollout, we compute the step-wise log-likelihoods across the K denoising steps,
and take their average as the log-probability of the rollout:

ℓ̄θ,ψ = 1
K

K∑
k=1

log p
(k)
θ,ψ(a

kδ
i:i+T−1 | a(k−1)δ

i:i+T−1, zi, si). (8)

Finally, we compute the policy ratio with respect to the old policy by exponentiating the difference
of average log-probabilities:

r = exp
(
ℓ̄θ,ψ − ℓ̄old

)
. (9)

Interactive WM Simulation and Verified Reward. Visual features often carry richer semantic
information. To leverage this, given an action chunk aKt:t+T−1 from the SDE-Policy, the world

5
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Algorithm 1 VLA Fine-Tuning Pipeline with World Model and Verified Reward

Require: Offline dataset D, diffusion horizon K, chunk length T , rollout number N , initial frame
ot, sigma net parameters ψ

Ensure: Trained VLA policy πθ
1: Stage I: Pretraining
2: Train WM parameters ϕ with maximum likelihood Eq. 3
3: Train VLA encoder fVLM + flow-matching head πθfm with loss Eq. 4
4: Stage II: Interaction and Optimization
5: for each task instance do
6: for n = 1 to N do ▷ Rollouts
7: for k = 1 to K do ▷ Diffusion steps
8: Sample actions from Gaussian distribution p(k)θ,ψ ▷ Eq. 6
9: Calculate log-probability ℓ(k) ▷ Eq. 8

10: end for
11: Generate trajectory Traj with WM ▷ Eq. 10
12: Compute verified reward Rn ▷ Eq. 11
13: end for
14: Compute advantages Advn = Rn − R̄group

15: Update policy πθ and sigma net with GRPO objective ▷ Eq. 13
16: end for

model generates a visual trajectory, which is aligned with ground-truth data to construct verified
rewards. This design improves reward reliability, reduces manual labeling, and enhances stability.

Starting from the initial frame oi and the first action aKi , the WM generates the next frame and
recursively conditions on previously generated frames to produce the complete trajectory:

Traj =
[
oi, a

Kδ
i , ôi+1, . . . , a

Kδ
i+T−1, ôi+T

]
, (10)

The generated sequence ôi+1:i+T+1 is aligned with the ground-truth frames oi+1:i+T+1 from the
offline dataset. The verified reward for the current trajectory segment is defined as the negative
weighted sum of the per-frame reconstruction loss and perceptual similarity loss:

R = −
T−1∑
t=0

[
λ1 L1

(
ôi+t+1, oi+t+1

)
+ λlp LPIPS

(
ôi+t+1, oi+t+1

)]
. (11)

To reduce variance, we group n rollouts sampled from the same starting state and compute the group
average reward as a baseline:

R̄group =
1

N

N∑
j=1

Rj , Advn = Rn − R̄group. (12)

Using the policy ratio r derived earlier, the VLA policy is optimized with GRPO. For training
stability, we also retain a small-weight flow-matching mean squared error (MSE) term as auxiliary
supervision on the flow head. The final objective is

LVLA
GRPO(θ, ψ) = −E[ clip(r, 1− ϵ, 1 + ϵ) Adv ] + λmse LVLA

MSE(θ) − αH
(
πθ,ψ

)
. (13)

where LVLA
MSE(θ) is the auxiliary flow-matching MSE loss with weight λmse, and H(πθ,ψ) is the policy

entropy used to encourage exploration, weighted by α. Therefore, the objective integrates policy
optimization with auxiliary supervision to ensure efficient and stable fine-tuning.

4 EXPERIMENTS

In this section, we assess VLA-RFT through three research questions: 1) How well can world model
approximate a simulator? 2) How does world model improve VLA performance? 3) Which compo-
nents of VLA-RFT drive these improvements?

6
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4.1 EXPERIMENTAL SETUP.

