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ABSTRACT

Achieving high performance in modern Al increasingly requires kernels co-
designed with underlying hardware, but writing efficient kernels remains challeng-
ing due to hardware-level complexity and limited fine-grained control in compilers
like Triton. In this paper, we introduce TILELANG, a programmable tile-level sys-
tem that provides explicit primitives for memory placement, data movement, and
parallel scheduling. Using a unified fused tile-level dataflow graph (FTG), TILE-
LANG streamlines kernel development by unifying tile recommendation, which
guides developers with hardware-aware defaults, and tile inference, which auto-
mates completion through constraint propagation. TILELANG enables concise
expression of a wide range of Al algorithms in fewer than 70 lines of Python,
reducing code size by up to 85.5% compared with manual implementations. Our
evaluation shows that TILELANG delivers 1.08 x—10.58 x speedups over Triton on
NVIDIA H100 (3.02x on average) and 1.01 x—11.56x on AMD GPUs (2.65x on
average), effectively bridging programmability and performance.

1 INTRODUCTION

The rapid progress of modern neural networks has driven a growing demand for highly optimized
compute kernels, particularly for memory-bound operations such as attention. In recent years,
modern attention algorithms such as Multi-Head Attention(MHA) (Vaswanti et al.| [2017), Multi-
Head Latent Attention (MLA) (Liu et al.| |2024), Gated Query Attention (GQA) (Ainslie et al.|
2023)), and Linear Attention (Gu & Daol 2023} [Dao & Gul 2024} |Sun et al., 2023} [Yang et al.}
2024), increasingly demand fine-grained control over memory hierarchy, scheduling, and data move-
ment to fully utilize hardware capabilities. However, existing systems like Triton (Tillet et al.|
2019) lack programmable abstractions to support this level of control. For instance, FlashMLA
relies on carefully pipelined computations and shared memory reuse, but Triton gives program-
mers no direct control over tile reuse or pipeline scheduling, restricting performance optimization.

MLA Performance and Code Complexity on H100

As aresult, developers often face a steep trade-
off between achieving peak performance and
maintaining programmability: they must either
manually write complex CUDA kernels or sacri-
fice significant performance due to abstraction
mismatches. As illustrated in Figure[1] the Tri-
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lenges. First, a programming model must give Figure 1: Performance vs. code size trade-off for
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to GPU code, mapping abstractions onto hard-
ware resources without adding programming complexity. Solving both challenges is essential to
balance developer productivity with near-peak hardware performance on modern accelerators.

We introduce TILELANG, a controllable programming system for modern neural workloads. TILE-
LANG provides programmable tile abstractions that let developers express and optimize low-level
kernel behaviors in a high-level, composable way. Unlike existing compilers such as Triton, which
rely on opaque optimization passes, TILELANG gives developers explicit control over memory, data
movement, layout, and parallel execution. Specifically, developers can allocate buffers in differ-
ent hardware memory levels (alloc_shared, alloc_fragment), orchestrate data transfers
(copy), define custom memory layouts (annotate_layout, use_swizzle), and fine-tune
parallelism and pipelining strategies (Parallel, Pipelined).

Under programmable tile abstractions, TILELANG programs can be represented as a unified fused
tile-level dataflow graph (FTG). By operating on this FTG, TILELANG enables fine-grained reasoning
and optimization of Al kernels, guiding developers from high-level design choices to fully specified,
hardware-efficient kernel configurations. It introduces two complementary techniques. First, tile
recommendation analyzes the FTG along with partially specified configurations to provide hardware-
aware defaults for tile shapes, memory placement, and warp partitions, offering developers high-
quality starting points that can be accepted, adjusted, or further tuned. Second, tile inference
propagates shape and layout constraints across the FTG to complete the remaining configurations
based on the partially annotated operators. It also automatically aligns buffer shapes, layouts, and
memory allocations both downstream and upstream. This design blends flexible user control with
automated optimization, yielding efficient kernels with far less manual effort.

As shown in Figure[I] TILELANG achieves on average 5.56x the performance of Triton and ap-
proaches the hand-written CUDA version in performance, while requiring less than 16% of the code
size of the manual kernel and even fewer LOCs than Triton. This highlights TILELANG’s ability
to attain a more favorable balance between programmability and performance, offering both high
efficiency and low development effort. We also implement other modern Al kernels—including
Dequantize Matmul (Wang et al., 2024), Multi-Head Attention (MHA) (Vaswani et al.,|2017), and
Block-Sparse Attention (BSA) (Guo et al., 2024). Despite its deliberately streamlined interface,
TILELANG achieves state-of-the-art throughput across heterogeneous GPUs, delivering speed-ups of
up to 10.59x over Triton on an NVIDIA H100 and 11.56x on an AMD MI300X (AMD,[2024).

Our contributions are twofold: (1) programmable tile abstractions that let developers directly control
and interact with hardware; and (2) tile recommendation and inference that guide developers with
hardware-aware defaults and automatically complete configurations over a unified FTG graph. We
believe TILELANG improve both the productivity and performance of modern Al kernel development.

2 RELATED WORK

Al kernel programming and optimizations. To simplify the development of Al kernels, libraries
like FlashAttention-3 (Shah et al., [2024), CUTLASS (NVIDIA| 2019), and ThunderKittens (Spector
et al., 2025) rely on manual or template-driven designs. Triton (Tillet et al.l 2019) provides a
high-level Python DSL but restricts control over critical performance paths. Gluon (OpenAl, 2025))
is built on Triton DSL and exposes lower memory hierarchies like shared memory and registers.
Helion (PyTorchl2025) works as a higher-level DSL and is designed to compile down to Triton.
Cypress (Yadav et al.,2025)) introduces a task-based programming model with sequential semantics.
Tilus (Ding et al.| 2025)) is another Python DSL for GPU programming, designed with thread-
block-level granularity and tensors as the core data type. Mojo (Godoy et al.l 2025) combines
Python’s interoperability and CUDA-like syntax to build performance-portable HPC science kernels.
Frameworks such as PyTorch (Paszke et al.,[2019), Graphene (Hagedorn et al.| 2023), MLIR (Lattner
et al., [2021)), and Welder (Shi et al., 2023)) take a compiler-centric approach. Unlike these works,
TILELANG is a tile-level programmable language that automates layout and low-level configuration
while giving users fine-grained control. Its flexible tile programming abstraction can help researchers
obtain kernels for a broad range of Al operations, and enable advanced optimizations like software
pipelining (Cheng et al.,|[2025)) and warp specialization (Huang et al.| 2023).

Cost modeling. TANGRAM (Gao et al.,|2019) optimizes dataflow across scheduling layers, along
with a performance modeling tool extended by SET (Cai et al., 2023) with Resource Allocation Trees.
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KPerfIR (Guan et al.,[2025) adds instrumentation for profiling and pipeline reordering in Triton.
ML-based predictors like Path Forward (Li et al.,|2023) and NEUSIGHT (Lee et al.||2025)) also exist.
In contrast, TILELANG’s tile-level analytical cost model uniquely captures both computation and data
movement at tile granularity, supporting fusion-aware scheduling with high accuracy and usability.

An extended discussion of related work is provided in Appendix [A] covering classic tensor-level
IRs (e.g., XLA (Googlel 2019)), polyhedral compilation (Griebl et al.| [1998; Zhao et al.| [2021]),
loop-scheduling systems such as Halide (Ragan-Kelley et al., 2013)), the TVM stack (Chen et al.|
2018), CUTLASS (NVIDIA/ 2019), and TaichiLang (Hu et al., 2019520205 2021).

3 PROGRAMMING MODEL
3.1 TILE LANGUAGE

Tile declarations. TILELANG elevates a tile—a hyper-rectangular slice of a tensor—to a first-class
citizen. A tile may be owned by a warp, a thread block, or any programmer-defined parallel unit, and
can be reshaped or re-partitioned at compile time. In the F1ashMLA kernel, the global matrices are
consumed in tiles whose extents are parameterized by block_H, block_N, and related symbolic
sizes. The T . Kernel structure establishes the kernel’s launch configuration (e.g. bx, by, and the
thread count), enabling both index derivation for each thread block and subsequent compiler analyses
such as memory-access coalescing and loop tiling.

Tile placement. A distinguishing feature of TILELANG is the ability to map every tile buffer
to a concrete level of the target accelerator’s memory hierarchy via user-visible intrinsics, rather
than relying on opaque compiler heuristics. T.alloc_shared reserves storage in low-latency,
software-managed shared memory on NVIDIA GPUs (or an architecturally analogous space on other
devices). T.alloc_fragment places accumulator tiles in the register file. Although registers
are scarcer than shared memory, their single-cycle latency is indispensable for performance-critical
reductions. During compilation, a layout-inference pass distributes these register tiles across threads
while respecting register-pressure constraints and bank conflicts.

Tile operators and schedulable primitives. TabldI|in Appendix[C]showcases the representative sub-
set of core building blocks that orchestrate computation and movement among tiles. Fundamental op-
erators (T . copy, T . gemm, T . reduce) act on tile operands directly, allowing the programmer to ex-
press dense linear algebra, pointwise transforms, and reductions without resorting to scalarized loops.
Orthogonal scheduling primitives expose fine-grained control over parallelism (T.Parallel),
pipelining (T . Pipelined), and memory layout (T .annotate_layout, T.use_swizzle).

3.2 A FLASH MULTI-HEAD LATENT ATTENTION EXAMPLE
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mendation (Sec.[d.2)) supplies hardware-aware

defaults that serve as high-quality starting points.

