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ABSTRACT

Achieving high performance in modern AI increasingly requires kernels co-
designed with underlying hardware, but writing efficient kernels remains challeng-
ing due to hardware-level complexity and limited fine-grained control in compilers
like Triton. In this paper, we introduce TILELANG, a programmable tile-level sys-
tem that provides explicit primitives for memory placement, data movement, and
parallel scheduling. Using a unified fused tile-level dataflow graph (FTG), TILE-
LANG streamlines kernel development by unifying tile recommendation, which
guides developers with hardware-aware defaults, and tile inference, which auto-
mates completion through constraint propagation. TILELANG makes it easy to
express a wide range of AI algorithms in under 70 lines of Python code, reducing
code size by up to 85.5% compared to manual implementations. Evaluations show
that TILELANG achieves up to a 10.59× speedup over Triton on NVIDIA H100
and up to 11.56× on AMD GPUs, bridging programmability and performance.

1 INTRODUCTION

The rapid progress of modern neural networks has driven a growing demand for highly optimized
compute kernels, particularly for memory-bound operations such as attention. In recent years,
modern attention algorithms such as Multi-Head Attention(MHA) (Vaswani et al., 2017), Multi-
Head Latent Attention (MLA) (Liu et al., 2024), Gated Query Attention (GQA) (Ainslie et al.,
2023), and Linear Attention (Gu & Dao, 2023; Dao & Gu, 2024; Sun et al., 2023; Yang et al.,
2024), increasingly demand fine-grained control over memory hierarchy, scheduling, and data move-
ment to fully utilize hardware capabilities. However, existing systems like Triton (Tillet et al.,
2019) lack programmable abstractions to support this level of control. For instance, FlashMLA
relies on carefully pipelined computations and shared memory reuse, but Triton gives program-
mers no direct control over tile reuse or pipeline scheduling, restricting performance optimization.
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Figure 1: Performance vs. code size trade-off for
MLA kernels on NVIDIA H100. Points closer to
the top-left indicate better balance between perfor-
mance and implementation simplicity. The anno-
tated speedup values indicate performance gains
over the PyTorch implementation.

As a result, developers often face a steep trade-
off between achieving peak performance and
maintaining programmability: they must either
manually write complex CUDA kernels or sacri-
fice significant performance due to abstraction
mismatches. As illustrated in Figure 1, the Tri-
ton implementation of MLA requires only 130
lines of code, whose convenience comes at a
steep cost—its performance reaches only 14.2%
of the hand-written CUDA version (DeepSeek,
2025) (∼500 lines) on NVIDIA H100 GPUs.
Bridging the gap between programmability and
performance requires addressing two key chal-
lenges. First, a programming model must give
developers precise control over data movement
and computation, enabling direct interaction
with hardware resources. Second, a compiler
must efficiently lower these high-level programs
to GPU code, mapping abstractions onto hard-
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ware resources without adding programming complexity. Solving both challenges is essential to
balance developer productivity with near-peak hardware performance on modern accelerators.

We introduce TILELANG, a controllable programming system for modern neural workloads. TILE-
LANG provides programmable tile abstractions that let developers express and optimize low-level
kernel behaviors in a high-level, composable way. Unlike existing compilers such as Triton, which
rely on opaque optimization passes, TILELANG gives developers explicit control over memory, data
movement, layout, and parallel execution. Specifically, developers can allocate buffers in differ-
ent hardware memory levels (alloc_shared, alloc_fragment), orchestrate data transfers
(copy), define custom memory layouts (annotate_layout, use_swizzle), and fine-tune
parallelism and pipelining strategies (Parallel, Pipelined).

Under programmable tile abstractions, TILELANG programs can be represented as a unified fused
tile-level dataflow graph (FTG). By operating on this FTG, TILELANG enables fine-grained reasoning
and optimization of AI kernels, guiding developers from high-level design choices to fully specified,
hardware-efficient kernel configurations. It introduces two complementary techniques. First, tile
recommendation analyzes the FTG along with partially specified configurations to provide hardware-
aware defaults for tile shapes, memory placement, and warp partitions, offering developers high-
quality starting points that can be accepted, adjusted, or further tuned. Second, tile inference
propagates shape and layout constraints across the FTG to complete the remaining configurations
based on the partially annotated operators. It also automatically aligns buffer shapes, layouts, and
memory allocations both downstream and upstream. This cooperative workflow narrows the design
space while producing consistent, efficient kernel configurations, reducing manual effort without
sacrificing fine-grained control.

As shown in Figure 1, TILELANG achieves on average 5.56× the performance of Triton and ap-
proaches the hand-written CUDA version in performance, while requiring less than 16% of the code
size of the manual kernel and even fewer LOCs than Triton. This highlights TILELANG’s ability
to attain a more favorable balance between programmability and performance, offering both high
efficiency and low development effort. We also implement other modern AI kernels—including
Dequantize Matmul (Wang et al., 2024), Multi-Head Attention (MHA) (Vaswani et al., 2017), and
Block-Sparse Attention (BSA) (Guo et al., 2024). Despite its deliberately streamlined interface,
TILELANG achieves state-of-the-art throughput across heterogeneous GPUs, delivering speed-ups of
up to 10.59× over Triton on an NVIDIA H100 and 11.56× on an AMD MI300X (AMD, 2024).

Our contributions are twofold: (1) programmable tile abstractions that let developers directly control
and interact with hardware; and (2) tile recommendation and inference that guide developers with
hardware-aware defaults and automatically complete configurations over a unified FTG graph. We
believe TILELANG improve both the productivity and performance of modern AI kernel development.

2 RELATED WORK

AI kernel programming and optimizations. To simplify the development of AI kernels, libraries
like FlashAttention-3 (Shah et al., 2024), CUTLASS (NVIDIA, 2019), and ThunderKittens (Spector
et al., 2025) rely on manual or template-driven designs. Triton (Tillet et al., 2019) provides a
high-level Python DSL but restricts control over critical performance paths. Cypress (Yadav et al.,
2025) introduces a task-based programming model with sequential semantics. Frameworks such as
PyTorch (Paszke et al., 2019), Graphene (Hagedorn et al., 2023), MLIR (Lattner et al., 2021), and
Welder (Shi et al., 2023) take a compiler-centric approach. Unlike these works, TileLang is a tile-
level programmable language that automates layout and low-level configuration while giving users
fine-grained control. Its flexible tile programming abstraction can help researchers obtain kernels for
a broad range of AI operations, and enable advanced optimizations like software pipelining (Cheng
et al., 2025) and warp specialization (Huang et al., 2023).

Cost modeling. TANGRAM (Gao et al., 2019) optimizes dataflow across scheduling layers, along
with a performance modeling tool extended by SET (Cai et al., 2023) with Resource Allocation Trees.
KPerfIR (Guan et al., 2025) adds instrumentation for profiling and pipeline reordering in Triton.
ML-based predictors like Path Forward (Li et al., 2023) and NEUSIGHT (Lee et al., 2025) also exist.
In contrast, TILELANG’s tile-level analytical cost model uniquely captures both computation and data
movement at tile granularity, supporting fusion-aware scheduling with high accuracy and usability.
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An extended discussion of related work is in Appendix A, where we discussed several classic works
such as Tensor-level IRs (e.g., XLA (Google, 2019)), the polyhedral model (Griebl et al., 1998),
loop synthesizers (e.g., Halide (Ragan-Kelley et al., 2013)), TVM (Chen et al., 2018), and CuTe
library (NVIDIA, 2019).