Implementations. 1) Benchmark: We evaluate our model on the LIBERO benchmark (Liu et al.,
2023). 2) Metrics: We report Success Rate (SR) for all tasks. 3) Baseline: To accelerate experi-
mentation, we employed a lightweight variant of VLA-Adapter (Wang et al., 2025a) as our baseline.
More details of policy choice can be found in Appendix A.1. 4) World Model: To optimize the
balance between training efficiency and generation quality, we implemented a lightweight autore-
gressive world model based on the LLaMA architecture (Touvron et al., 2023). This model was
instantiated as a compact 138M-parameter variant, comparable in scale to GPT-2 small (Radford
et al., 2019). The model underwent pretraining on the LIBERO dataset to effectively capture task-
relevant visual and action dynamics. 5) Training Details: We initially pretrained a initial policy
through supervised fine-tuning. Subsequently, we conducted post-training with reinforcement fine-
tuning (RFT) using VERL (Sheng et al., 2024), a distributed RL framework that coordinates diverse
rollout strategies with FSDP-sharded training. All experiments were executed on 4× A800 GPUs.

4.2 WORLD MODEL CAPABILITIES.

Experimental Setting. To evaluate whether pre-training enables the world model to capture envi-
ronmental dynamics, we assess its pixel-level generation capability. We randomly sample T consec-
utive image-action pairs from LIBERO, input the initial frame and complete action sequence into
the world model, and compare the generated frames with ground-truth images for subsequent steps.

Results Analysis. We partition the dataset into training and test splits at a 49:1 ratio, and report all
evaluation results on the held-out test set. As shown in Table 1, the world model attains low recon-
struction error (MSE 0.0039) and strong perceptual scores—PSNR (peak signal-to-noise ratio) of
25.23 dB, SSIM (structural similarity index) of 0.906, and LPIPS (Learned Perceptual Image Patch
Similarity) (Zhang et al., 2018) of 0.059—indicating high frame fidelity and perceptual quality.
Qualitative results show sharp, temporally consistent frames that capture both static backgrounds
and action-driven changes, demonstrating that pre-training enables the model to learn visual appear-
ance and action-conditioned dynamics.

Table 1: World model generation performance. Left: frame-level metrics across four suites
(Spatial, Object, Goal, Long) and their averages—MSE (pixel error), PSNR (signal-to-noise ra-
tio), SSIM (structural similarity), and LPIPS (perceptual distance). Right: qualitative results. Left
column shows simulator sequences, right column shows world-model generations from the same
initial frame and actions, illustrating consistent appearance and action-induced dynamics.

Task MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Spatial 0.0039 24.98 0.896 0.067
Object 0.0036 25.13 0.913 0.054
Goal 0.0024 26.99 0.929 0.040
Long 0.0056 23.83 0.885 0.074
Avg 0.0039 25.23 0.906 0.059

... ...

Saved from Simulator Generated by World Model

4.3 PERFORMANCE IMPROVEMENTS FOR VLA.

In the previous section, we analyzed the generation quality of the world model. Here, we further
investigate whether our training pipeline enhances policy capability. Specifically, we evaluate policy
performance before and after training under the following two task settings.

LIBERO Standard Suites. We evaluate RFT on the LIBERO Standard Suites using the Base
model trained for 150k steps (Base-150k) as the baseline. As shown in Table 2, only 400 training
steps of RFT (RFT-400) raise average SR from 86.6% to 91.3% (+4.7 points), with gains across
all suites: Spatial (+6.0 points), Object (+6.4 points), Goal (+2.6 points), and Long (+3.0 points).
The graph further shows RFT-400 consistently outperforms Base-150k. Notably, while extending
supervised fine-tuning (SFT) training steps from 30k to 150k required heavy training, RFT delivers
clear improvements with far fewer iterations, underscoring its efficiency.

LIBERO Perturbation Suites. To assess out-of-distribution robustness, we construct perturbed
variants across the four LIBERO suites and report success rates for initial policy and our method.

7
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Table 2: Performance under LIBERO Standard Suites. The table reports success rate (SR) across
the four suites (Spatial, Object, Goal, and Long) and their average; the radar plot on the right pro-
vides a visual comparison of different model stages across tasks. Where “Base-30k” denotes a pol-
icy checkpoint after 30k steps of supervised fine-tuning (SFT), and “Base-150k” denotes a policy
checkpoint after 150k SFT steps.

