
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TILELANG: BRIDGE PROGRAMMABILITY AND
PERFORMANCE IN MODERN NEURAL KERNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Achieving high performance in modern AI increasingly requires kernels co-
designed with underlying hardware, but writing efficient kernels remains challeng-
ing due to hardware-level complexity and limited fine-grained control in compilers
like Triton. In this paper, we introduce TILELANG, a programmable tile-level sys-
tem that provides explicit primitives for memory placement, data movement, and
parallel scheduling. Using a unified fused tile-level dataflow graph (FTG), TILE-
LANG streamlines kernel development by unifying tile recommendation, which
guides developers with hardware-aware defaults, and tile inference, which auto-
mates completion through constraint propagation. TILELANG enables concise
expression of a wide range of AI algorithms in fewer than 70 lines of Python,
reducing code size by up to 85.5% compared with manual implementations. Our
evaluation shows that TILELANG delivers 1.08×–10.58× speedups over Triton on
NVIDIA H100 (3.02× on average) and 1.01×–11.56× on AMD GPUs (2.65× on
average), effectively bridging programmability and performance.

1 INTRODUCTION

The rapid progress of modern neural networks has driven a growing demand for highly optimized
compute kernels, particularly for memory-bound operations such as attention. In recent years,
modern attention algorithms such as Multi-Head Attention(MHA) (Vaswani et al., 2017), Multi-
Head Latent Attention (MLA) (Liu et al., 2024), Gated Query Attention (GQA) (Ainslie et al.,
2023), and Linear Attention (Gu & Dao, 2023; Dao & Gu, 2024; Sun et al., 2023; Yang et al.,
2024), increasingly demand fine-grained control over memory hierarchy, scheduling, and data move-
ment to fully utilize hardware capabilities. However, existing systems like Triton (Tillet et al.,
2019) lack programmable abstractions to support this level of control. For instance, FlashMLA
relies on carefully pipelined computations and shared memory reuse, but Triton gives program-
mers no direct control over tile reuse or pipeline scheduling, restricting performance optimization.

100 200 300 400 500
Code Lines (LOC)

100

101

102

103

Sp
ee

du
p

No
rm

al
ize

d
to

 P
yT

or
ch

841.26x

1.00x

151.19x

1040.56x

MLA Performance and Code Complexity on H100

TileLang
PyTorch
Triton
FlashMLA

Figure 1: Performance vs. code size trade-off for
MLA kernels on NVIDIA H100. Points closer to
the top-left indicate better balance between perfor-
mance and implementation simplicity. The anno-
tated speedup values indicate performance gains
over the PyTorch implementation.

As a result, developers often face a steep trade-
off between achieving peak performance and
maintaining programmability: they must either
manually write complex CUDA kernels or sacri-
fice significant performance due to abstraction
mismatches. As illustrated in Figure 1, the Tri-
ton implementation of MLA requires only 130
lines of code, whose convenience comes at a
steep cost—its performance reaches only 14.2%
of the hand-written CUDA version (DeepSeek,
2025) (∼500 lines) on NVIDIA H100 GPUs.
Bridging the gap between programmability and
performance requires addressing two key chal-
lenges. First, a programming model must give
developers precise control over data movement
and computation, enabling direct interaction
with hardware resources. Second, a compiler
must efficiently lower these high-level programs

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to GPU code, mapping abstractions onto hard-
ware resources without adding programming complexity. Solving both challenges is essential to
balance developer productivity with near-peak hardware performance on modern accelerators.

We introduce TILELANG, a controllable programming system for modern neural workloads. TILE-
LANG provides programmable tile abstractions that let developers express and optimize low-level
kernel behaviors in a high-level, composable way. Unlike existing compilers such as Triton, which
rely on opaque optimization passes, TILELANG gives developers explicit control over memory, data
movement, layout, and parallel execution. Specifically, developers can allocate buffers in differ-
ent hardware memory levels (alloc_shared, alloc_fragment), orchestrate data transfers
(copy), define custom memory layouts (annotate_layout, use_swizzle), and fine-tune
parallelism and pipelining strategies (Parallel, Pipelined).

Under programmable tile abstractions, TILELANG programs can be represented as a unified fused
tile-level dataflow graph (FTG). By operating on this FTG, TILELANG enables fine-grained reasoning
and optimization of AI kernels, guiding developers from high-level design choices to fully specified,
hardware-efficient kernel configurations. It introduces two complementary techniques. First, tile
recommendation analyzes the FTG along with partially specified configurations to provide hardware-
aware defaults for tile shapes, memory placement, and warp partitions, offering developers high-
quality starting points that can be accepted, adjusted, or further tuned. Second, tile inference
propagates shape and layout constraints across the FTG to complete the remaining configurations
based on the partially annotated operators. It also automatically aligns buffer shapes, layouts, and
memory allocations both downstream and upstream. This design blends flexible user control with
automated optimization, yielding efficient kernels with far less manual effort.

As shown in Figure 1, TILELANG achieves on average 5.56× the performance of Triton and ap-
proaches the hand-written CUDA version in performance, while requiring less than 16% of the code
size of the manual kernel and even fewer LOCs than Triton. This highlights TILELANG’s ability
to attain a more favorable balance between programmability and performance, offering both high
efficiency and low development effort. We also implement other modern AI kernels—including
Dequantize Matmul (Wang et al., 2024), Multi-Head Attention (MHA) (Vaswani et al., 2017), and
Block-Sparse Attention (BSA) (Guo et al., 2024). Despite its deliberately streamlined interface,
TILELANG achieves state-of-the-art throughput across heterogeneous GPUs, delivering speed-ups of
up to 10.59× over Triton on an NVIDIA H100 and 11.56× on an AMD MI300X (AMD, 2024).

Our contributions are twofold: (1) programmable tile abstractions that let developers directly control
and interact with hardware; and (2) tile recommendation and inference that guide developers with
hardware-aware defaults and automatically complete configurations over a unified FTG graph. We
believe TILELANG improve both the productivity and performance of modern AI kernel development.

2 RELATED WORK

AI kernel programming and optimizations. To simplify the development of AI kernels, libraries
like FlashAttention-3 (Shah et al., 2024), CUTLASS (NVIDIA, 2019), and ThunderKittens (Spector
et al., 2025) rely on manual or template-driven designs. Triton (Tillet et al., 2019) provides a
high-level Python DSL but restricts control over critical performance paths. Gluon (OpenAI, 2025)
is built on Triton DSL and exposes lower memory hierarchies like shared memory and registers.
Helion (PyTorch, 2025) works as a higher-level DSL and is designed to compile down to Triton.
Cypress (Yadav et al., 2025) introduces a task-based programming model with sequential semantics.
Tilus (Ding et al., 2025) is another Python DSL for GPU programming, designed with thread-
block-level granularity and tensors as the core data type. Mojo (Godoy et al., 2025) combines
Python’s interoperability and CUDA-like syntax to build performance-portable HPC science kernels.
Frameworks such as PyTorch (Paszke et al., 2019), Graphene (Hagedorn et al., 2023), MLIR (Lattner
et al., 2021), and Welder (Shi et al., 2023) take a compiler-centric approach. Unlike these works,
TILELANG is a tile-level programmable language that automates layout and low-level configuration
while giving users fine-grained control. Its flexible tile programming abstraction can help researchers
obtain kernels for a broad range of AI operations, and enable advanced optimizations like software
pipelining (Cheng et al., 2025) and warp specialization (Huang et al., 2023).

Cost modeling. TANGRAM (Gao et al., 2019) optimizes dataflow across scheduling layers, along
with a performance modeling tool extended by SET (Cai et al., 2023) with Resource Allocation Trees.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

KPerfIR (Guan et al., 2025) adds instrumentation for profiling and pipeline reordering in Triton.
ML-based predictors like Path Forward (Li et al., 2023) and NEUSIGHT (Lee et al., 2025) also exist.
In contrast, TILELANG’s tile-level analytical cost model uniquely captures both computation and data
movement at tile granularity, supporting fusion-aware scheduling with high accuracy and usability.

An extended discussion of related work is provided in Appendix A, covering classic tensor-level
IRs (e.g., XLA (Google, 2019)), polyhedral compilation (Griebl et al., 1998; Zhao et al., 2021),
loop-scheduling systems such as Halide (Ragan-Kelley et al., 2013), the TVM stack (Chen et al.,
2018), CUTLASS (NVIDIA, 2019), and TaichiLang (Hu et al., 2019; 2020; 2021).

3 PROGRAMMING MODEL

3.1 TILE LANGUAGE

Tile declarations. TILELANG elevates a tile—a hyper-rectangular slice of a tensor—to a first-class
citizen. A tile may be owned by a warp, a thread block, or any programmer-defined parallel unit, and
can be reshaped or re-partitioned at compile time. In the FlashMLA kernel, the global matrices are
consumed in tiles whose extents are parameterized by block_H, block_N, and related symbolic
sizes. The T.Kernel structure establishes the kernel’s launch configuration (e.g. bx, by, and the
thread count), enabling both index derivation for each thread block and subsequent compiler analyses
such as memory-access coalescing and loop tiling.

Tile placement. A distinguishing feature of TILELANG is the ability to map every tile buffer
to a concrete level of the target accelerator’s memory hierarchy via user-visible intrinsics, rather
than relying on opaque compiler heuristics. T.alloc_shared reserves storage in low-latency,
software-managed shared memory on NVIDIA GPUs (or an architecturally analogous space on other
devices). T.alloc_fragment places accumulator tiles in the register file. Although registers
are scarcer than shared memory, their single-cycle latency is indispensable for performance-critical
reductions. During compilation, a layout-inference pass distributes these register tiles across threads
while respecting register-pressure constraints and bank conflicts.

Tile operators and schedulable primitives. Table1 in Appendix C showcases the representative sub-
set of core building blocks that orchestrate computation and movement among tiles. Fundamental op-
erators (T.copy, T.gemm, T.reduce) act on tile operands directly, allowing the programmer to ex-
press dense linear algebra, pointwise transforms, and reductions without resorting to scalarized loops.
Orthogonal scheduling primitives expose fine-grained control over parallelism (T.Parallel),
pipelining (T.Pipelined), and memory layout (T.annotate_layout, T.use_swizzle).

3.2 A FLASH MULTI-HEAD LATENT ATTENTION EXAMPLE

Recommend

Recommend

Recommend

Inference

Inference

Inference

1 Decide tile configuration

2 with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=256) as (bx, by):

3 Define buffer on desired memory layer

4 Q_shared = T.alloc_shared([block_H, dim], dtype)

5 S_shared = T.alloc_shared([block_H, block_N], dtype)

6 Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)

7 acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)

8 # skip initialization statements

9 Define desired data layout

10 T.annotate_layout({{O_shared: T.make_swizzled_layout(O_shared)}})

11

12 T.copy(Q[bx, by * block_H:(by + 1) * block_H, :], Q_shared)

13 T.copy(Q_pe[bx, by * block_H:(by + 1) * block_H, :], Q_pe_shared)

14

15 Auto pipeline scheduling

16 for k in T.Pipelined(T.ceildiv(seqlen_kv, block_N), num_stages=2):

17 T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)

18 T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)

19 T.clear(acc_s)

20

21 Warp partitioning

22 T.gemm(Q_shared, KV_shared, acc_s, transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)

23 T.gemm(Q_pe_shared, K_pe_shared, acc_s, transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)

24 # skip flash operations on scaling and softmax

25 T.copy(acc_s, S_shared)

26

27 Auto utilize high performance instruction

28 T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)

29

30 for i, j in T.Parallel(block_H, dim):

31 acc_o[i, j] /= logsum[i]

32 T.copy(acc_o, O_shared)

33 T.copy(O_shared, Output[bx, by * block_H:(by + 1) * block_H, :])

34

1

2

3

4

5

6

Figure 2: FlashMLA TILELANG kernel example

By fusing high-level expressiveness with
architecture-aware orchestration, TILELANG
succinctly captures sophisticated AI algorithms
such as FlashMLA (Liu et al., 2024) while
fully harnessing the performance envelope
of modern GPU architectures. Figure 2
illustrates TILELANG’s developer–compiler
co-optimization model: the developer
specifies key decisions—such as tile config-
uration, launch grid (block_H, block_N),
buffer placement (T.alloc_shared,
T.alloc_fragment), swizzled layouts
(T.annotate_layout), and warp-level
collaboration (T.Parallel). The compiler
then infers the remaining low-level details,
including latency-hiding pipelines, conflict-free
memory layouts, and instruction selection
for peak hardware performance. To balance
flexibility with automation, TILELANG offers
two developer-facing facilities. First, tile recom-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

mendation (Sec. 4.2) supplies hardware-aware
defaults that serve as high-quality starting points.
Second, tile inference (Sec. 4.3) analytically
propagates user-provided or recommended hints to complete the schedule and guarantee consistency.
Working in concert, these facilities deliver near-optimal performance with limited manual tuning.

3.3 TILELANG PHILOSOPHY

Tile-level tradeoff. The system adopts tiles as the central abstraction because this granularity
provides a practical balance between portability and performance. TILELANG models the GPU
memory hierarchy and the major compute and data-movement units, exposing tile size, memory
placement, warp partitioning, memory layout, and software pipelining as tunable dimensions. This
design enables hardware-aware specialization on both NVIDIA and AMD while preserving a unified
programming model. Remaining tradeoffs lie below the tile level, where extremely fine-grained
hardware behavior cannot be captured through a stable and portable API.

Novel tile abstraction. Unlike prior systems where a “tile” is essentially a manually managed
shared-memory buffer, TILELANG treats tiles as first-class IR constructs with explicit semantics
for indexing, data movement, reuse, and pipelining. This makes tile behavior compiler-visible and
supports systematic analysis and transformation. Consequently, TILELANG differs not only in surface
syntax but also in the underlying IR, which enables principled optimization at tile granularity.

4 SCHEDULING GUIDANCE AND AUTOMATION

4.1 TWO-STAGE FRAMEWORK

Optimization space. High-performance kernel design in TILELANG begins with a tile-level program,
represented as a fused tile-level graph (FTG) capturing dataflow and tiling structure–each node
represents a tile operator and each edge encodes a data dependency. By operating on this unified graph,
TILELANG exposes and reasons about hardware-aware optimizations across six key dimensions: tile
size (affecting shared memory and register usage), memory placement (selecting appropriate memory
scope), warp partitioning (how threads collaborate and bind within a block), memory layout (how tile
data is organized across memory levels), software pipelining (overlapping compute and data transfer,
e.g., via TMA), and tensorization (mapping operations to CUDA or Tensor Cores).

Tile recommendation and inference. To efficiently explore the optimization space, TILELANG
adopts a unified two-stage workflow over the FTG. In the first stage, tile recommendation analyzes the
FTG to provide hardware-aware defaults for partially annotated operators, covering dimensions such
as initial tile shapes, memory placement, and warp partitioning (Section 4.2). These recommendations
shape the memory footprint, compute partitioning, and thread collaboration, providing high-quality
starting points. In the second stage, leveraging the context from recommendation, tile inference prop-
agates constraints through the FTG, automatically inferring the remaining configuration, including
tile size, memory layout, software pipelining, and tensorization. It ensures consistency, compatibility,
and hardware efficiency (Section 4.3). Together, these stages unify developer guidance and automated
completion: recommendation narrows the design space with informed hints, while inference finalizes
fully specified, hardware-efficient kernels with minimal manual effort.

In TileLang, the FTG defines the division of labor between developer control and system automation.
Developers specify the FTG by composing tile operators; tile-level annotations such as tile sizes,
memory placement, warp partitioning, and tensorization are optional. Given an FTG, TILELANG’s
optimization pipeline performs tile recommendation and inference, propagating shape, layout, and
memory constraints to complete missing details. This design lets developers concentrate on describ-
ing computation while the system automatically finalizes and optimizes low-level configuration,
supporting both fully automated and hint-guided usage.