3 PROGRAMMING MODEL

3.1 TILE LANGUAGE

Tile declarations. TILELANG elevates a tile—a hyper-rectangular slice of a tensor—to a first-class
citizen. A tile may be owned by a warp, a thread block, or any programmer-defined parallel unit, and
can be reshaped or re-partitioned at compile time. In the FlashMLA kernel, the global matrices are
consumed in tiles whose extents are parameterized by block_H, block_N, and related symbolic
sizes. The T.Kernel structure establishes the kernel’s launch configuration (e.g. bx, by, and the
thread count), enabling both index derivation for each thread block and subsequent compiler analyses
such as memory-access coalescing and loop tiling.

Tile placement. A distinguishing feature of TILELANG is the ability to map every tile buffer
to a concrete level of the target accelerator’s memory hierarchy via user-visible intrinsics, rather
than relying on opaque compiler heuristics. T.alloc_shared reserves storage in low-latency,
software-managed shared memory on NVIDIA GPUs (or an architecturally analogous space on other
devices). T.alloc_fragment places accumulator tiles in the register file. Although registers
are scarcer than shared memory, their single-cycle latency is indispensable for performance-critical
reductions. During compilation, a layout-inference pass distributes these register tiles across threads
while respecting register-pressure constraints and bank conflicts.

Tile operators and schedulable primitives. Table1 in Appendix C showcases the representative sub-
set of core building blocks that orchestrate computation and movement among tiles. Fundamental op-
erators (T.copy, T.gemm, T.reduce) act on tile operands directly, allowing the programmer to ex-
press dense linear algebra, pointwise transforms, and reductions without resorting to scalarized loops.
Orthogonal scheduling primitives expose fine-grained control over parallelism (T.Parallel),
pipelining (T.Pipelined), and memory layout (T.annotate_layout, T.use_swizzle).

3.2 A FLASH MULTI-HEAD LATENT ATTENTION EXAMPLE

Recommend

Recommend

Recommend

Inference

Inference

Inference

1 Decide tile configuration

2 with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=256) as (bx, by):

3  Define buffer on desired memory layer

4 Q_shared = T.alloc_shared([block_H, dim], dtype)

5 S_shared = T.alloc_shared([block_H, block_N], dtype)

6 Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)

7 acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)

8 # skip initialization statements

9  Define desired data layout

10 T.annotate_layout({{O_shared: T.make_swizzled_layout(O_shared)}})

11

12 T.copy(Q[bx, by * block_H:(by + 1) * block_H, :], Q_shared)

13 T.copy(Q_pe[bx, by * block_H:(by + 1) * block_H, :], Q_pe_shared)

14

15  Auto pipeline scheduling

16 for k in T.Pipelined(T.ceildiv(seqlen_kv, block_N), num_stages=2):

17 T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)

18 T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)

19 T.clear(acc_s)

20

21  Warp partitioning

22 T.gemm(Q_shared, KV_shared, acc_s, transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)

23 T.gemm(Q_pe_shared, K_pe_shared, acc_s, transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)

24 # skip flash operations on scaling and softmax

25 T.copy(acc_s, S_shared)

26

27   Auto utilize high performance instruction

28 T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)

29

30 for i, j in T.Parallel(block_H, dim):

31 acc_o[i, j] /= logsum[i]

32 T.copy(acc_o, O_shared)

33 T.copy(O_shared, Output[bx, by * block_H:(by + 1) * block_H, :])

34

1

2

3

4

5

6

Figure 2: FlashMLA TILELANG kernel example
and language features

By fusing high-level expressiveness with
architecture-aware orchestration, TILELANG
succinctly captures sophisticated AI algorithms
such as FlashMLA (Liu et al., 2024) while
fully harnessing the performance envelope
of modern GPU architectures. Figure 2
illustrates TILELANG’s developer–compiler
co-optimization model: the developer
specifies key decisions—such as tile config-
uration, launch grid (block_H, block_N),
buffer placement (T.alloc_shared,
T.alloc_fragment), swizzled layouts
(T.annotate_layout), and warp-level
collaboration (T.Parallel). The compiler
then infers the remaining low-level details,
including latency-hiding pipelines, conflict-free
memory layouts, and instruction selection
for peak hardware performance. To balance
flexibility with automation, TILELANG offers
two developer-facing facilities. First, tile recom-
mendation (Sec. 4.2) supplies hardware-aware
defaults that serve as high-quality starting points.
Second, tile inference (Sec. 4.3) analytically
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propagates user-provided or recommended hints to complete the schedule and guarantee consistency.
Working in concert, these facilities deliver near-optimal performance with limited manual tuning.

4 SCHEDULING GUIDANCE AND AUTOMATION

4.1 TWO-STAGE FRAMEWORK

Optimization space. High-performance kernel design in TILELANG begins with a tile-level program,
represented as a fused tile-level graph (FTG) capturing dataflow and tiling structure–each node
represents a tile operator and each edge encodes a data dependency. By operating on this unified graph,
TILELANG exposes and reasons about hardware-aware optimizations across six key dimensions: tile
size (affecting shared memory and register usage), memory placement (selecting appropriate memory
scope), warp partitioning (how threads collaborate and bind within a block), memory layout (how tile
data is organized across memory levels), software pipelining (overlapping compute and data transfer,
e.g., via TMA), and tensorization (mapping operations to CUDA or Tensor Cores).

Tile recommendation and inference. To efficiently explore the optimization space, TILELANG
adopts a unified two-stage workflow over the FTG. In the first stage, tile recommendation analyzes the
FTG to provide hardware-aware defaults for partially annotated operators, covering dimensions such
as initial tile shapes, memory placement, and warp partitioning (Section 4.2). These recommendations
shape the memory footprint, compute partitioning, and thread collaboration, providing high-quality
starting points. In the second stage, leveraging the context from recommendation, tile inference prop-
agates constraints through the FTG, automatically inferring the remaining configuration, including
tile size, memory layout, software pipelining, and tensorization. It ensures consistency, compatibility,
and hardware efficiency (Section 4.3). Together, these stages unify developer guidance and automated
completion: recommendation narrows the design space with informed hints, while inference finalizes
fully specified, hardware-efficient kernels with minimal manual effort.

Running example. Taking MLA as an example (Figure 2), TILELANG first performs tile recom-
mendation as illustrated in Figure 3. Tile operators in the FTG expose tunable parameters—such as
tile size, memory placement, and warp-partitioning strategies—serving as the user interface for these
optimization knobs. For instance, in the first T.gemm operator (Figure 3 1 ), memory placement
annotations specify Q and KV tiles in shared memory, while S resides in registers. The S tile is
further partitioned across columns using the “policy=FullCol” warp-partitioning strategy. These
decisions directly shape the memory footprint and influence data access patterns across the FTG. The
cost model analyzes the FTG to estimate memory traffic, guiding the search toward configurations
that minimize data movement.
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Figure 3: Two-stage workflow of optimizing MLA example.