Second, file inference (Sec. [£3) analytically

propagates user-provided or recommended hints to complete the schedule and guarantee consistency.
Working in concert, these facilities deliver near-optimal performance with limited manual tuning.

3.3 TILELANG PHILOSOPHY

Tile-level tradeoff. The system adopts tiles as the central abstraction because this granularity
provides a practical balance between portability and performance. TILELANG models the GPU
memory hierarchy and the major compute and data-movement units, exposing tile size, memory
placement, warp partitioning, memory layout, and software pipelining as tunable dimensions. This
design enables hardware-aware specialization on both NVIDIA and AMD while preserving a unified
programming model. Remaining tradeoffs lie below the tile level, where extremely fine-grained
hardware behavior cannot be captured through a stable and portable API.

Novel tile abstraction. Unlike prior systems where a “tile” is essentially a manually managed
shared-memory buffer, TILELANG treats tiles as first-class IR constructs with explicit semantics
for indexing, data movement, reuse, and pipelining. This makes tile behavior compiler-visible and
supports systematic analysis and transformation. Consequently, TILELANG differs not only in surface
syntax but also in the underlying IR, which enables principled optimization at tile granularity.

4 SCHEDULING GUIDANCE AND AUTOMATION
4.1 TWO-STAGE FRAMEWORK

Optimization space. High-performance kernel design in TILELANG begins with a tile-level program,
represented as a fused tile-level graph (FTG) capturing dataflow and tiling structure—each node
represents a tile operator and each edge encodes a data dependency. By operating on this unified graph,
TILELANG exposes and reasons about hardware-aware optimizations across six key dimensions: tile
size (affecting shared memory and register usage), memory placement (selecting appropriate memory
scope), warp partitioning (how threads collaborate and bind within a block), memory layout (how tile
data is organized across memory levels), software pipelining (overlapping compute and data transfer,
e.g., via TMA), and tensorization (mapping operations to CUDA or Tensor Cores).

Tile recommendation and inference. To efficiently explore the optimization space, TILELANG
adopts a unified two-stage workflow over the FTG. In the first stage, tile recommendation analyzes the
FTG to provide hardware-aware defaults for partially annotated operators, covering dimensions such
as initial tile shapes, memory placement, and warp partitioning (Section[4.2)). These recommendations
shape the memory footprint, compute partitioning, and thread collaboration, providing high-quality
starting points. In the second stage, leveraging the context from recommendation, tile inference prop-
agates constraints through the FTG, automatically inferring the remaining configuration, including
tile size, memory layout, software pipelining, and tensorization. It ensures consistency, compatibility,
and hardware efficiency (Section[d.3). Together, these stages unify developer guidance and automated
completion: recommendation narrows the design space with informed hints, while inference finalizes
fully specified, hardware-efficient kernels with minimal manual effort.

In TileLang, the FTG defines the division of labor between developer control and system automation.
Developers specity the FTG by composing tile operators; tile-level annotations such as tile sizes,
memory placement, warp partitioning, and tensorization are optional. Given an FTG, TILELANG’s
optimization pipeline performs tile recommendation and inference, propagating shape, layout, and
memory constraints to complete missing details. This design lets developers concentrate on describ-
ing computation while the system automatically finalizes and optimizes low-level configuration,
supporting both fully automated and hint-guided usage.

Running example. Taking MLA as an example (Figure[2), TILELANG first performs tile recom-
mendation as illustrated in Figure[3] Tile operators in the FTG expose tunable parameters—such as
tile size, memory placement, and warp-partitioning strategies—serving as the user interface for these
optimization knobs. For instance, in the first T . gemm operator (Figure 0), memory placement
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annotations specify Q and KV tiles in shared memory, while S resides in registers. The S tile is
further partitioned across columns using the “policy=FullCol” warp-partitioning strategy. These
decisions directly shape the memory footprint and influence data access patterns across the FTG. The
cost model analyzes the FTG to estimate memory traffic, guiding the search toward configurations
that minimize data movement.

Stage 1: Recommend Stage 2: Inference
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Figure 3: Two-stage workflow of optimizing MLA example.

Tile inference completes the configuration by operating over the FTG. For example, once S (output
of the first T . gemm in Figure ﬂ) and S_cast (input of the second T . gemm in Figure ) are
fixed in location, shape, and partitioning in the first step, inference automatically determines the
tile placement and partitioning (e.g., all-gather or scatter) of copy (Figure ) in the second step,
ensuring consistency without manual effort. Beyond copy decisions, inference also derives memory
layouts by mapping multi-dimensional indices to physical addresses, explicitly considering vector-
ization, coalescing, and bank conflicts. Finally, it automates software pipelining and tensorization,
ensuring that the resulting kernel configuration is efficient on the underlying hardware. TILELANG
also provides platform-specific recommendations and inference (see Appendix [DJ.

4.2 TILE RECOMMENDATION

(a) Hardware-Aligned Search: (b) Cost Model Guided Filtering (c) Interactive Schedule
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Figure 4: Tile recommendation with cost model. In (b), we show a scatter plot of candidate schedules.
The x-axis orders candidates by their and the y-axis shows their normalized scores
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Roofline-based cost model. As outlined in Figure[d] TILELANG uses a static roofline-based cost
model to evaluate candidate configurations, which include tile shapes, memory placement strategies,
and warp partitioning. The cost model operates directly on the fused tile graph (FTG): each FTG
under a given configuration is lowered into an intermediate representation (IR), a structured, tile-
oriented compute plan that explicitly encodes compute and memory access patterns per tile. From
this IR, the model statically extracts two key quantities: total memory traffic at each memory level,
and total floating-point operations for each compute type. These quantities are used in a roofline
formulation that assumes perfect overlap between computation and memory transfers, ignoring
pipeline prologues/epilogues. The execution time is estimated as: where 7 indexes levels of the
memory hierarchy (e.g., HBM, L2, L1), and j indexes compute unit types (e.g., tensor cores, vector
cuda cores, special function units (SFUs)). The term ¢iuinsic accounts for inherent overheads such as
kernel launch latency and loop prologue and epilogue costs. This model provides a tight performance
upper bound and allows rapid evaluation across large configuration spaces without actual execution
or runtime profiling.

Based on the cost model, TILELANG generates actionable recommendations for kernel tuning,
including tile shapes, memory placement, and warp partitioning. These recommendations form an
interactive baseline: developers can accept, adjust, or iteratively refine them across multiple rounds.
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This human-in-the-loop workflow balances automation with expert insight, slashing tuning effort
while preserving full design control.

Tile size. TILELANG presents a ranked shortlist of tile shapes that are multiples of the device’s
native tensor-core fragments and respect register and shared-memory limits. Each candidate shows
predicted arithmetic intensity, memory traffic, and roofline utilisation. Developers can accept the top
choice, pin alternatives for later benchmarking, or adjust dimensions manually.

Memory placement. Given a chosen tile shape, TILELANG enumerates legal bindings of operands
and temporaries to registers or shared memory, flagging options that exceed capacity. Each binding
includes estimated pipeline stalls and effective bandwidth, letting developers quickly explore trade-
offs and commit or refine placements.

Warp partition. To ensure sufficient thread-level parallelism, TILELANG proposes warp partitions
that evenly cover the output tile and match the SM topology. With predicted occupancy and com-
pute—memory overlap, developers can select, benchmark, or override, retaining full control while
benefiting from data-driven guidance.

4.3 TILE INFERENCE

Layout inference. While memory placement and computation partitioning in Section decide
where tensors reside and how computation is split, layout inference determines how multi-dimensional
indices are converted into physical memory addresses—taking into account vectorization, memory
coalescing, and bank conflict avoidance. In other words, layout is not about which memory scope
is used, but how data is accessed within that scope. Once placement and partitioning are fixed, the
system can then infer an appropriate layout to ensure efficient low-level memory access.

TILELANG supports high-level indexing into multi-dimensional arrays (e.g., A[i, k]), which is
eventually lowered to physical memory addresses through a hierarchy of abstractions. At the physical
level, layouts are modeled as linear address expressions of the form Zi 1:S;, Where y; is the index
along dimension %, and s; is its stride. To capture such mappings, TILELANG introduces a composable
Layout algebra based on IterVar—a loop iterator that carries range and stride information. This
allows layout transformations (e.g., transposes) to be expressed as algebraic mappings, such as
lambda i, j: (j, i). Formally, a layout becomes a function f : K” — K™, converting
high-level indices into memory addresses. Additionally, TILELANG defines Fragment layouts—a
specialized extension where f : K" — K2, mapping each index to a thread’s register ID and its
local offset. This enables precise modeling of intra-thread register allocation. Although a buffer
of size N theoretically allows O(N!) memory layouts, the set of feasible layouts is significantly
constrained by hardware. Global memory prefers coalesced access, shared memory requires bank
conflict avoidance, and Tensor Core instructions impose strict layout requirements. To explore these
constraints, TILELANG employs a greedy strategy that derives valid layouts by enforcing layout rules
on selected tile operators.
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Figure 5: Layout Inference mechanism in TILELANG

We propose a hierarchical layout inference algorithm that operates over an FTG. As illustrated in
Figure[5] FlashMLA can be represented as a FTG, where nodes are tile-level operators (e.g., matmul,
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softmax) and edges encode data dependencies. The graph captures how Q, K, and V tiles are
loaded into shared memory, attention scores computed and normalized in registers, and final outputs
written back. This structure makes memory movement and parallelism explicit, enabling layout
inference and efficient scheduling.

