

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VLA-RFT: VISION-LANGUAGE-ACTION REINFORCEMENT FINE-TUNING WITH VERIFIED REWARDS IN WORLD SIMULATORS

Anonymous authors

Paper under double-blind review

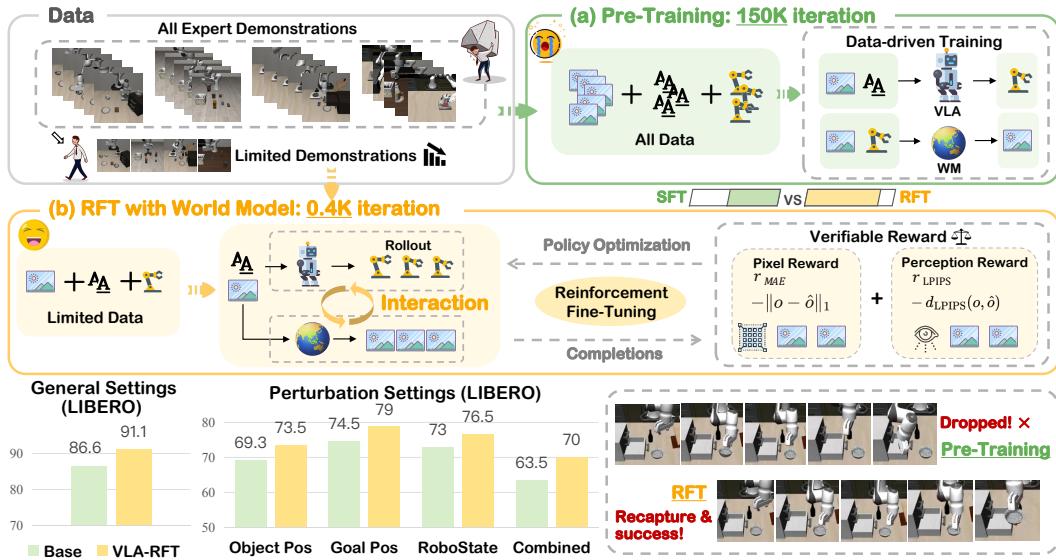


Figure 1: **The Framework of VLA-RFT.** A world model functions as a simulator that processes multi-rollout VLA action sequences to generate corresponding future states. By incorporating verified rewards through a GRPO optimization framework, we perform end-to-end updates of the VLA. Our approach achieves superior performance with remarkably fewer optimization steps—requiring only 0.4K iterations compared to 150K iterations for a strongly supervised baseline—demonstrating advantages in both standard and perturbed environments. Furthermore, the method exhibits enhanced execution-time robustness, characterized by reliable failure recovery and retry capabilities.

ABSTRACT

Vision-Language-Action (VLA) models enable embodied decision-making but rely heavily on imitation learning, leading to compounding errors and poor robustness under distribution shift. Reinforcement learning (RL) can mitigate these issues yet typically demands costly real-world interactions or suffers from sim-to-real gaps. We introduce VLA-RFT, a Reinforcement Fine-Tuning framework that leverages a data-driven world model as a controllable simulator. Trained from real interaction data, the simulator predicts future visual observations conditioned on actions, allowing policy rollouts with dense, trajectory-level rewards derived from goal-achieving references. This design delivers an efficient and action-aligned learning signal, drastically lowering sample requirements. With fewer than 400 fine-tuning steps, VLA-RFT surpasses strong supervised baselines and achieves greater efficiency than simulator-based RL. Moreover, it exhibits strong robustness under perturbed conditions, sustaining stable task execution. Our results establish world-model-based RFT as a practical post-training paradigm to enhance the generalization and robustness of VLA models.

054

1 INTRODUCTION

055
 056 Vision-Language-Action (VLA) models have recently achieved remarkable progress by building
 057 upon large, pre-trained vision-language models (VLMs) (Li et al., 2025b; Karamchetti et al., 2024;
 058 Driess et al., 2023). Leveraging the powerful perceptual generalization of VLMs allows these mod-
 059 els to operate under diverse visual conditions. However, most existing VLAs (Brohan et al., 2022;
 060 Zitkovich et al., 2023; Black et al., 2024; Bjorck et al., 2025; Kim et al., 2024) are trained purely
 061 via imitation learning. This approach is prone to error accumulation under distribution shift, where
 062 small deviations from expert demonstrations gradually drive the policy toward unfamiliar states and
 063 weaken its robustness (Ross & Bagnell, 2010; De Haan et al., 2019; Foster et al., 2024).

064 In contrast, reinforcement learning (RL) offers a promising avenue to overcome these limitations
 065 by explicitly optimizing beyond demonstrated behaviors and encouraging exploration (Liu et al.,
 066 2025). Recent studies have increasingly incorporated RL into VLA training, demonstrating its crit-
 067 ical role in enhancing generalization and long-horizon task performance through offline RL ap-
 068 proaches (Zhang et al., 2025c; 2024), direct real-world RL (Xu et al., 2024; Guo et al., 2025b), and
 069 simulation-based RL (Lu et al., 2025; Tan et al., 2025; Liu et al., 2025).

070 Yet, standard RL pipelines for VLA face steep challenges. Simulation-based RL (Chen & Li, 2025;
 071 Chen et al., 2025b; Shu et al., 2025) often requires millions of interactions and suffers from a pro-
 072 nounced sim-to-real gap. Real-world training (Xu et al., 2024; Mark et al., 2024; Guo et al., 2025c;
 073 Chen et al., 2025a), on the other hand, is prohibitively costly and can raise safety concerns. Offline
 074 RL also has inherent limitations: as noted by (Tan et al., 2025), without real environment interac-
 075 tion, models are vulnerable to distribution shift and cannot learn from the consequences of their own
 076 actions.

077 To address these challenges, we propose VLA-RFT, a **Reinforcement Fine-Tuning** framework that
 078 leverages a world model as a high-fidelity simulator for policy optimization. At its core, VLA-RFT
 079 employs a controllable world simulator that, once trained on a dataset of robot interactions, can pre-
 080 dict future visual observations conditioned on an action sequence. Unlike conventional simulation
 081 environments restricted to handcrafted scenarios, this simulator is entirely data-driven, capturing the
 082 diversity of real-world interactions while avoiding the prohibitive cost and safety risks of training di-
 083 rectly in the physical world. For a given task, policy-proposed actions are rolled out within this sim-
 084 ulator to generate predicted visual trajectories. These synthetic trajectories then enable the design of
 085 a dense, task-grounded reward by comparing them against the visual trajectory from goal-achieving
 086 reference trajectory. These rewards are then used to optimize the policy via Generalized Reinforce-
 087 ment Policy Optimization (GRPO), enabling stable and efficient reinforcement fine-tuning.

088 This design provides a continuous, action-aligned learning signal that substantially reduces the sam-
 089 ple complexity of reinforcement fine-tuning. Empirically, we show that with as few as 400 fine-
 090 tuning steps, VLA-RFT not only outperforms strong supervised fine-tuning baselines (Wang et al.,
 091 2025a) in both overall performance and compositional generalization, but also achieves markedly
 092 higher efficiency than simulator-based RL algorithms that demand orders of magnitude more in-
 093 teractions. Furthermore, in perturbed or adversarial scenarios, VLA-RFT exhibits superior action
 094 robustness, sustaining stable task execution even under unexpected environmental variations. Taken
 095 together, this combination of efficiency, generalization, and robustness underscores the practical
 096 advantages of our framework for scalable VLA training.

097 Finally, we hope that our method, experiments, and analysis will motivate future research to harness
 098 world models as a general and efficient post-training paradigm for VLAs, thereby substantially
 099 enhancing their practicality and accelerating their real-world deployment.

100

2 RELATED WORK

101 **Vision-Language-Action Models.** Vision-Language-Action (VLA) models align visual and lin-
 102 guistic inputs with actions through imitation learning on large-scale datasets (O’Neill et al., 2024;
 103 Liu et al., 2023; Mees et al., 2022). Pre-trained VLMs provide generalization, while supervised fine-
 104 tuning adapts them to task-specific action spaces (Li et al., 2025b; Karamchetti et al., 2024; Driess
 105 et al., 2023). Recent studies further improve efficiency with lightweight adapters and post-training
 106 techniques (Kim et al., 2025; Cui et al., 2025; Wang et al., 2025b; Fan et al., 2025; Gong et al.,
 107 2025).

108 2024; Ding et al., 2024; 2025). However, imitation learning alone is prone to error accumulation
 109 under distribution shifts, where minor deviations from expert data push the policy into unfamiliar
 110 states and reduce robustness. To address this, recent studies incorporate reinforcement learning to
 111 improve VLA performance. Our work also falls into this line of research.

112 **VLA with Reinforcement Learning.** Reinforcement learning from human feedback has proven
 113 highly effective in language models (Sheng et al., 2024; Ouyang et al., 2022), inspiring RL fine-
 114 tuning for vision–language–action (VLA) systems. However, simulation-based RL (Chen & Li,
 115 2025; Chen et al., 2025b; Shu et al., 2025) requires vast interactions and suffers from the sim-to-real
 116 gap, while real-world training (Xu et al., 2024; Mark et al., 2024; Guo et al., 2025c; Chen et al.,
 117 2025a) is expensive and unsafe. Offline RL also faces fundamental limitations: as highlighted by
 118 (Tan et al., 2025), policies **struggle** with distribution shift and the inability to learn from its own
 119 actions. To overcome these limits, we leverage a world model as a data-driven simulator, enabling
 120 practical policy optimization without real-world costs or risks.