Policy (iterations) Spatial Object Goal Long Average
Base-30k 82.4 84.8 85.4 57.2 77.5
Base-150k 88.4 88.0 92.8 77.2 86.6
VLA-RFT-400 94.4 94.4 95.4 80.2 91.1
∆ vs Base-150k +6.0 +6.4 +2.6 +3.0 +4.5

Base-30k Base-150k VLA-RFT-400

Origin Disturb Contrast Origin Disturb Contrast

Origin Disturb Contrast Origin Disturb Contrast

Object Position Goal Position

Combination (Object Position,  Goal Position , RoboStateRobot State )

Figure 3: Illustration of perturbed task settings in LIBERO. We consider four perturbation types
to evaluate out-of-distribution robustness: (Object Position) shifting the initial (x, y) coordinates
of the manipulated object; (Goal Position) displacing the target object in the (x, y) plane; (Robot
State) modifying the gripper’s vertical height and horizontal offset; and (Combination) applying all
perturbations together. Each row shows the original setting (Origin), the perturbed variant (Disturb),
and a side-by-side comparison (Contrast).

1) Experimental Setting. In LIBERO-Object, the manipulated object’s initial position is shifted
in the (x, y) plane with small or large offsets. In LIBERO-Goal, the target object’s initial position
is similarly displaced. In LIBERO-Spatial, the robot’s initial state is perturbed by adjusting the
gripper height and horizontal offset. In LIBERO-Long, we combine all the above perturbations. An
illustration of the perturbed tasks is provided in Figure 3.

Figure 4: Action distribution visualization of
VLA-RFT and VLA-SFT. The plots show distri-
butions alongX and Z action dimensions: the left
plot corresponds to the RFT-trained policy, and
the right plot to the SFT-only initial policy .

2) Results Analysis. As shown in Table 3,
VLA-RFT consistently improves robustness
across all types of perturbations. While Base-
150k degrades substantially under larger shifts,
VLA-RFT maintains higher stability, demon-
strating its effectiveness against distributional
shifts. The gains are most pronounced in
the Goal and combined perturbations (over
+6%), where generalization is more chal-
lenging, while RoboState perturbations show
smaller but consistent improvements. Over-
all, our training pipeline not only increases
standard performance but also improves out-
of-distribution robustness, particularly in more
complex settings. To further understand the ro-
bustness gains, we examine action distributions
in Figure 4.VLA-RFT yields broader coverage
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Table 3: Performance under perturbation settings. All perturbation magnitudes are in centimeter.

Object Pos Perturb Range SR (%)
Minor Perturbation

Base-150k ±2.5 69.3
VLA-RFT ±2.5 73.5
∆ vs Base ±2.5 +4.2

Major Perturbation
Base-150k ±5 48.0
VLA-RFT ±5 52.5
∆ vs Base ±5 +4.5

Goal Pos Perturb Range SR (%)
Minor Perturbation

Base-150k ±2.5 74.5
VLA-RFT ±2.5 79.0
∆ vs Base ±2.5 +4.5

Major Perturbation
Base-150k ±5 44.8
VLA-RFT ±5 51.5
∆ vs Base ±5 +6.7

RoboState Perturb Range SR (%)
Minor Perturbation

Base-150k ±20 73.0
VLA-RFT ±20 76.5
∆ vs Base ±20 +2.5

Major Perturbation
Base-150k ±50 63.5
VLA-RFT ±50 67.0
∆ vs Base ±50 +3.5

Combined Perturb Range SR (%)
Minor Perturbation

Base-150k ±2.5/2.5/20 63.5
VLA-RFT ±2.5/2.5/20 70.0
∆ vs Base ±2.5/2.5/20 +6.5

Major Perturbation
Base-150k ±5/5/50 34.0
VLA-RFT ±5/5/50 37.0
∆ vs Base ±5/5/50 +3.0

Table 4: Reward design comparison on LIBERO. The left table reports the average Success Rates
(SR, %) of Base-150k and its variants trained with three different verified reward types. The right
figure illustrates the corresponding reward function structures.