Running example. Taking MLA as an example (Figure 2), TILELANG first performs tile recom-
mendation as illustrated in Figure 3. Tile operators in the FTG expose tunable parameters—such as
tile size, memory placement, and warp-partitioning strategies—serving as the user interface for these
optimization knobs. For instance, in the first T.gemm operator (Figure 3 1), memory placement

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

annotations specify Q and KV tiles in shared memory, while S resides in registers. The S tile is
further partitioned across columns using the “policy=FullCol” warp-partitioning strategy. These
decisions directly shape the memory footprint and influence data access patterns across the FTG. The
cost model analyzes the FTG to estimate memory traffic, guiding the search toward configurations
that minimize data movement.

Q,

shared

dim

b
lo

ck
M

KV.t,

shared

blockN

d
im

S,

register

S,

register

warpgroup 0

S,

register

warpgroup 1

S_cast,

?

blockN

b
lo

ck
M

KV,

shared

dim

b
lo

ck
N

acc_o,
register

acc_o,

register

warpgroup 0

acc_o,

register

warpgroup 1

1

T.gemm(

 Q=shared,

 KV=shared,

 S=register,

 transpose_B=True,

) policy=FullCol

2
T.copy(

 S=register,

 ,

)
 S_cast=?

 policy=?

Stage 1: Recommend

3

T.gemm(

 ,

 KV,=shared

 acc_o=register,

)

S_cast=?

 policy=FullCol

1

T.gemm(

 Q=shared,

 KV=shared,

 S=register,

 transpose_B=True,

) policy=FullCol

2
T.copy(

 S=shared,

 ,

)
 S_cast=shared

 policy=allgather

3

T.gemm(

 ,

 KV,=shared

 acc_o=register,

)

S_cast=shared

 policy=FullCol

Q,

shared

dim

b
lo

ck
M

KV.t,

shared

blockN

d
im

S,

register

S,

register

warpgroup 0

S,

register

warpgroup 1

S_cast,

shared

blockN

b
lo

ck
M

KV,

shared

dim

b
lo

ck
N

acc_o,
register

acc_o,

register

warpgroup 0

acc_o,

register

warpgroup 1

Stage 2: Inference

Figure 3: Two-stage workflow of optimizing MLA example.

Tile inference completes the configuration by operating over the FTG. For example, once S (output
of the first T.gemm in Figure 3(1) and S_cast (input of the second T.gemm in Figure 3 3) are
fixed in location, shape, and partitioning in the first step, inference automatically determines the
tile placement and partitioning (e.g., all-gather or scatter) of copy (Figure 3 2) in the second step,
ensuring consistency without manual effort. Beyond copy decisions, inference also derives memory
layouts by mapping multi-dimensional indices to physical addresses, explicitly considering vector-
ization, coalescing, and bank conflicts. Finally, it automates software pipelining and tensorization,
ensuring that the resulting kernel configuration is efficient on the underlying hardware. TILELANG
also provides platform-specific recommendations and inference (see Appendix D).

4.2 TILE RECOMMENDATION

(a) Hardware-Aligned Search

blockM: { 16, 32, … }
policy: { FullRow, FullCol }
num_stages: { 1, 2, … }
Q.alloc(): { Reg, Smem }
……

(b) Cost Model Guided Filtering

TileDevice

Candidates

(c) Interactive Schedule

Final:
blockM = 64
Policy = FullCol
num_stages = 2
Q.alloc() = Smem
...

Final:
blockM = 64
Policy = FullCol
num_stages = 2
Q.alloc() = Smem
...

Kernel 1

Kernel K

Light
Perf.

Report

Accept?

Iterate
(a), (b)

Figure 4: Tile recommendation with cost model. In (b), we show a scatter plot of candidate schedules.
The x-axis orders candidates by their 1

predicted latency , and the y-axis shows their normalized scores

defined as latency of best candidate
latency of current candidate which lies in the range (0,1].

Roofline-based cost model. As outlined in Figure 4, TILELANG uses a static roofline-based cost
model to evaluate candidate configurations, which include tile shapes, memory placement strategies,
and warp partitioning. The cost model operates directly on the fused tile graph (FTG): each FTG
under a given configuration is lowered into an intermediate representation (IR), a structured, tile-
oriented compute plan that explicitly encodes compute and memory access patterns per tile. From
this IR, the model statically extracts two key quantities: total memory traffic at each memory level,
and total floating-point operations for each compute type. These quantities are used in a roofline
formulation that assumes perfect overlap between computation and memory transfers, ignoring
pipeline prologues/epilogues. The execution time is estimated as: where i indexes levels of the
memory hierarchy (e.g., HBM, L2, L1), and j indexes compute unit types (e.g., tensor cores, vector
cuda cores, special function units (SFUs)). The term tintrinsic accounts for inherent overheads such as
kernel launch latency and loop prologue and epilogue costs. This model provides a tight performance
upper bound and allows rapid evaluation across large configuration spaces without actual execution
or runtime profiling.

Based on the cost model, TILELANG generates actionable recommendations for kernel tuning,
including tile shapes, memory placement, and warp partitioning. These recommendations form an
interactive baseline: developers can accept, adjust, or iteratively refine them across multiple rounds.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This human-in-the-loop workflow balances automation with expert insight, slashing tuning effort
while preserving full design control.

Tile size. TILELANG presents a ranked shortlist of tile shapes that are multiples of the device’s
native tensor-core fragments and respect register and shared-memory limits. Each candidate shows
predicted arithmetic intensity, memory traffic, and roofline utilisation. Developers can accept the top
choice, pin alternatives for later benchmarking, or adjust dimensions manually.

Memory placement. Given a chosen tile shape, TILELANG enumerates legal bindings of operands
and temporaries to registers or shared memory, flagging options that exceed capacity. Each binding
includes estimated pipeline stalls and effective bandwidth, letting developers quickly explore trade-
offs and commit or refine placements.

Warp partition. To ensure sufficient thread-level parallelism, TILELANG proposes warp partitions
that evenly cover the output tile and match the SM topology. With predicted occupancy and com-
pute–memory overlap, developers can select, benchmark, or override, retaining full control while
benefiting from data-driven guidance.

4.3 TILE INFERENCE

Layout inference. While memory placement and computation partitioning in Section 4.2 decide
where tensors reside and how computation is split, layout inference determines how multi-dimensional
indices are converted into physical memory addresses—taking into account vectorization, memory
coalescing, and bank conflict avoidance. In other words, layout is not about which memory scope
is used, but how data is accessed within that scope. Once placement and partitioning are fixed, the
system can then infer an appropriate layout to ensure efficient low-level memory access.

TILELANG supports high-level indexing into multi-dimensional arrays (e.g., A[i, k]), which is
eventually lowered to physical memory addresses through a hierarchy of abstractions. At the physical
level, layouts are modeled as linear address expressions of the form

∑
i yisi, where yi is the index

along dimension i, and si is its stride. To capture such mappings, TILELANG introduces a composable
Layout algebra based on IterVar—a loop iterator that carries range and stride information. This
allows layout transformations (e.g., transposes) to be expressed as algebraic mappings, such as
lambda i, j: (j, i). Formally, a layout becomes a function f : Kn → Km, converting
high-level indices into memory addresses. Additionally, TILELANG defines Fragment layouts—a
specialized extension where f : Kn → K2, mapping each index to a thread’s register ID and its
local offset. This enables precise modeling of intra-thread register allocation. Although a buffer
of size N theoretically allows O(N !) memory layouts, the set of feasible layouts is significantly
constrained by hardware. Global memory prefers coalesced access, shared memory requires bank
conflict avoidance, and Tensor Core instructions impose strict layout requirements. To explore these
constraints, TILELANG employs a greedy strategy that derives valid layouts by enforcing layout rules
on selected tile operators.

MatMul

QKV K PE Q PE

Shared

Reg.

Online
SoftMax

Shared Shared Shared

MatMul

acc_s

MatMul

Reg.acc_o

Shared

Output

Z

Reduce Max

exp2

Reg.
score

Reg.

Reduce Sum

score

Strict Layout Inference

T.gemm(
QShared,
KVShared,
acc_s,
transpose_B=True

)

Common Layout Inference

MatMul

Shared Shared

Reg.

Swizzled Swizzled

MMA Store

Reduce Max

Reg.

T.reduce_max(acc_s, scores_max, dim=1)
acc_s

scores_max

Free Layout Inference

Hardware Efficient Loop Layout Inference

KV Shared

Figure 5: Layout Inference mechanism in TILELANG

We propose a hierarchical layout inference algorithm that operates over an FTG. As illustrated in
Figure 5, FlashMLA can be represented as a FTG, where nodes are tile-level operators (e.g., matmul,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

softmax) and edges encode data dependencies. The graph captures how Q, K, and V tiles are
loaded into shared memory, attention scores computed and normalized in registers, and final outputs
written back. This structure makes memory movement and parallelism explicit, enabling layout
inference and efficient scheduling.

Our goal is to synthesize memory layouts that optimize low-level execution efficiency while preserving
high-level tensor semantics. The inference process is modeled as a constraint propagation algorithm
(Algorithm 1 in Appendix E) that iteratively traverses the FTG and incrementally refines the layout
mapping L until convergence. As illustrated in Figure 5, the algorithm integrates three complementary
inference strategies: (1) Strict Layout Inference (Fig.5 1) enforces operator-specific constraints for
hardware-sensitive primitives such as tensor core GEMM, including swizzled shared memory layouts
and MMA-aligned register allocations; (2) Common Layout Inference (Fig.5 2) propagates layout
decisions through structurally aligned operators (e.g., reductions), ensuring consistent thread bindings
and register reuse; and (3) Free Layout Inference (Fig. 5 3) handles the remaining unconstrained
layouts by partitioning them into subgraphs via connected component analysis. For each subgraph,
the partitioning scheme with the lowest register usage is selected. This step also determines the loop
layout using the hardware cost model, which specifies thread binding and vectorization length to
maximize memory coalescing and minimize bank conflicts. This unified inference pipeline supports
composable, performance-portable layout generation and seamlessly bridges high-level loop indexing
with low-level memory organization.

Pipeline inference. TILELANG automatically infers a pipelined schedule from a sequential program.
As shown in Figure 6 (a), operations like copy and gemm are overlapped to increase parallelism.
The system analyzes dependencies in the FTG and generates a structured pipeline that preserves
execution correctness, exposing only a single num_stages parameter to users. Additionally,
TILELANG applies Warp Specialization to fully exploit asynchronous copy instructions on Hopper
GPUs, inserting synchronization barriers where necessary to maintain correct data dependencies. The
detailed inference procedure is described in Appendix F.

Copy KV MatMul(Q, KV) Copy K_PE MatMul(Q_PE, K_PE)

Copy KV MatMul(Q, KV) Copy K_PE MatMul(Q_PE, K_PE)

Copy KV

MatMul(Q, KV)

Copy K_PE

MatMul(Q_PE, K_PE)

Copy KV

MatMul(Q, KV)

Copy K_PE

MatMul(Q_PE, K_PE)

Iteration 0

Original Serialized Schedule

Pipelined Schedule

Iteration 1

Producer

Consumer

T.Pipelined(num_stages=)2

Pipeline

Inference

Figure 6: Pipeline Inference mechanism in TILELANG

Instruction inference. In TILELANG, while low-level hardware instructions such as dp4a or mma
can be manually invoked via source injection or inline PTX (NVIDIA, 2021), choosing the most
appropriate instruction based on input shapes and data types can be challenging. To address this,
TILELANG integrates with high-level Tile Libraries like NVIDIA’s cute (NVIDIA, 2019) and
AMD’s ck (AMD, 2025), which abstract hardware-specific details and automatically choose efficient
instructions based on input configurations. These libraries expose standardized tile-based APIs
(e.g., tl::gemm_ss), and TILELANG supports their invocation via a unified T.call_extern
interface, simplifying development while ensuring performance portability.

5 EVALUATION

TILELANG is realised as a Pythonic DSL whose compiler lowers high-level tile programs to hardware-
specialized kernels through a modular IR and code-generation pipeline. TileLang is implemented on
top of the TVM backend, but our main contributions sit above TVM. TILELANG provides the tile
abstraction, the FTG IR, and its own optimization passes, while TVM supplies the low-level code
generation backend. As illustrated in Fig. 7, TILELANG adopts a five-stage compilation workflow: (1)
tile-level code is written in a Python-based DSL; (2) the compiler translates the AST into the TileLang
AST; (3) a FTG is constructed from the TensorIR; (4) a series of optimization passes in TileLang and
TVM is applied; and (5) the optimized IR is finally lowered to CUDA, or other backends.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Parser IR Builder Codegen

TVM PassFTG Pass

TileLang

Program

Optimizations
LLVM IR
CUDA C/C++
HIP C/C++
...

TVM

IR

FTG

IR

TileLang

AST

Python

AST

1 2 3 5
4

Figure 7: Overall TILELANG workflow.

5.1 EXPERIMENTAL SETUP

Hardware platforms. We assess the performance of TILELANG on two leading GPU architectures:
NVIDIA and AMD, which dominate contemporary accelerator ecosystems. Our evaluation employs
state-of-the-art hardware, including the NVIDIA H100 (80GB) (NVIDIA, 2023) and the AMD
Instinct MI300X (192GB) (AMD, 2023). The NVIDIA H100 leverages CUDA 12.8, while the
AMD MI300X utilizes ROCm 6.2.0. Both GPUs are benchmarked under the Ubuntu 20.04 operating
system to ensure consistency in environmental configurations.

AI kernels. To evaluate system performance, we analyze nine representative operators: (1) GEMM,
(2) fused dequantized GEMM (WINT4AFP16), (3) Attention, (4) Multi-Head Latent Attention, (5)
Block Sparse Attention, (6) 2D Convolution, (7) Chunk Gated Delta Net, (8) Vertical Slash Sparse
Attention, and (9) Attention Sink. Shape configurations are provided in Appendix N.

Baselines. Our comparative analysis considers the following baselines: (1) PyTorch Induc-
tor—torch.matmul for GEMM, SDPA (PyTorch, 2023) for attention, and other operators com-
piled via Inductor; (2) Triton implementations, including GemLite (Mobius ML, 2024) and MLA
from SGLang (Zheng et al., 2024); (3) ThunderKittens (TK) (Spector et al., 2025)—a template-
based framework for high-performance AI kernels on NVIDIA GPUs; and (4) Highly optimized
libraries, including CUTLASS (NVIDIA, 2019) and Composable Kernel (AMD, 2025) for GEMM,
Marlin (Frantar et al., 2025) for dequantized GEMM, FlashAttention-V3 (Dao, 2023) for MHA,
AITER (AMD, 2025) for MLA, and Block Sparse Attention (Guo et al., 2024) for sparse attention.

We evaluate kernel performance versus code complexity (Section 5.2) and present ablation results
(Section 5.3), with cost model and tuning time analyses in Appendices G and H.

5.2 KERNEL PERFORMANCE
Matrix Multiplication. TILELANG achieves high performance with low code complexity across
diverse GEMM configurations, demonstrating 1.18–1.40× speedup over PyTorch on NVIDIA
H100, while maintaining competitive performance (0.94–1.05×) on AMD MI300X. It also de-
livers 1.08–1.43× speedup over Triton with minimal kernel code, enabled by automated inference
that abstracts low-level hardware details such as TMA and pipeline scheduling. Compared with TK,
TILELANG achieves 0.99–1.11× speedups while reducing code complexity by 77%. Its cost-model
guidance and automated tile inference eliminate manual tuning. TK depends on curated CUDA
templates, limiting it to NVIDIA GPUs, whereas TILELANG supports multiple hardware backends.

Low-Bit Matmul. For WINT4AFP16 GEMM, TILELANG achieves 1.35–3.81× speedups over PyTorch
and up to 1.55× over Triton on H100, while outperforming the specialized Marlin kernel with far
simpler code. On MI300X, it delivers on average 0.96 × over Triton. These gains arise because
TILELANG exposes low-level memory, dequantization, and layout controls that Triton hides.