121 **World Models and Verified Rewards** World Models learn environment dynamics for planning and
 122 control, either via explicit physics (Song et al., 2024; Li et al., 2024; Sancaktar et al., 2022) or latent
 123 predictive representations (Hafner et al., 2019b;a; 2023). Recent extensions integrate multi-modal
 124 inputs and guide RL with high-dimensional predictions (Wu et al., 2023; Li et al., 2025a). Advances
 125 in generative modeling (Ho et al., 2022; Blattmann et al., 2023; Liu et al., 2024) have enabled
 126 large-scale video-based World Models (Bardes et al., 2023; Assran et al., 2025), later specialized
 127 for robotics (Zhou et al., 2024a;b). Emerging works further link these models with instruction-
 128 conditioned action generation (Hu et al., 2024; Cen et al., 2025; Zhong et al., 2025; Zhang et al.,
 129 2025a). **While these approaches explore diverse downstream applications, scaling World Models**
 130 **for VLA** remains under-explored. VLA models—owing to high-dimensional visual and language
 131 inputs paired with fine-grained action outputs—require substantial data to scale effectively. Similar
 132 to the trajectory of LLM development, verified rewards (i.e., rewards that are deterministically com-
 133 putable and task-independent) are often more stable and reliable than learned reward models, which
 134 may suffer from task-specific overfitting, poor generalization, or reward hacking (Wen et al., 2025;
 135 Lambert et al., 2024; Guo et al., 2025a; Yue et al., 2025). Although some recent efforts explore
 136 training World Models using verifiable reward signals, none of these works leverage such rewards
 137 for reinforcement fine-tuning of VLA policies (Wu et al., 2025). In this work, our world model
 138 simultaneously acts as a dynamics simulator and as a source of verifiable reward signals for pol-
 139 icy optimization, enabling reliable, fast, and scalable reinforcement fine-tuning of VLAs—without
 140 requiring human annotations, task-specific reward modeling, or online environment interaction.

3 METHOD

141 In this section, we begin by presenting the motivation behind our approach and outlining both the key
 142 challenges and the intuitive foundation of our pipeline. We then provide a formal problem definition
 143 and describe each component of the framework in detail. Finally, we present a comprehensive
 144 illustration of the two training phases, which is shown in Figure 2.

145 **Stage I: World Model (WM) and Policy Pretraining.** In the first stage, we pretrain the world
 146 model on offline datasets so that it can capture environment dynamics. In parallel, we pretrain the
 147 VLA policy to produce stable action chunks, which serve as a reliable initialization for subsequent
 148 optimization.

149 **Stage II: VLA Optimization through WM Interaction.** In the second stage, given an initial
 150 frame and a language instruction, the VLA rolls out n action chunks. The world model then interac-
 151 tively generates trajectories conditioned on these actions and provides verified rewards. Using these
 152 feedback signals, the VLA is fine-tuned with GRPO to progressively improve policy performance.

3.1 PROBLEM FORMULATION

153 In this work, we investigate how to train a dual-system VLA policy equipped with a flow-matching
 154 action head, using both a WM and a verified reward mechanism. Specifically, we formulate the
 155 entire training process as a *Partially Observable Markov Decision Process (POMDP)*. The training
 156 pipeline is formally defined by the tuple

$$\mathcal{M} := (\mathcal{O}, \mathcal{S}, \mathcal{A}, \mathcal{L}).$$

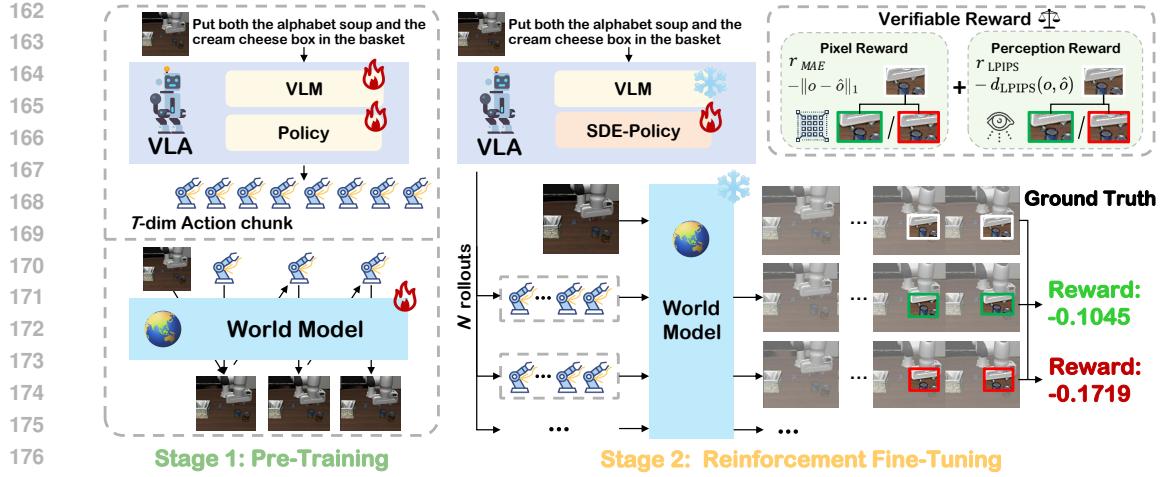


Figure 2: **Training Paradigm of VLA-RFT.** In the pre-training stage, both the world model and VLA policy are initialized, where the world model takes a 7-dimensional action input that is consistent in format with the VLA’s action output. In the reinforcement fine-tuning stage, the VLA generates action chunks based on an initial frame and language instruction, which are rolled out in the world model to predict future states. Verified rewards are then computed from the predicted states and used to optimize the VLA via GRPO Optimization.

where Observations \mathcal{O} represents the perceptual space of the agent, including real images captured from the environment. States \mathcal{S} denotes the robot’s proprioceptive state. Actions \mathcal{A} is the action space. Language \mathcal{L} refers to natural language instructions provided to the agent.

The VLA policy is expected to generate a sequence of T actions with indices $t \in [T] = \{0, \dots, T\}$, conditioned on the first observed real image o_i , the initial language instruction l_i , and the initial robot state s_i . This process is factorized as

$$\hat{a}_{i:i+T-1} \sim \pi_\theta(\cdot | o_i, l_i, s_i) = \pi_{\theta_{\text{fm}}}(\cdot | z_i, s_i), \quad z_i = f_{\text{VLM}}(o_i, l_i). \quad (1)$$

where f_{VLM} denotes the vision–language large model that encodes multimodal inputs into latent representations z_i , and $\pi_{\theta_{\text{fm}}}$ represents the flow-matching policy head that generates the corresponding action chunk.

The world model acts as an interactive simulator that generates rollouts conditioned on the first image o_t and the policy-generated action sequence $a_{t:t+T-1}$. By comparing the generated trajectory against ground-truth images or ground-truth-action-induced rollouts, we obtain a verified reward signal:

$$\hat{o}_{i:t+1} = \begin{cases} g_\phi(o_i, a_i), & t = 0, \\ g_\phi(o_{i:i}, a_{i:i}), & t = 1, \dots, T-1. \end{cases} \quad (2)$$

where g_ϕ denotes the autoregressive world model. In particular, the first prediction is generated from the initial frame o_t and the first action a_t , while subsequent predictions ($i \geq 1$) are produced autoregressively by conditioning on both the previously generated frames $o_{t:t+i}$ and the executed actions $a_{t:t+i}$.

3.2 STAGE I: WM PRETRAINING AND VLA PRETRAINING

To reduce reinforcement learning instability and prevent early collapse, we pretrain the world model and policy on offline datasets, providing a stable initialization for subsequent optimization.

World Model Training. To obtain dense verified rewards more efficiently, and inspired by recent advances in video generation models (e.g., iVideoGPT (Wu et al., 2024)), we train an interactive video prediction model to serve as the world model. This design avoids the limitations of implicit world models, such as sparse reward signals and the lack of verifiable environment dynamics. It

216 consists of a pretrained tokenizer and an autoregressive Transformer backbone. During pretraining,
 217 the WM is optimized via maximum likelihood (MLE):
 218

$$219 \quad \mathcal{L}_{\text{MLE}}^{\text{WM}}(\phi) = -\mathbb{E} \left[\log p_{\phi}(o_{i+1} | o_i, a_i) + \sum_{t=1}^{T-1} \log p_{\phi}(o_{i+t+1} | o_{i:i+t}, a_{i:i+t}) \right]. \quad (3)$$

222 where $p_{\phi}(\cdot)$ denotes the predictive distribution of future observations parameterized by the world
 223 model with parameters ϕ .
 224

225 **VLA Pretraining.** In this stage, we aim to ensure that the VLA produces stable actions. Since the
 226 flow-matching action head provides stable training for continuous actions, we pretrain the upstream
 227 VLM encoder and the flow-matching head on the expert demonstration dataset \mathcal{D} .
 228

$$228 \quad \mathcal{L}_{\text{MSE}}^{\text{VLA}}(\theta) = \mathbb{E}_{(a_{i:i+T-1}, o_i, l_i, s_i) \sim \mathcal{D}} \left[\| \mathbf{v}_{\theta}(o_i, l_i, s_i, a_{i:i+T-1}^{\tau}) - u_{\tau} \|_2^2 \right]. \quad (4)$$

230 where $\tau \sim \text{Beta}(\alpha, \beta)$ is the flow-matching timestep, $v_{\theta}(\cdot)$ denotes the flow predicted by the action
 231 head parameterized by θ , $a_{t:t+T-1}^{\tau} = \tau a_{t:t+T-1} + (1 - \tau)\epsilon$ is the noise-perturbed action chunk,
 232 $u_{\tau} = a_{t:t+T-1} - \epsilon$ is the target flow field defined by the noisy action interpolation, and $\epsilon \sim \mathcal{N}(0, I)$
 233 is standard Gaussian noise.
 234

235 3.3 STAGE II: VLA OPTIMIZATION THROUGH WM INTERACTION

236 To achieve stable and efficient fine-tuning, we adopt an **Stochastic Differential Equation (SDE)**-
 237 based policy formulation optimized with GRPO, which offers reliable gradient estimates. The Stage
 238 I world model serves as an interactive simulator, providing verified rewards that further enhance
 239 training stability.
 240