Our goal is to synthesize memory layouts that optimize low-level execution efficiency while preserving
high-level tensor semantics. The inference process is modeled as a constraint propagation algorithm
(Algorithm[T]in Appendix [E)) that iteratively traverses the FTG and incrementally refines the layout
mapping £ until convergence. As illustrated in Figure[5] the algorithm integrates three complementary
inference strategies: (1) Strict Layout Inference (Fig|5@9) enforces operator-specific constraints for
hardware-sensitive primitives such as tensor core GEMM, including swizzled shared memory layouts
and MMA -aligned register allocations; (2) Common Layout Inference (Fig) propagates layout
decisions through structurally aligned operators (e.g., reductions), ensuring consistent thread bindings
and register reuse; and (3) Free Layout Inference (Fig. ) handles the remaining unconstrained
layouts by partitioning them into subgraphs via connected component analysis. For each subgraph,
the partitioning scheme with the lowest register usage is selected. This step also determines the loop
layout using the hardware cost model, which specifies thread binding and vectorization length to
maximize memory coalescing and minimize bank conflicts. This unified inference pipeline supports
composable, performance-portable layout generation and seamlessly bridges high-level loop indexing
with low-level memory organization.

Pipeline inference. TILELANG automatically infers a pipelined schedule from a sequential program.
As shown in Figure [6] (a), operations like copy and gemm are overlapped to increase parallelism.
The system analyzes dependencies in the FTG and generates a structured pipeline that preserves
execution correctness, exposing only a single num_stages parameter to users. Additionally,
TILELANG applies Warp Specialization to fully exploit asynchronous copy instructions on Hopper
GPUgs, inserting synchronization barriers where necessary to maintain correct data dependencies. The
detailed inference procedure is described in Appendix [F}

Original Serialized Schedule |

{Iteration 0] CopyKV | MatMul(Q,KV) | CopyK_PE | MatMul(Q_PE,K_PE) | iT-.Pipelined(num_stages=2)
: 7 :

; v :
iIteration1|_CopyKV | MatMul(Q,KV) | CopyK_PE | MatMul(Q_PE,K_PE) | | Pipeline
; Inference

Producer| CopyKV | CopyK_PE | CopyKV | Copyk_pE | Pipelined Schedule
Consumer | MatMul(Q,KV) | MatMul(Q_PE,K_PE) | MatMul(Q,KV) | MatMul(Q_PE, K_PE)

Figure 6: Pipeline Inference mechanism in TILELANG

Instruction inference. In TILELANG, while low-level hardware instructions such as dp4a or mma
can be manually invoked via source injection or inline PTX (NVIDIA| 2021}, choosing the most
appropriate instruction based on input shapes and data types can be challenging. To address this,
TILELANG integrates with high-level Tile Libraries like NVIDIA’s cute (NVIDIA| [2019) and
AMD’s ck (AMD]) 2025)), which abstract hardware-specific details and automatically choose efficient
instructions based on input configurations. These libraries expose standardized tile-based APIs
(e.g.,tl: :gemm_ss), and TILELANG supports their invocation via a unified T.call_extern
interface, simplifying development while ensuring performance portability.

5 EVALUATION

TILELANG is realised as a Pythonic DSL whose compiler lowers high-level tile programs to hardware-
specialized kernels through a modular IR and code-generation pipeline. TileLang is implemented on
top of the TVM backend, but our main contributions sit above TVM. TILELANG provides the tile
abstraction, the FTG IR, and its own optimization passes, while TVM supplies the low-level code
generation backend. As illustrated in Fig.[7} TILELANG adopts a five-stage compilation workflow: (1)
tile-level code is written in a Python-based DSL; (2) the compiler translates the AST into the TileLang
AST; (3) a FTG is constructed from the TensorIR; (4) a series of optimization passes in TileLang and
TVM is applied; and (5) the optimized IR is finally lowered to CUDA, or other backends.
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Figure 7: Overall TILELANG workflow.

5.1 EXPERIMENTAL SETUP

Hardware platforms. We assess the performance of TILELANG on two leading GPU architectures:
NVIDIA and AMD, which dominate contemporary accelerator ecosystems. Our evaluation employs
state-of-the-art hardware, including the NVIDIA H100 (80GB) (NVIDIA![2023) and the AMD
Instinct MI300X (192GB) (AMD, 2023)). The NVIDIA H100 leverages CUDA 12.8, while the
AMD MI300X utilizes ROCm 6.2.0. Both GPUs are benchmarked under the Ubuntu 20.04 operating
system to ensure consistency in environmental configurations.

Al kernels. To evaluate system performance, we analyze nine representative operators: (1) GEMM,
(2) fused dequantized GEMM (Wint4Arpi6), (3) Attention, (4) Multi-Head Latent Attention, (5)
Block Sparse Attention, (6) 2D Convolution, (7) Chunk Gated Delta Net, (8) Vertical Slash Sparse
Attention, and (9) Attention Sink. Shape configurations are provided in Appendix [N]

Baselines. Our comparative analysis considers the following baselines: (1) PyTorch Induc-
tor—torch.matmul for GEMM, SDPA (PyTorch,|2023)) for attention, and other operators com-
piled via Inductor; (2) Triton implementations, including GemLite (Mobius ML, |2024) and MLA
from SGLang (Zheng et al., 2024); (3) ThunderKittens (TK) (Spector et al., 2025)—a template-
based framework for high-performance Al kernels on NVIDIA GPUs; and (4) Highly optimized
libraries, including CUTLASS (NVIDIA}2019) and Composable Kernel (AMD)2025) for GEMM,
Marlin (Frantar et al.| 2025) for dequantized GEMM, FlashAttention-V3 (Dao, 2023) for MHA,
AITER (AMD] 2025) for MLA, and Block Sparse Attention (Guo et al.|,[2024)) for sparse attention.

We evaluate kernel performance versus code complexity (Section[5.2)) and present ablation results
(Section[5.3)), with cost model and tuning time analyses in Appendices|G|and [H]

5.2 KERNEL PERFORMANCE

Matrix Multiplication. TILELANG achieves high performance with low code complexity across
diverse GEMM configurations, demonstrating 1.18-1.40x speedup over PyTorch on NVIDIA
H100, while maintaining competitive performance (0.94—1.05x) on AMD MI300X. It also de-
livers 1.08-1.43 x speedup over Triton with minimal kernel code, enabled by automated inference
that abstracts low-level hardware details such as TMA and pipeline scheduling. Compared with TK,
TILELANG achieves 0.99-1.11x speedups while reducing code complexity by 77%. Its cost-model
guidance and automated tile inference eliminate manual tuning. TK depends on curated CUDA
templates, limiting it to NVIDIA GPUs, whereas TILELANG supports multiple hardware backends.

Low-Bit Matmul. For Win4 App1s GEMM, TILELANG achieves 1.35-3.81x speedups over PyTorch
and up to 1.55% over Triton on H100, while outperforming the specialized Marlin kernel with far
simpler code. On MI300X, it delivers on average 0.96 x over Triton. These gains arise because
TILELANG exposes low-level memory, dequantization, and layout controls that Triton hides.

Convolution. On H100, TILELANG achieves 1.24-1.79x and 1.10-1.97x speedups over PyTorch
and Triton, respectively, with reduced code complexity. These gains come from its instruction
inference mechanism, which maps data movement efficiently to TMA im2col. On MI300X, the
improvements are even larger, reaching 1.29-6.80x over PyTorch and 1.02-3.10x over Triton.

Flash Attention. TILELANG achieves efficient attention computation with concise code across
sequence lengths. On H100 and MI300X, it delivers 1.08-1.58x and 1.22-1.37x speedups over
Triton, while matching the performance of FlashAttention-V3 (0.98x and 0.96x on average). These
results stem from TILELANG’s ability to infer and apply platform-specific partitioning and pipelining
strategies that exploit specialized compute units. TILELANG achieves up to 1.10x speedup over TK
while significantly reducing code complexity (from 185 lines to 66), highlighting its programma-
bility. By combining tile-level guidance with automated inference, TILELANG streamlines kernel
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(b) Performance vs. code complexity across operator configurations on AMD MI300X GPU.

Figure 8: Performance and code complexity on an NVIDIA H100 GPU and AMD MI300X GPU.
The y-axis denotes the speedup relative to PyTorch, while the x-axis indicates lines of code (LOC).
Ideal solutions appear toward the top-left corner.

development. This is particularly valuable for complex attention operators, where TK often requires
extensive manual tuning of tiling, warp partitioning, layout, and pipelines.

Flash MLA. As showin in Figure [T} TILELANG achieves 4.06-10.59 x speedups over Triton on
H100, with substantially reduced code complexity. It matches the latency of the specialized FlashMLA
kernel while reducing code complexity by 6.86x. On MI300X, TILELANG delivers 5.64-12.97
gains over Triton and slightly outperforms the hand-tuned ROCm library AITER (1.05x%). These
improvements arise from warp specialization and automated TMA mapping.

Block Sparse Attention. TILELANG achieves acceleration of 3.42-7.87x and 1.22-1.37x over
Triton with less code on H100 and MI300X, respectively. On H100, it matches BlockSparse (BSA)
latency (0.91-1.82x) while greatly reducing complexity. Implementing block-sparse MHA requires
only adding two lines to the standard MHA code (Appendix [O.5).

Chunk Gated Delta Net. On H100, TILELANG achieves 15.88-70.35x speedups over PyTorch by
fusing complex operations into a single kernel. Compared to Triton, it attains 1.10—1.45x speedups
with 39% fewer lines of code. These gains come from automated tile recommendation and inference,
which optimize memory placement and partitioning for efficient hardware utilization.