Tile inference completes the configuration by operating over the FTG. For example, once S (output
of the first T.gemm in Figure 3( 1 ) and S_cast (input of the second T.gemm in Figure 3 3 ) are
fixed in location, shape, and partitioning in the first step, inference automatically determines the
tile placement and partitioning (e.g., all-gather or scatter) of copy (Figure 3 2 ) in the second step,
ensuring consistency without manual effort. Beyond copy decisions, inference also derives memory
layouts by mapping multi-dimensional indices to physical addresses, explicitly considering vector-
ization, coalescing, and bank conflicts. Finally, it automates software pipelining and tensorization,
ensuring that the resulting kernel configuration is efficient on the underlying hardware. TILELANG
also provides platform-specific recommendations and inference (see Appendix D).
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4.2 TILE RECOMMENDATION

(a) Hardware-Aligned Search

blockM: { 16, 32, … }
policy: { FullRow, FullCol } 
num_stages: { 1, 2, … }
Q.alloc(): { Reg, Smem }
……

(b) Cost Model Guided Filtering

TileDevice

Candidates

(c)  Interactive Schedule 

Final:
blockM = 64
Policy = FullCol
num_stages = 2
Q.alloc() = Smem
...

Final:
blockM = 64
Policy = FullCol
num_stages = 2
Q.alloc() = Smem
...

Kernel 1

Kernel K

Light
Perf. 

Report

Accept?

Iterate 
(a), (b)

Figure 4: Tile recommendation with cost model. In (b), we show a scatter plot of candidate schedules.
The x-axis orders candidates by their 1

predicted latency , and the y-axis shows their normalized scores

defined as latency of best candidate
latency of current candidate which lies in the range (0,1].

Roofline-based cost model. As outlined in Figure 4, TILELANG uses a static roofline-based cost
model to evaluate candidate configurations, which include tile shapes, memory placement strategies,
and warp partitioning. The cost model operates directly on the fused tile graph (FTG): each FTG
under a given configuration is lowered into an intermediate representation (IR), a structured, tile-
oriented compute plan that explicitly encodes compute and memory access patterns per tile. From
this IR, the model statically extracts two key quantities: total memory traffic at each memory level,
and total floating-point operations for each compute type. These quantities are used in a roofline
formulation that assumes perfect overlap between computation and memory transfers, ignoring
pipeline prologues/epilogues. The execution time is estimated as:

Time = max
i,j

(
MemoryTraffici

Bandwidthi
,
Computationj

Performancej

)
+ tintrinsic (1)

where i indexes levels of the memory hierarchy (e.g., HBM, L2, L1), and j indexes compute unit types
(e.g., tensor cores, vector cuda cores, special function units (SFUs)). The term tintrinsic accounts for
inherent overheads such as kernel launch latency and loop prologue and epilogue costs. This model
provides a tight performance upper bound and allows rapid evaluation across large configuration
spaces without actual execution or runtime profiling.

Based on the cost model, TILELANG generates actionable recommendations for kernel tuning,
including tile shapes, memory placement, and warp partitioning. These recommendations form an
interactive baseline: developers can accept, adjust, or iteratively refine them across multiple rounds.
This human-in-the-loop workflow balances automation with expert insight, slashing tuning effort
while preserving full design control.

Tile size. TILELANG presents a ranked shortlist of tile shapes that are multiples of the device’s
native tensor-core fragments and respect register and shared-memory limits. Each candidate shows
predicted arithmetic intensity, memory traffic, and roofline utilisation. Developers can accept the top
choice, pin alternatives for later benchmarking, or adjust dimensions manually.

Memory placement. Given a chosen tile shape, TILELANG enumerates legal bindings of operands
and temporaries to registers or shared memory, flagging options that exceed capacity. Each binding
includes estimated pipeline stalls and effective bandwidth, letting developers quickly explore trade-
offs and commit or refine placements.

Warp partition. To ensure sufficient thread-level parallelism, TILELANG proposes warp partitions
that evenly cover the output tile and match the SM topology. With predicted occupancy and com-
pute–memory overlap, developers can select, benchmark, or override, retaining full control while
benefiting from data-driven guidance.

4.3 TILE INFERENCE

Layout inference. While memory placement and computation partitioning in Section 4.2 decide
where tensors reside and how computation is split, layout inference determines how multi-dimensional
indices are converted into physical memory addresses—taking into account vectorization, memory
coalescing, and bank conflict avoidance. In other words, layout is not about which memory scope
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is used, but how data is accessed within that scope. Once placement and partitioning are fixed, the
system can then infer an appropriate layout to ensure efficient low-level memory access.

TILELANG supports high-level indexing into multi-dimensional arrays (e.g., A[i, k]), which is
eventually lowered to physical memory addresses through a hierarchy of abstractions. At the physical
level, layouts are modeled as linear address expressions of the form

∑
i yisi, where yi is the index

along dimension i, and si is its stride. To capture such mappings, TILELANG introduces a composable
Layout algebra based on IterVar—a loop iterator that carries range and stride information. This
allows layout transformations (e.g., transposes) to be expressed as algebraic mappings, such as
lambda i, j: (j, i). Formally, a layout becomes a function f : Kn → Km, converting
high-level indices into memory addresses. Additionally, TILELANG defines Fragment layouts—a
specialized extension where f : Kn → K2, mapping each index to a thread’s register ID and its
local offset. This enables precise modeling of intra-thread register allocation. Although a buffer
of size N theoretically allows O(N !) memory layouts, the set of feasible layouts is significantly
constrained by hardware. Global memory prefers coalesced access, shared memory requires bank
conflict avoidance, and Tensor Core instructions impose strict layout requirements. To explore these
constraints, TILELANG employs a greedy strategy that derives valid layouts by enforcing layout rules
on selected tile operators.

MatMul

QKV K PE Q PE

Shared

Reg.

Online
SoftMax

Shared Shared Shared

MatMul

acc_s

MatMul

Reg.acc_o

Shared

Output

Z

Reduce Max

exp2

Reg.
score

Reg.

Reduce Sum

score

Strict Layout Inference

T.gemm(
QShared,
KVShared,
acc_s,
transpose_B=True

)

Common Layout Inference

MatMul

Shared Shared

Reg.

Swizzled Swizzled

MMA Store

Reduce Max

Reg.

T.reduce_max(acc_s, scores_max, dim=1)
acc_s

scores_max

Free Layout Inference

Hardware Efficient Loop Layout Inference 

KV Shared

Figure 5: Layout Inference mechanism in TILELANG

We propose a hierarchical layout inference algorithm that operates over an FTG. As illustrated in
Figure 5, FlashMLA can be represented as a FTG, where nodes are tile-level operators (e.g., matmul,
softmax) and edges encode data dependencies. The graph captures how Q, K, and V tiles are
loaded into shared memory, attention scores computed and normalized in registers, and final outputs
written back. This structure makes memory movement and parallelism explicit, enabling layout
inference and efficient scheduling.