Policy Average (SR %)

Base
Base (150k) 86.6

Action Deviation Reward
VLA-RFT (R1) 87.7
∆ vs Base +1.1

Image Consistency Reward
VLA-RFT (R2) 87.1
∆ vs Base +0.5
Model-Based Image Consistency Reward
VLA-RFT (Ours) 91.1
∆ vs Base +4.5

across action dimensions than initial policy, while SFT remains narrowly concentrated. This broader
exploration enables better adaptability and generalization under perturbations.

4.4 KEY FACTORS FOR VLA-RFT

We showed our pipeline improves policy performance and robustness. Next, we test which compo-
nents drive these gains via three verified reward designs and world model ablations.

1) Experimental Setting. We design three verified rewards under the same training setup and
apply RFT to the base model to compare their effects on LIBERO success rates. “Action Deviation
Reward” uses the negative L1 distance between policy and dataset actions, offering direct action-
level supervision. “Image Consistency Reward” generates images from policy actions via the world
model and compares them with dataset images using negative MAE and LPIPS, providing pixel-
level guidance. “Model-Based Image Consistency Reward” renders trajectories from both policy
and dataset actions within the same world model, using negative MAE and LPIPS across time to
mitigate generation-quality bias and ensure fairness.

2) Results Analysis. As shown in Table 4, the comparison across reward designs highlights the es-
sential role of the world model in the training pipeline. “Action Deviation Reward”, which excludes
the world model and relies only on action-level supervision, brings very limited gains (+1.1 points),
showing that imitation alone is insufficient. “Image Consistency Reward” uses the world model
and achieves moderate improvements, but direct comparison with real images still has limitations.
“Model-Based Image Consistency Reward” maximally exploits the world model by performing tra-
jectory comparisons within the same generative space, leading to consistent improvements across
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all tasks and an average success rate of 91.1% (+4.5 points over the initial policy ). These results
demonstrate that the world model is a key component, providing reliable optimization signals and
enhancing both performance and robustness.

5 CONCLUSION & LIMITATION

In this work, we introduced VLA-RFT, a reinforcement fine-tuning framework that uses a learned
world model as a controllable simulator. This approach enables efficient and safe policy optimiza-
tion, bridges imitation and reinforcement learning, and reduces real-world interaction costs. Exper-
iments show strong performance and generalization with minimal fine-tuning, highlighting world-
model–based RFT as a promising direction for VLA research.

Nevertheless, several limitations remain. First, the verified reward is primarily based on the sim-
ilarity between generated trajectories and expert demonstrations, constraining policies by dataset
quality and limiting the discovery of strategies beyond expert performance. Second, the representa-
tional capacity of the world model remains a bottleneck; scaling to larger models trained on more
diverse data could improve out-of-distribution generalization. Third, our framework does not explic-
itly integrate the world model into planning, which could enhance long-horizon reasoning. Finally,
the reward mechanism itself could be improved—for example, by leveraging learned reward models
(e.g., VLAC (Zhai et al., 2025)) to provide more task-relevant feedback. Extending the framework
to a broader class of policy architectures also represents an important direction for future work.
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Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. A vision-language-action flow model
for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing
Song, Hao Luo, Fan Wang, et al. Worldvla: Towards autoregressive action world model. arXiv
preprint arXiv:2506.21539, 2025.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025a.

Yuxuan Chen and Xiao Li. Rlrc: Reinforcement learning-based recovery for compressed vision-
language-action models. arXiv preprint arXiv:2506.17639, 2025.

Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
model via trajectory-wise group relative policy optimization. arXiv preprint arXiv:2506.08440,
2025b.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Robotics: Science
and Systems, 2023.

Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
Wanqi Zhou, Yang Liu, Bofang Jia, et al. Openhelix: A short survey, empirical analysis, and
open-source dual-system vla model for robotic manipulation. arXiv preprint arXiv:2505.03912,
2025.

Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning.
Advances in neural information processing systems, 32, 2019.

Pengxiang Ding, Han Zhao, Wenjie Zhang, Wenxuan Song, Min Zhang, Siteng Huang, Ningxi Yang,
and Donglin Wang. Quar-vla: Vision-language-action model for quadruped robots. In European
Conference on Computer Vision, pp. 352–367. Springer, 2024.