Convolution. On H100, TILELANG achieves 1.24–1.79× and 1.10–1.97× speedups over PyTorch
and Triton, respectively, with reduced code complexity. These gains come from its instruction
inference mechanism, which maps data movement efficiently to TMA im2col. On MI300X, the
improvements are even larger, reaching 1.29–6.80× over PyTorch and 1.02–3.10× over Triton.

Flash Attention. TILELANG achieves efficient attention computation with concise code across
sequence lengths. On H100 and MI300X, it delivers 1.08–1.58× and 1.22–1.37× speedups over
Triton, while matching the performance of FlashAttention-V3 (0.98× and 0.96× on average). These
results stem from TILELANG’s ability to infer and apply platform-specific partitioning and pipelining
strategies that exploit specialized compute units. TILELANG achieves up to 1.10× speedup over TK
while significantly reducing code complexity (from 185 lines to 66), highlighting its programma-
bility. By combining tile-level guidance with automated inference, TILELANG streamlines kernel

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 50 100 150
Code Lines (LOC)

1.00

1.25

1.50
Sp

ee
du

p
No

rm
al

ize
d

to
 P

yT
or

ch 1.25x

1.00x
1.14x

1.24x1.21x

GEMM-FP16xFP16

0 200 400
Code Lines (LOC)

2

4
2.87x

1.00x
1.96x 2.91x

GEMM-FP16xINT4

0 20 40
Code Lines (LOC)

1.0

1.5 1.48x

1.00x 1.00x

Conv2d

0 200 400 600 800
Code Lines (LOC)

5

10

15
12.38x

1.00x

8.53x

12.61x
12.35x

MHA

100 200 300
Code Lines (LOC)

2.5

5.0

Sp
ee

du
p

No
rm

al
ize

d
to

 P
yT

or
ch 4.14x

1.00x 0.86x

3.00x

Block-Sparse-MHA

50 100 150
Code Lines (LOC)

25

50

75

42.85x

1.00x

31.89x

Chunk-Gated-Delta-Net

50 75 100 125
Code Lines (LOC)

100

200

300

169.13x

1.00x

114.66x

Vertical-Slash-Sparse-Attention

40 60 80
Code Lines (LOC)

10

20 20.39x

1.00x

16.84x

Attention-Sinks

TileLang
PyTorch

Triton
CUTLASS

ThunderKittens
Marlin

FlashAttention
BSA

(a) Performance vs. code complexity across operator configurations on NVIDIA H100 GPU.

0 200 400 600
Code Lines (LOC)

0.5

1.0

Sp
ee

du
p

No
rm

al
ize

d
to

 P
yT

or
ch

1.00x1.00x
0.74x

0.57x

GEMM-FP16xFP16

0 50 100 150
Code Lines (LOC)

1
2
3 2.84x

1.00x
0.36x

GEMM-FP16xINT4

0 20 40 60 80
Code Lines (LOC)

2.5

5.0
2.98x

1.00x
1.95x

Conv2d

0 500 1000 1500
Code Lines (LOC)

1.0

1.5

1.06x1.00x
0.82x

1.11x

MHA

25 50 75 100
Code Lines (LOC)

1

2

3

Sp
ee

du
p

No
rm

al
ize

d
to

 P
yT

or
ch 2.38x

1.00x

1.87x

Block-Sparse-MHA

50 100 150
Code Lines (LOC)

200

400 381.25x

1.00x 48.71x

MLA

50 75 100 125
Code Lines (LOC)

100
200
300 239.70x

1.00x

164.31x

Vertical-Slash-Sparse-Attention

40 60 80
Code Lines (LOC)

5

10

6.86x

1.00x
2.69x

Attention-Sinks

TileLang PyTorch Triton Composable Kernel

(b) Performance vs. code complexity across operator configurations on AMD MI300X GPU.

Figure 8: Performance and code complexity on an NVIDIA H100 GPU and AMD MI300X GPU.
The y-axis denotes the speedup relative to PyTorch, while the x-axis indicates lines of code (LOC).
Ideal solutions appear toward the top-left corner.

development. This is particularly valuable for complex attention operators, where TK often requires
extensive manual tuning of tiling, warp partitioning, layout, and pipelines.

Flash MLA. As showin in Figure 1, TILELANG achieves 4.06–10.59× speedups over Triton on
H100, with substantially reduced code complexity. It matches the latency of the specialized FlashMLA
kernel while reducing code complexity by 6.86×. On MI300X, TILELANG delivers 5.64–12.97×
gains over Triton and slightly outperforms the hand-tuned ROCm library AITER (1.05×). These
improvements arise from warp specialization and automated TMA mapping.

Block Sparse Attention. TILELANG achieves acceleration of 3.42-7.87× and 1.22-1.37× over
Triton with less code on H100 and MI300X, respectively. On H100, it matches BlockSparse (BSA)
latency (0.91–1.82×) while greatly reducing complexity. Implementing block-sparse MHA requires
only adding two lines to the standard MHA code (Appendix O.5).

Chunk Gated Delta Net. On H100, TILELANG achieves 15.88–70.35× speedups over PyTorch by
fusing complex operations into a single kernel. Compared to Triton, it attains 1.10–1.45× speedups
with 39% fewer lines of code. These gains come from automated tile recommendation and inference,
which optimize memory placement and partitioning for efficient hardware utilization.

Vertical Slash Sparse Attention. TILELANG delivers 108.55–280.41× and 105.01–363.53×
speedups over PyTorch on H100 and MI300X, largely by fusing the sparse attention operation
into a single efficient kernel. Compared to Triton, it achieves 1.16–1.97× and 1.19–1.60× speedups
on H100 and MI300X, respectively, while cutting the code size by roughly half.

Attention Sinks. For attention with the sinks mechanism, TILELANG achieves 14.21–25.57× and
5.35–9.11× speedups over PyTorch on H100 and MI300X, respectively, enabled by TILELANG’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

FTG-based fusion into a single optimized kernel. Against Triton, it reaches 1.13–1.30× on H100
and 2.32–2.69× on MI300X. The attention-sink variant differs only slightly from standard MHA,
showing that TILELANG readily supports diverse attention patterns with minimal effort.

5.3 ABLATION STUDIES

To help clarify what contributes to the speedups over the baseline, we perform an ablation study
on FlashMLA as a representative example. Starting from a TILELANG version that uses manually
crafted scheduling heuristics (TL-Heuristic), we progressively enable three components: (i) cost-
model–guided tiling (+Tile), which improves the compute–memory ratio and cache use; (ii) cost-
model–guided memory placement (+Alloc), which chooses efficient buffer locations and reduces
register spilling; and (iii) warp partitioning (+Partition), which improves intra-warp load balance.
Performance is measured at each stage relative to the Triton baseline.

1K 2K 4K 8K
KV Sequence Length

0.0

2.5

5.0

7.5

10.0

12.5

Sp
ee

du
p

vs
 Tr

ito
n

12×

7×
5×

4×

1

H100

1K 2K 4K 8K
KV Sequence Length

0

5

10

15

Sp
ee

du
p

vs
 Tr

ito
n 13×

10×

7×
6×

ou
t

of
 s

m
em

ou
t

of
 s

m
em

ou
t

of
 s

m
em

ou
t

of
 s

m
em

1

MI300x

TL-Heuristic
+Alloc
+Tile
+Partition
Baseline = 1

Figure 9: Ablation study for FlashMLA on both H100 and MI300X GPUs.

As shown in Figure 9, each of the evaluated optimizations provides measurable performance gains
over the Triton baseline, validating their effectiveness. Our analysis also highlights architecture-
specific behaviors (illustrated in Appendix D). On H100, tiling (+Tile) yields a modest speedup of
1.31 ×. Building on this, warp partitioning (+Partition) provides the dominant contribution, delivering
an additional 4.34× improvement. On MI300X, allocation placement (+Alloc) serves as the primary
optimization, achieving a 6.56 × speedup. When further combined with tiling (+Tile), the overall
gain increases by another 1.75 × improvement.

5.4 COMPARE WITH MORE RECENT DSLS

0 20 40 60 80 100 120
Code Lines (LOC)

0.6

0.8

1.0

1.2

1.4

Sp
ee

du
p

No
rm

al
ize

d
to

 P
yT

or
ch

1.25x

1.00x 0.99x

0.77x
0.63x

GEMM Performance and Code Complexity on H100

TileLang
PyTorch
Helion
Gluon
Tilus

Figure 10: Performance and code-size comparison
of GEMM kernels on H100 across recent systems.

We further compare TILELANG with recent
DSLs including Helion, Gluon, and Tilus. Our
evaluation covers the latest Hopper-supported
implementations across GEMM, MHA, and
Mamba-chunk-scan. Figure 10 reports the
GEMM results, with additional results in Ap-
pendix L. On GEMM, TILELANG achieves
1.15 ∼ 1.62×, 1.52 ∼ 1.83×, and 1.87 ∼
2.12× speedups over Helion, Gluon, and Tilus,
respectively, while using fewer lines of code.
These improvements largely stem from TILE-
LANG’s compiler-visible tile abstraction, which
enables more structured optimization than ex-
isting DSLs. Note that Tilus is not yet fully op-
timized for Hopper features such as WGMMA
and TMA, and on Ampere/Ada TILELANG is
still slightly better (see Appendix L).

6 CONCLUSION

TILELANG offers a controllable tile-level programming model with graph-based optimizations
via tile recommendation and inference. By combining automated configuration with fine-grained
developer control, it streamlines kernel development and delivers significant speedups. It enables rapid
experimentation with emerging AI algorithms, such as custom attention, sparsity, and quantization.
TILELANG also lowers barriers for systems-aware research across diverse hardware platforms.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup in Section 5.1. Operator shapes used in
our benchmarks are drawn from widely adopted, real-world AI models (e.g., GPT-OSS, DeepSeek
V3, Qwen3-Next). A list of these operator configurations is included in Appendix N, and the
corresponding TILELANG code of kernels used in evaluation is provided in Appendix O. The system
implementation and scripts for reproducing our experiments will be made publicly available after the
review process, ensuring full reproducibility while maintaining anonymity.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

AMD. Amd cdna™ 3 architecture. Technical report, AMD, 2023. URL https:
//www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/
white-papers/amd-cdna-3-white-paper.pdf.

AMD. White paper: Introducing amd cdna™ 3 architecture, 2024. URL https:
//www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/
white-papers/amd-cdna-3-white-paper.pdf.

AMD. ROCm aiter, 2025. https://github.com/ROCm/aiter.

AMD. AMD Composable Kernel, 2025. https://github.com/ROCm/composable_
kernel.

Jingwei Cai, Yuchen Wei, Zuotong Wu, Sen Peng, and Kaisheng Ma. Inter-layer scheduling space
definition and exploration for tiled accelerators. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pp. 1–17, 2023.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-to-End}
optimizing compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 578–594, 2018.

Yu Cheng, Lei Wang, Yining Shi, Yuqing Xia, Lingxiao Ma, Jilong Xue, Yang Wang, Zhiwen
Mo, Feiyang Chen, Fan Yang, et al. Pipethreader: Software-defined pipelining for efficient dnn
execution. In 19th USENIX Symposium on Operating Systems Design and Implementation (OSDI
25), 2025.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

DeepSeek. FlashMLA, 2025. https://github.com/deepseek-ai/FlashMLA.

Yaoyao Ding, Bohan Hou, Xiao Zhang, Allan Lin, Tianqi Chen, Cody Yu Hao, Yida Wang, and Gen-
nady Pekhimenko. Tilus: A tile-level gpgpu programming language for low-precision computation.
arXiv preprint arXiv:2504.12984, 2025.

Siyuan Feng, Bohan Hou, Hongyi Jin, Wuwei Lin, Junru Shao, Ruihang Lai, Zihao Ye, Lianmin
Zheng, Cody Hao Yu, Yong Yu, et al. Tensorir: An abstraction for automatic tensorized program
optimization. In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, pp. 804–817, 2023.

Elias Frantar, Roberto L Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin: Mixed-
precision auto-regressive parallel inference on large language models. In Proceedings of the 30th
ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, pp.
239–251, 2025.

11

https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/white-papers/amd-cdna-3-white-paper.pdf
https://github.com/ROCm/aiter
https://github.com/ROCm/composable_kernel
https://github.com/ROCm/composable_kernel
https://github.com/deepseek-ai/FlashMLA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. Tangram: Optimized
coarse-grained dataflow for scalable nn accelerators. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
pp. 807–820, 2019.

William F Godoy, Tatiana Melnichenko, Pedro Valero-Lara, Wael Elwasif, Philip Fackler, Rafael Fer-
reira Da Silva, Keita Teranishi, and Jeffrey S Vetter. Mojo: Mlir-based performance-portable hpc
science kernels on gpus for the python ecosystem. arXiv preprint arXiv:2509.21039, 2025.

Google. XLA, 2019. https://www.tensorflow.org/xla.

Martin Griebl, Christian Lengauer, and Sabine Wetzel. Code generation in the polytope model. In
Proceedings. 1998 International Conference on Parallel Architectures and Compilation Techniques
(Cat. No. 98EX192), pp. 106–111. IEEE, 1998.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Yue Guan, Yuanwei Fang, Keren Zhou, Corbin Robeck, Manman Ren, Zhongkai Yu, Yufei Ding, and
Adnan Aziz. Kperfir: Towards a open and compiler-centric ecosystem for gpu kernel performance
tooling on modern ai workloads. 2025.

Junxian Guo, Haotian Tang, Shang Yang, Zhekai Zhang, Zhijian Liu, and Song Han. Block Sparse At-
tention. https://github.com/mit-han-lab/Block-Sparse-Attention, 2024.

Bastian Hagedorn, Bin Fan, Hanfeng Chen, Cris Cecka, Michael Garland, and Vinod Grover.
Graphene: An ir for optimized tensor computations on gpus. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pp. 302–313, 2023.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transactions
on Graphics (TOG), 38(6):201, 2019.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo
Durand. Difftaichi: Differentiable programming for physical simulation. ICLR, 2020.

Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai,
William T. Freeman, and Frédo Durand. Quantaichi: A compiler for quantized simulations.
ACM Transactions on Graphics (TOG), 40(4), 2021.

Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu, Yufei Ding, and Yuan Xie. Alcop: Automatic
load-compute pipelining in deep learning compiler for ai-gpus. Proceedings of Machine Learning
and Systems, 5:680–694, 2023.

Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshu-
man Parashar. Maestro: A data-centric approach to understand reuse, performance, and hardware
cost of dnn mappings. IEEE micro, 40(3):20–29, 2020.

Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar, River
Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: Scaling compiler
infrastructure for domain specific computation. In 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pp. 2–14. IEEE, 2021. https://mlir.llvm.
org/.

Seonho Lee, Amar Phanishayee, and Divya Mahajan. Forecasting gpu performance for deep learning
training and inference. In Proceedings of the 30th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, pp. 493–508, 2025.

Ying Li, Yifan Sun, and Adwait Jog. Path forward beyond simulators: Fast and accurate gpu execution
time prediction for dnn workloads. In Proceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 380–394, 2023.

12

https://www.tensorflow.org/xla
https://github.com/mit-han-lab/Block-Sparse-Attention
https://mlir.llvm.org/
https://mlir.llvm.org/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Mobius ML. Gemlite: Lightweight generative machine learning engine. https://github.com/
mobiusml/gemlite, 2024. Accessed: [Insert Access Date].

NVIDIA. NVIDIA cutlass, 2019. https://github.com/NVIDIA/cutlass.

NVIDIA. PTX ISA, 2021. https://docs.nvidia.com/cuda/
parallel-thread-execution/.

NVIDIA. Nvidia h100 tensor core gpu architecture. Technical report, NVIDIA Corporation, 2023.
URL https://resources.nvidia.com/en-us-tensor-core.