Vertical Slash Sparse Attention. TILELANG delivers 108.55-280.41x and 105.01-363.53 x
speedups over PyTorch on H100 and MI300X, largely by fusing the sparse attention operation
into a single efficient kernel. Compared to Triton, it achieves 1.16-1.97x and 1.19-1.60x speedups
on H100 and MI300X, respectively, while cutting the code size by roughly half.

Attention Sinks. For attention with the sinks mechanism, TILELANG achieves 14.21-25.57x and
5.35-9.11 x speedups over PyTorch on H100 and MI300X, respectively, enabled by TILELANG’s
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FTG-based fusion into a single optimized kernel. Against Triton, it reaches 1.13-1.30x on H100
and 2.32-2.69x on MI300X. The attention-sink variant differs only slightly from standard MHA,
showing that TILELANG readily supports diverse attention patterns with minimal effort.

5.3 ABLATION STUDIES

To help clarify what contributes to the speedups over the baseline, we perform an ablation study
on FlashMLA as a representative example. Starting from a TILELANG version that uses manually
crafted scheduling heuristics (TL-Heuristic), we progressively enable three components: (i) cost-
model-guided tiling (+Tile), which improves the compute—memory ratio and cache use; (ii) cost-
model-guided memory placement (+Alloc), which chooses efficient buffer locations and reduces
register spilling; and (iii) warp partitioning (+Partition), which improves intra-warp load balance.
Performance is measured at each stage relative to the Triton baseline.
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Figure 9: Ablation study for FlashMLA on both H100 and MI300X GPUs.

As shown in Figure[9] each of the evaluated optimizations provides measurable performance gains
over the Triton baseline, validating their effectiveness. Our analysis also highlights architecture-
specific behaviors (illustrated in Appendix [D). On H100, tiling (+Tile) yields a modest speedup of
1.31 x. Building on this, warp partitioning (+Partition) provides the dominant contribution, delivering
an additional 4.34 x improvement. On MI300X, allocation placement (+Alloc) serves as the primary
optimization, achieving a 6.56 x speedup. When further combined with tiling (+Tile), the overall
gain increases by another 1.75 x improvement.

5.4 COMPARE WITH MORE RECENT DSLS

We further compare TILELANG with recent
DSLs including Helion, Gluon, and Tilus. Our

GEMM Performance and Code Complexity on H100

[
N
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2.12x speedups over Helion, Gluon, and Tilus,
respectively, while using fewer lines of code.
These improvements largely stem from TILE-
LANG’s compiler-visible tile abstraction, which
enables more structured optimization than ex-
isting DSLs. Note that Tilus is not yet fully op-
timized for Hopper features such as WGMMA
and TMA, and on Ampere/Ada TILELANG is
still slightly better (see Appendix [[)).

o
o
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Figure 10: Performance and code-size comparison
of GEMM kernels on H100 across recent systems.

6 CONCLUSION

TILELANG offers a controllable tile-level programming model with graph-based optimizations
via tile recommendation and inference. By combining automated configuration with fine-grained
developer control, it streamlines kernel development and delivers significant speedups. It enables rapid
experimentation with emerging Al algorithms, such as custom attention, sparsity, and quantization.
TILELANG also lowers barriers for systems-aware research across diverse hardware platforms.

10
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7 REPRODUCIBILITY STATEMENT

We provide a detailed description of our experimental setup in Section[5.1} Operator shapes used in
our benchmarks are drawn from widely adopted, real-world AI models (e.g., GPT-OSS, DeepSeek
V3, Qwen3-Next). A list of these operator configurations is included in Appendix [N] and the
corresponding TILELANG code of kernels used in evaluation is provided in Appendix[O] The system
implementation and scripts for reproducing our experiments will be made publicly available after the
review process, ensuring full reproducibility while maintaining anonymity.
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Our appendix is organized as follows:

Appendix [A} Extended discussion of related work.

Appendix [B} Details of the MLA algorithm.

Appendix [C} Semantics of a partial list of TILELANG primitives.

Appendix [D} Platform-specific scheduling

Appendix [E} Layout inference algorithm of TILELANG.

Appendix [F} Pipeline inference algorithm of TILELANG.

Appendix [G} Evaluation of the cost model.

Appendix [Hf Tuning time measurements.

Appendix [t Matmul implementation difference between TVM, Triton, and TILELANG.
Appendix [} Comparison of FTG IR and TVM IR.

Appendix Kt Comparison of FlashMLA implementations on different architectures.
Appendix [} Comparison with recent DSLs.

Appendix Mt Commit hashes of each baseline.

Appendix [N} Operator shapes used in our benchmark.

Appendix |Of TILELANG code of kernels used in the evaluation.

A EXTENDED DISCUSSION OF RELATED WORK

Al kernel generators For kernel generating and optimization, Ansor (Zheng et al., 2020) builds
many kernel combinations by sampling programs from a hierarchical search space. PET (Wang et al.|
2021)) moves forward to partially equivalent transformations and automated correction for newly
discovered kernels. TensorIR (Feng et al.,|2023)) generates new kernels by generalizing the loop nest
representation used in existing machine learning compilers. Mirage (Wu et al., 2025) proposes a
uniform representation of a tensor program at each level of the latest GPU compute hierarchy to
find custom kernels. AKG (Zhao et al., [2021) leverages polyhedral schedulers to perform a much
wider class of transformations to automatically generate kernels on NPUs. TileLang also utilizes
multi-level programming interfaces and autotuning techniques based on tile-level cost model for
kernel generation and optimization.

Tensor-level IRs, The polyhedral model, and Loop synthesizers. Traditional approaches ad-
dress program optimization at different abstraction levels: Tensor-level IRs (e.g., XLA (Googlel
2019)) lower tensor programs via pattern-matched templates (e.g., LLVM, CUDA). Polyhedral mod-
els (Griebl et al.,[1998) (e.g., TC (Vasilache et al., 2018)) automate affine loop transforms, mainly for
DNN layers. Loop synthesizers (e.g., Halide (Ragan-Kelley et al.l[2013)) generate loop nests guided
by user-defined schedules. TILELANG targets a distinct programming model and control granularity.
It differs fundamentally by introducing tiles as first-class programming units. It offers programmable
control over fusion strategies, memory hierarchy, and parallelism. This enables developers to design
fused kernels with both high performance and portability across hardware.

TVM (Chen et al., 2018). TILELANG builds upon TVM’s IR and arithmetic passes. However,
unlike TVM'’s schedule-driven loop generation from high-level compute definitions, TILELANG
offers explicit, tile-level programmability and control over memory, fusion, and parallelism. This
enables much finer-grained kernel customization beyond what TVM can achieve. For instance, TVM
cannot fully express advanced algorithms like FlashAttention (FA) or Multi-Level Attention (MLA),
which demand precise management of memory hierarchy and execution order—capabilities that
TileLang supports.

Warp Partition. Warp Partition (WP) is a key component of TILELANG’s execution model, building
directly on the tile abstraction. Given a specified tile size, WP allows further partitioning of the tile
along each dimension across multiple warps. For example, consider a GEMM operation C' = AQB,
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where A € RM*K B ¢ REXN ‘and ' € RM*N, The output tile C' can be partitioned along either
the M or IV axis, corresponding to full-row or full-column warp-partitioning strategies, respectively.
By giving users explicit control over warp partitioning, TILELANG enables fine-grained management
of resources such as register usage within each warp. This, in turn, allows users to better control
the performance of operations. Such flexibility is crucial for mapping computations efficiently to
hardware, especially when optimizing diverse and performance-sensitive kernel workloads.

CuTe library. While both TILELANG and CuTe (NVIDIA|[2019) share this high-level goal, their
underlying mechanisms differ: CuTe relies on shape/stride pairs, whereas TILELANG encodes the
mappings using explicit arithmetic expressions. This arithmetic formulation offers advantages by
more directly capturing index transformations and enabling more flexible, composable manipulations,
allowing for clear definition and description in the DSL frontend.

The roofline-guided cost model. Several analytical modeling approaches have been proposed, such
as the nested-loop-based modeling in Timeloop (Parashar et al.,|2019)), the data-centric representation
in Maestro (Kwon et al.l 2020). In contrast to these methods, our work leverages a tile-level program-
ming abstraction, which naturally lends itself to a tile-centric cost model. This enables us to accurately
capture both computation and data movement at the tile granularity, while maintaining simplicity and
enhanced support for modeling operator fusion. This design strikes a balance between accuracy and
usability, making it effective for guiding schedule selection without introducing excessive complexity.

TaichiLang. Although both Taichi (Hu et al.,|2019;2020; 202 1)) and TileLang target GPU workloads,
they differ fundamentally in abstraction and intended use. Taichi provides a high-level, scalar-loop
DSL with automatic parallelization, SNode-based data layouts, and strong autodiff support, making
it well-suited for scientific computing and simulation. TileLang, by contrast, is designed for deep-
learning kernels such as attention and GEMM, where peak performance requires explicit control
of tile shapes, memory placement across shared/LDS and registers, multi-stage pipelining, warp
specialization, and instruction selection (Tensor Core MMA or AMD MFMA). These capabilities are
not directly expressible in Taichi’s fully automatic model.

B MLA ALGORITHM

Instead of storing full-sized key and value matrices, MLA projects input token embeddings into a
lower-dimensional latent space using a down-projection matrix:

Z; = Xt Waown-

The latent vector z; is then used to reconstruct the key and value representations:
kt = thl{l()’ V¢ = Zth‘;’.
To incorporate positional information, Rotary Positional Embedding (RoPE) is applied to the recon-
structed keys and queries:
k! = RoPE(k;).