Pengxiang Ding, Jianfei Ma, Xinyang Tong, Binghong Zou, Xinxin Luo, Yiguo Fan, Ting Wang,
Hongchao Lu, Panzhong Mo, Jinxin Liu, et al. Humanoid-vla: Towards universal humanoid
control with visual integration. arXiv preprint arXiv:2502.14795, 2025.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied mul-
timodal language model. 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution im-
age synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12873–12883, 2021.

Yiguo Fan, Pengxiang Ding, Shuanghao Bai, Xinyang Tong, Yuyang Zhu, Hongchao Lu, Fengqi
Dai, Wei Zhao, Yang Liu, Siteng Huang, et al. Long-vla: Unleashing long-horizon capability of
vision language action model for robot manipulation. arXiv preprint arXiv:2508.19958, 2025.

Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
horizon in imitation learning. Advances in Neural Information Processing Systems, 37:120602–
120666, 2024.

Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Pannag Sanketi, Quan Vuong, Ted
Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot
policy. In Proceedings of Robotics: Science and Systems, Delft, Netherlands, 2024.

Zhefei Gong, Pengxiang Ding, Shangke Lyu, Siteng Huang, Mingyang Sun, Wei Zhao, Zhaoxin
Fan, and Donglin Wang. Carp: Visuomotor policy learning via coarse-to-fine autoregressive
prediction. arXiv preprint arXiv:2412.06782, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025b.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025c.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. Advances in neural information processing systems, 35:8633–
8646, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
predictive visual representations. arXiv preprint arXiv:2412.14803, 2024.

Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
In Forty-first International Conference on Machine Learning, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124, 2024.

Chenhao Li, Elijah Stanger-Jones, Steve Heim, and Sangbae Kim. Fld: Fourier latent dynamics for
structured motion representation and learning. arXiv preprint arXiv:2402.13820, 2024.

Chenhao Li, Andreas Krause, and Marco Hutter. Robotic world model: A neural network simulator
for robust policy optimization in robotics. arXiv preprint arXiv:2501.10100, 2025a.

Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang, Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang,
Yilin Zhao, Subhashree Radhakrishnan, et al. Eagle 2: Building post-training data strategies from
scratch for frontier vision-language models. arXiv preprint arXiv:2501.14818, 2025b.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
What can rl bring to vla generalization? an empirical study. arXiv preprint arXiv:2505.19789,
2025.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint arXiv:2505.18719, 2025.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. arXiv preprint arXiv:2412.06685, 2024.

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp. 745–
750, 2007.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. OpenAI blog preprint.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026
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A APPENDIX

A.1 MODEL ARCHITECTURE

World Model. As shown in Figure 5, given the input initial image, we first encode it using an en-
coder (similar to VQGAN (Esser et al., 2021)) to obtain image tokens, while continuous actions are
discretized into action tokens through an action tokenizer. These image and action tokens are then
jointly fed into the world model, which autoregressively predicts the future token sequences. Fi-
nally, the generated image tokens are decoded into corresponding future image sequences, enabling
the modeling and simulation of environment dynamics. As shown in Table 5, the model is built on a
12-layer Transformer architecture with a hidden size of 768 and an intermediate FFN size of 3072.
It employs 12 attention heads with a head dimension of 64, a maximum positional embedding length
of 8192, SiLU activation, and a vocabulary size of 9008.

Figure 5: Illustration of World Model Generation. The initial image I0 and input action sequence
a0:T−1 are first encoded into image and action tokens. These tokens are then fed into the world
model to autoregressively predict the future state token sequence. Finally, decoders transform the
generated image tokens into predicted future images I1, I2, . . . , IT .

VLA Policy. While flow-based methods such as π0 (Black et al., 2024) demonstrate competitive
performance, their JAX implementation poses integration challenges with VERL, and the LeRobot
PyTorch version offers no significant advantages over VLA-Adapter despite its considerable com-
putational overhead. Therefore, we selected VLA-Adapter (Wang et al., 2025a) as our base policy.
During the RFT stage, we freeze the upper layer VLM of the policy and only update the lower layer
action head. In addition, we incorporate a sigma net with a DiT-based architecture similar to the
action head, which is responsible for generating noise outputs.
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Table 5: Key hyperparameters of the World Model: Architecture (left) and Pre-training (right).