OpenAI. Gluon, 2025. https://github.com/triton-lang/triton/tree/main/
python/examples/gluon.

Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen, Victor A Ying, Anurag
Mukkara, Rangharajan Venkatesan, Brucek Khailany, Stephen W Keckler, and Joel Emer.
Timeloop: A systematic approach to dnn accelerator evaluation. In 2019 IEEE international
symposium on performance analysis of systems and software (ISPASS), pp. 304–315. IEEE, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019. https://pytorch.org/.

PyTorch. torch.nn.functional.scaled_dot_product_attention, 2023. URL https:
//docs.pytorch.org/docs/stable/generated/torch.nn.functional.
scaled_dot_product_attention.html.

PyTorch. Helion: A High-Level DSL for Performant and Portable ML Kernels, 2025. https:
//github.com/pytorch/helion.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman
Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, pp. 519–530, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2014-6. doi: 10.1145/2491956.2462176. URL
http://doi.acm.org/10.1145/2491956.2462176.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma, Yuqing Xia, Ziming Miao, Yuxiao Guo, Fan Yang,
and Lidong Zhou. Welder: Scheduling deep learning memory access via tile-graph. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 23), pp. 701–718,
2023.

Benjamin F Spector, Simran Arora, Aaryan Singhal, Daniel Y Fu, and Christopher Ré. Thunderkittens:
Simple, fast, and adorable ai kernels. In Proceedings of the 13th International Conference on Learn-
ing Representations, 2025. URL https://openreview.net/forum?id=0fJfVOSUra.
https://github.com/HazyResearch/ThunderKittens.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv preprint
arXiv:2307.08621, 2023.

Philippe Tillet, H. T. Kung, and David Cox. Triton: An Intermediate Language and Compiler for
Tiled Neural Network Computations, pp. 10–19. Association for Computing Machinery, New York,
NY, USA, 2019. ISBN 9781450367196. URL https://doi.org/10.1145/3315508.
3329973.

13

https://github.com/mobiusml/gemlite
https://github.com/mobiusml/gemlite
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://resources.nvidia.com/en-us-tensor-core
https://github.com/triton-lang/triton/tree/main/python/examples/gluon
https://github.com/triton-lang/triton/tree/main/python/examples/gluon
https://pytorch.org/
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
https://github.com/pytorch/helion
https://github.com/pytorch/helion
http://doi.acm.org/10.1145/2491956.2462176
https://openreview.net/forum?id=0fJfVOSUra
https://github.com/HazyResearch/ThunderKittens
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,
William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehensions:
Framework-agnostic high-performance machine learning abstractions. CoRR, abs/1802.04730,
2018. URL http://arxiv.org/abs/1802.04730.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Haojie Wang, Jidong Zhai, Mingyu Gao, Zixuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li,
Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. PET: Optimizing tensor programs with par-
tially equivalent transformations and automated corrections. In 15th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 21), pp. 37–54. USENIX Association,
July 2021. ISBN 978-1-939133-22-9. URL https://www.usenix.org/conference/
osdi21/presentation/wang.

Lei Wang, Lingxiao Ma, Shijie Cao, Quanlu Zhang, Jilong Xue, Yining Shi, Ningxin Zheng,
Ziming Miao, Fan Yang, Ting Cao, et al. Ladder: Enabling efficient {Low-Precision} deep
learning computing through hardware-aware tensor transformation. In 18th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 24), pp. 307–323, 2024.

Mengdi Wu, Xinhao Cheng, Shengyu Liu, Chunan Shi, Jianan Ji, Kit Ao, Praveen Velliengiri, Xupeng
Miao, Oded Padon, and Zhihao Jia. Mirage: A multi-level superoptimizer for tensor programs. In
19th USENIX Symposium on Operating Systems Design and Implementation (OSDI 25), Boston,
MA, July 2025. USENIX Association.

Rohan Yadav, Michael Garland, Alex Aiken, and Michael Bauer. Task-based tensor computations on
modern gpus. Proceedings of the ACM on Programming Languages, 9(PLDI):396–420, 2025.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length. Advances in neural information processing systems, 37:
115491–115522, 2024.

Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng, Chen Wu, Yun
Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. Akg: Automatic kernel generation
for neural processing units using polyhedral transformations. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language Design and Implementation,
PLDI 2021, pp. 1233–1248, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450383912. doi: 10.1145/3453483.3454106. URL https://doi.org/10.1145/
3453483.3454106.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun
Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating {High-Performance} tensor programs
for deep learning. In 14th USENIX symposium on operating systems design and implementation
(OSDI 20), pp. 863–879, 2020.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
structured language model programs. Advances in Neural Information Processing Systems, 37:
62557–62583, 2024.

14

http://arxiv.org/abs/1802.04730
https://www.usenix.org/conference/osdi21/presentation/wang
https://www.usenix.org/conference/osdi21/presentation/wang
https://doi.org/10.1145/3453483.3454106
https://doi.org/10.1145/3453483.3454106

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Our appendix is organized as follows:

Appendix A: Extended discussion of related work.

Appendix B: Details of the MLA algorithm.

Appendix C: Semantics of a partial list of TILELANG primitives.

Appendix D: Platform-specific scheduling

Appendix E: Layout inference algorithm of TILELANG.

Appendix F: Pipeline inference algorithm of TILELANG.

Appendix G: Evaluation of the cost model.

Appendix H: Tuning time measurements.

Appendix I: Matmul implementation difference between TVM, Triton, and TILELANG.

Appendix J: Comparison of FTG IR and TVM IR.

Appendix K: Comparison of FlashMLA implementations on different architectures.

Appendix L: Comparison with recent DSLs.

Appendix M: Commit hashes of each baseline.

Appendix N: Operator shapes used in our benchmark.

Appendix O: TILELANG code of kernels used in the evaluation.

A EXTENDED DISCUSSION OF RELATED WORK

AI kernel generators For kernel generating and optimization, Ansor (Zheng et al., 2020) builds
many kernel combinations by sampling programs from a hierarchical search space. PET (Wang et al.,
2021) moves forward to partially equivalent transformations and automated correction for newly
discovered kernels. TensorIR (Feng et al., 2023) generates new kernels by generalizing the loop nest
representation used in existing machine learning compilers. Mirage (Wu et al., 2025) proposes a
uniform representation of a tensor program at each level of the latest GPU compute hierarchy to
find custom kernels. AKG (Zhao et al., 2021) leverages polyhedral schedulers to perform a much
wider class of transformations to automatically generate kernels on NPUs. TileLang also utilizes
multi-level programming interfaces and autotuning techniques based on tile-level cost model for
kernel generation and optimization.

Tensor-level IRs, The polyhedral model, and Loop synthesizers. Traditional approaches ad-
dress program optimization at different abstraction levels: Tensor-level IRs (e.g., XLA (Google,
2019)) lower tensor programs via pattern-matched templates (e.g., LLVM, CUDA). Polyhedral mod-
els (Griebl et al., 1998) (e.g., TC (Vasilache et al., 2018)) automate affine loop transforms, mainly for
DNN layers. Loop synthesizers (e.g., Halide (Ragan-Kelley et al., 2013)) generate loop nests guided
by user-defined schedules. TILELANG targets a distinct programming model and control granularity.
It differs fundamentally by introducing tiles as first-class programming units. It offers programmable
control over fusion strategies, memory hierarchy, and parallelism. This enables developers to design
fused kernels with both high performance and portability across hardware.

TVM (Chen et al., 2018). TILELANG builds upon TVM’s IR and arithmetic passes. However,
unlike TVM’s schedule-driven loop generation from high-level compute definitions, TILELANG
offers explicit, tile-level programmability and control over memory, fusion, and parallelism. This
enables much finer-grained kernel customization beyond what TVM can achieve. For instance, TVM
cannot fully express advanced algorithms like FlashAttention (FA) or Multi-Level Attention (MLA),
which demand precise management of memory hierarchy and execution order—capabilities that
TileLang supports.

Warp Partition. Warp Partition (WP) is a key component of TILELANG’s execution model, building
directly on the tile abstraction. Given a specified tile size, WP allows further partitioning of the tile
along each dimension across multiple warps. For example, consider a GEMM operation C = A@B,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where A ∈ RM×K , B ∈ RK×N , and C ∈ RM×N . The output tile C can be partitioned along either
the M or N axis, corresponding to full-row or full-column warp-partitioning strategies, respectively.
By giving users explicit control over warp partitioning, TILELANG enables fine-grained management
of resources such as register usage within each warp. This, in turn, allows users to better control
the performance of operations. Such flexibility is crucial for mapping computations efficiently to
hardware, especially when optimizing diverse and performance-sensitive kernel workloads.

CuTe library. While both TILELANG and CuTe (NVIDIA, 2019) share this high-level goal, their
underlying mechanisms differ: CuTe relies on shape/stride pairs, whereas TILELANG encodes the
mappings using explicit arithmetic expressions. This arithmetic formulation offers advantages by
more directly capturing index transformations and enabling more flexible, composable manipulations,
allowing for clear definition and description in the DSL frontend.

The roofline-guided cost model. Several analytical modeling approaches have been proposed, such
as the nested-loop-based modeling in Timeloop (Parashar et al., 2019), the data-centric representation
in Maestro (Kwon et al., 2020). In contrast to these methods, our work leverages a tile-level program-
ming abstraction, which naturally lends itself to a tile-centric cost model. This enables us to accurately
capture both computation and data movement at the tile granularity, while maintaining simplicity and
enhanced support for modeling operator fusion. This design strikes a balance between accuracy and
usability, making it effective for guiding schedule selection without introducing excessive complexity.

TaichiLang. Although both Taichi (Hu et al., 2019; 2020; 2021) and TileLang target GPU workloads,
they differ fundamentally in abstraction and intended use. Taichi provides a high-level, scalar-loop
DSL with automatic parallelization, SNode-based data layouts, and strong autodiff support, making
it well-suited for scientific computing and simulation. TileLang, by contrast, is designed for deep-
learning kernels such as attention and GEMM, where peak performance requires explicit control
of tile shapes, memory placement across shared/LDS and registers, multi-stage pipelining, warp
specialization, and instruction selection (Tensor Core MMA or AMD MFMA). These capabilities are
not directly expressible in Taichi’s fully automatic model.

B MLA ALGORITHM

Instead of storing full-sized key and value matrices, MLA projects input token embeddings into a
lower-dimensional latent space using a down-projection matrix:

zt = xtWdown.

The latent vector zt is then used to reconstruct the key and value representations:
kt = ztW

K
up , vt = ztW

V
up.

To incorporate positional information, Rotary Positional Embedding (RoPE) is applied to the recon-
structed keys and queries:

krot
t = RoPE(kt).

Queries are also compressed using a similar process to reduce activation memory:

qt = zQt W
Q
up.

MLA further enhances computational efficiency through a technique known as matrix absorption,
which reorders matrix multiplications to optimize performance. This approach enables the key and
value inputs to share the same latent representation zt, thereby reducing redundancy and memory
usage. In the adopted configuration, MLA employs a single shared key-value (KV) head, with a head
dimension of 512.

C PARTIAL LIST OF TILELANG PRIMITIVES

Table 1 illustrates the expressiveness of the TILELANG intermediate representation. To support
efficient code generation across diverse hardware backends, TILELANG decouples the definition of
algorithms from their optimization. The Dataflow Centric Tile Operators define the functional seman-
tics of the workload (e.g., matrix multiplication, atomic updates), while the Scheduling Primitives
expose critical optimization handles—such as loop pipelining (‘Pipelined‘) and layout transformation
(‘annotate_layout‘)—to maximize hardware utilization and locality without altering the algorithmic
correctness.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 1: A partial list of primitives supported by TILELANG.

Dataflow Centric Tile Operators Scheduling Primitives

copy data movement among hierarchy memory. Parallel Parallelization of loop iterations over threads.

gemm matrix multiplication on different GPUs. Pipelined Enables pipelining to overlap data transfers with
computation.

reduce reduction operator (e.g., sum, min, max) ex-
ploiting warp/block-level parallelism.

annotate_layout Definition of custom memory layouts to minimize
bank conflicts and optimize thread binding.

atomic atomic operations to ensure thread-safe up-
dates in shared or global memory.

use_swizzle Improves L2 cache locality via swizzled access pat-
terns.

Warp Specialization

barrier_arrive Signals the arrival at a synchronization point (mbarrier) for producer/-
consumer coordination.

barrier_wait Blocks execution until specific barrier conditions (e.g. transaction
counts) are met.

D PLATFORM-SPECIFIC SCHEDULING

TILELANG also provides platform-specific recommendations and inference. Taking MLA as an
example, we illustrate how TILELANG performs tile recommendation and inference based on the
code shown in Figure 2.

On the H100, each SM features 228 KiB of shared memory and a 256 KiB register file, whereas the
MI300X provides 64 KiB of Local Data Share (LDS) and a total of 512 KiB in registers. Given these
architectural differences, TILELANG first recommends different tile configurations.

Table 2: Comparison of specifications between NVIDIA H100 SXM and AMD MI300X.

Specification NVIDIA H100 SXM AMD MI300X

Clock Frequency 1.83 GHz 2.10 GHz
DDR Memory Bandwidth 3.35 TB/s 5.30 TB/s
L2 Bandwidth 9.45 TB/s 16.63 TB/s
L1/Shared Memory BW 30.92 TB/s 81.72 TB/s
Compute Units (SMs/CUs) 132 SMs 304 CUs
Shared Memory per SM/CU 228 KiB 64 KiB
Register File per SM/CU 256 KiB 512 KiB
Peak FP16 Performance 989 TFLOPs 1307 TFLOPs

As shown in Figure 11, for memory placement, users may initially allocate the Q tile to shared
memory on the MI300X. However, this approach fails due to the limited capacity of shared memory.
TILELANG detects this constraint and instead recommends placing both Q and acc_s in registers. In
contrast, on the H100, both tiles fit comfortably in shared memory and are placed there accordingly.
For Software Pipelining, TILELANG disables pipelining on the MI300X to support larger tile sizes
and reduce register pressure, whereas on the H100, pipelining is enabled to maximize pipeline
overlap. Tile sizes are also adjusted accordingly to fit each platform’s resource constraints. For Warp
Partitioning, users may initially adopt a default policy for the two gemm operators, which often leads
to sub-optimal performance. TILELANG addresses this by analyzing the underlying hardware and
recommending platform-specific partitioning strategies, as illustrated in Figure 3. On the H100, both
gemm operators use the FullCol scheme, partitioning acc_s and acc_o vertically to match the
Tensor Core shape. In contrast, TILELANG applies a FullRow policy on the MI300X, partitioning
tiles horizontally.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

acc_s
(register)

Q
(shared
memory)

KV.t
(shared
memory)

S_shared
(shared
memory)

T.copy

blockN

dim

acc_s
(register)

acc_s
(register)

bl
oc

kM

di
m

T.gemm(
 S_shared,
 KV_shared,
 acc_o,
policy=FullCol)

Warp
Partition

T.gemm

KV
(shared

memory)

dim

bl
oc

kN

blockN

bl
oc

kM acc_o
(register)

T.gemm

Warpgroup 0

Warpgroup 1

blockN

bl
oc

kM S_shared
(shared
memory)

T.gemm(
Q_shared,
KV_shared,
acc_s,
transpose_B=True,
policy=FullCol) S_shared

(shared
memory)

KV
(shared
memory)

acc_o
(register) Warpgroup 0

S_shared
(shared

memory)

KV
(shared
memory)

acc_o
(register) Warpgroup 1

T.copy(
acc_s,
S_shared)

Warp
Partition

(a) The Warp Partition schedule recommended by TILELANG for MLA on H100.

acc_s
(register)

Q
(register)

KV.t
(shared
memory)

blockN

dim

acc_s
(register)

acc_s
(register)

bl
oc

kM

di
m

Warp
Partition

T.gemm

KV
(shared

memory)

dim

bl
oc

kN

acc_o
(register)

T.gemm

Warp 0,1

Warp 2,3

KV
(shared

memory)

acc_o
(register)

Warp 0,1

KV
(shared

memory)

acc_o
(register)

Warp 2,3

blockN

bl
oc

kM acc_s
(register)

T.gemm(
 Q_shared,
 KV_shared,
 acc_s,
 transpose_B=True,
 policy=FullRow)

acc_s
(register)

acc_s
(register)

Warp
Partition

T.gemm(
 acc_s,
 KV_shared,
 acc_o,
 policy=FullRow)

(b) The Warp Partition schedule recommended by TILELANG for MLA on MI300X.