241 **SDE-Policy: Policy Parameterization via Flow and Sigma.** Since flow matching is inherently a
 242 deterministic **Ordinary Differential Equation (ODE)** process, it has limitations in directly obtaining
 243 log-likelihood. To address this, we build upon prior work on flow-matching reinforcement learning(e.g. ReinFlow (Zhang et al., 2025d)) by extending the framework into a stochastic formulation,
 244 thereby enabling exploration during training. In Stage II, we introduce a *Sigma Net*, whose archi-
 245 tecture mirrors that of the flow-matching head, and which outputs a variance vector that parameter-
 246 izes the stochasticity of the policy. Concretely, at inference time, we discretize the integration into
 247 $K = 10$ steps, with $k \in [0, 1, 2, \dots, 10]$. Actions are generated by integrating the learned vector
 248 field from $\tau = 0$ to $\tau = 1$, initialized from random noise $a_{i:i+T-1}^{\tau=0} \sim \mathcal{N}(0, I)$. We apply the forward
 249 Euler method:
 250

$$\mu_k = a_{i:i+T-1}^{k\delta} + \delta \mathbf{v}_{\theta}(o_i, l_i, s_i, a_{i:i+T-1}^{k\delta}), \quad (5)$$

251 where $\delta = 0.1$ is the integration step size. For each integration steps k , *Sigma Net* takes as input
 252 (z_i, s_i, k) and outputs a variance vector σ_{ψ}^k , while the flow-matching action head simultaneously
 253 predicts the flow μ_k . Together, these two components define a Gaussian conditional distribution
 254 from which the next action chunk is sampled, thereby generalizing the deterministic **Flow Matching**
 255 (**FM**)-ODE formulation into a SDE process:
 256

$$a_{i:i+T-1}^{k\delta} \sim \mathcal{N}(\mu_k, \Sigma_k), \quad (6)$$

257 where
 258

$$\Sigma_k = (\sigma_{\psi}^k)^2. \quad (7)$$

260 Within the same rollout, we compute the step-wise log-likelihoods across the K denoising steps,
 261 and take their average as the log-probability of the rollout:
 262

$$263 \quad \bar{\ell}_{\theta, \psi} = \frac{1}{K} \sum_{k=1}^K \log p_{\theta, \psi}^{(k)}(a_{i:i+T-1}^{k\delta} | a_{i:i+T-1}^{(k-1)\delta}, z_i, s_i). \quad (8)$$

265 Finally, we compute the policy ratio with respect to the old policy by exponentiating the difference
 266 of average log-probabilities:
 267

$$r = \exp(\bar{\ell}_{\theta, \psi} - \bar{\ell}_{\text{old}}). \quad (9)$$

268 **Interactive WM Simulation and Verified Reward.** Visual features often carry richer semantic
 269 information. To leverage this, given an action chunk $a_{t:t+T-1}^K$ from the SDE-Policy, the world

270 **Algorithm 1** VLA Fine-Tuning Pipeline with World Model and Verified Reward

271 **Require:** Offline dataset \mathcal{D} , diffusion horizon K , chunk length T , rollout number N , initial frame
272 o_t , sigma net parameters ψ

273 **Ensure:** Trained VLA policy π_θ

274 1: **Stage I: Pretraining**

275 2: Train WM parameters ϕ with maximum likelihood Eq. 3

276 3: Train VLA encoder f_{VLM} + flow-matching head $\pi_{\theta_{\text{fm}}}$ with loss Eq. 4

277 4: **Stage II: Interaction and Optimization**

278 5: **for** each task instance **do**

279 6: **for** $n = 1$ to N **do** \triangleright *Rollouts*

280 7: **for** $k = 1$ to K **do** \triangleright *Diffusion steps*

281 8: Sample actions from Gaussian distribution $p_{\theta, \psi}^{(k)}$ \triangleright Eq. 6

282 9: Calculate log-probability $\ell^{(k)}$ \triangleright Eq. 8

283 10: **end for**

284 11: Generate trajectory Traj with WM \triangleright Eq. 10

285 12: Compute verified reward R_n \triangleright Eq. 11

286 13: **end for**

287 14: Compute advantages $\text{Adv}_n = R_n - \bar{R}_{\text{group}}$ \triangleright Eq. 13

288 15: Update policy π_θ and sigma net with GRPO objective \triangleright Eq. 13

289 16: **end for**

290
291 model generates a visual trajectory, which is aligned with ground-truth data to construct verified
292 rewards. This design improves reward reliability, reduces manual labeling, and enhances stability.

293 Starting from the initial frame o_i and the first action a_i^K , the WM generates the next frame and
294 recursively conditions on previously generated frames to produce the complete trajectory:

295

$$\text{Traj} = [o_i, a_i^{K\delta}, \hat{o}_{i+1}, \dots, a_{i+T-1}^{K\delta}, \hat{o}_{i+T}], \quad (10)$$

296 The generated sequence $\hat{o}_{i+1:i+T+1}$ is aligned with the ground-truth frames $o_{i+1:i+T+1}$ from the
297 offline dataset. The verified reward for the current trajectory segment is defined as the negative
298 weighted sum of the per-frame reconstruction loss and perceptual similarity loss:

301

$$R = - \sum_{t=0}^{T-1} \left[\lambda_1 L_1(\hat{o}_{i+t+1}, o_{i+t+1}) + \lambda_{\text{lp}} \text{LPIPS}(\hat{o}_{i+t+1}, o_{i+t+1}) \right]. \quad (11)$$

304

305 To reduce variance, we group n rollouts sampled from the same starting state and compute the group
306 average reward as a baseline:

307

$$\bar{R}_{\text{group}} = \frac{1}{N} \sum_{j=1}^N R_j, \quad \text{Adv}_n = R_n - \bar{R}_{\text{group}}. \quad (12)$$

310

311 Using the policy ratio r derived earlier, the VLA policy is optimized with GRPO. For training
312 stability, we also retain a small-weight flow-matching **mean squared error (MSE)** term as auxiliary
313 supervision on the flow head. The final objective is

314

$$\mathcal{L}_{\text{GRPO}}^{\text{VLA}}(\theta, \psi) = -\mathbb{E}[\text{clip}(r, 1 - \epsilon, 1 + \epsilon) \text{Adv}] + \lambda_{\text{mse}} \mathcal{L}_{\text{MSE}}^{\text{VLA}}(\theta) - \alpha \mathbb{H}(\pi_{\theta, \psi}). \quad (13)$$

315

316 where $\mathcal{L}_{\text{MSE}}^{\text{VLA}}(\theta)$ is the auxiliary flow-matching MSE loss with weight λ_{mse} , and $\mathbb{H}(\pi_{\theta, \psi})$ is the policy
317 entropy used to encourage exploration, weighted by α . Therefore, the objective integrates policy
318 optimization with auxiliary supervision to ensure efficient and stable fine-tuning.

319
320 **4 EXPERIMENTS**

321
322 In this section, we assess VLA-RFT through three research questions: 1) How well can world model
323 approximate a simulator? 2) How does world model improve VLA performance? 3) Which components
of VLA-RFT drive these improvements?

324
325

4.1 EXPERIMENTAL SETUP.

326

Implementations. **1) Benchmark:** We evaluate our model on the LIBERO benchmark (Liu et al., 2023). **2) Metrics:** We report Success Rate (SR) for all tasks. **3) Baseline:** To accelerate experimentation, we employed a lightweight variant of VLA-Adapter (Wang et al., 2025a) as our baseline. More details of policy choice can be found in Appendix A.1. **4) World Model:** To optimize the balance between training efficiency and generation quality, we implemented a lightweight autoregressive world model based on the LLaMA architecture (Touvron et al., 2023). This model was instantiated as a compact 138M-parameter variant, comparable in scale to GPT-2 small (Radford et al., 2019). The model underwent pretraining on the LIBERO dataset to effectively capture task-relevant visual and action dynamics. **5) Training Details:** We initially pretrained a initial policy through supervised fine-tuning. Subsequently, we conducted post-training with reinforcement fine-tuning (RFT) using VERL (Sheng et al., 2024), a distributed RL framework that coordinates diverse rollout strategies with FSDP-sharded training. All experiments were executed on 4x A800 GPUs.

327

328

4.2 WORLD MODEL CAPABILITIES.

329

Experimental Setting. To evaluate whether pre-training enables the world model to capture environmental dynamics, we assess its pixel-level generation capability. We randomly sample T consecutive image-action pairs from LIBERO, input the initial frame and complete action sequence into the world model, and compare the generated frames with ground-truth images for subsequent steps.

330

Results Analysis. We partition the dataset into training and test splits at a 49:1 ratio, and report all evaluation results on the held-out test set. As shown in Table 1, the world model attains low reconstruction error (MSE 0.0039) and strong perceptual scores—PSNR (peak signal-to-noise ratio) of 25.23 dB, SSIM (structural similarity index) of 0.906, and LPIPS (Learned Perceptual Image Patch Similarity) (Zhang et al., 2018) of 0.059—indicating high frame fidelity and perceptual quality. Qualitative results show sharp, temporally consistent frames that capture both static backgrounds and action-driven changes, demonstrating that pre-training enables the model to learn visual appearance and action-conditioned dynamics.

331

332

Table 1: **World model generation performance.** Left: frame-level metrics across four suites (Spatial, Object, Goal, Long) and their averages—MSE (pixel error), PSNR (signal-to-noise ratio), SSIM (structural similarity), and LPIPS (perceptual distance). Right: qualitative results. Left column shows simulator sequences, right column shows world-model generations from the same initial frame and actions, illustrating consistent appearance and action-induced dynamics.