Our goal is to synthesize memory layouts that optimize low-level execution efficiency while preserving
high-level tensor semantics. The inference process is modeled as a constraint propagation algorithm
(Algorithm 1 in Appendix E) that iteratively traverses the FTG and incrementally refines the layout
mapping L until convergence. As illustrated in Figure 5, the algorithm integrates three complementary
inference strategies: (1) Strict Layout Inference (Fig.5 1 ) enforces operator-specific constraints for
hardware-sensitive primitives such as tensor core GEMM, including swizzled shared memory layouts
and MMA-aligned register allocations; (2) Common Layout Inference (Fig.5 2 ) propagates layout
decisions through structurally aligned operators (e.g., reductions), ensuring consistent thread bindings
and register reuse; and (3) Free Layout Inference (Fig. 5 3 ) handles the remaining unconstrained
layouts by partitioning them into subgraphs via connected component analysis. For each subgraph,
the partitioning scheme with the lowest register usage is selected. This step also determines the loop
layout using the hardware cost model, which specifies thread binding and vectorization length to
maximize memory coalescing and minimize bank conflicts. This unified inference pipeline supports
composable, performance-portable layout generation and seamlessly bridges high-level loop indexing
with low-level memory organization.

Pipeline inference. TILELANG automatically infers a pipelined schedule from a sequential program.
As shown in Figure 6 (a), operations like copy and gemm are overlapped to increase parallelism.
The system analyzes dependencies in the FTG and generates a structured pipeline that preserves

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

execution correctness, exposing only a single num_stages parameter to users. Additionally,
TILELANG applies Warp Specialization to fully exploit asynchronous copy instructions on Hopper
GPUs, inserting synchronization barriers where necessary to maintain correct data dependencies.

Copy KV MatMul(Q, KV) Copy K_PE MatMul(Q_PE, K_PE)

Copy KV MatMul(Q, KV) Copy K_PE MatMul(Q_PE, K_PE)

Copy KV

MatMul(Q, KV)

Copy K_PE

MatMul(Q_PE, K_PE)

Copy KV

MatMul(Q, KV)

Copy K_PE

MatMul(Q_PE, K_PE)

Iteration 0

Original Serialized Schedule

Pipelined Schedule

Iteration 1

Producer

Consumer

T.Pipelined(num_stages= )2

Pipeline

Inference

Figure 6: Pipeline Inference mechanism in TILELANG

Instruction inference. In TILELANG, while low-level hardware instructions such as dp4a or mma
can be manually invoked via source injection or inline PTX (NVIDIA, 2021), choosing the most
appropriate instruction based on input shapes and data types can be challenging. To address this,
TILELANG integrates with high-level Tile Libraries like NVIDIA’s cute (NVIDIA, 2019) and
AMD’s ck (AMD, 2025), which abstract hardware-specific details and automatically choose efficient
instructions based on input configurations. These libraries expose standardized tile-based APIs
(e.g., tl::gemm_ss), and TILELANG supports their invocation via a unified T.call_extern
interface, simplifying development while ensuring performance portability.

5 EVALUATION

TILELANG is realised as a Pythonic DSL whose compiler lowers high-level tile programs to hardware-
specialised kernels through a modular IR and code-generation pipeline.

5.1 EXPERIMENTAL SETUP

Hardware platforms. We assess the performance of TILELANG on two leading GPU architectures:
NVIDIA and AMD, which dominate contemporary accelerator ecosystems. Our evaluation employs
state-of-the-art hardware, including the NVIDIA H100 (80GB) (NVIDIA, 2023) and the AMD
Instinct MI300X (192GB) (AMD, 2023). The NVIDIA H100 leverages CUDA 12.8, while the
AMD MI300X utilizes ROCm 6.2.0. Both GPUs are benchmarked under the Ubuntu 20.04 operating
system to ensure consistency in environmental configurations.

AI kernels. To evaluate system performance, we analyze nine representative operators: (1) GEMM,
(2) fused dequantized GEMM (WINT4AFP16), (3) Attention, (4) Multi-Head Latent Attention, (5)
Block Sparse Attention, (6) 2D Convolution, (7) Chunk Gated Delta Net, (8) Vertical Slash Sparse
Attention, and (9) Attention Sink. Shape configurations are provided in Appendix H.

Baselines. Our comparative analysis considers the following baselines: (1) PyTorch Induc-
tor—torch.matmul for GEMM, SDPA (PyTorch, 2023) for attention, and other operators com-
piled via Inductor; (2) Triton implementations, including GemLite (Mobius ML, 2024) and MLA
from SGLang (Zheng et al., 2024); (3) ThunderKittens (TK) (Spector et al., 2025)—a template-
based framework for high-performance AI kernels on NVIDIA GPUs; and (4) Highly optimized
libraries, including CUTLASS (NVIDIA, 2019) and Composable Kernel (AMD, 2025) for GEMM,
Marlin (Frantar et al., 2025) for dequantized GEMM, FlashAttention-V3 (Dao, 2023) for MHA,
AITER (AMD, 2025) for MLA, and Block Sparse Attention (Guo et al., 2024) for sparse attention.

We evaluate kernel performance versus code complexity (Section 5.2) and present ablation results
(Section 5.3), with cost model and tuning time analyses in Appendices F and G.

5.2 KERNEL PERFORMANCE
Matrix Multiplication. TILELANG achieves high performance with low code complexity across
diverse GEMM configurations, demonstrating 1.18–1.40× speedup over PyTorch on NVIDIA
H100, while maintaining competitive performance (0.94–1.05×) on AMD MI300X. It also de-
livers 1.08–1.43× speedup over Triton with minimal kernel code, enabled by automated inference
that abstracts low-level hardware details such as TMA and pipeline scheduling. Compared with TK,
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(a) Performance vs. code complexity across operator configurations on NVIDIA H100 GPU.
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Figure 7: Performance and code complexity on an NVIDIA H100 GPU and AMD MI300X GPU.
The y-axis denotes the speedup relative to PyTorch, while the x-axis indicates lines of code (LOC).
Ideal solutions appear toward the top-left corner.

TILELANG achieves 0.99–1.11× speedups while reducing code complexity by 77%. Its cost-model
guidance and automated tile inference eliminate manual tuning. TK depends on curated CUDA
templates, limiting it to NVIDIA GPUs, whereas TILELANG supports multiple hardware backends.

Low-Bit Matmul. For WINT4AFP16 GEMM, TILELANG achieves 1.35–3.81× speedups over PyTorch
and up to 1.55× over Triton on H100, while outperforming the specialized Marlin kernel with far
simpler code. On MI300X, it delivers up to 11.56× over Triton. These gains arise because TILELANG
exposes low-level memory, dequantization, and layout controls that Triton hides.