Queries are also compressed using a similar process to reduce activation memory:

q: = Z? Wfl%
MLA further enhances computational efficiency through a technique known as matrix absorption,
which reorders matrix multiplications to optimize performance. This approach enables the key and
value inputs to share the same latent representation z;, thereby reducing redundancy and memory
usage. In the adopted configuration, MLA employs a single shared key-value (KV) head, with a head
dimension of 512.

C PARTIAL LIST OF TILELANG PRIMITIVES

Table || illustrates the expressiveness of the TILELANG intermediate representation. To support
efficient code generation across diverse hardware backends, TILELANG decouples the definition of
algorithms from their optimization. The Dataflow Centric Tile Operators define the functional seman-
tics of the workload (e.g., matrix multiplication, atomic updates), while the Scheduling Primitives
expose critical optimization handles—such as loop pipelining (‘Pipelined*) and layout transformation
(‘annotate_layout‘)—to maximize hardware utilization and locality without altering the algorithmic
correctness.
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Table 1: A partial list of primitives supported by TILELANG.

Dataflow Centric Tile Operators Scheduling Primitives
copy data movement among hierarchy memory. Parallel Parallelization of loop iterations over threads.
gemm matrix multiplication on different GPUs. Pipelined Enables pipelining to overlap data transfers with
computation.
reduce reduction operator (e.g., sum, min, max) ex- annotate_layout Definition of custom memory layouts to minimize
ploiting warp/block-level parallelism. bank conflicts and optimize thread binding.
atomic atomic operations to ensure thread-safe up- use_swizzle Improves L2 cache locality via swizzled access pat-
dates in shared or global memory. terns.

Warp Specialization

barrier_arrive Signals the arrival at a synchronization point (mbarrier) for producer/-
consumer coordination.

barrier_wait Blocks execution until specific barrier conditions (e.g. transaction
counts) are met.

D PLATFORM-SPECIFIC SCHEDULING

TILELANG also provides platform-specific recommendations and inference. Taking MLA as an
example, we illustrate how TILELANG performs tile recommendation and inference based on the
code shown in Figure[2]

On the H100, each SM features 228 KiB of shared memory and a 256 KiB register file, whereas the
MI300X provides 64 KiB of Local Data Share (LDS) and a total of 512 KiB in registers. Given these
architectural differences, TILELANG first recommends different tile configurations.

Table 2: Comparison of specifications between NVIDIA H100 SXM and AMD MI300X.

Specification NVIDIA H100 SXM  AMD MI300X
Clock Frequency 1.83 GHz 2.10 GHz
DDR Memory Bandwidth 3.35 TB/s 5.30 TB/s
L2 Bandwidth 9.45 TB/s 16.63 TB/s
L1/Shared Memory BW 30.92 TB/s 81.72 TB/s
Compute Units (SMs/CUs) 132 SMs 304 CUs
Shared Memory per SM/CU 228 KiB 64 KiB
Register File per SM/CU 256 KiB 512 KiB
Peak FP16 Performance 989 TFLOPs 1307 TFLOPs

As shown in Figure [T1] for memory placement, users may initially allocate the Q tile to shared
memory on the MI300X. However, this approach fails due to the limited capacity of shared memory.
TILELANG detects this constraint and instead recommends placing both O and acc__s in registers. In
contrast, on the H100, both tiles fit comfortably in shared memory and are placed there accordingly.
For Software Pipelining, TILELANG disables pipelining on the MI300X to support larger tile sizes
and reduce register pressure, whereas on the H100, pipelining is enabled to maximize pipeline
overlap. Tile sizes are also adjusted accordingly to fit each platform’s resource constraints. For Warp
Partitioning, users may initially adopt a default policy for the two gemm operators, which often leads
to sub-optimal performance. TILELANG addresses this by analyzing the underlying hardware and
recommending platform-specific partitioning strategies, as illustrated in Figure[3] On the H100, both
gemm operators use the Ful1Col scheme, partitioning acc_s and acc_o vertically to match the
Tensor Core shape. In contrast, TILELANG applies a Ful 1Row policy on the MI300X, partitioning
tiles horizontally.

17



Under review as a conference paper at ICLR 2026

r_‘I:.gemm( -------------- —= e
| Q shared, (1) i Warp ] dim Warp Kv l
! KV_shared, blockN | Ppartition 1 >, | | Partition (shared
e e | | ; g -
'} transpose_B=True, | E (,,m;d H acc_s H o 2 :’;":m !
! policy=FullCol) ! | memory) | | (register) 1 blockN blockN 3 ;7";:: acc_o i
. i ! | T.copy . (register) WarpgroupOll
dim i Warpgroup o Z|s_shared| . s shared| (EETET)
Z - | 1 ) S| shared (M) | (shared 5] acc;o !
E (register) | 1 I B|memory| " Z|memomy| | (registen | | KV
——— < I| ‘l (shared
9 o T.gemm i acc_s i o T.gemm mertory)
: ‘ £ [ o
KV_shared, 1 1 = acc_o
oo o, [ Werpgroup 1} Warearoup !
policy=FullCol) [ = mememmmess—e—ao T
(a) The Warp Partition schedule recommended by TILELANG for MLA on H100.
== pomm——- ——t
Femmommmm————  Fememee et Sememmcmmee- I }
|, Warp H dim ] Warp Kv i T.gemm( 0:’
blockN i Partition | ! Partition (shared ! Q_shared, '
i i 2| kv |\ memory) ! KV_shared, !
E [ i acc_s i S| (shared | | ¥ Warp 0,1 i ’
£ y o f |
° I(::I‘n,:;} i (register)| | bl kND memon) | | acc_s || acc_o \ transpose_B=True,
dim 3 \ i s oc 1 H i (register) i policy=FullRow) 1
| e M mm—e
b | Warp 0,1 | ‘ ¥| acc_s || acc_o [ 7 B *
3 acc.s | 1 ! O|(register)| | (register) | KV i 1
S g ! 1 s 1 (shared 1 T.gemm( e i
° | |eces] 5 2 Warp 2,3t | | , '
c T.gemm ' (register)| | e T.gemm i P2 ! KV_shared,
H |' I| acc_s || acc_o ! ‘,7 N
1 i C )
Warp 2,3 1 1 g (register) ! 0,
Lot P o L apprtimpramt SN | i policy=FullRow)

(b) The Warp Partition schedule recommended by TILELANG for MLA on MI300X.

Figure 11: Cooperative workflow between tile-recommendation and inference stages on NVIDIA
H100 and AMD MI300X GPUs.

E LAYOUT INFERENCE ALGORITHM

Goal and Scope.  Algorithms[I] and 2] compute a hardware-aware, globally consistent layout map-
ping over a fused tile graph (FTG). Starting from partially annotated buffers and operator semantics,
the pass infers concrete memory layouts (global/shared/register fragments), resolves aliasing, and re-
turns both the final layout map £ and the loop-level binding/predication maps (ForMap, PredMap)
used by the loop-lowering routine in Algorithm [3] The inference explicitly respects coalescing,
bank-conflict avoidance, and Tensor-Core-friendly register tiling, while minimizing register pressure
for the remaining degrees of freedom.

Three-Phase Inference. The core procedure (Layout Inference) executes in three stages:

* Phase I: Strict constraints (‘“STRICT”). Each operator is visited once with
RunInferStep atlevel “STRICT”. This enforces hard constraints dictated by hardware-
sensitive primitives (e.g., swizzled shared-memory layouts and MMA-aligned register tiles
for GEMM). All layouts fixed here are recorded into Ly and treated as immutable thereafter.

* Phase II: Common propagation (“COMMON”). A worklist over all operators drives
fixed-point propagation. When an update materializes for a buffer, its users are enqueued.
This phase spreads compatible, non-rigid constraints across the FTG until convergence,
ensuring consistent thread bindings and compatible address formulas across producers and
consumers.

* Phase III: Free choices with register-cost minimization (“‘FREE”). Remaining uncon-
strained buffers are partitioned by connected components (w.r.t. uses and aliasing). For
each component, the algorithm enumerates candidate “roots”: it snapshots state, seeds
inference from a root with level “FREE”, and greedily extends to other members. Can-
didates that trigger a conflict (layout mismatch or iterator normalization errors) are dis-
carded. Among feasible candidates, it selects the one minimizing total fragment registers via
SumFragmentRegisters, then restores and commits the best snapshot. This realizes a
lightweight, local backtracking that controls search while favoring low register pressure.