333

334

4.3 PERFORMANCE IMPROVEMENTS FOR VLA.

335

336

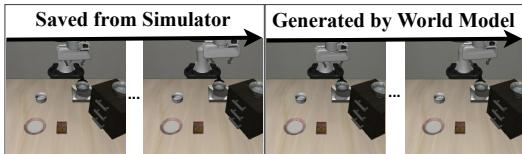
In the previous section, we analyzed the generation quality of the world model. Here, we further investigate whether our training pipeline enhances policy capability. Specifically, we evaluate policy performance before and after training under the following two task settings.

LIBERO Standard Suites. We evaluate RFT on the LIBERO Standard Suites using the Base model trained for 150k steps (Base-150k) as the baseline. As shown in Table 2, only 400 training steps of RFT (RFT-400) raise average SR from 86.6% to 91.3% (+4.7 points), with gains across all suites: Spatial (+6.0 points), Object (+6.4 points), Goal (+2.6 points), and Long (+3.0 points). The graph further shows RFT-400 consistently outperforms Base-150k. Notably, while extending supervised fine-tuning (SFT) training steps from 30k to 150k required heavy training, RFT delivers clear improvements with far fewer iterations, underscoring its efficiency.

337

338

LIBERO Perturbation Suites. To assess out-of-distribution robustness, we construct perturbed variants across the four LIBERO suites and report success rates for **initial policy** and our method.



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Performance under LIBERO Standard Suites. The table reports success rate (SR) across the four suites (Spatial, Object, Goal, and Long) and their average; the radar plot on the right provides a visual comparison of different model stages across tasks. Where “Base-30k” denotes a policy checkpoint after 30k steps of supervised fine-tuning (SFT), and “Base-150k” denotes a policy checkpoint after 150k SFT steps.

Policy (iterations)	Spatial	Object	Goal	Long	Average
Base-30k	82.4	84.8	85.4	57.2	77.5
Base-150k	88.4	88.0	92.8	77.2	86.6
VLA-RFT-400	94.4	94.4	95.4	80.2	91.1
Δ vs Base-150k	+6.0	+6.4	+2.6	+3.0	+4.5

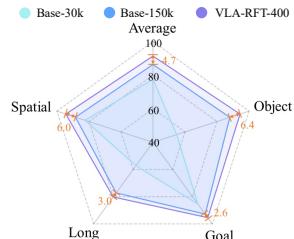
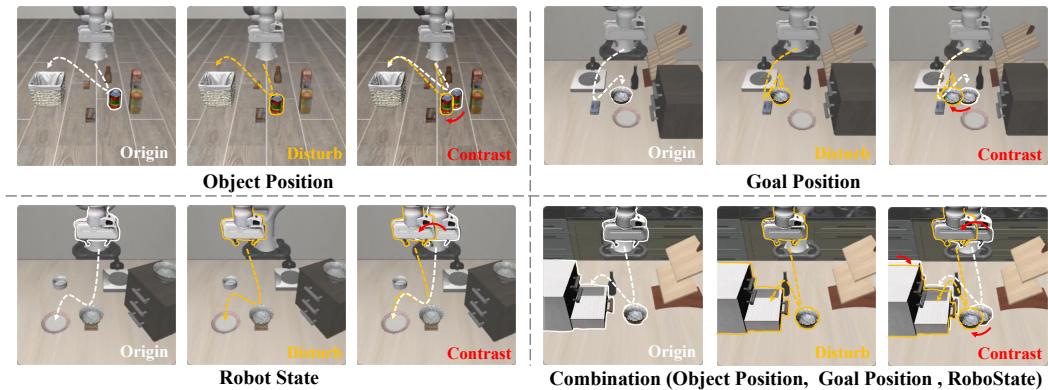


Figure 3: **Illustration of perturbed task settings in LIBERO.** We consider four perturbation types to evaluate out-of-distribution robustness: (Object Position) shifting the initial (x, y) coordinates of the manipulated object; (Goal Position) displacing the target object in the (x, y) plane; (Robot State) modifying the gripper’s vertical height and horizontal offset; and (Combination) applying all perturbations together. Each row shows the original setting (Origin), the perturbed variant (Disturb), and a side-by-side comparison (Contrast).

1) Experimental Setting. In LIBERO-Object, the manipulated object’s initial position is shifted in the (x, y) plane with small or large offsets. In LIBERO-Goal, the target object’s initial position is similarly displaced. In LIBERO-Spatial, the robot’s initial state is perturbed by adjusting the gripper height and horizontal offset. In LIBERO-Long, we combine all the above perturbations. An illustration of the perturbed tasks is provided in Figure 3.

2) Results Analysis. As shown in Table 3, VLA-RFT consistently improves robustness across all types of perturbations. While **Base-150k** degrades substantially under larger shifts, VLA-RFT maintains higher stability, demonstrating its effectiveness against distributional shifts. The gains are most pronounced in the Goal and combined perturbations (over +6%), where generalization is more challenging, while RoboState perturbations show smaller but consistent improvements. Overall, our training pipeline not only increases standard performance but also improves out-of-distribution robustness, particularly in more complex settings. To further understand the robustness gains, we examine action distributions in Figure 4. VLA-RFT yields broader coverage

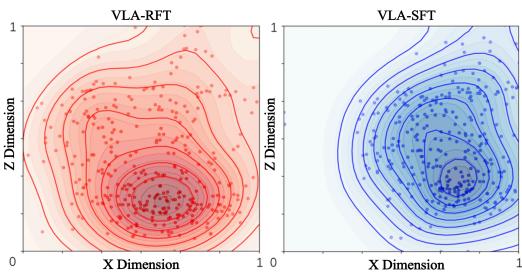


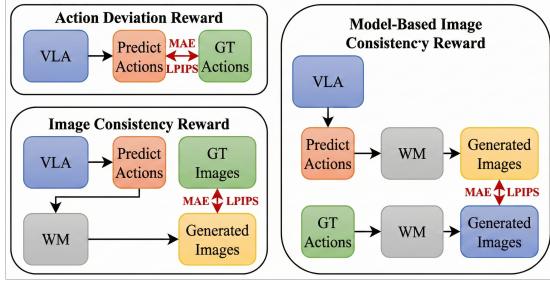
Figure 4: **Action distribution visualization of VLA-RFT and VLA-SFT.** The plots show distributions along X and Z action dimensions: the left plot corresponds to the RFT-trained policy, and the right plot to the SFT-only **initial policy**.

Table 3: **Performance under perturbation settings.** All perturbation magnitudes are in centimeter.

Object Pos Perturb	Range	SR (%)	Goal Pos Perturb	Range	SR (%)
Minor Perturbation			Minor Perturbation		
Base-150k	± 2.5	69.3	Base-150k	± 2.5	74.5
VLA-RFT	± 2.5	73.5	VLA-RFT	± 2.5	79.0
Δ vs Base	± 2.5	+4.2	Δ vs Base	± 2.5	+4.5
Major Perturbation			Major Perturbation		
Base-150k	± 5	48.0	Base-150k	± 5	44.8
VLA-RFT	± 5	52.5	VLA-RFT	± 5	51.5
Δ vs Base	± 5	+4.5	Δ vs Base	± 5	+6.7
RoboState Perturb	Range	SR (%)	Combined Perturb	Range	SR (%)
Minor Perturbation			Minor Perturbation		
Base-150k	± 20	73.0	Base-150k	$\pm 2.5/2.5/20$	63.5
VLA-RFT	± 20	76.5	VLA-RFT	$\pm 2.5/2.5/20$	70.0
Δ vs Base	± 20	+2.5	Δ vs Base	$\pm 2.5/2.5/20$	+6.5
Major Perturbation			Major Perturbation		
Base-150k	± 50	63.5	Base-150k	$\pm 5/5/50$	34.0
VLA-RFT	± 50	67.0	VLA-RFT	$\pm 5/5/50$	37.0
Δ vs Base	± 50	+3.5	Δ vs Base	$\pm 5/5/50$	+3.0

Table 4: **Reward design comparison on LIBERO.** The left table reports the average Success Rates (SR, %) of Base-150k and its variants trained with three different verified reward types. The right figure illustrates the corresponding reward function structures.

Policy	Average (SR %)
Base	
Base (150k)	86.6
Action Deviation Reward	
VLA-RFT (R1)	87.7
Δ vs Base	+1.1
Image Consistency Reward	
VLA-RFT (R2)	87.1
Δ vs Base	+0.5
Model-Based Image Consistency Reward	
VLA-RFT (Ours)	91.1
Δ vs Base	+4.5



across action dimensions than **initial policy**, while SFT remains narrowly concentrated. This broader exploration enables better adaptability and generalization under perturbations.

4.4 KEY FACTORS FOR VLA-RFT

We showed our pipeline improves policy performance and robustness. Next, we test which components drive these gains via three verified reward designs and world model ablations.

1) Experimental Setting. We design three verified rewards under the same training setup and apply RFT to the base model to compare their effects on LIBERO success rates. “**Action Deviation Reward**” uses the negative L1 distance between policy and dataset actions, offering direct action-level supervision. “**Image Consistency Reward**” generates images from policy actions via the world model and compares them with dataset images using negative MAE and LPIPS, providing pixel-level guidance. “**Model-Based Image Consistency Reward**” renders trajectories from both policy and dataset actions within the same world model, using negative MAE and LPIPS across time to mitigate generation-quality bias and ensure fairness.