Hyperparameter Value

Architecture

Layers 12
Hidden size 768
FFN intermediate size 3072
Attention heads 12
Head dimension 64
Key–value heads 12
Max position embeddings 8192
Activation SiLU
Vocabulary size 9008

Hyperparameter Value

Pre-training

Training Steps 100k
Batch size 16
Training steps 1.5× 105

Learning rate 5× 10−5

Optimizer AdamW (Kingma & Ba, 2014)
Datasets Libero Datasets
Segment length 8

Table 6: Key hyperparameters of the VLA-Adapter: Architecture (left) and Pre-training (right).

Hyperparameter Value

Architecture

Vision backbone dinosiglip-vit-so-224px
Input image size 224× 224
LLM backbone qwen25-0 5b-extra
LLM max length 2048
Text layers / hidden size 24 / 896
Attention heads / KV heads 14 / 2
FFN intermediate size 4864
Max position embeddings 32768
Torch dtype bfloat16
Action bins 256

Hyperparameter Value

Pre-training

Batch size 16
Training steps 1.5× 105

Learning rate 1× 10−4

Optimizer AdamW (Kingma & Ba, 2014)
Datasets Libero Datasets
LoRA Rank 64

A.2 TRAINING DETAILS

Pre-Training Phase.

1) World Model: As shown in Table 5, the model is optimized using AdamW on the Libero datasets
for 1.5× 105 steps with a batch size of 16, a segment length of 8, and a learning rate of 5× 10−5.

2) VLA Policy: Our base policy consists of an upper-layer vision–language model (VLM) and
a lower-layer DiT (Peebles & Xie, 2023)-based flow matching action head. During pre-training,
we apply LoRA (Hu et al., 2022) for parameter-efficient fine-tuning of the VLM, while jointly
optimizing the action head to better align the visual, language, and action spaces. The detailed
architecture and training hyperparameters are summarized in Table 6.

RFT Phase.

For more details, see Figure 7.

1) World Model: The World Model is frozen.

2) VLA Policy: As shown in Table 7, we adopt GRPO (Chen et al., 2025b) as the advantage estimator
and configure the optimization with a learning rate of 1 × 10−6 and a sigma learning rate of 1 ×
10−5. For stability, an auxiliary MSE loss is included with coefficient 0.01, together with an entropy
regularization term of 0.003 to encourage exploration. Training is conducted for 400 steps with a
batch size of 16, and each update uses 16 rollouts. These settings strike a balance between stability
and efficiency, enabling consistent improvements under limited compute budgets.
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Table 7: Key hyperparameters for RL fine-tuning.

Hyperparameter Value

Advantage estimator GRPO
Learning rate 1× 10−6

Sigma learning rate 1× 10−5

MSE loss coefficient 0.01
Entropy coefficient 0.003
Total training steps 400
Batch Size 16
Rollout Times 16

Table 8: Details of perturbation experiments.Task 1 and Task 2 denote different tasks, while Dim
1 and Dim 2 refer to different perturbation objects or robot states. Where KP means keep original
states.

Policy. Object
Position

Goal
Position

Robot
Initial States

Task1 Dim1
SR (%)

Task1 Dim2
SR (%)

Task2 Dim1
SR (%)

Task2 Dim2
SR (%)

Average
SR (%)

Base ±2.5 KP KP 87 52 78 60 69.3
Ours ±2.5 KP KP 94 62 80 58 73.5

Base ±5 KP KP 70 44 50 28 48.0
Ours ±5 KP KP 72 52 56 30 52.5

Base KP ±2.5 KP 62 58 92 86 74.5
Ours KP ±2.5 KP 64 68 94 90 79.0

Base KP ±5 KP 34 46 48 54 44.8
Ours KP ±5 KP 46 42 58 60 51.5

Base KP KP ±20 60 88 54 90 73.0
Ours KP KP ±20 62 92 58 94 76.5

Base KP KP ±50 42 82 52 78 63.5
Ours KP KP ±50 46 86 56 80 67.0

Base ±2.5 ±2.5 ±20 64 82 36 72 63.5
Ours ±2.5 ±2.5 ±20 68 92 40 80 70.0
Base ±5 ±5 ±50 34 64 8 30 34.0
Ours ±5 ±5 ±50 36 60 12 40 37.0