Convolution. On H100, TILELANG achieves 1.24–1.79× and 1.10–1.97× speedups over PyTorch
and Triton, respectively, with reduced code complexity. These gains come from its instruction
inference mechanism, which maps data movement efficiently to TMA im2col. On MI300X, the
improvements are even larger, reaching 1.29–6.80× over PyTorch and 1.02–3.10× over Triton.

Flash Attention. TILELANG achieves efficient attention computation with concise code across
sequence lengths. On H100 and MI300X, it delivers 1.08–1.58× and 1.22–1.37× speedups over
Triton, while matching the performance of FlashAttention-V3 (0.98× and 0.96× on average). These
results stem from TILELANG’s ability to infer and apply platform-specific partitioning and pipelining
strategies that exploit specialized compute units. TILELANG achieves up to 1.10× speedup over TK
while significantly reducing code complexity (from 185 lines to 66), highlighting its programma-
bility. By combining tile-level guidance with automated inference, TILELANG streamlines kernel
development. This is particularly valuable for complex attention operators, where TK often requires
extensive manual tuning of tiling, warp partitioning, layout, and pipelines.

Flash MLA. As showin in Figure 1, TILELANG achieves 4.06–10.59× speedups over Triton on
H100, with substantially reduced code complexity. It matches the latency of the specialized FlashMLA
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kernel while reducing code complexity by 6.86×. On MI300X, TILELANG delivers 5.64–12.97×
gains over Triton and slightly outperforms the hand-tuned ROCm library AITER (1.05×). These
improvements arise from warp specialization and automated TMA mapping.

Block Sparse Attention. TILELANG achieves acceleration of 3.42-7.87× and 1.22-1.37× over
Triton with less code on H100 and MI300X, respectively. On H100, it matches BlockSparse (BSA)
latency (0.91–1.82×) while greatly reducing complexity. Implementing block-sparse MHA requires
only adding two lines to the standard MHA code (Appendix I.5).

Chunk Gated Delta Net. On H100, TILELANG achieves 15.88–70.35× speedups over PyTorch by
fusing complex operations into a single kernel. Compared to Triton, it attains 1.10–1.45× speedups
with 39% fewer lines of code. These gains come from automated tile recommendation and inference,
which optimize memory placement and partitioning for efficient hardware utilization.

Vertical Slash Sparse Attention. TILELANG delivers 108.55–280.41× and 105.01–363.53×
speedups over PyTorch on H100 and MI300X, largely by fusing the sparse attention operation
into a single efficient kernel. Compared to Triton, it achieves 1.16–1.97× and 1.19–1.60× speedups
on H100 and MI300X, respectively, while cutting the code size by roughly half.

Attention Sinks. For attention with the sinks mechanism, TILELANG achieves 14.21–25.57× and
5.35–9.11× speedups over PyTorch on H100 and MI300X, respectively, enabled by TILELANG’s
FTG-based fusion into a single optimized kernel. Against Triton, it reaches 1.13–1.30× on H100 and
2.32–2.69× on MI300X. The attention-sink variant can be implemented with only minor changes to
standard MHA, demonstrating TILELANG’s ability to support diverse attention types with minimal
development effort.

5.3 ABLATION STUDIES

To evaluate the impact of TILELANG’s automatic optimization, we conduct an ablation study on
FlashMLA. Starting from a baseline that uses manually crafted scheduling heuristics (TL-Heuristic),
we progressively enable (i) cost model–guided tiling (+Tile), which adjusts the compute-to-memory
ratio and optimizes cache utilization; (ii) cost model–guided memory placement (+Alloc), which
selects the optimal memory region for each buffer to maximize cache efficiency and avoid register
spilling; and (iii) warp partitioning (+Partition), which improves workload balance within warps.
Performance is measured at each stage relative to the PyTorch baseline.
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Figure 8: Ablation study for FlashMLA on both H100 and MI300X GPUs.

As shown in Figure 8, each of the evaluated optimizations provides measurable performance gains,
validating their effectiveness. Our analysis also highlights architecture-specific behaviors (illustrated
in Appendix D). On NVIDIA H100, warp partition contributes the most, achieving a 4.4× speedup
over +Alloc by aligning task partitioning with Tensor Core shapes and reducing register spilling, which
balances workloads across warps. In contrast, on AMD MI300X, which features abundant registers
but limited shared memory, +Alloc delivers the largest improvement. Here, caching query vectors
(Q) in registers instead of shared memory leverages the large register file to enhance performance.

6 CONCLUSION

TILELANG offers a controllable tile-level programming model with graph-based optimizations
via tile recommendation and inference. By combining automated configuration with fine-grained
developer control, it streamlines kernel development and delivers significant speedups. It enables rapid
experimentation with emerging AI algorithms, such as custom attention, sparsity, and quantization.
TILELANG also lowers barriers for systems-aware research across diverse hardware platforms.
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7 REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup in Section 5.1. Operator shapes used in
our benchmarks are drawn from widely adopted, real-world AI models (e.g., GPT-OSS, DeepSeek
V3, Qwen3-Next). A list of these operator configurations is included in Appendix H, and the
corresponding TILELANG code of kernels used in evaluation is provided in Appendix I. The system
implementation and scripts for reproducing our experiments will be made publicly available after the
review process, ensuring full reproducibility while maintaining anonymity.
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Our appendix is organized as follows:

Appendix A: Extended discussion of related work.

Appendix B: Details of the MLA algorithm.

Appendix C: Semantics of a partial list of TILELANG primitives.

Appendix D: Platform-specific scheduling

Appendix E: Layout inference algorithm of TILELANG.

Appendix F: Evaluation of the cost model.

Appendix G: Tuning time measurements.

Appendix H: Operator shapes used in our benchmark.

Appendix I: TileLang code of kernels used in the evaluation.

A EXTENDED DISCUSSION OF RELATED WORK

Tensor-level IRs, The polyhedral model, and Loop synthesizers. Traditional approaches ad-
dress program optimization at different abstraction levels: Tensor-level IRs (e.g., XLA (Google,
2019)) lower tensor programs via pattern-matched templates (e.g., LLVM, CUDA). Polyhedral mod-
els (Griebl et al., 1998) (e.g., TC (Vasilache et al., 2018)) automate affine loop transforms, mainly for
DNN layers. Loop synthesizers (e.g., Halide (Ragan-Kelley et al., 2013)) generate loop nests guided
by user-defined schedules. TILELANG targets a distinct programming model and control granularity.
It differs fundamentally by introducing tiles as first-class programming units. It offers programmable
control over fusion strategies, memory hierarchy, and parallelism. This enables developers to design
fused kernels with both high performance and portability across hardware.

TVM (Chen et al., 2018). TILELANG builds upon TVM’s IR and arithmetic passes. However,
unlike TVM’s schedule-driven loop generation from high-level compute definitions, TILELANG
offers explicit, tile-level programmability and control over memory, fusion, and parallelism. This
enables much finer-grained kernel customization beyond what TVM can achieve. For instance, TVM
cannot fully express advanced algorithms like FlashAttention (FA) or Multi-Level Attention (MLA),
which demand precise management of memory hierarchy and execution order—capabilities that
TileLang supports.