2) Results Analysis. As shown in Table 4, the comparison across reward designs highlights the essential role of the world model in the training pipeline. “**Action Deviation Reward**”, which excludes the world model and relies only on action-level supervision, brings very limited gains (+1.1 points), showing that imitation alone is insufficient. “**Image Consistency Reward**” uses the world model and achieves moderate improvements, but direct comparison with real images still has limitations. “**Model-Based Image Consistency Reward**” maximally exploits the world model by performing trajectory comparisons within the same generative space, leading to consistent improvements across

486 all tasks and an average success rate of 91.1% (+4.5 points over the **initial policy**). These results
487 demonstrate that the world model is a key component, providing reliable optimization signals and
488 enhancing both performance and robustness.
489

490 5 CONCLUSION & LIMITATION 491

492 In this work, we introduced VLA-RFT, a reinforcement fine-tuning framework that uses a learned
493 world model as a controllable simulator. This approach enables efficient and safe policy optimiza-
494 tion, bridges imitation and reinforcement learning, and reduces real-world interaction costs. Experi-
495 ments show strong performance and generalization with minimal fine-tuning, highlighting world-
496 model-based RFT as a promising direction for VLA research.
497

498 Nevertheless, several limitations remain. First, the verified reward is primarily based on the simi-
499 larity between generated trajectories and expert demonstrations, constraining policies by dataset
500 quality and limiting the discovery of strategies beyond expert performance. Second, the representa-
501 tional capacity of the world model remains a bottleneck; scaling to larger models trained on more
502 diverse data could improve out-of-distribution generalization. Third, our framework does not explic-
503 itly integrate the world model into planning, which could enhance long-horizon reasoning. Finally,
504 the reward mechanism itself could be improved—for example, by leveraging learned reward models
505 (e.g., VLAC (Zhai et al., 2025)) to provide more task-relevant feedback. Extending the framework
506 to a broader class of policy architectures also represents an important direction for future work.
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Matthew Muckley, Am-
543 mar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, et al. V-jepa 2: Self-supervised video
544 models enable understanding, prediction and planning. [arXiv preprint arXiv:2506.09985](https://arxiv.org/abs/2506.09985), 2025.

545 Adrien Bardes, Quentin Garrido, Jean Ponce, Xinlei Chen, Michael Rabbat, Yann LeCun, Mido
546 Assran, and Nicolas Ballas. V-jepa: Latent video prediction for visual representation learning.
547 2023.

548 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
549 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr0ot n1: An open foundation model
550 for generalist humanoid robots. [arXiv preprint arXiv:2503.14734](https://arxiv.org/abs/2503.14734), 2025.

551

552 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
553 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. A vision-language-action flow model
554 for general robot control. [arXiv preprint arXiv:2410.24164](https://arxiv.org/abs/2410.24164), 2024.

555 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
556 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
557 latent video diffusion models to large datasets. [arXiv preprint arXiv:2311.15127](https://arxiv.org/abs/2311.15127), 2023.

558

559 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
560 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
561 transformer for real-world control at scale. [arXiv preprint arXiv:2212.06817](https://arxiv.org/abs/2212.06817), 2022.

562 Jun Cen, Chaohui Yu, Hangjie Yuan, Yuming Jiang, Siteng Huang, Jiayan Guo, Xin Li, Yibing
563 Song, Hao Luo, Fan Wang, et al. Worldvla: Towards autoregressive action world model. [arXiv
564 preprint arXiv:2506.21539](https://arxiv.org/abs/2506.21539), 2025.

565

566 Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
567 rft: A reinforced fine-tuning method for vla models via consistency policy. [arXiv preprint
568 arXiv:2502.05450](https://arxiv.org/abs/2502.05450), 2025a.

569

570 Yuxuan Chen and Xiao Li. Rlrc: Reinforcement learning-based recovery for compressed vision-
571 language-action models. [arXiv preprint arXiv:2506.17639](https://arxiv.org/abs/2506.17639), 2025.

572

573 Zengjue Chen, Runliang Niu, He Kong, and Qi Wang. Tgrpo: Fine-tuning vision-language-action
574 model via trajectory-wise group relative policy optimization. [arXiv preprint arXiv:2506.08440](https://arxiv.org/abs/2506.08440),
575 2025b.

576

577 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
578 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In [Robotics: Science
579 and Systems](#), 2023.

580

581 Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
582 Wanqi Zhou, Yang Liu, Bofang Jia, et al. Openhelix: A short survey, empirical analysis, and
583 open-source dual-system vla model for robotic manipulation. [arXiv preprint arXiv:2505.03912](https://arxiv.org/abs/2505.03912),
584 2025.

585

586 Pim De Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning.
587 [Advances in neural information processing systems](#), 32, 2019.

588

589 Pengxiang Ding, Han Zhao, Wenjie Zhang, Wenxuan Song, Min Zhang, Siteng Huang, Ningxi Yang,
590 and Donglin Wang. Quar-vla: Vision-language-action model for quadruped robots. In [European
591 Conference on Computer Vision](#), pp. 352–367. Springer, 2024.

592

593 Pengxiang Ding, Jianfei Ma, Xinyang Tong, Binghong Zou, Xinxin Luo, Yiguo Fan, Ting Wang,
594 Hongchao Lu, Panzhong Mo, Jinxin Liu, et al. Humanoid-vla: Towards universal humanoid
595 control with visual integration. [arXiv preprint arXiv:2502.14795](https://arxiv.org/abs/2502.14795), 2025.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied multi-
modal language model. 2023.

594 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution im-
 595 age synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
 596 recognition, pp. 12873–12883, 2021.

597

598 Yiguo Fan, Pengxiang Ding, Shuanghao Bai, Xinyang Tong, Yuyang Zhu, Hongchao Lu, Fengqi
 599 Dai, Wei Zhao, Yang Liu, Siteng Huang, et al. Long-vla: Unleashing long-horizon capability of
 600 vision language action model for robot manipulation. arXiv preprint arXiv:2508.19958, 2025.

601 Dylan J Foster, Adam Block, and Dipendra Misra. Is behavior cloning all you need? understanding
 602 horizon in imitation learning. Advances in Neural Information Processing Systems, 37:120602–
 603 120666, 2024.

604

605 Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna,
 606 Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Pannag Sanketi, Quan Vuong, Ted
 607 Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine. Octo: An open-source generalist robot
 608 policy. In Proceedings of Robotics: Science and Systems, Delft, Netherlands, 2024.

609

610 Zhefei Gong, Pengxiang Ding, Shangke Lyu, Siteng Huang, Mingyang Sun, Wei Zhao, Zhaoxin
 611 Fan, and Donglin Wang. Carp: Visuomotor policy learning via coarse-to-fine autoregressive
 612 prediction. arXiv preprint arXiv:2412.06782, 2024.

613

614 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 615 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 616 via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

617

618 Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
 619 Improving vision-language-action model with online reinforcement learning. arXiv preprint
 620 arXiv:2501.16664, 2025b.

621

622 Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
 623 Improving vision-language-action model with online reinforcement learning. arXiv preprint
 624 arXiv:2501.16664, 2025c.

625

626 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
 627 behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

628

629 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
 630 Davidson. Learning latent dynamics for planning from pixels. In International conference on
 631 machine learning, pp. 2555–2565. PMLR, 2019b.

632

633 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
 634 through world models. arXiv preprint arXiv:2301.04104, 2023.

635

636 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 637 Fleet. Video diffusion models. Advances in neural information processing systems, 35:8633–
 638 8646, 2022.

639

640 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 641 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

642

643 Yucheng Hu, Yanjiang Guo, Pengchao Wang, Xiaoyu Chen, Yen-Jen Wang, Jianke Zhang, Koushil
 644 Sreenath, Chaochao Lu, and Jianyu Chen. Video prediction policy: A generalist robot policy with
 645 predictive visual representations. arXiv preprint arXiv:2412.14803, 2024.

646

647 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
 648 Sadigh. Prismatic vlms: Investigating the design space of visually-conditioned language models.
 649 In Forty-first International Conference on Machine Learning, 2024.

650

651 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 652 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 653 vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

654

655 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 656 mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

648 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. [arXiv preprint](#)
 649 [arXiv:1412.6980](#), 2014.

650

651 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 652 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 653 in open language model post-training. [arXiv preprint arXiv:2411.15124](#), 2024.

654 Chenhao Li, Elijah Stanger-Jones, Steve Heim, and Sangbae Kim. Fld: Fourier latent dynamics for
 655 structured motion representation and learning. [arXiv preprint arXiv:2402.13820](#), 2024.

656

657 Chenhao Li, Andreas Krause, and Marco Hutter. Robotic world model: A neural network simulator
 658 for robust policy optimization in robotics. [arXiv preprint arXiv:2501.10100](#), 2025a.

659

660 Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang, Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang,
 661 Yilin Zhao, Subhashree Radhakrishnan, et al. Eagle 2: Building post-training data strategies from
 662 scratch for frontier vision-language models. [arXiv preprint arXiv:2501.14818](#), 2025b.

663

664 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 665 Benchmarking knowledge transfer for lifelong robot learning. [Advances in Neural Information](#)
 666 [Processing Systems](#), 36:44776–44791, 2023.

667

668 Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
 669 What can rl bring to vla generalization? an empirical study. [arXiv preprint arXiv:2505.19789](#),
 670 2025.

671

672 Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
 673 Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
 674 opportunities of large vision models. [arXiv preprint arXiv:2402.17177](#), 2024.

675

676 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
 677 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
 678 reinforcement learning. [arXiv preprint arXiv:2505.18719](#), 2025.

679

680 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 681 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
 682 class and backbone. [arXiv preprint arXiv:2412.06685](#), 2024.

683

684 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 685 language-conditioned policy learning for long-horizon robot manipulation tasks. [IEEE Robotics](#)
 686 [and Automation Letters](#), 7(3):7327–7334, 2022.

687

688 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 689 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 690 low instructions with human feedback. [Advances in neural information processing systems](#), 35:
 691 27730–27744, 2022.

692

693 Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 694 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
 695 Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In [2024 IEEE](#)
 696 [International Conference on Robotics and Automation \(ICRA\)](#), pp. 6892–6903. IEEE, 2024.