Figure 11: Cooperative workflow between tile-recommendation and inference stages on NVIDIA
H100 and AMD MI300X GPUs.

E LAYOUT INFERENCE ALGORITHM

Goal and Scope. Algorithms 1 and 2 compute a hardware-aware, globally consistent layout map-
ping over a fused tile graph (FTG). Starting from partially annotated buffers and operator semantics,
the pass infers concrete memory layouts (global/shared/register fragments), resolves aliasing, and re-
turns both the final layout map L and the loop-level binding/predication maps (ForMap,PredMap)
used by the loop-lowering routine in Algorithm 3. The inference explicitly respects coalescing,
bank-conflict avoidance, and Tensor-Core-friendly register tiling, while minimizing register pressure
for the remaining degrees of freedom.

Three-Phase Inference. The core procedure (LayoutInference) executes in three stages:

• Phase I: Strict constraints (“STRICT”). Each operator is visited once with
RunInferStep at level “STRICT”. This enforces hard constraints dictated by hardware-
sensitive primitives (e.g., swizzled shared-memory layouts and MMA-aligned register tiles
for GEMM). All layouts fixed here are recorded into Lstrict and treated as immutable thereafter.

• Phase II: Common propagation (“COMMON”). A worklist over all operators drives
fixed-point propagation. When an update materializes for a buffer, its users are enqueued.
This phase spreads compatible, non-rigid constraints across the FTG until convergence,
ensuring consistent thread bindings and compatible address formulas across producers and
consumers.

• Phase III: Free choices with register-cost minimization (“FREE”). Remaining uncon-
strained buffers are partitioned by connected components (w.r.t. uses and aliasing). For
each component, the algorithm enumerates candidate “roots”: it snapshots state, seeds
inference from a root with level “FREE”, and greedily extends to other members. Can-
didates that trigger a conflict (layout mismatch or iterator normalization errors) are dis-
carded. Among feasible candidates, it selects the one minimizing total fragment registers via
SumFragmentRegisters, then restores and commits the best snapshot. This realizes a
lightweight, local backtracking that controls search while favoring low register pressure.

Key Subroutines. RunInferStep constructs the per-operator context (target, thread bounds,
current L, analyzer, and any out-of-bound info) and calls op.InferLayout(args, level)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 1 Hardware-Aware Layout Inference over Fused Tile Graph
1: procedure LayoutInference(FTG, AnnotatedLayouts, Target)
2: (Ops, UseList, AliasGroups, ThreadVar, ThreadBounds, BufferOOB) = CollectFromIR(FTG, Target)
3: L = copy(AnnotatedLayouts)
4: L_strict = empty_map()
5: ▷ Phase I: Strict constraints
6: for i = 0 to |Ops| - 1 do
7: RunInferStep(i, “STRICT”, false, L, L_strict)
8: for all (buf, lay) in L do
9: L_strict[buf] = lay

10: ▷ Phase II: Common propagation
11: q = queue_of_all_op_indices()
12: FinishInferQueue(“COMMON”, L, L_strict, q)
13: ▷ Phase III: Free choices, minimize register cost
14: for all comp in ConnectedComponents(Ops, UseList, AliasGroups) do
15: best = (infinity, null) ▷ (reg_cost, payload)
16: for all root in comp.members do
17: ops_bak = Snapshot(Ops)
18: L_tmp = copy(L)
19: ok = TryInferFromRoot(root, “FREE”, L_tmp, L_strict)
20: if ok then
21: for all other in comp.members, other != root do
22: ok = ok and TryInferFromRoot(other, “FREE”, L_tmp, L_strict)
23: if ok then
24: cost = SumFragmentRegisters(L_tmp)
25: candidate = (cost, (Snapshot(Ops), L_tmp))
26: best = MinByRegister(best, candidate)
27: Restore(Ops, ops_bak)
28: assert(best != null)
29: (ops_snap, L_best) = best.payload
30: ApplySnapshot(Ops, ops_snap)
31: L = L_best
32: ▷ Alias completion
33: for all (var, buffers) in AliasGroups do
34: if exists b in buffers such that L[b] is defined then
35: ref = L[b]
36: for all buf in buffers do
37: if L[buf] is undefined then
38: L[buf] = ReshapeIfNeeded(ref, shape(buf))
39: for all (buffer, dummy) in UseList do
40: if scope(buffer) == “local.fragment” then
41: assert(L[buffer] is defined)
42: (ForMap, PredMap) = CollectLoopLayoutsAndPredicates(Ops)
43: return (L, ForMap, PredMap)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 Core Subroutines for Layout Inference
1: procedure RunInferStep(op_id, level, update_queue, L, L_strict)
2: op = Ops[op_id]
3: args = {target, thread_bounds = ThreadBounds[op_id], layout_map = L, analyzer, buffer_oob = Buffer-

OOB[op_id]}
4: updates = op.InferLayout(args, level) ▷ list of (buffer, layout)
5: for all (buf, lay_new) in updates do
6: if buf in L then
7: if scope(buf) == “local.fragment” and level != “STRICT” and buf not in L_strict then
8: if FragmentContains(L[buf], lay_new) then
9: L[buf] = lay_new

10: PropagateAlias(buf, lay_new, L, update_queue)
11: continue
12: assert(IsEqualLayout(L[buf], lay_new))
13: PropagateAlias(buf, lay_new, L, update_queue)
14: else
15: L[buf] = lay_new
16: PropagateAlias(buf, lay_new, L, update_queue)
17: if update_queue then
18: enqueue_all_users(buf)

19: procedure FinishInferQueue(level, L, L_strict, q)
20: while q is not empty do
21: id = q.pop()
22: RunInferStep(id, level, true, L, L_strict)

23: procedure PropagateAlias(src_buf, src_layout, L, update_queue)
24: for all sib in AliasGroups[src_buf.storage_var] where sib != src_buf do
25: if shape(src_layout) == shape(sib) then
26: tgt = src_layout
27: else
28: tgt = Reshape(src_layout, shape(sib))
29: if sib in L then
30: assert(IsEqualLayout(L[sib], tgt))
31: else
32: L[sib] = tgt
33: if update_queue then
34: enqueue_all_users(sib)

35: procedure TryInferFromRoot(root, level, L_tmp, L_strict)
36: success = false
37: try
38: RunInferStep(root, level, true, L_tmp, L_strict)
39: FinishInferQueue(level, L_tmp, L_strict, q)
40: success = true
41: catch LayoutConflict or NormalizeIterError
42: success = false
43: return success

44: function SumFragmentRegisters(L)
45: total = 0
46: for all (buf, layout) in L do
47: if layout.kind == “Fragment” then
48: total = total + product(layout.output_shape)
49: return total

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 3 Loop Lowering: Binding, Vectorization, Predication
1: procedure ApplyLoopLayoutTransformations(ForLoop, ForMap, PredMap, thread_var)
2: loop_layout = ForMap[ForLoop]
3: parallel_loop =

(not skip_thread_partition) and
(not local_register_only(ForLoop)) and
(not store_into_local(ForLoop))

4: if parallel_loop then
5: ForLoop = PartitionLoop(ForLoop, thread_var, analyzer, loop_layout)
6: has_non_local = touches_non_local(ForLoop.body)
7: has_reducer = contains_reducer(ForLoop.body)
8: has_cast_ops = contains_nonreduction_cast_store(ForLoop.body)
9: if (has_non_local or has_cast_ops) and (not has_reducer) then

10: ForLoop = VectorizeLoop(ForLoop)
11: if ForLoop in PredMap and parallel_loop then
12: return IfThenElse(PredMap[ForLoop], ForLoop)
13: return ForLoop

to obtain layout updates. Updates are merged into L with two safeguards: (i) for pre-existing
buffers, strict equality is required unless the buffer is a register Fragment and the new layout
contains the old one (per FragmentContains), in which case a safe refinement is allowed
when not in “STRICT” and not locked by Lstrict; (ii) every update triggers PropagateAlias,
which reshapes to sibling shapes as needed and enforces alias-wise equality, enqueueing users
when in worklist mode. TryInferFromRoot runs a guarded, queue-based inference seeded
at a chosen root and catches LayoutConflict/NormalizeIterError to mark a candidate
infeasible. SumFragmentRegisters accumulates the product of each fragment layout’s output
shape, serving as a proxy for total register footprint.

Alias Completion and Validity Checks. After the three phases, each alias group is revis-
ited: if any sibling has a layout, the rest are filled by reshaping that layout to their shapes.
The pass asserts that all local.fragment buffers used in the IR are defined. Finally,
CollectLoopLayoutsAndPredicates summarizes loop-level binding decisions and out-
of-bounds predicates into (ForMap,PredMap).

Loop Lowering: Binding, Vectorization, Predication (Alg. 3). Given a loop and
(ForMap,PredMap), the lowering proceeds as follows:

• Thread binding. If the loop is parallelizable (not skipped, not purely local-register, and it
touches non-local memory), PartitionLoop binds iterations to the hardware thread vari-
able using the loop layout from ForMap, aligning with the previously inferred thread/block
organization.

• Vectorization. If the loop body either touches non-local memory or performs non-reduction
cast stores, and there is no reducer present, VectorizeLoop is applied. This realizes the
vector length implied by the chosen layout, improving coalescing and matching hardware
vector widths while mitigating bank conflicts.

• Predication. If the loop may encounter boundary conditions and is parallel, the loop body
is guarded with IfThenElse using the predicate from PredMap, ensuring safe accesses
without sacrificing parallel throughput.

Discussion. The division into STRICT/COMMON/FREE keeps the search tractable: rigid,
hardware-mandated forms are locked first; compatible information is then propagated to convergence;
and only the remaining degrees of freedom are explored via component-local, snapshot-and-choose
search guided by a register-cost objective. Alias propagation guarantees storage-consistent ad-
dress mappings, while fragment-aware refinement enables safe specialization of register tiling. The
produced (L,ForMap,PredMap) bridge high-level tile indices and low-level memory/thread orga-
nization, enabling performant, portable lowering across backends.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Algorithm 4 Pipeline Inference
1: procedure PipelineInference(f , NumStages, InitOrderMap, InitStageMap)
2: OrderMap← copy(InitOrderMap)
3: StageMap← copy(InitStageMap)
4: for all serial loop L in f.body do
5: if L ∈ OrderMap and L ∈ StageMap then
6: continue
7: if L /∈ NumStages then
8: continue
9: n = NumStages[L]

10: root = L.body
11: seq = FlattenToSeq(root)
12: Infos← []
13: for i = 0 to |seq| − 1 do
14: (R,W,C) = RWCollect(seq[i])
15: Infos.push_back(StageInfo(R, W, i, C))
16: S = CollectCopyReads(Infos)
17: PropagateProducers(Infos, S)
18: ComputeLastUse(Infos)
19: order_idx = 0
20: for all p in Infos do
21: if FirstStage(p) and p.last_use ̸= −1 then
22: continue
23: p.order = order_idx; order_idx← order_idx + 1; p.stage = n
24: for all q in Infos do
25: if FirstStage(q) and q.last_use = p.original_idx then
26: q.order = order_idx; order_idx← order_idx + 1; q.stage = 0

27: assert(order_idx = |Infos|)
28: k = TailCopyCount(Infos)
29: if k > 0 and n ≥ 2 then
30: for all p in Infos do
31: p.order = (p.order + k) mod |Infos|
32: if not p.copy and not p.producer then
33: p.stage = p.stage− 1

34: orders = [p.order for p ∈ Infos]
35: stages = [p.stage for p ∈ Infos]
36: ApplySoftwarePipeline(L, orders, stages, OrderMap, StageMap)
37: return (OrderMap, StageMap)

F PIPELINE INFERENCE ALGORITHM

Goal and Scope. Algorithm 4 computes a software-pipelined schedule for serial loops that
expose staged data movement and computation. Given an input function f , an a priori upper
bound on the number of pipeline stages NumStages, and optional initial order/stage annotations
(InitOrderMap,InitStageMap), the pass produces a pair of maps (OrderMap,StageMap).
For each eligible serial loop L in f.body, the algorithm assigns (i) a total order index to every
statement in the flattened loop body and (ii) a stage id in {0, . . . , n−1}, where n = NumStages[L],
thereby enabling backend-specific software pipelining and overlapped execution of copies and
compute.

Loop Selection and Linearization. The outer procedure PipelineInference first filters
serial loops: if a loop L already has entries in both OrderMap and StageMap, or if it lacks a stage
budget in NumStages, it is skipped. For each remaining loop, the body is linearized into a sequence
seq via FlattenToSeq, which yields a stable, single-pass order of statements. Each sequence
element is then summarized into a StageInfo record containing its read set, write set, original
index, and a Boolean flag indicating whether the statement performs a global-to-shared copy.

Read/Write Classification and Copy Detection. The helper RWCollect (Algorithm 5) traverses
a statement and classifies its memory behavior into three components: a set of read regions R, a

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 5 Core Subroutines for Pipeline Inference
1: function RWCollect(stmt)
2: R = []; W = []; C = false; within = false; isg = false
3: Visit(stmt):
4: on BufferStore(b, idxs, v):
5: W += Region(b, idxs); isg = false; Visit(v);
6: if isg and scope(b) ∈ {“shared”, “shared.dyn”} then C = true;
7: on BufferLoad(b, idxs):
8: R += Region(b, idxs);
9: if scope(b) == “global” and not within then isg = true;

10: on IfThenElse(c, a, b):
11: within = true; Visit(c); within = false; Visit(a);
12: if b.defined() then Visit(b);
13: return (R,W,C)
14:
15: function CollectCopyReads(Infos)
16: S = set()
17: for all p in Infos where p.copy do
18: for all r in p.reads do
19: S.add(r.buffer)
20: return S
21:
22: procedure PropagateProducers(Infos, S)
23: for all p in Infos where p.copy do
24: upd = true
25: while upd do
26: upd = false
27: for all q in Infos where not q.copy and q.original_idx < p.original_idx do
28: if exists w in q.writes with w.buffer ∈ S then
29: q.producer = true; upd = true
30: for all r in q.reads do
31: S.add(r.buffer)
32:
33: procedure ComputeLastUse(Infos)
34: for all p in Infos where FirstStage(p) do
35: for i = p.original_idx + 1 to |Infos| − 1 do
36: if exists r in Infos[i].reads, w in p.writes with r.buffer = w.buffer and MayConflict(r.region,

w.region) then
37: p.last_use = max(p.last_use, i)
38:
39: function TailCopyCount(Infos)
40: c = 0; mn = |Infos|; mx = 0
41: for all p in Infos do
42: if FirstStage(p) then
43: c← c+ 1; mn = min(mn, p.order)
44: else
45: mx = max(mx, p.order)
46: if mn > mx then
47: return c
48: else
49: return −1
50:
51: procedure ApplySoftwarePipeline(L, orders, stages, OrderMap, StageMap)
52: OrderMap[L]← orders
53: StageMap[L]← stages
54:
55: function FirstStage(p)
56: return p.copy or p.producer
57:
58: function MayConflict(a, b)
59: return Intersect(IntSet(a), IntSet(b)) ̸= Nothing

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

set of write regions W , and a Boolean flag C for copy-like behavior. The visitor marks loads and
stores according to buffer scope (e.g., global, shared, shared.dyn), and uses a simple state
machine over the control-flow context (within, isg) to detect global loads that feed subsequent
shared-memory stores. Whenever a BufferStore into a shared buffer is preceded by such a global
read, the statement is classified as a copy (C = true), allowing the later stages to identify candidate
prologue/epilogue moves for software pipelining.