Key Subroutines. RunInferStep constructs the per-operator context (target, thread bounds,
current L, analyzer, and any out-of-bound info) and calls op. InferLayout (args, level)
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Algorithm 1 Hardware-Aware Layout Inference over Fused Tile Graph

: procedure LayoutInference(FTG, AnnotatedLayouts, Target)

: (Ops, UseList, AliasGroups, Thread Var, ThreadBounds, BufterOOB) = CollectFromIR(FTG, Target)

: L = copy(AnnotatedLayouts)

: L_strict = empty_map()

> Phase I: Strict constraints
: fori=0to|Opsl-1do

RunlInferStep(i, “STRICT”, false, L, L_strict)

: for all (buf, lay) in L do

L_strict[buf] = lay

10: > Phase II: Common propagation
11: q =queue_of_all_op_indices()

12: FinishInferQueue(“COMMON?”, L, L _strict, q)

13: > Phase III: Free choices, minimize register cost
14: for all comp in ConnectedComponents(Ops, UseList, AliasGroups) do

15: best = (infinity, null) > (reg_cost, payload)
16: for all root in comp.members do

17: ops_bak = Snapshot(Ops)

18: L_tmp = copy(L)

19: ok = TryInferFromRoot(root, “FREE”, L_tmp, L_strict)

20: if ok then

21: for all other in comp.members, other !=root do

22: ok = ok and TryInferFromRoot(other, “FREE”, L_tmp, L_strict)

23: if ok then

24: cost = SumFragmentRegisters(L_tmp)

25: candidate = (cost, (Snapshot(Ops), L_tmp))

26: best = MinByRegister(best, candidate)

27: Restore(Ops, ops_bak)

28: assert(best != null)

29: (ops_snap, L_best) = best.payload

30: ApplySnapshot(Ops, ops_snap)

31: L =L_best

32: > Alias completion
33: for all (var, buffers) in AliasGroups do

34: if exists b in buffers such that L[b] is defined then

35: ref = L[b]

36: for all buf in buffers do

37: if L[buf] is undefined then

38: L[buf] = ReshapelfNeeded(ref, shape(buf))

39: for all (buffer, dummy) in UseList do

40: if scope(buffer) == “local.fragment” then

41: assert(L[buffer] is defined)

42: (ForMap, PredMap) = CollectLoopLayoutsAndPredicates(Ops)
43: return (L, ForMap, PredMap)
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Algorithm 2 Core Subroutines for Layout Inference

1: procedure RunlnferStep(op_id, level, update_queue, L, L_strict)
2:
3:

op = Ops|op_id]
args = {target, thread_bounds = ThreadBounds[op_id], layout_map = L, analyzer, buffer_oob = Buffer-
OOBJ[op_id]}

: updates = op.InferLayout(args, level) > list of (buffer, layout)
: for all (buf, lay_new) in updates do

if buf in L then
if scope(buf) == “local.fragment” and level != “STRICT” and buf not in L_strict then
if FragmentContains(L[buf], lay_new) then
L[buf] = lay_new
PropagateAlias(buf, lay_new, L, update_queue)
continue
assert(IsEqualLayout(L[buf], lay_new))
PropagateAlias(buf, lay_new, L, update_queue)
else
L[buf] = lay_new
PropagateAlias(buf, lay_new, L, update_queue)
if update_queue then
enqueue_all_users(buf)

: procedure FinishInferQueue(level, L, L_strict, q)
: while q is not empty do

id = q.pop()
RunlInferStep(id, level, true, L, L_strict)

: procedure PropagateAlias(src_buf, src_layout, L, update_queue)
: for all sib in AliasGroups[src_buf.storage_var] where sib != src_buf do

if shape(src_layout) == shape(sib) then
tgt = src_layout
else
tgt = Reshape(src_layout, shape(sib))
if sib in L then
assert(IsEqualLayout(L[sib], tgt))
else
L[sib] = tgt
if update_queue then
enqueue_all_users(sib)

: procedure TryInferFromRoot(root, level, L_tmp, L_strict)
. success = false

o try

: RunlnferStep(root, level, true, L_tmp, L_strict)

: FinishInferQueue(level, L_tmp, L_strict, q)

. success = true

: catch LayoutConflict or NormalizelterError

. success = false

. return success

: function SumFragmentRegisters(L)
: total =0
: for all (buf, layout) in L do

if layout.kind == “Fragment” then
total = total + product(layout.output_shape)

: return total
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Algorithm 3 Loop Lowering: Binding, Vectorization, Predication

1: procedure ApplyLoopLayoutTransformations(ForLoop, ForMap, PredMap, thread_var)
2: loop_layout = ForMap[ForLoop]
3: parallel_loop =
(not skip_thread_partition) and
(not local_register_only(ForLoop)) and
(not store_into_local(ForLoop))
: if parallel_loop then
ForLoop = PartitionLoop(ForLoop, thread_var, analyzer, loop_layout)
: has_non_local = touches_non_local(ForLoop.body)
: has_reducer = contains_reducer(ForLoop.body)
: has_cast_ops = contains_nonreduction_cast_store(ForLoop.body)
. if (has_non_local or has_cast_ops) and (not has_reducer) then
ForLoop = VectorizeLoop(ForLoop)

11: if ForLoop in PredMap and parallel_loop then
12: return IfThenElse(PredMap[ForLoop], ForLoop)

13: return ForLoop

._
SOV LA

to obtain layout updates. Updates are merged into L with two safeguards: (i) for pre-existing
buffers, strict equality is required unless the buffer is a register Fragment and the new layout
contains the old one (per FragmentContains), in which case a safe refinement is allowed
when not in “STRICT” and not locked by Lyyic; (ii) every update triggers PropagateAlias,
which reshapes to sibling shapes as needed and enforces alias-wise equality, enqueueing users
when in worklist mode. TryInferFromRoot runs a guarded, queue-based inference seeded
at a chosen root and catches LayoutConflict/NormalizeIterError to mark a candidate
infeasible. SumFragmentRegisters accumulates the product of each fragment layout’s output
shape, serving as a proxy for total register footprint.

Alias Completion and Validity Checks. After the three phases, each alias group is revis-
ited: if any sibling has a layout, the rest are filled by reshaping that layout to their shapes.
The pass asserts that all local.fragment buffers used in the IR are defined. Finally,
CollectLooplLayoutsAndPredicates summarizes loop-level binding decisions and out-
of-bounds predicates into (ForMap, PredMap).

Loop Lowering: Binding, Vectorization, Predication (Alg. [3). Given a loop and
(ForMap, PredMap), the lowering proceeds as follows:

* Thread binding. If the loop is parallelizable (not skipped, not purely local-register, and it
touches non-local memory), Part it ionLoop binds iterations to the hardware thread vari-
able using the loop layout from ForMap, aligning with the previously inferred thread/block
organization.

* Vectorization. If the loop body either touches non-local memory or performs non-reduction
cast stores, and there is no reducer present, VectorizeLoop is applied. This realizes the
vector length implied by the chosen layout, improving coalescing and matching hardware
vector widths while mitigating bank conflicts.

* Predication. If the loop may encounter boundary conditions and is parallel, the loop body
is guarded with IfThenE1se using the predicate from PredMap, ensuring safe accesses
without sacrificing parallel throughput.

Discussion. The division into STRICT/COMMON/FREE keeps the search tractable: rigid,
hardware-mandated forms are locked first; compatible information is then propagated to convergence;
and only the remaining degrees of freedom are explored via component-local, snapshot-and-choose
search guided by a register-cost objective. Alias propagation guarantees storage-consistent ad-
dress mappings, while fragment-aware refinement enables safe specialization of register tiling. The
produced (£, ForMap, PredMap) bridge high-level tile indices and low-level memory/thread orga-
nization, enabling performant, portable lowering across backends.
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Algorithm 4 Pipeline Inference

1: procedure Pipelinelnference( f, NumStages, InitOrderMap, InitStageMap)
2: OrderMap < copy(InitOrderMap)

3: StageMap < copy(InitStageMap)

4: for all serial loop L in f.body do

5: if L € OrderMap and L € StageMap then
6: continue

7: if L ¢ NumStages then

8 continue

9 n = NumStages[L)]

10 root = L.body

11 seq = FlattenToSeq(root)

12 Infos + []

13 for i = 0to |seq] — 1 do

14: (R, W, C) = RWCollect(seq[i])

15: Infos.push_back(Stagelnfo(R, W, 7, C))
16 S = CollectCopyReads(Infos)

17 PropagateProducers(Infos, S)

18 ComputeLastUse(Infos)

19 order_idx = 0

20

: for all p in Infos do
21: if FirstStage(p) and p.last_use # —1 then
22: continue
23: p.order = order_idx; order_idx < order_idx + 1; p.stage = n
24: for all ¢ in Infos do
25: if FirstStage(q) and g.last_use = p.original_idx then
26: q.order = order_idx; order_idx <— order_idx + 1; g.stage = 0
27: assert(order_idx = |Infos|)

28: k = TailCopyCount(Infos)
29: if £ > 0 and n > 2 then

30: for all p in Infos do

31: p.order = (p.order + k) mod |Infos|
32: if not p.copy and not p.producer then
33: p.stage = p.stage — 1

34: orders = [p.order for p € Infos]
35: stages = [p.stage for p € Infos]
36: ApplySoftwarePipeline(L, orders, stages, OrderMap, StageMap)

37: return (OrderMap, StageMap)

F PIPELINE INFERENCE ALGORITHM

Goal and Scope. Algorithm [ computes a software-pipelined schedule for serial loops that
expose staged data movement and computation. Given an input function f, an a priori upper
bound on the number of pipeline stages NumStages, and optional initial order/stage annotations
(InitOrderMap, InitStageMap), the pass produces a pair of maps (OrderMap, StageMap).
For each eligible serial loop L in f.body, the algorithm assigns (i) a total order index to every
statement in the flattened loop body and (ii) a stage id in {0, ..., n— 1}, where n = NumStages|L],
thereby enabling backend-specific software pipelining and overlapped execution of copies and
compute.

Loop Selection and Linearization. The outer procedure PipelineInference first filters
serial loops: if a loop L already has entries in both OrderMap and StageMap, or if it lacks a stage
budget in NumStages, it is skipped. For each remaining loop, the body is linearized into a sequence
seq via FlattenToSeq, which yields a stable, single-pass order of statements. Each sequence
element is then summarized into a StageInfo record containing its read set, write set, original
index, and a Boolean flag indicating whether the statement performs a global-to-shared copy.