697

698 William Peebles and Saining Xie. Scalable diffusion models with transformers. In [Proceedings of](#)
 699 [the IEEE/CVF international conference on computer vision](#), pp. 4195–4205, 2023.

700

701 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 702 space control. In [Proceedings of the 24th international conference on Machine learning](#), pp. 745–
 750, 2007.

703

704 Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
 705 Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
 706 language-action model. [arXiv preprint arXiv:2501.15830](#), 2025.

707

708 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 709 models are unsupervised multitask learners. 2019. OpenAI blog preprint.

702 Moritz Reuss, Ömer Erdinç Yağmurlu, Fabian Wenzel, and Rudolf Lioutikov. Multimodal
 703 diffusion transformer: Learning versatile behavior from multimodal goals. [arXiv preprint](https://arxiv.org/abs/2407.05996)
 704 [arXiv:2407.05996](https://arxiv.org/abs/2407.05996), 2024.

705 Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In [Proceedings of](#)
 706 [the thirteenth international conference on artificial intelligence and statistics](#), pp. 661–668. JMLR
 707 Workshop and Conference Proceedings, 2010.

708 Cansu Sancaktar, Sebastian Blaes, and Georg Martius. Curious exploration via structured world
 709 models yields zero-shot object manipulation. [Advances in Neural Information Processing](#)
 710 [Systems](#), 35:24170–24183, 2022.

711 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 712 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. [arXiv preprint](https://arxiv.org/abs/2409.19256)
 713 [arXiv: 2409.19256](https://arxiv.org/abs/2409.19256), 2024.

714 Junyang Shu, Zhiwei Lin, and Yongtao Wang. Rftf: Reinforcement fine-tuning for embodied agents
 715 with temporal feedback. [arXiv preprint arXiv:2505.19767](https://arxiv.org/abs/2505.19767), 2025.

716 Yunlong Song, Sangbae Kim, and Davide Scaramuzza. Learning quadruped locomotion using dif-
 717 ferentiable simulation. [arXiv preprint arXiv:2403.14864](https://arxiv.org/abs/2403.14864), 2024.

718 Shuhan Tan, Kairan Dou, Yue Zhao, and Philipp Krähenbühl. Interactive post-training for vision-
 719 language-action models. [arXiv preprint arXiv:2505.17016](https://arxiv.org/abs/2505.17016), 2025.

720 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 721 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 722 tion and fine-tuned chat models. [arXiv preprint arXiv:2307.09288](https://arxiv.org/abs/2307.09288), 2023.

723 Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han
 724 Zhao, Wei Zhao, Pengxu Hou, Siteng Huang, Yifan Tang, Wenhui Wang, Ru Zhang, Jianyi Liu,
 725 and Donglin Wang. Vla-adapter: An effective paradigm for tiny-scale vision-language-action
 726 model. [arXiv preprint arXiv:2509.09372](https://arxiv.org/abs/2509.09372), 2025a.

727 Yihao Wang, Pengxiang Ding, Lingxiao Li, Can Cui, Zirui Ge, Xinyang Tong, Wenxuan Song, Han
 728 Zhao, Wei Zhao, Pengxu Hou, et al. Vla-adapter: An effective paradigm for tiny-scale vision-
 729 language-action model. [arXiv preprint arXiv:2509.09372](https://arxiv.org/abs/2509.09372), 2025b.

730 Xumeng Wen, Zihan Liu, Shun Zheng, Shengyu Ye, Zhirong Wu, Yang Wang, Zhijian Xu, Xiao
 731 Liang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 732 incentivizes correct reasoning in base llms. [arXiv preprint arXiv:2506.14245](https://arxiv.org/abs/2506.14245), 2025.

733 Jialong Wu, Shaofeng Yin, Ningya Feng, Xu He, Dong Li, Jianye Hao, and Mingsheng Long.
 734 ivideogpt: Interactive videogpts are scalable world models. [Advances in Neural Information](#)
 735 [Processing Systems](#), 37:68082–68119, 2024.

736 Jialong Wu, Shaofeng Yin, Ningya Feng, and Mingsheng Long. Rlrv-world: Training world models
 737 with reinforcement learning. [arXiv preprint arXiv:2505.13934](https://arxiv.org/abs/2505.13934), 2025.

738 Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
 739 World models for physical robot learning. In [Conference on robot learning](#), pp. 2226–2240.
 740 PMLR, 2023.

741 Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation
 742 via reinforcement learning. [arXiv preprint arXiv:2412.09858](https://arxiv.org/abs/2412.09858), 2024.

743 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 744inforcement learning really incentivize reasoning capacity in llms beyond the base model? [arXiv](https://arxiv.org/abs/2504.13837)
 745 [preprint arXiv:2504.13837](https://arxiv.org/abs/2504.13837), 2025.

746 Shaopeng Zhai, Qi Zhang, Tianyi Zhang, Fuxian Huang, Haoran Zhang, Ming Zhou, Shengzhe
 747 Zhang, Litao Liu, Sixu Lin, and Jiangmiao Pang. A vision-language-action-critic model for
 748 robotic real-world reinforcement learning, 2025.

756 Hongyin Zhang, Pengxiang Ding, Shangke Lyu, Ying Peng, and Donglin Wang. Gevrm:
 757 Goal-expressive video generation model for robust visual manipulation. [arXiv preprint](#)
 758 [arXiv:2502.09268](#), 2025a.

759 Hongyin Zhang, Shiyuan Zhang, Junxi Jin, Qixin Zeng, Yifan Qiao, Hongchao Lu, and Donglin
 760 Wang. Balancing signal and variance: Adaptive offline rl post-training for vla flow models. [arXiv](#)
 761 [preprint arXiv:2509.04063](#), 2025b.

762 Hongyin Zhang, Zifeng Zhuang, Han Zhao, Pengxiang Ding, Hongchao Lu, and Donglin Wang.
 763 Reinbot: Amplifying robot visual-language manipulation with reinforcement learning. [arXiv](#)
 764 [preprint arXiv:2505.07395](#), 2025c.

765 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 766 effectiveness of deep features as a perceptual metric. In [Proceedings of the IEEE conference on](#)
 767 [computer vision and pattern recognition](#), pp. 586–595, 2018.

768 Tonghe Zhang, Chao Yu, Sichang Su, and Yu Wang. Reinflow: Fine-tuning flow matching policy
 769 with online reinforcement learning. [arXiv preprint arXiv:2505.22094](#), 2025d.

770 Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
 771 Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
 772 [arXiv preprint arXiv:2411.19309](#), 2024.

773 Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo
 774 Li, Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for
 775 vision-language-action models. In [Proceedings of the Computer Vision and Pattern Recognition](#)
 776 [Conference](#), pp. 1702–1713, 2025.

777 Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
 778 Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
 779 awareness for generalist robotic policies. In [The Thirteenth International Conference on Learning](#)
 780 [Representations](#), 2025.

781 Zhide Zhong, Haodong Yan, Junfeng Li, Xiangchen Liu, Xin Gong, Wenxuan Song, Jiayi Chen,
 782 and Haoang Li. Flowvla: Thinking in motion with a visual chain of thought. [arXiv preprint](#)
 783 [arXiv:2508.18269](#), 2025.

784 Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. Dino-wm: World models on pre-trained
 785 visual features enable zero-shot planning. [arXiv preprint arXiv:2411.04983](#), 2024a.

786 Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, Dit-Yan Yeung, and Chuang Gan. Robodreamer:
 787 Learning compositional world models for robot imagination. [arXiv preprint arXiv:2404.12377](#),
 788 2024b.

789 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 790 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 791 to robotic control. In [Conference on Robot Learning](#), pp. 2165–2183. PMLR, 2023.

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A APPENDIX
811812
813 A.1 MODEL ARCHITECTURE
814

815 **World Model.** As shown in Figure 5, given the input initial image, we first encode it using an en-
816 coder (similar to VQGAN (Esser et al., 2021)) to obtain image tokens, while continuous actions are
817 discretized into action tokens through an action tokenizer. These image and action tokens are then
818 jointly fed into the world model, which autoregressively predicts the future token sequences. Fi-
819 nally, the generated image tokens are decoded into corresponding future image sequences, enabling
820 the modeling and simulation of environment dynamics. As shown in Table 5, the model is built on a
821 12-layer Transformer architecture with a hidden size of 768 and an intermediate FFN size of 3072.
822 It employs 12 attention heads with a head dimension of 64, a maximum positional embedding length
823 of 8192, SiLU activation, and a vocabulary size of 9008.

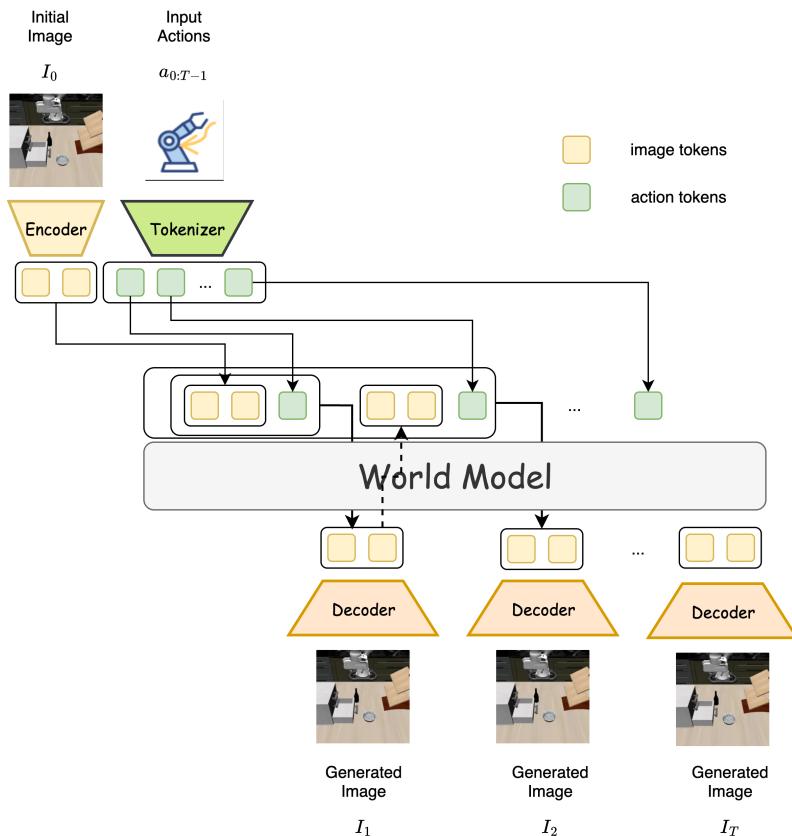


Figure 5: **Illustration of World Model Generation.** The initial image I_0 and input action sequence $a_{0:T-1}$ are first encoded into image and action tokens. These tokens are then fed into the world model to autoregressively predict the future state token sequence. Finally, decoders transform the generated image tokens into predicted future images I_1, I_2, \dots, I_T .