Producer Propagation and Lifetime Analysis. Given the per-statement summaries,
CollectCopyReads aggregates the set S of buffers read by copy statements, which serves
as the seed for producer discovery. PropagateProducers then iteratively walks backwards over
the sequence to mark statements that produce any of the buffers in S before a copy: whenever a
non-copy statement writes to a buffer in S, it is labeled as a producer, and its own read buffers are
added to S. This fixed-point propagation captures multi-hop producer chains that eventually feed
global-to-shared copies.

Next, ComputeLastUse computes a conservative last-use index for each first-stage statement
(copy or producer). For a given p, the pass scans later infos and checks whether any read region of a
later statement may conflict with any write region of p, using MayConflict and an interval-set
intersection test. The largest index where such a conflict occurs is recorded as p.last_use, providing a
lifetime window that guides stage assignment and the positioning of prefetch-like operations.

Stage Assignment and Tail Rotation. With producer/copy labels and last-use information in place,
PipelineInference assigns an initial order and stage for each info in a single forward pass. The
core policy is that a first-stage statement p that is dead within the steady-state (i.e., FirstStage(p)
and p.last_use = −1) participates directly in the final pipelined schedule; otherwise, such statements
are skipped in this phase until their consumers are placed. For each selected p, the algorithm emits p
at the current order index with stage n (typically the last stage), then searches for matching first-stage
statements q whose last use equals p.original_idx and places those q immediately after p at stage 0.
This yields an interleaving of first-stage and steady-state work that respects data dependencies and
the inferred lifetimes. The invariant order_idx = |Infos| is asserted at the end to guarantee that
all statements receive a unique order.

To further improve the pipeline structure, TailCopyCount detects whether first-stage statements
form a contiguous tail segment in the assigned order. It counts the number of first-stage infos c, and
tracks the minimum order index among them (mn) and the maximum order index of non-first-stage
statements (mx). If mn > mx, first-stage statements appear strictly after all other work, and the
function returns c; otherwise, it returns −1. When a positive tail count k is found and at least two
stages are available (n ≥ 2), the algorithm rotates the schedule by k positions in a modular fashion
and decrements the stage of non-copy, non-producer statements. Intuitively, this rotation shifts tail
copies into the prologue while pulling steady-state computation earlier, yielding a more balanced
pipeline across the n stages.

Map Materialization and Backend Interface. After rotation, the final per-statement orders and
stages are collected into arrays orders and stages, which are committed to the global maps
via ApplySoftwarePipeline. For each loop L, OrderMap[L] records a permutation of the
flattened body, and StageMap[L] records a stage id for each element in that permutation. These
maps serve as the contract between the high-level pipeline inference and downstream backends: code
generators can exploit the stage structure to schedule prefetches, overlaps of global-to-shared copies
with compute, and explicit prologue/epilogue code, without re-running dependence analysis on the
original IR.

Discussion. The pipeline inference algorithm deliberately decouples (i) classification of copy
and producer statements, (ii) lifetime and conflict analysis, and (iii) stage-aware ordering and
optional schedule rotation. The use of region-based read/write summaries and conservative
MayConflict checks ensures correctness under aliasing and partially overlapping accesses. At
the same time, the simple rotation heuristic (TailCopyCount) captures a common pattern in
GPU kernels where global-to-shared transfers form a logical prologue or epilogue. By emitting
(OrderMap,StageMap) instead of directly rewriting the IR, the pass remains backend-agnostic

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

while still exposing enough structure for aggressive software pipelining and latency hiding across
diverse hardware targets.

G EFFECTIVENESS OF THE COST MODEL

TILELANG employs an analytical cost model to prune suboptimal candidates and prioritize high-
potential ones. This approach yields schedules that match or closely approach the performance of
the best results of brute-force search or exhaustive autotuning, while requiring orders of magnitude
less tuning effort. For example, on GEMM-FP16×FP16 workloads derived from models such as
LLaMA-70B, TILELANG prunes 95% of candidate schedules, retaining only the top 5%. Despite
this aggressive pruning, it achieves on average 98.47% of the performance (in TFLOPS) of the
best configurations found by exhaustive search, substantially reducing compilation time with only
negligible performance loss. This also serves as an evaluation of the effectiveness of our roofline-
based analytical cost model.

M N K Predicted-TopX / Best (TFLOPS)

512 1024 8192 100.0%
512 12288 12288 99.9%
512 28672 8192 98.7%

2048 12288 49152 100.0%
4096 1024 7168 100.0%
4096 14336 14336 100.0%
4096 28672 8192 99.6%
8192 8192 28672 100.0%
8192 28672 8192 100.0%

16384 1024 7168 98.4%

Table 3: Accuracy of our analytical cost model: predicted top-5% schedules retain over 98% of the
best performance while pruning 95% of candidate schedules.

H TUNING TIME

As demonstrated in Table 4, TILELANG leverages a hardware-aware recommendation mechanism
to efficiently automate the design of high-performance computational kernels. The system achieves
average tuning durations of approximately 10 seconds across both NVIDIA H100 and AMD MI300X
accelerators. For the most complex operations, extended tuning times average 13.69 seconds on
H100 and 15.08 seconds on MI300X, reflecting the scalability of our approach under computationally
intensive workloads.

We also conducted a direct tuning-time comparison with Ansor/AutoTVM and Triton for the GEMM
and 2D convolution kernel on H100. TileLang and Triton are tuned with 20 configs, and the number
of trials is set to 100 in Ansor. The results in Table 56 show that TileLang tunes markedly faster
than both frameworks—especially vs. TVM Ansor, which requires much longer empirical search.
This improvement comes from TileLang’s first-class tile IR, which defines a far more structured
optimization space, and from our cost-model–guided inference, which avoids large brute-force
searches.

Table 4: Average Tuning Times for Different Operators

Operation GEMM DequantGEMM FlashMHA FlashMLA FlashBSA

H100 Time (s) 9.05 9.15 13.48 13.69 13.46

MI300 Time (s) 10.99 11.10 14.67 15.03 15.08

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 5: Comparison of Average Tuning Times for GEMM

Operation GEMM1 GEMM2 GEMM3 GEMM4

TileLang Time (s) 11.81 11.78 14.59 14.31

Triton Time (s) 18.43 18.24 20.15 20.07

Ansor Time (s) 518.52 455.51 3007.00 4142.05

Table 6: Comparison of Average Tuning Times for Conv2D

Operation Conv2D1 Conv2D2 Conv2D3 Conv2D4 Conv2D5 Conv2D6 Conv2D7 Conv2D8

TileLang Time (s) 11.56 17.49 17.65 17.41 19.18 18.87 17.50 17.21

Triton Time (s) 17.56 18.76 37.59 38.57 37.61 18.82 19.13 18.97

I MATMUL IMPLEMENTATION DIFFS: TVM VS. TILELANG VS. TRITON

TILELANG achieves significant code-size reduction through its fundamentally different tile abstrac-
tion. Instead of manipulating raw pointers, TILELANG represents tiles as first-class IR constructs,
endowed with explicit semantics for indexing, data movement, and pipelining. High-level primitives
such as copy, gemm, and pipelined enable the compiler to automatically perform address com-
putation and pipeline orchestration. In contrast, Triton requires programmers to manually manage
memory access via pointer and offset arithmetic, resulting in a lower level of abstraction.

Moreover, TILELANG supports maintaining execution context via T.Kernel, which obviates the
need for developers to explicitly compute grid dimensions and launch kernels. This design choice
further reduces code size by eliminating boilerplate associated with kernel invocation.

In TVM, matrix multiplication kernels are typically expressed through simple tensor-compute defini-
tions. Performance optimization is achieved by applying hand-written schedules, which can transform
the computation into a high-performance form. While this manual scheduling process may require
tens to hundreds of lines of Python code, TVM also provides automatic scheduling mechanisms such
as Ansor to explore schedule configurations. After scheduling, the tensor expressions are compiled
and built into executable code.

However, TVM’s scheduling-independent compute-expression abstraction has limited expressiveness
for certain operators, such as FlashAttention and irregular sparse kernels. Automatic scheduling in
TVM also faces challenges when dealing with a very large search space and when targeting new
hardware backends with insufficient operator expressiveness. TILELANG addresses these limitations
by employing a human-in-the-loop methodology to enhance expressiveness for complex and irregular
workloads, and by leveraging a cost-model–driven scheduling approach to mitigate the search-space
explosion issue.

J COMPARISON OF FTG IR AND TVM IR

Figure 13 (a) shows an FTG IR produced after the Pipeline Inference Pass, which explicitly ma-
terializes a software pipeline with a prologue (prefetch the first A/B tiles and clear the accumula-
tor), a steady-state loop that overlaps compute and prefetch, and an epilogue (final compute and
write-back). This IR emphasizes schedule semantics and readability: block tiling, shared-memory
staging, and double buffering are expressed with concise, high-level primitives such as T.Kernel,
alloc_shared/alloc_fragment, T.clear, T.copy, and T.gemm. The same semantics
are then lowered to TVM IR in Figure 13 (b), which preserves the pipeline structure while making
GPU execution details explicit: blockIdx/threadIdx bindings, scoped buffers in shared/local
memory, unrolled initialization, asynchronous copies (e.g., cp.async) with commit/wait groups,
and a target-specific GEMM call. In short, (a) captures a tile-wise schedule for readability and porta-
bility, whereas (b) exposes fine-grained GPU mechanisms for maximum control and performance,
without changing the prologue–steady-state–epilogue structure.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

@triton.jit

def (

 a_ptr, b_ptr, c_ptr,

 , , ,

 stride_am, stride_ak,

 stride_bk, stride_bn,

 stride_cm, stride_cn,

 : tl.constexpr, : tl.constexpr, : tl.constexpr,

 : tl.constexpr,

 : tl.constexpr

):

 pid tl. (axis)

 num_pid_m tl. (,)

 num_pid_n tl. (,)

 num_pid_in_group num_pid_n

 group_id pid
 first_pid_m group_id
 group_size_m (num_pid_m first_pid_m,)

 pid_m first_pid_m ((pid num_pid_in_group) group_size_m)

 pid_n (pid num_pid_in_group)
 offs_am (pid_m tl. (,))
 offs_bn (pid_n tl. (,))
 offs_k tl. (,)

 a_ptrs a_ptr (offs_am[:, None] stride_am offs_k[None, :] stride_ak)

 b_ptrs b_ptr (offs_k[:, None] stride_bk offs_bn[None, :] stride_bn)

 accumulator tl. ((,), dtype tl.float32)

 for k (, tl. (,)):

 a tl. (a_ptrs, mask offs_k[None, :] k , other)

 b tl. (b_ptrs, mask offs_k[:, None] k , other)

 accumulator tl. (a, b, accumulator)

 a_ptrs stride_ak

 b_ptrs stride_bk

 c accumulator. (tl.float16)

 offs_cm pid_m tl. (,)

 offs_cn pid_n tl. (,)

 c_ptrs c_ptr stride_cm offs_cm[:, None] stride_cn offs_cn[None, :]

 c_mask (offs_cm[:, None]) (offs_cn[None, :])

 tl. (c_ptrs, c, mask c_mask)

def (a, b):

 grid lambda : ((, []) (, []))

 matmul_kernel[grid](

 a, b, c,

 , , ,

 a. (), a. (),

 b. (), b. (),

 c. (), c. (),

 activation

)

 c

matmul_kernel

program_id
cdiv
cdiv

min

arange
arange

arange

zeros
range cdiv

load
load

dot

to
arange
arange

store

matmul

META cdiv cdiv

stride stride
stride stride
stride stride

M N K

BLOCK_SIZE_M BLOCK_SIZE_N BLOCK_SIZE_K
GROUP_SIZE_M
ACTIVATION

0
M BLOCK_SIZE_M
N BLOCK_SIZE_N

GROUP_SIZE_M

GROUP_SIZE_M

GROUP_SIZE_M

BLOCK_SIZE_M 0 BLOCK_SIZE_M M

BLOCK_SIZE_N 0 BLOCK_SIZE_N N

0 BLOCK_SIZE_K

BLOCK_SIZE_M BLOCK_SIZE_N
0 K BLOCK_SIZE_K

K BLOCK_SIZE_K 0.0
K BLOCK_SIZE_K 0.0

BLOCK_SIZE_K
BLOCK_SIZE_K

BLOCK_SIZE_M 0 BLOCK_SIZE_M
BLOCK_SIZE_N 0 BLOCK_SIZE_N

M N

M META N META

M N K
0 1
0 1
0 1

ACTIVATION

= =
=
=

= *
=

= *
= -

= + % %
= %

= * + %
= * + %

=
= + * + *
= + * + *

= =
in
= = < - * =
= = < - * =

=
+= *
+= *

=
= * +
= * +

= + * + *
= < & <

=

...

= *

=

return

// num_pid_in_group

// group_size_m

'BLOCK_SIZE_M' 'BLOCK_SIZE_N'

3 Triton

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A M K
B K N

0 K
C

M N
A

B

A B C

module
module module

module
A B

A B C

 te. ((,), name , dtype in_dtype)

 te. ((,), name , dtype in_dtype)

k te. ((,), name)

 te. (

 (,),

 lambda i, j: te. ([i, k]. (accum_dtype)
 [k, j]. (accum_dtype), axis k),

 name ,

)

args [, ,]

func te. (args)

 tvm. ({ : func})

 ansor. ()

executable tvm. ()

, , : torch.Tensor

(, ,)

= = =
= = =
= =
=

*

=

=

=
=

=
=

=

placeholder
placeholder
reduce_axis
compute

sum astype
astype

create_prim_func
IRModule

autotune
compile

C
executable

"A"
"B"
"k"

"C"

"main"

TileLang 1

TVM2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

@ .prim_func

def (

 : . ((,), dtype),

 : . ((,), dtype),

 : . ((,), dtype),

):

 . (. (, block_N), . (, block_M)) (,):

 A_shared . ((block_M, block_K), dtype)

 B_shared . ((block_K, block_N), dtype)

 C_local . ((block_M, block_N), accum_dtype)

 . (C_local)

 for ko . (. (, block_K)):

 . ([by block_M, ko block_K], A_shared)

 . ([ko block_K, bx block_N], B_shared)

 . (A_shared, B_shared, C_local)

 . (C_local, [by block_M, bx block_N])

, , : torch.Tensor

(, ,)

T

A T M K
B T K N
C T M N

T T N T M
T
T

T
T

T T K
T A
T B
T

T C

A B
A B C

matmul_kernel
Tensor
Tensor
Tensor

Kernel ceildiv ceildiv
alloc_shared
alloc_shared

alloc_fragment
clear

Pipelined ceildiv
copy
copy
gemm

copy

C
matmul_kernel

with as
=
=

=

in
* *
* *

* *

bx by

Figure 12: Side-by-side diff of minimal GEMM implementations in TVM, TILELANG, and Triton
(first page).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

@ .prim_func

def (

 : . ((,),),

 : . ((,),),

 : . ((,),),

):

 . (

 (, block_N),

 (, block_M), threads threads) (,):

 # Buffer Allocation

 A_shared . ((block_M, block_K),)

 B_shared . ((block_K, block_N),)

 C_local . ((block_M, block_N),)

 # Initialize C_local

 . (C_local)

 # Main Loop Expanded Pipeline

 . ([by block_M, block_K], A_shared)

 . ([block_K, bx block_N], B_shared)

 # Main Loop Pipeline Annotation

 for k . ((, block_K)):

 . (A_shared, B_shared, C_local)