Read/Write Classification and Copy Detection. The helper RWCollect (Algorithm|5) traverses
a statement and classifies its memory behavior into three components: a set of read regions R, a
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Algorithm 5 Core Subroutines for Pipeline Inference

R R ARl

: function RWCollect(stmt)
: R=[]; W = []; C = false; within = false; isg = false
: Visit(stmt):

on BufferStore(b, idxs, v):
W 4= Region(b, idxs); isg = false; Visit(v);
if isg and scope(b) € {*“shared”, “shared.dyn”} then C' = true;
on BufferLoad(b, idxs):
R += Region(b, idxs);
if scope(b) == “global” and not within then isg = true;
on IfThenElse(c, a, b):
within = true; Visit(c); within = false; Visit(a);
if b.defined() then Visit(b);
: return (R, W, C)

: function CollectCopyReads(Infos)

1 S =set()

: for all p in Infos where p.copy do

for all r in p.reads do
S.add(r.buffer)

. return S

: procedure PropagateProducers(Infos, S)
: for all p in Infos where p.copy do
upd = true
while upd do
upd = false
for all ¢ in Infos where not g.copy and g.original_idx < p.original_idx do
if exists w in g.writes with w.buffer € S then
q.producer = true; upd = true
for all r in g.reads do
S.add(r.buffer)

: procedure ComputeLastUse(Infos)
: for all p in Infos where FirstStage(p) do
for i = p.original_idx + 1 to |Infos| — 1 do
if exists 7 in Infos[¢].reads, w in p.writes with r.buffer = w.buffer and MayConflict(r.region,
w.region) then
p.last_use = max(p.last_use, )

: function TailCopyCount(Infos)
: ¢ = 0; mn = |Infos|; mz =0
: for all p in Infos do
if FirstStage(p) then
¢ < ¢+ 1; mn = min(mn, p.order)
else
mx = max(mz, p.order)
. if mn > ma then
return c
: else
return —1

: procedure ApplySoftwarePipeline(L, orders, stages, OrderMap, StageMap)
: OrderMap|[ L] <+ orders
: StageMap[ L] < stages

: function FirstStage(p)
: return p.copy or p.producer

: function MayConflict(a, b)
: return Intersect(IntSet(a), IntSet(b)) # Nothing
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set of write regions I, and a Boolean flag C for copy-like behavior. The visitor marks loads and
stores according to buffer scope (e.g., global, shared, shared.dyn), and uses a simple state
machine over the control-flow context (within, isg) to detect global loads that feed subsequent
shared-memory stores. Whenever a Buf ferStore into a shared buffer is preceded by such a global
read, the statement is classified as a copy (C' = true), allowing the later stages to identify candidate
prologue/epilogue moves for software pipelining.

Producer Propagation and Lifetime Analysis. Given the per-statement summaries,
CollectCopyReads aggregates the set S of buffers read by copy statements, which serves
as the seed for producer discovery. PropagateProducers then iteratively walks backwards over
the sequence to mark statements that produce any of the buffers in .S before a copy: whenever a
non-copy statement writes to a buffer in .S, it is labeled as a producer, and its own read buffers are
added to S. This fixed-point propagation captures multi-hop producer chains that eventually feed
global-to-shared copies.

Next, ComputeLastUse computes a conservative last-use index for each first-stage statement
(copy or producer). For a given p, the pass scans later infos and checks whether any read region of a
later statement may conflict with any write region of p, using MayConflict and an interval-set
intersection test. The largest index where such a conflict occurs is recorded as p.last_use, providing a
lifetime window that guides stage assignment and the positioning of prefetch-like operations.

Stage Assignment and Tail Rotation. With producer/copy labels and last-use information in place,
PipelineInference assigns an initial order and stage for each info in a single forward pass. The
core policy is that a first-stage statement p that is dead within the steady-state (i.e., FirstStage(p)
and p.last_use = —1) participates directly in the final pipelined schedule; otherwise, such statements
are skipped in this phase until their consumers are placed. For each selected p, the algorithm emits p
at the current order index with stage n (typically the last stage), then searches for matching first-stage
statements ¢ whose last use equals p.original_idx and places those ¢ immediately after p at stage 0.
This yields an interleaving of first-stage and steady-state work that respects data dependencies and
the inferred lifetimes. The invariant order_idx = |Infos| is asserted at the end to guarantee that
all statements receive a unique order.

To further improve the pipeline structure, TailCopyCount detects whether first-stage statements
form a contiguous tail segment in the assigned order. It counts the number of first-stage infos ¢, and
tracks the minimum order index among them (1mn) and the maximum order index of non-first-stage
statements (mx). If mn > maz, first-stage statements appear strictly after all other work, and the
function returns c; otherwise, it returns —1. When a positive tail count k is found and at least two
stages are available (n > 2), the algorithm rotates the schedule by k positions in a modular fashion
and decrements the stage of non-copy, non-producer statements. Intuitively, this rotation shifts tail
copies into the prologue while pulling steady-state computation earlier, yielding a more balanced
pipeline across the n stages.

Map Materialization and Backend Interface. After rotation, the final per-statement orders and
stages are collected into arrays orders and stages, which are committed to the global maps
via ApplySoftwarePipeline. For each loop L, OrderMap [ L] records a permutation of the
flattened body, and StageMap [ L] records a stage id for each element in that permutation. These
maps serve as the contract between the high-level pipeline inference and downstream backends: code
generators can exploit the stage structure to schedule prefetches, overlaps of global-to-shared copies
with compute, and explicit prologue/epilogue code, without re-running dependence analysis on the
original IR.

Discussion. The pipeline inference algorithm deliberately decouples (i) classification of copy
and producer statements, (ii) lifetime and conflict analysis, and (iii) stage-aware ordering and
optional schedule rotation. The use of region-based read/write summaries and conservative
MayConflict checks ensures correctness under aliasing and partially overlapping accesses. At
the same time, the simple rotation heuristic (TailCopyCount) captures a common pattern in
GPU kernels where global-to-shared transfers form a logical prologue or epilogue. By emitting
(OrderMap, StageMap) instead of directly rewriting the IR, the pass remains backend-agnostic
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while still exposing enough structure for aggressive software pipelining and latency hiding across
diverse hardware targets.

G EFFECTIVENESS OF THE COST MODEL

TILELANG employs an analytical cost model to prune suboptimal candidates and prioritize high-
potential ones. This approach yields schedules that match or closely approach the performance of
the best results of brute-force search or exhaustive autotuning, while requiring orders of magnitude
less tuning effort. For example, on GEMM-FP16 xFP16 workloads derived from models such as
LLaMA-70B, TILELANG prunes 95% of candidate schedules, retaining only the top 5%. Despite
this aggressive pruning, it achieves on average 98.47% of the performance (in TFLOPS) of the
best configurations found by exhaustive search, substantially reducing compilation time with only
negligible performance loss. This also serves as an evaluation of the effectiveness of our roofline-
based analytical cost model.

M N K Predicted-TopX / Best (TFLOPS)
512 1024 8192 100.0%
512 12288 12288 99.9%
512 28672 8192 98.7%

2048 12288 49152 100.0%
4096 1024 7168 100.0%
4096 14336 14336 100.0%
4096 28672 8192 99.6%
8192 8192 28672 100.0%
8192 28672 8192 100.0%
16384 1024 7168 98.4%

Table 3: Accuracy of our analytical cost model: predicted top-5% schedules retain over 98% of the
best performance while pruning 95% of candidate schedules.

H TUNING TIME

As demonstrated in Table[d] TILELANG leverages a hardware-aware recommendation mechanism
to efficiently automate the design of high-performance computational kernels. The system achieves
average tuning durations of approximately 10 seconds across both NVIDIA H100 and AMD MI300X
accelerators. For the most complex operations, extended tuning times average 13.69 seconds on
H100 and 15.08 seconds on MI300X, reflecting the scalability of our approach under computationally
intensive workloads.

We also conducted a direct tuning-time comparison with Ansor/AutoTVM and Triton for the GEMM
and 2D convolution kernel on H100. TileLang and Triton are tuned with 20 configs, and the number
of trials is set to 100 in Ansor. The results in Table |56| show that TileLang tunes markedly faster
than both frameworks—especially vs. TVM Ansor, which requires much longer empirical search.
This improvement comes from TileLang’s first-class tile IR, which defines a far more structured
optimization space, and from our cost-model-guided inference, which avoids large brute-force
searches.

Table 4: Average Tuning Times for Different Operators

Operation GEMM DequantGEMM FlashMHA FlashMLA FlashBSA
H100 Time (s) 9.05 9.15 13.48 13.69 13.46
MI300 Time (s)  10.99 11.10 14.67 15.03 15.08
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Table 5: Comparison of Average Tuning Times for GEMM

Operation GEMM1 GEMM2 GEMM3 GEMM4
TileLang Time (s) 11.81 11.78 14.59 14.31
Triton Time (s) 18.43 18.24 20.15 20.07
Ansor Time (s) 518.52 455.51 3007.00  4142.05

Table 6: Comparison of Average Tuning Times for Conv2D

Operation Conv2D1 Conv2D2 Conv2D3 Conv2D4 Conv2D5 Conv2D6 Conv2D7 Conv2D8
TileLang Time (s) 11.56 17.49 17.65 17.41 19.18 18.87 17.50 17.21
Triton Time (s) 17.56 18.76 37.59 38.57 37.61 18.82 19.13 18.97

I MATMUL IMPLEMENTATION DIFFS: TVM VvS. TILELANG VS. TRITON

TILELANG achieves significant code-size reduction through its fundamentally different tile abstrac-
tion. Instead of manipulating raw pointers, TILELANG represents tiles as first-class IR constructs,
endowed with explicit semantics for indexing, data movement, and pipelining. High-level primitives
such as copy, gemm, and pipelined enable the compiler to automatically perform address com-
putation and pipeline orchestration. In contrast, Triton requires programmers to manually manage
memory access via pointer and offset arithmetic, resulting in a lower level of abstraction.