VLA Policy. While flow-based methods such as π_0 (Black et al., 2024) demonstrate competitive performance, their JAX implementation poses integration challenges with VERL, and the LeRobot PyTorch version offers no significant advantages over VLA-Adapter despite its considerable computational overhead. Therefore, we selected VLA-Adapter (Wang et al., 2025a) as our base policy. During the RFT stage, we freeze the upper layer VLM of the policy and only update the lower layer action head. In addition, we incorporate a sigma net with a DiT-based architecture similar to the action head, which is responsible for generating noise outputs.

864 Table 5: Key hyperparameters of the World Model: Architecture (left) and Pre-training (right).
865

866 Hyperparameter	867 Value	868	869 Hyperparameter	870 Value
Architecture				
871 Layers	872 12		873 Pre-training	
874 Hidden size	875 768		876 Training Steps	877 100k
878 FFN intermediate size	879 3072		880 Batch size	881 16
882 Attention heads	883 12		884 Training steps	885 1.5×10^5
887 Head dimension	888 64		889 Learning rate	890 5×10^{-5}
893 Key-value heads	894 12		895 Optimizer	896 AdamW (Kingma & Ba, 2014)
898 Max position embeddings	900 8192		901 Datasets	902 Libero Datasets
905 Activation	907 SiLU		908 Segment length	910 8
914 Vocabulary size	916 9008			

880 Table 6: Key hyperparameters of the VLA-Adapter: Architecture (left) and Pre-training (right).
881

882 Hyperparameter	883 Value	884	885 Hyperparameter	886 Value
Architecture				
887 Vision backbone	888 dinosiglip-vit-so-224px		889 Pre-training	
890 Input image size	891 224×224		892 Batch size	893 16
894 LLM backbone	895 qwen25-0_5b-extra		896 Training steps	897 1.5×10^5
898 LLM max length	900 2048		901 Learning rate	903 1×10^{-4}
904 Text layers / hidden size	906 24 / 896		907 Optimizer	909 AdamW (Kingma & Ba, 2014)
908 Attention heads / KV heads	910 14 / 2		912 Datasets	914 Libero Datasets
914 FFN intermediate size	916 4864		918 LoRA Rank	920 64
920 Max position embeddings	922 32768			
924 Torch dtype	926 bfloat16			
928 Action bins	930 256			

895
896
897 A.2 TRAINING DETAILS
898900 **Pre-Training Phase.**

901 1) World Model: As shown in Table 5, the model is optimized using AdamW on the Libero datasets
902 for 1.5×10^5 steps with a batch size of 16, a segment length of 8, and a learning rate of 5×10^{-5} .
903
904 2) VLA Policy: Our base policy consists of an upper-layer vision–language model (VLM) and
905 a lower-layer DiT (Peebles & Xie, 2023)-based flow matching action head. During pre-training,
906 we apply LoRA (Hu et al., 2022) for parameter-efficient fine-tuning of the VLM, while jointly
907 optimizing the action head to better align the visual, language, and action spaces. The detailed
908 architecture and training hyperparameters are summarized in Table 6.

909 **RFT Phase.**

910 For more details, see Figure 7.

911 1) World Model: The World Model is frozen.

912 2) VLA Policy: As shown in Table 7, we adopt GRPO (Chen et al., 2025b) as the advantage estimator
913 and configure the optimization with a learning rate of 1×10^{-6} and a sigma learning rate of $1 \times$
914 10^{-5} . For stability, an auxiliary MSE loss is included with coefficient 0.01, together with an entropy
915 regularization term of 0.003 to encourage exploration. Training is conducted for 400 steps with a
916 batch size of 16, and each update uses 16 rollouts. These settings strike a balance between stability
917 and efficiency, enabling consistent improvements under limited compute budgets.

Table 7: Key hyperparameters for RL fine-tuning.

Hyperparameter	Value
Advantage estimator	GRPO
Learning rate	1×10^{-6}
Sigma learning rate	1×10^{-5}
MSE loss coefficient	0.01
Entropy coefficient	0.003
Total training steps	400
Batch Size	16
Rollout Times	16

Table 8: **Details of perturbation experiments.** Task 1 and Task 2 denote different tasks, while Dim 1 and Dim 2 refer to different perturbation objects or robot states. Where KP means keep original states.

Policy.	Object Position	Goal Position	Robot Initial States	Task1 Dim1 SR (%)	Task1 Dim2 SR (%)	Task2 Dim1 SR (%)	Task2 Dim2 SR (%)	Average SR (%)
Base	±2.5	KP	KP	87	52	78	60	69.3
	Ours	±2.5	KP	94	62	80	58	73.5
Base	±5	KP	KP	70	44	50	28	48.0
	Ours	±5	KP	72	52	56	30	52.5
Base	KP	±2.5	KP	62	58	92	86	74.5
	Ours	KP	±2.5	64	68	94	90	79.0
Base	KP	±5	KP	34	46	48	54	44.8
	Ours	KP	±5	46	42	58	60	51.5
Base	KP	KP	±20	60	88	54	90	73.0
	Ours	KP	KP	62	92	58	94	76.5
Base	KP	KP	±50	42	82	52	78	63.5
	Ours	KP	KP	46	86	56	80	67.0
Base	±2.5	±2.5	±20	64	82	36	72	63.5
	Ours	±2.5	±2.5	68	92	40	80	70.0
Base	±5	±5	±50	34	64	8	30	34.0
	Ours	±5	±5	36	60	12	40	37.0

A.3 EXPERIMENT DETAILS

Details of perturbation experiments. The details of the perturbation experiments are shown in Table 8. Task 1 and Task 2 denote different tasks, while Dim 1 and Dim 2 refer to different perturbation objects or robot states.

Comparisons with other VLA methods. As shown in Table 9, VLA-RFT (Ours) consistently achieves the highest scores compared with baseline policies.

Comparisons with other VLA+RL methods. Our comprehensive evaluation demonstrates that the proposed framework achieves remarkable superiority over existing approaches across multiple dimensions. Not only does our method significantly outperform state-of-the-art offline RL baselines, but it also rivals the performance of online RL methods while maintaining the practical advantages of offline training. Most notably, our world-model-based approach delivers these superior results with dramatically reduced computational overhead, requiring substantially fewer training steps than conventional alternatives. The experimental comparison reveals the distinct advantages of our approach across diverse settings. While VLA-RL operates through direct reinforcement learning in the LIBERO environment, and competing methods like ARFM, RWR, and ReinbotT represent the current best practices in offline RL, our framework consistently demonstrates superior performance gains. The key innovation lies in how VLA-RFT strategically exploits the world model’s predictive capabilities to achieve unprecedented data efficiency, enabling faster convergence without sacrificing

972
 973 **Table 9: Performance under general settings of LIBERO suites.** We report SR (%) across the four
 974 suites (Spatial, Object, Goal, and Long) and their average. VLA-RFT (ours) consistently achieves
 975 the highest scores compared with baseline policies. VLA-Adapter (Base) is the recurrence result
 976 when the Policy is Flow-matching and there is only one image input.

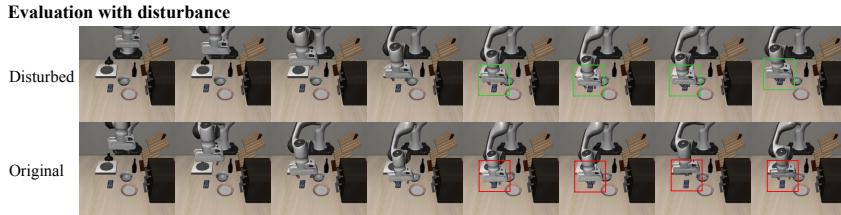
Policy	Spatial		Object		Goal		Long		Average	
	SR (%)	Rank								
Diffusion Policy (Chi et al., 2023)	78.3	11	92.5	5	68.3	11	50.5	11	72.4	11
Octo (Ghosh et al., 2024)	78.9	9	85.7	10	84.6	5	51.1	10	75.1	9
MDT (Reuss et al., 2024)	78.5	10	87.5	9	73.5	10	64.8	5	76.1	8
OpenVLA (Kim et al., 2024)	84.7	7	88.4	8	79.2	7	53.7	9	76.5	7
SpatialVLA (Qu et al., 2025)	88.2	4	89.9	7	78.6	8	55.5	7	78.1	6
WorldVLA (Cen et al., 2025)	87.6	5	96.2	2	83.4	6	60.0	6	81.8	4
CoT-VLA (Zhao et al., 2025)	87.5	6	91.6	6	87.6	4	69.0	4	81.1	5
TraceVLA (Zheng et al., 2025)	84.6	8	85.2	11	75.1	9	54.1	8	74.8	10
π_0 (Black et al., 2024)	91.2	2	93.2	3	93.8	2	74.2	3	88.1	2
VLA-Adapter (Wang et al., 2025a) (Base)	88.4	3	92.8	4	88.0	3	77.2	2	86.6	3
VLA-RFT (Ours)	94.4	1	94.4	1	95.4	1	80.2	1	91.1	1