 . ([by block_M, k block_K], A_shared)

 . ([k block_K, bx block_N], B_shared)

 # Compute the last stage

 . (A_shared, B_shared, C_local)

 # Copy the result to the output buffer

 . (C_local, [by block_M, bx block_N])

T

A T M K
B T K N
C T M N

T
N
M

T

T

T

T

T A 0

T B 0

T K
T

T A

T B

T

T C

Matmul
Tensor
Tensor
Tensor

Kernel
ceildiv
ceildiv

alloc_shared

alloc_shared

alloc_fragment

clear

copy

copy

serial ceildiv
gemm

copy

copy

gemm

copy

"float16"
"float16"
"float16"

"float16"

"float16"

"float16"

with

= as

=

=

=

with
* *

* *

with
in

* *

* *

* *

bx by

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

@ .prim_func

def (

 : . ((,),), : . ((,),),

 : . ((,),),

):

 A_shared . ((block_M block_K,), dtype, scope)

 B_shared . ((block_K block_N,), dtype, scope)

 C_local . ((,), accum_dtype, scope)

 bx . (. (, block_N),)

 by . (. (, block_M),)

 tid . (threads,)

 for i . ():

 C_local[i] . ()

 for i . ():

 . (, A_shared.data, , .data, ,)

 . (, B_shared.data, , .data, ,)

 . ()

 for ko . ((, block_K)):

 . ()

 . (

 ,

 . (A_shared.data, , block_M block_K,),

 . (B_shared.data, , block_K block_N,),

 . (C_local.data, , ,),

)

 for i . ():

 . (, A_shared.data, , .data, ,)

 . (, B_shared.data, , .data, ,)

 . ()

 . ()

 . (

 ,

 . (A_shared.data, , block_M block_K,),

 . (B_shared.data, , block_K block_N,),

 . (C_local.data, , ,),

)

T

A T M K B T K N
C T M N

T
T
T 128

T T N
T T M
T

T 128
T 0

T 4
T 0 A 0 16
T 0 B 0 16

T
T K 1

T 0
T

T 0 1
T 0 1
T 0 128 3

T 4
T 0 A 0 16
T 0 B 0 16

T
T 0
T

T 0 1
T 0 1
T 0 128 3

Matmul
Tensor Tensor
Tensor

decl_buffer
decl_buffer

decl_buffer
thread_binding ceildiv
thread_binding ceildiv
thread_binding

unroll
float32

unroll
ptx_cp_async
ptx_cp_async

ptx_commit_group
serial ceildiv

ptx_wait_group
call_extern

tvm_access_ptr
tvm_access_ptr
tvm_access_ptr

unroll
ptx_cp_async
ptx_cp_async

ptx_commit_group
ptx_wait_group
call_extern

tvm_access_ptr
tvm_access_ptr
tvm_access_ptr

"float16" "float16"
"float16"

"shared"
"shared"

"local"
"blockIdx.x"
"blockIdx.y"

"threadIdx.x"

"uint8"
"uint8"

"tl::gemm_ss<128, 128, 32, 2, 2, 0, 0>"

"uint8"
"uint8"

"tl::gemm_ss<128, 128, 32, 2, 2, 0, 0>"

= * =
= * =
= =

=
=
=
in

=
in

in -

*
*

in

*
*

...

(a) Fused Tile Graph IR (b) Lowered Tensor IR

Figure 13: A side-by-side comparison showing how tile-level FTG-IR is lowered into Tensor IR.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

K COMPARISON OF FLASHMLA IMPLEMENTATIONS ON DIFFERENT
ARCHITECTURES: NVIDIA VS. AMD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

def

with // = as
=

=
=

=
=

=

=
=

=
=

=
=

=
= // //

* + *
* + *

-
=

for in =
* + *

* + *

= = =
= =

-
= =

for in
=

for in
= * - *

for in
= * - *

=

for in
= * +

for in
*=

=

for in
/=

* + *

 (

 Q: T.Tensor, Q_pe: T.Tensor, KV: T.Tensor,

 K_pe: T.Tensor, Output: T.Tensor,

):

 T.Kernel(heads (block_H, kv_group_num), batch, threads) (hid, bid):

 Q_shared T.alloc_shared([block_H, dim], dtype)

 Q_pe_shared T.alloc_shared([block_H, pe_dim], dtype)

 T.alloc_shared([block_N, dim], dtype)

 K_pe_shared T.alloc_shared([block_N, pe_dim], dtype)

 acc_s T.alloc_fragment([block_H, block_N], accum_dtype)

 S_shared T.alloc_shared([block_H, block_N], dtype)

 acc_o T.alloc_fragment([block_H, dim], accum_dtype)

 O_shared T.alloc_shared([block_H, dim], dtype)

 T.annotate_layout({...})

 scores_max T.alloc_fragment([block_H], accum_dtype)

 scores_max_prev T.alloc_fragment([block_H], accum_dtype)

 scores_scale T.alloc_fragment([block_H], accum_dtype)

 scores_sum T.alloc_fragment([block_H], accum_dtype)

 logsum T.alloc_fragment([block_H], accum_dtype)

 cur_kv_head hid (kv_group_num block_H)

 T.copy(Q[bid, hid :(hid) , :], Q_shared)

 T.copy(Q_pe[bid, hid :(hid) , :], Q_pe_shared)

 T.fill(acc_o,)

 T.fill(logsum,)

 T.fill(scores_max, T.infinity(accum_dtype))

 loop_range T.ceildiv(seqlen_kv, block_N)

 k T.Pipelined(loop_range, num_stages):

 T.copy([bid, k block_N:(k) block_N, cur_kv_head, :],)

 T.copy(K_pe[bid, k block_N:(k) block_N, cur_kv_head, :], K_pe_shared)

 T.gemm(Q_shared, , acc_s, FullCol,)

 T.gemm(Q_pe_shared, K_pe_shared, acc_s, , FullCol)

 T.copy(scores_max, scores_max_prev)

 T.fill(scores_max, T.infinity(accum_dtype))

 T.reduce_max(acc_s, scores_max, ,)

 i T.Parallel(block_H):

 scores_max[i] T.max(scores_max[i], scores_max_prev[i])

 i T.Parallel(block_H):

 scores_scale[i] T.exp2(scores_max_prev[i] scale scores_max[i] scale)

 i, j T.Parallel(block_H, block_N):

 acc_s[i, j] T.exp2(acc_s[i, j] scale scores_max[i] scale)

 T.reduce_sum(acc_s, scores_sum,)

 T.copy(acc_s, S_shared)

 i T.Parallel(block_H):

 logsum[i] logsum[i] scores_scale[i] scores_sum[i]

 i, j T.Parallel(block_H, dim):

 acc_o[i, j] scores_scale[i]

 T.gemm(S_shared, , acc_o, FullCol)

 i, j T.Parallel(block_H, dim):

 acc_o[i, j] logsum[i]

 T.copy(acc_o, O_shared)

 T.copy(O_shared, Output[bid, hid :(hid) , :])

flash_attn

min

KV_shared

VALID_BLOCK_H 1 VALID_BLOCK_H
VALID_BLOCK_H 1 VALID_BLOCK_H

0
0

KV 1 KV_shared
1

KV_shared True, True
True

1 False

1

KV_shared

VALID_BLOCK_H 1 VALID_BLOCK_H

threads

num_stages

transpose_B policy clear_accum
transpose_B policy

dim clear

dim

policy

2 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

def

with // = as
=

=
=

=
=

=

=

=
=

=
=

=
= // //

* + *
* + *

-
=

for in =
* + *

* + *

= = =
= =

-
= =

for in
=

for in
= * - *

for in
= * - *

=

for in
= * +

for in
*=

=

 for in
/=

* + *

 (

 Q: T.Tensor, Q_pe: T.Tensor, KV: T.Tensor,

 K_pe: T.Tensor, Output: T.Tensor,

):

 T.Kernel(heads (block_H, kv_group_num), batch, threads) (hid, bid):

 Q_local T.alloc_fragment([block_H, dim], dtype)

 Q_pe_local T.alloc_fragment([block_H, pe_dim], dtype)

 T.alloc_shared([block_N, dim], dtype)

 K_pe_shared T.alloc_shared([block_N, pe_dim], dtype)

 acc_s T.alloc_fragment([block_H, block_N], accum_dtype)

 acc_s_cast T.alloc_fragment([block_H, block_N], dtype)

 acc_o T.alloc_fragment([block_H, dim], accum_dtype)

 scores_max T.alloc_fragment([block_H], accum_dtype)

 scores_max_prev T.alloc_fragment([block_H], accum_dtype)

 scores_scale T.alloc_fragment([block_H], accum_dtype)

 scores_sum T.alloc_fragment([block_H], accum_dtype)

 logsum T.alloc_fragment([block_H], accum_dtype)

 cur_kv_head hid (kv_group_num block_H)

 T.copy(Q[bid, hid :(hid) , :], Q_local)

 T.copy(Q_pe[bid, hid :(hid) , :], Q_pe_local)

 T.fill(acc_o,)

 T.fill(logsum,)

 T.fill(scores_max, T.infinity(accum_dtype))

 loop_range T.ceildiv(seqlen_kv, block_N)

 k T.Pipelined(loop_range, num_stages):

 T.copy([bid, k block_N:(k) block_N, cur_kv_head, :],)

 T.copy(K_pe[bid, k block_N:(k) block_N, cur_kv_head, :], K_pe_shared)

 T.gemm(Q_local, , acc_s, , FullRow,)

 T.gemm(Q_pe_local, K_pe_shared, acc_s, , FullRow)

 T.copy(scores_max, scores_max_prev)

 T.fill(scores_max, T.infinity(accum_dtype))

 T.reduce_max(acc_s, scores_max, ,)

 i T.Parallel(block_H):

 scores_max[i] T.max(scores_max[i], scores_max_prev[i])

 i T.Parallel(block_H):

 scores_scale[i] T.exp2(scores_max_prev[i] scale scores_max[i] scale)

 i, j T.Parallel(block_H, block_N):

 acc_s[i, j] T.exp2(acc_s[i, j] scale scores_max[i] scale)

 T.reduce_sum(acc_s, scores_sum,)

 T.copy(acc_s, acc_s_cast)

 i T.Parallel(block_H):

 logsum[i] logsum[i] scores_scale[i] scores_sum[i]

 i, j T.Parallel(block_H, dim):

 acc_o[i, j] scores_scale[i]

 T.gemm(acc_s_cast, , acc_o, FullRow)

 i, j T.Parallel(block_H, dim):

 acc_o[i, j] logsum[i]

 T.copy(acc_o, Output[bid, hid :(hid) , :])

flash_attn

min

KV_shared

VALID_BLOCK_H 1 VALID_BLOCK_H
VALID_BLOCK_H 1 VALID_BLOCK_H

0
0

KV 1 KV_shared
1

KV_shared True True
True

1 False

1

KV_shared

VALID_BLOCK_H 1 VALID_BLOCK_H

threads

num_stages

transpose_B policy clear_accum
transpose_B policy

dim clear

dim

policy

3 3

4 4

5 5

6 6

7 7

1 1

2

Figure 14: Comparison of FlashMLA implementations targeting NVIDIA (left) and AMD (right)
architectures.

Figure 14 illustrates the code-level divergences between the FlashMLA implementations for NVIDIA
and AMD architectures. While the high-level algorithmic structure remains unified, the implemen-
tation diverges to exploit distinct architectural strengths. First, Region 1 highlights the memory
scope allocation for Query (Q) tiles, where the NVIDIA backend utilizes shared memory while the
AMD backend prioritizes register memory. Similarly, Regions 2 and 5 collectively illustrate the
divergence in intermediate accumulator storage: NVIDIA buffers these results in shared memory,
whereas AMD maintains them directly in registers. Regarding output strategy, Regions 3 and 7 show
that NVIDIA stages the output tile in shared memory to ensure coalesced transactions, in contrast to
AMD, which performs a direct copy from registers to global memory. Finally, Regions 4 and 6 depict
the adaptation of GEMM policies, employing a FullCol strategy for NVIDIA and FullRow for AMD
to ensure optimal instruction performance.

L COMPARISON WITH RECENT SYSTEMS

Table 7 evaluates Causal MHA on an H100 (B = 64, H = 64, D = 128). TileLang is more concise
than Tilus (Ding et al., 2025) (66 vs. 83 LOC) while achieving a 59%-75% performance gain. Table
8 evaluates the same MHA on an RTX 4090 (B = 16,H = 32, D = 128). TileLang achieves the
best performance among baselines and outperforms the latest Tilus by 3%–4% with significantly
fewer lines of code.

seq_len Tilus (ms) TileLang (ms)

1024 6.85 4.29
2048 25.65 15.69
4096 97.14 55.44

Table 7: Performance of Causal MHA on H100 (B = 64,H = 64, D = 128).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

seq_len FA2 (tflops) Triton (tflops) Tilus (tflops) TileLang (tflops)

MHA 1024 137.58 106.61 133.82 143.40
2048 151.46 121.44 154.36 159.03
4096 162.70 129.75 159.26 162.79
8192 164.10 134.40 161.60 165.56

LoC 389 197 393 138

Table 8: Performance and Lines of Code(LoC) of Causal MHA on RTX 4090 (B = 16,H = 32, D =
128).

(M,N,K) TileLang (ms) Gluon (ms) Helion (ms) Tilus (ms)

8192, 1024, 8192 0.16 0.30 0.26 0.31
8192, 8192, 8192 1.40 2.22 1.64 2.97
8192, 28672, 8192 5.09 7.82 5.87 10.19
8192, 8192, 28672 5.09 7.77 5.89 10.02

Table 9: Comparison of TileLang, Gluon (LoC = 68), Helion (LoC = 24), and Tilus (LoC = 110) on
GEMM workloads.

seq_len TileLang (ms) Helion (ms)

1024 0.17 0.19
2048 0.33 0.36
4096 0.65 0.71
8192 1.28 1.41
16384 2.53 3.01
32768 5.08 5.56

Table 10: Performance of Mamba-chunk-scan on H100, with batch size 8, 80 attention heads, model
dimension 64, dstate 128, and sequence lengths ranging from 1024 to 32768. Helion LOC=116,
TileLang LOC=114.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

We evaluate the latest official Helion (PyTorch, 2025) and Gluon (OpenAI, 2025) examples that
support execution on Hopper, covering both GEMM and Mamba-chunk-scan workloads. As shown in
Table 9, TileLang achieves 1.15–1.62×, 1.52–1.83×, and 1.87–2.12× speedups over Helion, Gluon,
and Tilus, respectively.

On Mamba-2-chunk-scan, TileLang further provides 1.10–1.19× speedups over Helion, as reported
in Table 10.

The differences are attributable to design limitations in existing DSLs. Helion lacks an effective
tile-recommendation system, making optimization difficult and causing long tuning times (over 20
minutes). Gluon lacks appropriate abstractions and interfaces for pipeline scheduling, which makes it
difficult to achieve effective overlap of computation and memory operations. Second, Gluon operates
at a lower programming abstraction level, requiring users to manually make a larger number of design
and optimization decisions. As a result, writing high-performance kernels in Gluon is considerably
more challenging. This is also reflected by the fact that the Gluon implementation of GEMM requires
substantially more lines of code than the corresponding TileLang implementation. Tilus exposes
thread-block-level control over shared memory and registers, but without tile abstraction and critical
tile-related optimization. In contrast, TileLang’s tile-recommendation mechanism efficiently identifies
good tile configurations, and its pipeline-inference strategy generates an effective schedule that
overlaps computation and memory I/O. These additions provide a clearer qualitative and quantitative
comparison among recent DSLs and further highlight TILELANG’s performance and usability
advantages.

M BASELINE COMMIT HASHES

To ensure reproducibility, we provide the specific commit hashes for the baselines used in our
experiments that were not specified in the main text (see Table 11).

Table 11: Commit hashes for baseline frameworks.