Warp Partition. Warp Partition (WP) is a key component of TILELANG’s execution model, building
directly on the tile abstraction. Given a specified tile size, WP allows further partitioning of the tile
along each dimension across multiple warps. For example, consider a GEMM operation C = A@B,
where A ∈ RM×K , B ∈ RK×N , and C ∈ RM×N . The output tile C can be partitioned along either
the M or N axis, corresponding to full-row or full-column warp-partitioning strategies, respectively.
By giving users explicit control over warp partitioning, TILELANG enables fine-grained management
of resources such as register usage within each warp. This, in turn, allows users to better control
the performance of operations. Such flexibility is crucial for mapping computations efficiently to
hardware, especially when optimizing diverse and performance-sensitive kernel workloads.

CuTe library. While both TILELANG and CuTe (NVIDIA, 2019) share this high-level goal, their
underlying mechanisms differ: CuTe relies on shape/stride pairs, whereas TILELANG encodes the
mappings using explicit arithmetic expressions. This arithmetic formulation offers advantages by
more directly capturing index transformations and enabling more flexible, composable manipulations,
allowing for clear definition and description in the DSL frontend.

The roofline-guided cost model. Several analytical modeling approaches have been proposed, such
as the nested-loop-based modeling in Timeloop (Parashar et al., 2019), the data-centric representation
in Maestro (Kwon et al., 2020). In contrast to these methods, our work leverages a tile-level program-
ming abstraction, which naturally lends itself to a tile-centric cost model. This enables us to accurately
capture both computation and data movement at the tile granularity, while maintaining simplicity and
enhanced support for modeling operator fusion. This design strikes a balance between accuracy and
usability, making it effective for guiding schedule selection without introducing excessive complexity.

13
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B MLA ALGORITHM

Instead of storing full-sized key and value matrices, MLA projects input token embeddings into a
lower-dimensional latent space using a down-projection matrix:

zt = xtWdown.

The latent vector zt is then used to reconstruct the key and value representations:

kt = ztW
K
up , vt = ztW

V
up.

To incorporate positional information, Rotary Positional Embedding (RoPE) is applied to the recon-
structed keys and queries:

krot
t = RoPE(kt).

Queries are also compressed using a similar process to reduce activation memory:

qt = zQt W
Q
up.

MLA further enhances computational efficiency through a technique known as matrix absorption,
which reorders matrix multiplications to optimize performance. This approach enables the key and
value inputs to share the same latent representation zt, thereby reducing redundancy and memory
usage. In the adopted configuration, MLA employs a single shared key-value (KV) head, with a head
dimension of 512.

C PARTIAL LIST OF TILELANG PRIMITIVES

Table 1: A partial list of primitives supported by TILELANG.

Dataflow Centric Tile Operators Scheduling Primitives

copy data movement among hierarchy memory. Parallel Parallelization of loop iterations over threads.

gemm matrix multiplication on different GPUs. Pipelined Enables pipelining to overlap data transfers with
computation.

reduce reduction operator (e.g., sum, min, max) ex-
ploiting warp/block-level parallelism.

annotate_layout Definition of custom memory layouts to minimize
bank conflicts and optimize thread binding.

atomic atomic operations to ensure thread-safe up-
dates in shared or global memory.

use_swizzle Improves L2 cache locality via swizzled access pat-
terns.

D PLATFORM-SPECIFIC SCHEDULING

TILELANG also provides platform-specific recommendations and inference. Taking MLA as an
example, we illustrate how TILELANG performs tile recommendation and inference based on the
code shown in Figure 2.

On the H100, each SM features 228 KiB of shared memory and a 256 KiB register file, whereas the
MI300X provides 64 KiB of Local Data Share (LDS) and a total of 512 KiB in registers. Given these
architectural differences, TILELANG first recommends different tile configurations.

As shown in Figure 9, for memory placement, users may initially allocate the Q tile to shared
memory on the MI300X. However, this approach fails due to the limited capacity of shared memory.
TILELANG detects this constraint and instead recommends placing both Q and acc_s in registers. In
contrast, on the H100, both tiles fit comfortably in shared memory and are placed there accordingly.
For Software Pipelining, TILELANG disables pipelining on the MI300X to support larger tile sizes
and reduce register pressure, whereas on the H100, pipelining is enabled to maximize pipeline
overlap. Tile sizes are also adjusted accordingly to fit each platform’s resource constraints. For Warp
Partitioning, users may initially adopt a default policy for the two gemm operators, which often leads
to sub-optimal performance. TILELANG addresses this by analyzing the underlying hardware and
recommending platform-specific partitioning strategies, as illustrated in Figure 3. On the H100, both
gemm operators use the FullCol scheme, partitioning acc_s and acc_o vertically to match the
Tensor Core shape. In contrast, TILELANG applies a FullRow policy on the MI300X, partitioning
tiles horizontally.

14
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Table 2: Comparison of specifications between NVIDIA H100 SXM and AMD MI300X.

Specification NVIDIA H100 SXM AMD MI300X

Clock Frequency 1.83 GHz 2.10 GHz
DDR Memory Bandwidth 3.35 TB/s 5.30 TB/s
L2 Bandwidth 9.45 TB/s 16.63 TB/s
L1/Shared Memory BW 30.92 TB/s 81.72 TB/s
Compute Units (SMs/CUs) 132 SMs 304 CUs
Shared Memory per SM/CU 228 KiB 64 KiB
Register File per SM/CU 256 KiB 512 KiB
Peak FP16 Performance 989 TFLOPs 1307 TFLOPs
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Figure 9: Cooperative workflow between tile-recommendation and inference stages on NVIDIA
H100 and AMD MI300X GPUs.

E LAYOUT INFERENCE ALGORITHM

Algorithm 1 Hardware-Aware Layout Inference over Fused Tile Graph

Require: Fused Tile Graph G = (V,E), where V is the set of tile operators
Ensure: Final layout mapping L for all buffers

1: Initialize layout map L ← ∅
2: Initialize constraint worklist Q ← SEEDSTRICTCONSTRAINTS(G)
3: while not Q.EMPTY() do
4: v ← Q.POP()
5: Cv ← COLLECTCONSTRAINTS(v,L)
6: ∆L ← INFERLAYOUT(v, Cv)
7: if ∆L ̸= ∅ then
8: L ← L ∪∆L
9: Q ← Q∪ NEIGHBORS(v)

10: return L
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F EFFECTIVENESS OF THE COST MODEL

TILELANG employs an analytical cost model to prune suboptimal candidates and prioritize high-
potential ones. This approach yields schedules that match or closely approach the performance of
the best results of brute-force search or exhaustive autotuning, while requiring orders of magnitude
less tuning effort. For example, on GEMM-FP16×FP16 workloads derived from models such as
LLaMA-70B, TILELANG prunes 95% of candidate schedules, retaining only the top 5%. Despite
this aggressive pruning, it achieves on average 98.47% of the performance (in TFLOPS) of the
best configurations found by exhaustive search, substantially reducing compilation time with only
negligible performance loss. This also serves as an evaluation of the effectiveness of our roofline-
based analytical cost model.