986
 987 performance quality. For transparency and reproducibility, we note that VLA-RL results are sourced
 988 directly from the original publication, while the performance metrics for ARFM, RWR, and Rein-
 989 boT on LIBERO are derived from the ARFM paper, ensuring fair and comprehensive benchmarking
 990 across all methods.
 991

992 **Table 10: Comparison with other RL methods on Libero Average.** We report baseline success
 993 rate (SR), fine-tuned SR, their improvement (Δ), and training steps.
 994

Type	Algorithm	Baseline SR (%)	SR (%)	Δ SR (%)	Training Steps
Online	VLA-RL (Lu et al., 2025)	76.5	81.0	4.5	10,000
	RIPT-VLA (Tan et al., 2025)	96.7	97.5	0.8	-
Offline	ARFM (Zhang et al., 2025b)	88.1	92.1	4.0	40,000
	RWR (Peters & Schaal, 2007)	88.1	90.8	2.7	40,000
	ReinboT (Zhang et al., 2025c)	88.1	91.2	3.1	40,000
Ours	VLA-RFT	86.6	91.1	4.5	400

1001 **Visualization.** We also provide more detailed visualization results in Figure 6 and Figure 8.
 1002



1011 **Figure 6: Comparison of original and disturbed scenarios.**

1012

1013 A.4 THE USE OF LARGE LANGUAGE MODELS (LLMs)

1016 To enhance the readability and coherence of this paper, we employed large language models to assist
 1017 in refining the writing.
 1018

1019 A.5 REAL WORLD EXPERIMENTS

1021 **Experimental Setup.** **1)Hardware Configuration:** We conduct our real-world experiments on a
 1022 unified robotic platform. The system comprises a Flexiv Rizon 4s, a 7-DoF adaptive robotic arm
 1023 known for its precise force control, equipped with a Flexiv GN01 two-finger gripper as the end-
 1024 effector. For visual perception, we employ a single Intel RealSense D435i RGB-D camera mounted
 1025 in a fixed third-person view. This camera setup provides a global perspective of the workspace, cap-
 1026 turing RGB images necessary for the policy inputs. The entire system is powered by a workstation

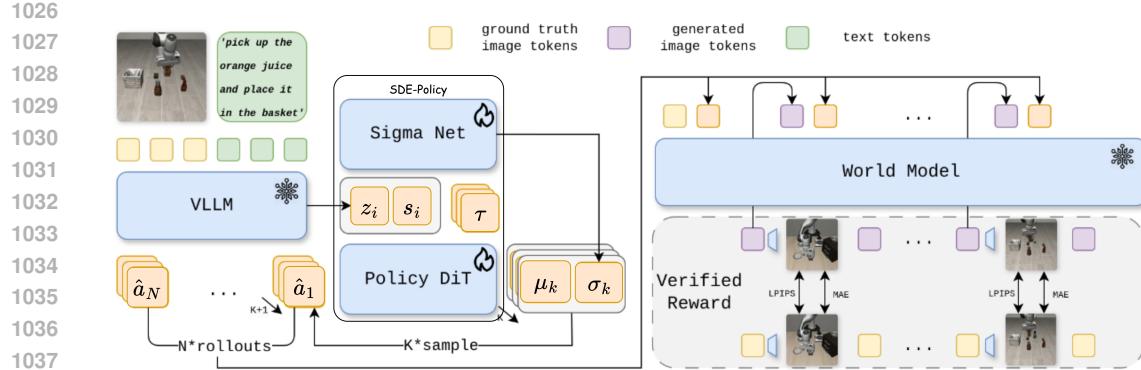


Figure 7: Detailed Implementation of Method.

Comparison with Base model

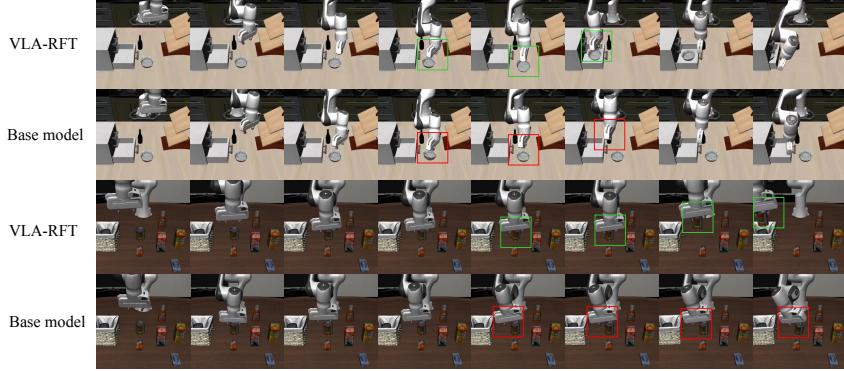


Figure 8: Comparison of base policy and VLA-RFT.

equipped with an NVIDIA RTX 4090 GPU to ensure real-time inference. **2) Task Definition:** We focus on the challenging task of cloth manipulation, specifically *Towel Folding*. The objective is to transform a towel from an initial flat state into a specific folded configuration. Due to the highly deformable nature of the fabric, this requires the agent to perform precise pick-and-place actions and dynamic adjustments. Each evaluation episode begins with the towel placed within the robot's workspace. The agent is tasked with completing the folding procedure within a strict time limit of 3 minutes. An episode is considered successful only if the towel is folded into the target structure and neatly organized within this duration.

Training Details. Initially, we collected a dataset consisting of 50 expert demonstration episodes. Using this dataset, we pre-trained the flow-based VLA-adapter policy for 20k and 80k steps, and the world model for 24k steps, all with a batch size of 16. Subsequently, we fine-tuned the policy for an additional 200 steps using our proposed RFT paradigm. All training procedures were conducted on a server equipped with eight NVIDIA H200 GPUs.

Result Analysis. We conducted a comparative evaluation between the policy checkpoint obtained after 20k steps of Supervised Fine-Tuning (SFT) and the checkpoint derived from the subsequent 200 steps of Reinforcement Fine-Tuning (RFT). The quantitative results are presented in Table 11. We observe that simply extending SFT by an additional 60k steps yields no further improvement in the success rate. In contrast, applying our RFT on top of the 20k-SFT checkpoint significantly boosts the success rate to 100% (10/10). This improvement is particularly pronounced in mitigating specific failure modes, such as unsuccessful grasping or premature dropping of the towel during transport.

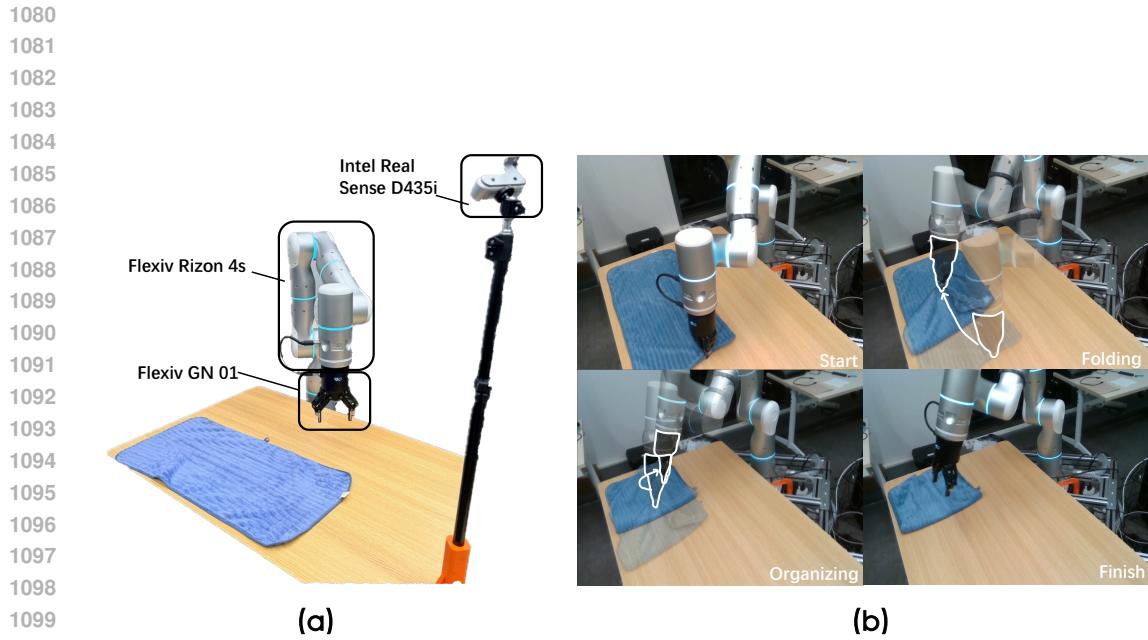


Figure 9: **Real World Experiments.** (a) The hardware platform setup used for data collection and policy evaluation. (b) A representative execution sequence of the towel folding task.

Table 11: **Real-world Experiment Results.** We report the success rate (SR) and detailed outcomes for 10 consecutive trials. For successful trials, the completion time in **seconds (s)** is recorded. Failure modes are noted explicitly.

Trial ID	Base (20k SFT)	Base (80k SFT)	RFT (Ours) (20k SFT + 200 RFT)
1	<i>poor grasp</i>	<i>poor grasp</i>	41
2	60	48	54
3	<i>no grasp</i>	<i>poor grasp</i>	60
4	56	42	54
5	<i>no grasp</i>	50	56
6	<i>joint limit</i>	<i>joint limit</i>	50
7	<i>no grasp</i>	<i>no grasp</i>	52
8	55	48	50
9	52	<i>no grasp</i>	60
10	51	49	62
SR	5/10	5/10	10/10