System Commit Hash
Gluon 61cef5bdbfe2f179208f057d72c0b43b4885e5d2
Helion 9a30bd18dcd87e08784691d5799e1af71fe0502f
Tilus 505f566210319e2f55eeeddc393f01a203950510
Ansor 64969035fd4f3c1ddcc23caa84567bf90e33889c
ThunderKittens 572073a3935f91a268d37d5262cee0d950c2e9b2
Marlin 1f25790bdd49fba53106164a24666dade68d7c90
Block-Sparse-Attention 6ec5a27a0cd6bd92ea6296698d64e460c73da27e
ComposableKernel b8893b933963e86b76fa3fa088ededc4504119f9
Tilus (Variant?) b2085f5ea08c504efeb2cab7cfaae3cd99701634
FlashAttention-2 (FA2) 5d2cd3bcbaeff6fe1bfc5d0ff489451b0d4827a6
TritonBench a490be73ba84ab977de5cf78055a1dcb2e314f40

N OPERATOR SHAPES IN OUR BENCHMARK

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 12: Matrix shapes in our FP16 Matmul evaluation

D0 D1 D2 D3

M 8192 8192 8192 8192
N 1024 8192 28672 8192
K 8192 8192 8192 28672

Table 13: Matrix shapes in our Fused Dequantize-Matmul evaluation

M0 M1 M2 M3

M 1 1 1 1
N 1024 8192 28672 8192
K 8192 8192 8192 28672

Table 14: FlashAttention and Block Sparse Attention(with 50%, 90% sparsity) shapes in our evalua-
tion

FA0 FA1 FA2 FA3 FA4 FA5 FA6 FA7

batch 64 64 64 64 64 64 64 64
nheads 64 64 64 64 64 64 64 64
seq_len 1024 2048 4096 8192 1024 2048 4096 8192

head_dim 128 128 128 128 128 128 128 128
causal false false false false true true true true

Table 15: FlashMLA shapes in our evaluation

FMLA0 FMLA1 FMLA2 FMLA3

batch 64 64 64 64
nheads 128 128 128 128
seq_len 1024 2048 4096 8192

head_dim 512 512 512 512
pe_dim 64 64 64 64
causal false false false false

Table 16: Convolution-2D shapes in our evaluation

Conv0 Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Conv7

N 128 128 128 128 128 128 128 128
C 2048 512 512 512 256 1024 512 64
H 7 7 14 7 14 14 28 56
W 7 7 14 7 14 14 28 56
F 512 2048 512 512 256 256 128 64
K 1 1 3 3 3 1 1 1
S 1 1 2 1 1 1 1 1
D 1 1 1 1 1 1 1 1
P 0 0 1 1 1 0 0 0
G 1 1 1 1 1 1 1 1

HO 7 7 7 7 14 14 28 56
WO 7 7 7 7 14 14 28 56

Count 2 3 1 2 5 5 3 1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 17: Chunk-Gated-Delta-Net kernel shapes in our evaluation

CGDN0 CGDN1 CGDN2 CGDN3 CGDN4 CGDN5

batch 1 1 1 64 64 64
nheads 32 32 32 32 32 32
seq_len 16384 32768 65536 1024 2048 4096

head_dim 128 128 128 128 128 128

Table 18: Vertical Slash Sparse Attention shapes in our evaluation

VSSA0 VSSA1 VSSA2 VSSA3

batch 1 1 1 1
nheads 1 1 1 1
seq_len 8192 16384 32768 65536

head_dim 64 64 64 64
vertical size 1000 1000 800 1000
slash size 600 200 600 600

Table 19: Attention Sink shapes in our evaluation

Sink0 Sink1 Sink2 Sink3

batch 1 1 1 1
nheads 64 64 64 64

kv_heads 8 8 8 8
seq_len 1024 2048 4096 8192

kv_seq_len 1024 2048 4096 8192
head_dim 64 64 64 64

casual true true true true

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

O KERNEL IMPLEMENTATIONS

O.1 MATRIX MULTIPLICATION (MATMUL)

1 @tilelang.jit
2 def Matmul(A: T.Tensor, B: T.Tensor, C: T.Tensor):
3 with T.Kernel(N // block_N, M // block_M,
4 threads=threads) as (bx, by):
5 A_shared = T.alloc_shared(block_M, block_K)
6 B_shared = T.alloc_shared(block_K, block_N)
7 C_local = T.alloc_fragment(block_M, block_N)
8
9 T.clear(C_local)

10 for k in T.Pipelined(K // block_K, num_stages=2):
11 T.copy(A[by * block_M, k * block_K], A_shared)
12 T.copy(B[k * block_K, bx * block_N], B_shared)
13 T.gemm(A_shared, B_shared, C_local)
14
15 T.copy(C_local, C[by * block_M, bx * block_N])

Figure 15: Kernel Implementation of Matrix Multiplication.

O.2 DEQUANTIZED MATRIX MULTIPLICATION

1 @tilelang.jit
2 def dequantize_gemv(A: T.Tensor, B: T.Tensor, C: T.Tensor):
3 with T.Kernel(T.ceildiv(N, n_partition), M, threads=(reduce_thread, n_partition)) as (bx, by):
4 A_local = T.alloc_local((micro_size_k,), in_dtype)
5 B_quant_local = T.alloc_local([micro_size_k_compressed], storage_dtype)
6 B_dequantize_local = T.alloc_local([micro_size_k], in_dtype)
7 accum_res = T.alloc_local((1,), accum_dtype)
8 reduced_accum_res = T.alloc_local((1,), accum_dtype)
9

10 T.clear(accum_res)
11 for ko in T.serial(T.ceildiv(K, block_K)):
12 for v in T.vectorized(micro_size_k):
13 A_local[v] = A[by, ko * block_K + kr * micro_size_k + v]
14
15 for v in T.vectorized(micro_size_k_compressed):
16 B_quant_local[v] = B[
17 bx * n_partition + ni,
18 ko * (reduce_thread * micro_size_k_compressed) +
19 kr * micro_size_k_compressed + v,
20]
21
22 T.call_extern(
23 "fast_decode_int4",
24 T.address_of(B_quant_local[0]),
25 T.address_of(B_dequantize_local[0]),
26 dtype=in_dtype,
27)
28
29 for ki in T.serial(micro_size_k):
30 accum_res[0] += A_local[ki] * B_dequantize_local[ki]
31
32 with T.attr(
33 T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
34 "reduce_scope",
35 T.reinterpret(T.uint64(0), dtype="handle"),
36):
37 T.evaluate(
38 T.tvm_thread_allreduce(
39 T.uint32(1),
40 accum_res[0],
41 True,
42 reduced_accum_res[0],
43 kr,
44 dtype="handle",
45))
46 if kr == 0:
47 C[by, bx * n_partition + ni] = reduced_accum_res[0]

Figure 16: Implementation of Weight-Only Quantization (WFP4_E2M1AFP16) Matmul using TILE-
LANG, showcasing support for mixed-precision computations via a simple form.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

O.3 FLASH ATTENTION IMPLEMENTATION

1 @tilelang.jit
2 def flash_attention(Q: T.Tensor, K: T.Tensor, V: T.Tensor, Output: T.Tensor):
3 with T.Kernel(
4 T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
5 Q_shared = T.alloc_shared([block_M, dim], dtype)
6 K_shared = T.alloc_shared([block_N, dim], dtype)
7 V_shared = T.alloc_shared([block_N, dim], dtype)
8 O_shared = T.alloc_shared([block_M, dim], dtype)
9 acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)

10 acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
11 acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
12 scores_max = T.alloc_fragment([block_M], accum_dtype)
13 scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
14 scores_scale = T.alloc_fragment([block_M], accum_dtype)
15 scores_sum = T.alloc_fragment([block_M], accum_dtype)
16 logsum = T.alloc_fragment([block_M], accum_dtype)
17
18 T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
19 T.fill(acc_o, 0)
20 T.fill(logsum, 0)
21 T.fill(scores_max, -T.infinity(accum_dtype))
22
23 loop_range = (
24 T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
25 (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
26
27 for k in T.Pipelined(loop_range, num_stages=num_stages):
28 T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
29 if is_causal:
30 for i, j in T.Parallel(block_M, block_N):
31 acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
32 -T.infinity(acc_s.dtype))
33 else:
34 T.clear(acc_s)
35 T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
36 T.copy(scores_max, scores_max_prev)
37 T.fill(scores_max, -T.infinity(accum_dtype))
38 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
39 for i in T.Parallel(block_M):
40 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
41 for i, j in T.Parallel(block_M, block_N):
42 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
43 T.reduce_sum(acc_s, scores_sum, dim=1)
44 for i in T.Parallel(block_M):
45 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
46 T.copy(acc_s, acc_s_cast)
47 for i, j in T.Parallel(block_M, dim):
48 acc_o[i, j] *= scores_scale[i]
49 T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
50 T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
51 for i, j in T.Parallel(block_M, dim):
52 acc_o[i, j] /= logsum[i]
53 T.copy(acc_o, O_shared)
54 T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

Figure 17: Implementation of Flash Attention with TILELANG.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

O.4 FLASHMLA IMPLEMENTATION

1 @tilelang.jit
2 def flash_mla(
3 Q: T.Tensor([batch, heads, dim], dtype),
4 Q_pe: T.Tensor([batch, heads, pe_dim], dtype),
5 KV: T.Tensor([batch, seqlen_kv, kv_head_num, dim], dtype),
6 K_pe: T.Tensor([batch, seqlen_kv, kv_head_num, pe_dim], dtype),
7 Output: T.Tensor([batch, heads, dim], dtype),
8):
9 with T.Kernel(batch, heads // min(block_H, kv_group_num), threads=256) as (bx, by):

10 Q_shared = T.alloc_shared([block_H, dim], dtype)
11 S_shared = T.alloc_shared([block_H, block_N], dtype)
12 Q_pe_shared = T.alloc_shared([block_H, pe_dim], dtype)
13 KV_shared = T.alloc_shared([block_N, dim], dtype)
14 K_pe_shared = T.alloc_shared([block_N, pe_dim], dtype)
15 O_shared = T.alloc_shared([block_H, dim], dtype)
16 acc_s = T.alloc_fragment([block_H, block_N], accum_dtype)
17 acc_o = T.alloc_fragment([block_H, dim], accum_dtype)
18 scores_max = T.alloc_fragment([block_H], accum_dtype)
19 scores_max_prev = T.alloc_fragment([block_H], accum_dtype)
20 scores_scale = T.alloc_fragment([block_H], accum_dtype)
21 scores_sum = T.alloc_fragment([block_H], accum_dtype)
22 logsum = T.alloc_fragment([block_H], accum_dtype)
23
24 cur_kv_head = by // (kv_group_num // block_H)
25 T.use_swizzle(10)
26
27 T.copy(Q[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_shared)
28 T.copy(Q_pe[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :], Q_pe_shared)
29 T.fill(acc_o, 0)
30 T.fill(logsum, 0)
31 T.fill(scores_max, -T.infinity(accum_dtype))
32
33 loop_range = T.ceildiv(seqlen_kv, block_N)
34 for k in T.Pipelined(loop_range, num_stages=2):
35 T.copy(KV[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], KV_shared)
36 T.copy(K_pe[bx, k * block_N:(k + 1) * block_N, cur_kv_head, :], K_pe_shared)
37 T.clear(acc_s)
38 T.gemm(
39 Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)
40 T.gemm(
41 Q_pe_shared,
42 K_pe_shared,
43 acc_s,
44 transpose_B=True,
45 policy=T.GemmWarpPolicy.FullCol)
46 T.copy(scores_max, scores_max_prev)
47 T.fill(scores_max, -T.infinity(accum_dtype))
48 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
49 for i in T.Parallel(block_H):
50 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
51 for i, j in T.Parallel(block_H, block_N):
52 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
53 T.reduce_sum(acc_s, scores_sum, dim=1)
54 T.copy(acc_s, S_shared)
55 for i in T.Parallel(block_H):
56 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
57 for i, j in T.Parallel(block_H, dim):
58 acc_o[i, j] *= scores_scale[i]
59 T.gemm(S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)
60 for i, j in T.Parallel(block_H, dim):
61 acc_o[i, j] /= logsum[i]
62 T.copy(acc_o, O_shared)
63 T.copy(O_shared, Output[bx, by * VALID_BLOCK_H:(by + 1) * VALID_BLOCK_H, :])

Figure 18: Implementation of FlashMLA with TILELANG.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

O.5 BLOCK SPARSE ATTENTION IMPLEMENTATION

1 @tilelang.jit
2 def blocksparse_attn(Q: T.Tensor, K: T.Tensor, V: T.Tensor, BlockMask: T.Tensor, Output: T.Tensor):
3 with T.Kernel(
4 T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
5 Q_shared = T.alloc_shared([block_M, dim], dtype)
6 K_shared = T.alloc_shared([block_N, dim], dtype)
7 V_shared = T.alloc_shared([block_N, dim], dtype)
8 O_shared = T.alloc_shared([block_M, dim], dtype)
9 acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)

10 acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
11 acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
12 scores_max = T.alloc_fragment([block_M], accum_dtype)
13 scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
14 scores_scale = T.alloc_fragment([block_M], accum_dtype)
15 scores_sum = T.alloc_fragment([block_M], accum_dtype)
16 logsum = T.alloc_fragment([block_M], accum_dtype)
17
18 T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
19 T.fill(acc_o, 0)
20 T.fill(logsum, 0)
21 T.fill(scores_max, -T.infinity(accum_dtype))
22
23 loop_range = (
24 T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
25 (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
26
27 for k in T.Pipelined(loop_range, num_stages=num_stages):
28 if BlockMask[bz, bx, by, k]:
29 T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
30 if is_causal:
31 for i, j in T.Parallel(block_M, block_N):
32 acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
33 -T.infinity(acc_s.dtype))
34 else:
35 T.clear(acc_s)
36 T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
37 T.copy(scores_max, scores_max_prev)
38 T.fill(scores_max, -T.infinity(accum_dtype))
39 T.reduce_max(acc_s, scores_max, dim=1, clear=False)
40 for i in T.Parallel(block_M):
41 scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
42 for i, j in T.Parallel(block_M, block_N):
43 acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
44 T.reduce_sum(acc_s, scores_sum, dim=1)
45 for i in T.Parallel(block_M):
46 logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
47 T.copy(acc_s, acc_s_cast)
48 for i, j in T.Parallel(block_M, dim):
49 acc_o[i, j] *= scores_scale[i]
50 T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
51 T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
52 for i, j in T.Parallel(block_M, dim):
53 acc_o[i, j] /= logsum[i]
54 T.copy(acc_o, O_shared)
55 T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

Figure 19: Implementation of Block Sparse Flash Attention with TILELANG.

36

	Introduction
	Related work
	Programming Model
	Tile Language
	A Flash Multi-Head Latent Attention Example
	TileLang Philosophy

	Scheduling Guidance and Automation
	Two-stage framework
	Tile recommendation
	Tile inference

	Evaluation
	Experimental setup
	Kernel performance
	Ablation studies
	Compare with more recent DSLs

	Conclusion
	Reproducibility statement
	Extended discussion of related work
	MLA Algorithm
	Partial List of TileLang Primitives
	Platform-specific scheduling
	Layout Inference Algorithm
	Pipeline Inference Algorithm
	Effectiveness of the cost model
	Tuning Time
	Matmul Implementation Diffs: TVM vs. TileLang vs. Triton
	Comparison of FTG IR and TVM IR
	Comparison of FlashMLA Implementations on Different Architectures: NVIDIA vs. AMD
	Comparison With Recent Systems
	Baseline Commit Hashes
	Operator shapes in our benchmark
	Kernel Implementations
	Matrix Multiplication (Matmul)
	Dequantized Matrix Multiplication
	Flash Attention Implementation
	FlashMLA Implementation
	Block Sparse Attention Implementation