A.3 EXPERIMENT DETAILS

Details of perturbation experiments. The details of the perturbation experiments are shown in Ta-
ble 8. Task 1 and Task 2 denote different tasks, while Dim 1 and Dim 2 refer to different perturbation
objects or robot states.

Comparisions with other VLA methods. As shown in Table 9, VLA-RFT (Ours) consistently
achieves the highest scores compared with baseline policies.

Comparisons with other VLA+RL methods. Our comprehensive evaluation demonstrates that the
proposed framework achieves remarkable superiority over existing approaches across multiple di-
mensions. Not only does our method significantly outperform state-of-the-art offline RL baselines,
but it also rivals the performance of online RL methods while maintaining the practical advantages
of offline training. Most notably, our world-model-based approach delivers these superior results
with dramatically reduced computational overhead, requiring substantially fewer training steps than
conventional alternatives. The experimental comparison reveals the distinct advantages of our ap-
proach across diverse settings. While VLA-RL operates through direct reinforcement learning in
the LIBERO environment, and competing methods like ARFM, RWR, and ReinboT represent the
current best practices in offline RL, our framework consistently demonstrates superior performance
gains. The key innovation lies in how VLA-RFT strategically exploits the world model’s predictive
capabilities to achieve unprecedented data efficiency, enabling faster convergence without sacrificing
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Table 9: Performance under general settings of LIBERO suites. We report SR (%) across the four
suites (Spatial, Object, Goal, and Long) and their average. VLA-RFT (ours) consistently achieves
the highest scores compared with baseline policies. VLA-Adapter (Base) is the recurrence result
when the Policy is Flow-matching and there is only one image input.

Policy Spatial Object Goal Long Average
SR (%) Rank SR (%) Rank SR (%) Rank SR (%) Rank SR (%) Rank

Diffusion Policy (Chi et al., 2023) 78.3 11 92.5 5 68.3 11 50.5 11 72.4 11
Octo (Ghosh et al., 2024) 78.9 9 85.7 10 84.6 5 51.1 10 75.1 9
MDT (Reuss et al., 2024) 78.5 10 87.5 9 73.5 10 64.8 5 76.1 8
OpenVLA (Kim et al., 2024) 84.7 7 88.4 8 79.2 7 53.7 9 76.5 7
SpatialVLA (Qu et al., 2025) 88.2 4 89.9 7 78.6 8 55.5 7 78.1 6
WorldVLA (Cen et al., 2025) 87.6 5 96.2 2 83.4 6 60.0 6 81.8 4
CoT-VLA (Zhao et al., 2025) 87.5 6 91.6 6 87.6 4 69.0 4 81.1 5
TraceVLA (Zheng et al., 2025) 84.6 8 85.2 11 75.1 9 54.1 8 74.8 10
π0 (Black et al., 2024) 91.2 2 93.2 3 93.8 2 74.2 3 88.1 2
VLA-Adapter (Wang et al., 2025a) (Base) 88.4 3 92.8 4 88.0 3 77.2 2 86.6 3
VLA-RFT (Ours) 94.4 1 94.4 1 95.4 1 80.2 1 91.1 1

performance quality. For transparency and reproducibility, we note that VLA-RL results are sourced
directly from the original publication, while the performance metrics for ARFM, RWR, and Rein-
boT on LIBERO are derived from the ARFM paper, ensuring fair and comprehensive benchmarking
across all methods.

Table 10: Comparison with other RL methods on Libero Average. We report baseline success
rate (SR), fine-tuned SR, their improvement (∆), and training steps.