M N K Predicted-TopX / Best (TFLOPS)

512 1024 8192 100.0%
512 12288 12288 99.9%
512 28672 8192 98.7%

2048 12288 49152 100.0%
4096 1024 7168 100.0%
4096 14336 14336 100.0%
4096 28672 8192 99.6%
8192 8192 28672 100.0%
8192 28672 8192 100.0%

16384 1024 7168 98.4%

Table 3: Accuracy of our analytical cost model: predicted top-5% schedules retain over 98% of the
best performance while pruning 95% of candidate schedules.

G TUNING TIME

As demonstrated in Table 4, TILELANG leverages a hardware-aware recommendation mechanism
to efficiently automate the design of high-performance computational kernels. The system achieves
average tuning durations of approximately 10 seconds across both NVIDIA H100 and AMD MI300X
accelerators. For the most complex operations, extended tuning times average 13.69 seconds on
H100 and 15.08 seconds on MI300X, reflecting the scalability of our approach under computationally
intensive workloads.

Table 4: Average Tuning Times for Different Operators

Operation GEMM DequantGEMM FlashMHA FlashMLA FlashBSA

H100 Time (s) 9.05 9.15 13.48 13.69 13.46

MI300 Time (s) 10.99 11.10 14.67 15.03 15.08
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H OPERATOR SHAPES IN OUR BENCHMARK

Table 5: Matrix shapes in our FP16 Matmul evaluation

D0 D1 D2 D3

M 8192 8192 8192 8192
N 1024 8192 28672 8192
K 8192 8192 8192 28672

Table 6: Matrix shapes in our Fused Dequantize-Matmul evaluation

M0 M1 M2 M3

M 1 1 1 1
N 1024 8192 28672 8192
K 8192 8192 8192 28672

Table 7: FlashAttention and Block Sparse Attention(with 50%, 90% sparsity) shapes in our evaluation

FA0 FA1 FA2 FA3 FA4 FA5 FA6 FA7

batch 64 64 64 64 64 64 64 64
nheads 64 64 64 64 64 64 64 64
seq_len 1024 2048 4096 8192 1024 2048 4096 8192

head_dim 128 128 128 128 128 128 128 128
causal false false false false true true true true

Table 8: FlashMLA shapes in our evaluation

FMLA0 FMLA1 FMLA2 FMLA3

batch 64 64 64 64
nheads 128 128 128 128
seq_len 1024 2048 4096 8192

head_dim 512 512 512 512
pe_dim 64 64 64 64
causal false false false false

Table 9: Convolution-2D shapes in our evaluation

Conv0 Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

N 128 128 128 128 128 128 128 128
C 2048 512 512 512 256 1024 512 64
H 7 7 14 7 14 14 28 56
W 7 7 14 7 14 14 28 56
F 512 2048 512 512 256 256 128 64
K 1 1 3 3 3 1 1 1
S 1 1 2 1 1 1 1 1
D 1 1 1 1 1 1 1 1
P 0 0 1 1 1 0 0 0
G 1 1 1 1 1 1 1 1

HO 7 7 7 7 14 14 28 56
WO 7 7 7 7 14 14 28 56

Count 2 3 1 2 5 5 3 1
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Table 10: Chunk-Gated-Delta-Net kernel shapes in our evaluation

CGDN0 CGDN1 CGDN2 CGDN3 CGDN4 CGDN5

batch 1 1 1 64 64 64
nheads 32 32 32 32 32 32
seq_len 16384 32768 65536 1024 2048 4096

head_dim 128 128 128 128 128 128

Table 11: Vertical Slash Sparse Attention shapes in our evaluation

VSSA0 VSSA1 VSSA2 VSSA3

batch 1 1 1 1
nheads 1 1 1 1
seq_len 8192 16384 32768 65536

head_dim 64 64 64 64
vertical size 1000 1000 800 1000
slash size 600 200 600 600

Table 12: Attention Sink shapes in our evaluation

Sink0 Sink1 Sink2 Sink3

batch 1 1 1 1
nheads 64 64 64 64

kv_heads 8 8 8 8
seq_len 1024 2048 4096 8192

kv_seq_len 1024 2048 4096 8192
head_dim 64 64 64 64

casual true true true true
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I KERNEL IMPLEMENTATIONS

I.1 MATRIX MULTIPLICATION (MATMUL)

1 @tilelang.jit
2 def Matmul(A: T.Tensor, B: T.Tensor, C: T.Tensor):
3 with T.Kernel(N // block_N, M // block_M,
4 threads=threads) as (bx, by):
5 A_shared = T.alloc_shared(block_M, block_K)
6 B_shared = T.alloc_shared(block_K, block_N)
7 C_local = T.alloc_fragment(block_M, block_N)
8
9 T.clear(C_local)

10 for k in T.Pipelined(K // block_K, num_stages=2):
11 T.copy(A[by * block_M, k * block_K], A_shared)
12 T.copy(B[k * block_K, bx * block_N], B_shared)
13 T.gemm(A_shared, B_shared, C_local)
14
15 T.copy(C_local, C[by * block_M, bx * block_N])

Figure 10: Kernel Implementation of Matrix Multiplication.

I.2 DEQUANTIZED MATRIX MULTIPLICATION

1 @tilelang.jit
2 def dequantize_gemv(A: T.Tensor, B: T.Tensor, C: T.Tensor):
3 with T.Kernel(T.ceildiv(N, n_partition), M, threads=(reduce_thread, n_partition)) as (bx, by):
4 A_local = T.alloc_local((micro_size_k,), in_dtype)
5 B_quant_local = T.alloc_local([micro_size_k_compressed], storage_dtype)
6 B_dequantize_local = T.alloc_local([micro_size_k], in_dtype)
7 accum_res = T.alloc_local((1,), accum_dtype)
8 reduced_accum_res = T.alloc_local((1,), accum_dtype)
9

10 T.clear(accum_res)
11 for ko in T.serial(T.ceildiv(K, block_K)):
12 for v in T.vectorized(micro_size_k):
13 A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]
14
15 for v in T.vectorized(micro_size_k_compressed):
16 B_quant_local[v] = B[
17 bx * n_partition + ni,
18 ko * (reduce_thread * micro_size_k_compressed) +
19 kr * micro_size_k_compressed + v,
20 ]
21
22 T.call_extern(
23 "fast_decode_int4",
24 T.address_of(B_quant_local[0]),
25 T.address_of(B_dequantize_local[0]),
26 dtype=in_dtype,
27 )
28
29 for ki in T.serial(micro_size_k):
30 accum_res[0] += A_local[ki] * B_dequantize_local[ki]
31
32 with T.attr(
33 T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
34 "reduce_scope",
35 T.reinterpret(T.uint64(0), dtype="handle"),
36 ):
37 T.evaluate(
38 T.tvm_thread_allreduce(
39 T.uint32(1),
40 accum_res[0],
41 True,
42 reduced_accum_res[0],
43 kr,
44 dtype="handle",
45 ))
46 if kr == 0:
47 C[by, bx * n_partition + ni] = reduced_accum_res[0]