Type Algorithm Baseline SR (%) SR (%) ∆ SR (%) Training Steps

Online VLA-RL (Lu et al., 2025) 76.5 81.0 4.5 10,000
RIPT-VLA (Tan et al., 2025) 96.7 97.5 0.8 -

Offline
ARFM (Zhang et al., 2025b) 88.1 92.1 4.0 40,000
RWR (Peters & Schaal, 2007) 88.1 90.8 2.7 40,000
ReinboT (Zhang et al., 2025c) 88.1 91.2 3.1 40,000

Ours VLA-RFT 86.6 91.1 4.5 400

Visualization. We also provide more detailed visualization results in Figure 6 and Figure 8.

Original

Evaluation with disturbance

Disturbed

Figure 6: Comparison of original and disturbed scenarios.

A.4 THE USE OF LARGE LANGUAGE MODELS (LLMS)

To enhance the readability and coherence of this paper, we employed large language models to assist
in refining the writing.

A.5 REAL WORLD EXPERIMENTS

Experimental Setup. 1)Hardware Configuration: We conduct our real-world experiments on a
unified robotic platform. The system comprises a Flexiv Rizon 4s, a 7-DoF adaptive robotic arm
known for its precise force control, equipped with a Flexiv GN01 two-finger gripper as the end-
effector. For visual perception, we employ a single Intel RealSense D435i RGB-D camera mounted
in a fixed third-person view. This camera setup provides a global perspective of the workspace, cap-
turing RGB images necessary for the policy inputs. The entire system is powered by a workstation
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Figure 7: Detailed Implementation of Method.

Base model

Comparison with Base model 

VLA-RFT

VLA-RFT

Base model

Figure 8: Comparison of base policy and VLA-RFT.

equipped with an NVIDIA RTX 4090 GPU to ensure real-time inference. 2)Task Definition: We
focus on the challenging task of cloth manipulation, specifically Towel Folding. The objective is to
transform a towel from an initial flat state into a specific folded configuration. Due to the highly
deformable nature of the fabric, this requires the agent to perform precise pick-and-place actions
and dynamic adjustments.Each evaluation episode begins with the towel placed within the robot’s
workspace. The agent is tasked with completing the folding procedure within a strict time limit of 3
minutes. An episode is considered successful only if the towel is folded into the target structure and
neatly organized within this duration.

Training Details. Initially, we collected a dataset consisting of 50 expert demonstration episodes.
Using this dataset, we pre-trained the flow-based VLA-adapter policy for 20k and 80k steps, and the
world model for 24k steps, all with a batch size of 16. Subsequently, we fine-tuned the policy for an
additional 200 steps using our proposed RFT paradigm. All training procedures were conducted on
a server equipped with eight NVIDIA H200 GPUs.

Result Analysis. We conducted a comparative evaluation between the policy checkpoint obtained
after 20k steps of Supervised Fine-Tuning (SFT) and the checkpoint derived from the subsequent
200 steps of Reinforcement Fine-Tuning (RFT). The quantitative results are presented in Table 11.
We observe that simply extending SFT by an additional 60k steps yields no further improvement
in the success rate. In contrast, applying our RFT on top of the 20k-SFT checkpoint significantly
boosts the success rate to 100% (10/10). This improvement is particularly pronounced in mitigating
specific failure modes, such as unsuccessful grasping or premature dropping of the towel during
transport.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026
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Organizing Finish

Start

(a)

Intel Real 
Sense D435i

Flexiv Rizon 4s

Flexiv GN 01
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Figure 9: Real World Experiments. (a) The hardware platform setup used for data collection and
policy evaluation. (b) A representative execution sequence of the towel folding task.

Table 11: Real-world Experiment Results. We report the success rate (SR) and detailed outcomes
for 10 consecutive trials. For successful trials, the completion time in seconds (s) is recorded.
Failure modes are noted explicitly.

Trial ID
Base

(20k SFT)
Base

(80k SFT)
RFT (Ours)

(20k SFT + 200 RFT)

1 poor grasp poor grasp 41
2 60 48 54
3 no grasp poor grasp 60
4 56 42 54
5 no grasp 50 56
6 joint limit joint limit 50
7 no grasp no grasp 52
8 55 48 50
9 52 no grasp 60

10 51 49 62

SR 5/10 5/10 10/10
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