Figure 11: Implementation of Weight-Only Quantization (WFP4_E2M1AFP16) Matmul using TILE-
LANG, showcasing support for mixed-precision computations via a simple form.
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I.3 FLASH ATTENTION IMPLEMENTATION

1 @tilelang.jit
2 def flash_attention(Q: T.Tensor, K: T.Tensor, V: T.Tensor, Output: T.Tensor):
3 with T.Kernel(
4 T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
5 Q_shared = T.alloc_shared([block_M, dim], dtype)
6 K_shared = T.alloc_shared([block_N, dim], dtype)
7 V_shared = T.alloc_shared([block_N, dim], dtype)
8 O_shared = T.alloc_shared([block_M, dim], dtype)
9 acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)

10 acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
11 acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
12 scores_max = T.alloc_fragment([block_M], accum_dtype)
13 scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
14 scores_scale = T.alloc_fragment([block_M], accum_dtype)
15 scores_sum = T.alloc_fragment([block_M], accum_dtype)
16 logsum = T.alloc_fragment([block_M], accum_dtype)
17
18 T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
19 T.fill(acc_o, 0)
20 T.fill(logsum, 0)
21 T.fill(scores_max, -T.infinity(accum_dtype))
22
23 loop_range = (
24 T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
25 (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
26
27 for k in T.Pipelined(loop_range, num_stages=num_stages):
28 T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
29 if is_causal:
30 for i, j in T.Parallel(block_M, block_N):
31 acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
32 -T.infinity(acc_s.dtype))
33 else:
34 T.clear(acc_s)
35 T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
36 T.copy(scores_max, scores_max_prev)
37 T.fill(scores_max, -T.infinity(accum_dtype))
38 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
39 for i in T.Parallel(block_M):
40 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
41 for i, j in T.Parallel(block_M, block_N):
42 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
43 T.reduce_sum(acc_s, scores_sum, dim=1)
44 for i in T.Parallel(block_M):
45 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
46 T.copy(acc_s, acc_s_cast)
47 for i, j in T.Parallel(block_M, dim):
48 acc_o[i, j] *= scores_scale[i]
49 T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
50 T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
51 for i, j in T.Parallel(block_M, dim):
52 acc_o[i, j] /= logsum[i]
53 T.copy(acc_o, O_shared)
54 T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

Figure 12: Implementation of Flash Attention with TILELANG.
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I.4 FLASHMLA IMPLEMENTATION

1 @tilelang.jit
2 def flash_mla(
3 Q: T.Tensor([batch, heads, dim], dtype),
4 Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
5 KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
6 K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
7 Output: T.Tensor([batch, heads, dim], dtype),
8 ):
9 with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=256) as (bx, by):

10 Q_shared = T.alloc_shared([block_H, dim], dtype)
11 S_shared = T.alloc_shared([block_H, block_N], dtype)
12 Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
13 KV_shared = T.alloc_shared([block_N, dim], dtype)
14 K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
15 O_shared = T.alloc_shared([block_H, dim], dtype)
16 acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
17 acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
18 scores_max = T.alloc_fragment([block_H], accum_dtype)
19 scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
20 scores_scale = T.alloc_fragment([block_H], accum_dtype)
21 scores_sum = T.alloc_fragment([block_H], accum_dtype)
22 logsum = T.alloc_fragment([block_H], accum_dtype)
23
24 cur_kv_head = by // (kv_group_num // block_H)
25 T.use_swizzle(10)
26
27 T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
28 T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
29 T.fill(acc_o, 0)
30 T.fill(logsum, 0)
31 T.fill(scores_max, -T.infinity(accum_dtype))
32
33 loop_range = T.ceildiv(seqlen_kv, block_N)
34 for k in T.Pipelined(loop_range, num_stages=2):
35 T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)
36 T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)
37 T.clear(acc_s)
38 T.gemm(
39 Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
40 T.gemm(
41 Q_pe_shared,
42 K_pe_shared,
43 acc_s,
44 transpose_B=True,
45 policy=T.GemmWarpPolicy.FullCol)
46 T.copy(scores_max, scores_max_prev)
47 T.fill(scores_max, -T.infinity(accum_dtype))
48 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
49 for i in T.Parallel(block_H):
50 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
51 for i, j in T.Parallel(block_H, block_N):
52 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
53 T.reduce_sum(acc_s, scores_sum, dim=1)
54 T.copy(acc_s, S_shared)
55 for i in T.Parallel(block_H):
56 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
57 for i, j in T.Parallel(block_H, dim):
58 acc_o[i, j] *= scores_scale[i]
59 T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
60 for i, j in T.Parallel(block_H, dim):
61 acc_o[i, j] /= logsum[i]
62 T.copy(acc_o, O_shared)
63 T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])

Figure 13: Implementation of FlashMLA with TILELANG.
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I.5 BLOCK SPARSE ATTENTION IMPLEMENTATION

1 @tilelang.jit
2 def blocksparse_attn(Q: T.Tensor, K: T.Tensor, V: T.Tensor, BlockMask: T.Tensor, Output: T.Tensor):
3 with T.Kernel(
4 T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
5 Q_shared = T.alloc_shared([block_M, dim], dtype)
6 K_shared = T.alloc_shared([block_N, dim], dtype)
7 V_shared = T.alloc_shared([block_N, dim], dtype)
8 O_shared = T.alloc_shared([block_M, dim], dtype)
9 acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)

10 acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
11 acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
12 scores_max = T.alloc_fragment([block_M], accum_dtype)
13 scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
14 scores_scale = T.alloc_fragment([block_M], accum_dtype)
15 scores_sum = T.alloc_fragment([block_M], accum_dtype)
16 logsum = T.alloc_fragment([block_M], accum_dtype)
17
18 T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
19 T.fill(acc_o, 0)
20 T.fill(logsum, 0)
21 T.fill(scores_max, -T.infinity(accum_dtype))
22
23 loop_range = (
24 T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
25 (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
26
27 for k in T.Pipelined(loop_range, num_stages=num_stages):
28 if BlockMask[bz, bx, by, k]:
29 T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
30 if is_causal:
31 for i, j in T.Parallel(block_M, block_N):
32 acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
33 -T.infinity(acc_s.dtype))
34 else:
35 T.clear(acc_s)
36 T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
37 T.copy(scores_max, scores_max_prev)
38 T.fill(scores_max, -T.infinity(accum_dtype))
39 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
40 for i in T.Parallel(block_M):
41 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
42 for i, j in T.Parallel(block_M, block_N):
43 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
44 T.reduce_sum(acc_s, scores_sum, dim=1)
45 for i in T.Parallel(block_M):
46 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
47 T.copy(acc_s, acc_s_cast)
48 for i, j in T.Parallel(block_M, dim):
49 acc_o[i, j] *= scores_scale[i]
50 T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
51 T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
52 for i, j in T.Parallel(block_M, dim):
53 acc_o[i, j] /= logsum[i]
54 T.copy(acc_o, O_shared)
55 T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

Figure 14: Implementation of Block Sparse Flash Attention with TILELANG.
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