Moreover, TILELANG supports maintaining execution context via T . Kernel, which obviates the
need for developers to explicitly compute grid dimensions and launch kernels. This design choice
further reduces code size by eliminating boilerplate associated with kernel invocation.

In TVM, matrix multiplication kernels are typically expressed through simple tensor-compute defini-
tions. Performance optimization is achieved by applying hand-written schedules, which can transform
the computation into a high-performance form. While this manual scheduling process may require
tens to hundreds of lines of Python code, TVM also provides automatic scheduling mechanisms such
as Ansor to explore schedule configurations. After scheduling, the tensor expressions are compiled
and built into executable code.

However, TVM’s scheduling-independent compute-expression abstraction has limited expressiveness
for certain operators, such as FlashAttention and irregular sparse kernels. Automatic scheduling in
TVM also faces challenges when dealing with a very large search space and when targeting new
hardware backends with insufficient operator expressiveness. TILELANG addresses these limitations
by employing a human-in-the-loop methodology to enhance expressiveness for complex and irregular
workloads, and by leveraging a cost-model—driven scheduling approach to mitigate the search-space
explosion issue.

J COMPARISON OF FTG IR AND TVM IR

Figure [T3] (a) shows an FTG IR produced after the Pipeline Inference Pass, which explicitly ma-
terializes a software pipeline with a prologue (prefetch the first A/B tiles and clear the accumula-
tor), a steady-state loop that overlaps compute and prefetch, and an epilogue (final compute and
write-back). This IR emphasizes schedule semantics and readability: block tiling, shared-memory
staging, and double buffering are expressed with concise, high-level primitives such as T.Kernel,
alloc_shared/alloc_fragment, T.clear, T.copy, and T.gemm. The same semantics
are then lowered to TVM IR in Figure [I3](b), which preserves the pipeline structure while making
GPU execution details explicit: blockIdx/threadIdx bindings, scoped buffers in shared/local
memory, unrolled initialization, asynchronous copies (e.g., cp . async) with commit/wait groups,
and a target-specific GEMM call. In short, (a) captures a tile-wise schedule for readability and porta-
bility, whereas (b) exposes fine-grained GPU mechanisms for maximum control and performance,
without changing the prologue—steady-state—epilogue structure.
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€ TileLang

aT.prim_func
def matmul_kernel(

A: T.Tensor((M, K), dtype),
B: T.Tensor((K, N), dtype),
C: T.Tensor((M, N, dtype),

with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M)) as (bx, by):

A_shared = T.alloc_shared((block_M, block_K), dtype)
B_shared = T.alloc_shared((block_K, block_N), dtype)
C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
T.clear(C_local)
for ko in T.Pipelined(T.ceildiv(K, block_K)):
T.copy(A[by * block_M, ko * block_K], A_shared)
T.copy(B[ko * block_K, bx * block_N], B_shared)
T.gemm(A_shared, B_shared, C_local)
T.copy(C_local, C[by * block_M, bx * block_N])

A, B, C: torch.Tensor
matmul_kernel(A, B, C)

(2 ]

ox®>

)

te.placeholder((M, K), name="A", dtype=in_dtype)
te.placeholder((K, N), name="B", dtype=in_dtype)
te.reduce_axis((0, K), name="k")

te. compute(

M, N,

lambda i, j: te.sum(A[i, k].astype(accum_dtype) *
B[k, jl.astype(accum_dtype), axis=k),

name="

args = [A, B, C]

func = te.create_prim_func(args)
module = tm.IRModule({"main": func})
module = ansor.autotune(module)
executable = tvm.compile(module)

A, B, C: torch.Tensor

executable(A, B, C)

atriton.jit

def

def

matmul_kernel(
a_ptr, b_ptr, c_ptr,
M, N, K,

stride_am, stride_ak
stride_bk, stride_bn
stride_cm, stride_cn
BLOCK_SIZE_M: tl.con:
GROUP_SIZE | tl.con:
ACTIVATION: tl.const

pid = tl.progran_id(
nun_pid_m = tl.cdiv(
nun_pid_n = tl.cdiv(

e Triton

stexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr
stexpr,
expr

axis=0)
M, BLOCK_SIZE_M)
N, BLOCK_SIZE_N)

num_pid_in_group = GROUP_SIZE_M * num_pid_n

group_id
first_pid_m = group_
group_size_m = min(n
pid_m = first_pid_m

pid // num_pid_in_group

id % GROUP_SIZE_M
un_pid_m - first_pid_m, GROUP_SIZE_M)
+ ((pid % num_pid_in_group) % group_size_m)

pid_n = (pid % num_pid_in_group) // group_size_m

offs_am = (pid_m * B
offs_bn = (pid_n * B
offs_k = tl.arange(@
a_ptrs

accumulator = tl.zer
for k in range(o, tl
a = tl.load(a_pt
b = tl.load(b_pt
accumulator = tl
a_ptrs += BLOCK_
b_ptrs += BLOCK_:
¢ = accunulator. to(t
offs_cm = pid_m » BL
offs_cn = pid_n * BL
c_ptrs c_ptr + str:
c_mask = (offs_cml:
tl.store(c_ptrs, ¢,

matmul(a, b):

grid = lambda META:

matmul_kernel [grid](
a, b, c
M, N, K,
a.stride(0), a.s
b.stride(), b.s
c.stride(0), c.s
ACTIVATION=activ

)

return c

a_ptr + (offs_am[:, None] » stride_am + offs_k[None
b_ptrs = b_ptr + (offs_k[:, None]  stride_bk + offs_bn[None

LOCK_SIZE_M + tl.arange(@, BLOCK_SIZE_M)) % M

LOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N

, BLOCK_STZE_K)

1] * stride_ak)
:] * stride_bn)
05((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)

.cdiv(K, BLOCK_SIZE_K)):

rs, mask=offs_k[None, :] < K - k % BLOCK_SIZE_K, other=0.0)
rs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
.dot(a, b, accumulator)

SIZEK «+ stride_ak

SIZE_K * stride_bk

1.float16)

OCK_SIZE_M + tl.arange(@, BLOCK_SIZE_M)

OCK_SIZE_N + tl.arange(@, BLOCK_SIZE_N)

ide_cm + offs_cm[:, None] + stride_cn * offs_cn[None, :]
Nonel < M) & (offs_cn[None, :1 < N)

mask=c_mask)

(cdiv(M, META['BLOCK_SIZE_M'])  cdiv(N, META['BLOCK_SIZE_N'1))

tride(1),
tride(1),
tride(1),
ation

Figure 12: Side-by-side diff of minimal GEMM implementations in TVM, TILELANG, and Triton
(first page).

@T.prin_func
def HMatmul(

A: T.Tensor((M, K), "floatle"),
B: T.Tensor((K, N), "floatl6"),
C: T.Tensor((M, N), "float16"),

with T.Kernel(
ceildiv(N, block_N),
ceildiv(M, block_M), threads=threads) as (bx, by):

# Buffer Allocation
A_shared = T.alloc_shared((block_M, block_K), "float16")

B_shared = T.alloc_shared((block_K, block_N), "floatl6")
C_local = T.alloc_fragment((block_M, block_N), "float16")

# Initialize C_local
T.clear(C_local)

# Main Loop with Expanded Pipeline
T.copy(Alby * block_M, 8 * block_K], A_shared)
T.copy(B[O * block_K, bx * block_N], B_shared)

# Main Loop with Pipeline Annotation
for k in T.serial(ceildiv(K, block_K)):
T.gemm(A_shared, B_shared, C_local)

T.copy(Alby * block_M, k * block_K], A_shared)
T.copy(BLk * block_K, bx * block_N], B_shared)

# Compute the last stage

T.gemn(A_shared, B_shared, C_local)

# Copy the result to the output buffer
T.copy(C_local, Clby * block_M, bx * block_N1)

(a) Fused Tile Graph IR

@T.prin_func
def Matmul(

A: T.Tens
C: T.Tens
J):
A_shared
B_shared
C_local =
bx = T.th
by = T.th
tid = T.tl
for i in
C_loc:
for i in
T.ptx
T.ptx.
T.ptx_com
for ko in
T.ptx
T.cal
T
T
T
)
for i
T
T
T.ptx.
T.ptx_wais
T.call_ex
"l
T.tvm
T.tvm
T.tvm
bl

or((M, K), "float16"), B: T.Tensor((K, N), "floatle")
or((M, N), "floatl6"),

= T.decl_buffer((block_M * block_K,), dtype, scope="shared")
= T.decl_buffer((block_K * block_N,), dtype, scope="shared")
T.decl_buffer((128,), accum_dtype, scope="local")
read_binding(T.ceildiv(N, block_N), "blockIdx.x")
read_binding(T.ceildiv(M, block_M), "blockIdx.y")
hread_binding(threads, "threadIdx.x")

T.unroll(128):

al[i] = T.float32(e)

T.unroll(y):

_cp_async("uint8", A_shared.data, 0, A.data, 0, 16)
_cp_async("uint8", B_shared.data, 0, B.data, 0, 16)
mit_group()

T.serial(ceildiv(K, block_K) - 1):

_wait_group(@)

1_extern(

tl::gemm_ss<128, 128, 32, 2, 2, 0, 0>",
.tvn_access_ptr(A_shared.data, 0, block_M * block_K, 1),
.tvn_access_ptr(B_shared.data, 0, block_K * block_N, 1),
.tvm_access_ptr(C_local.data, 0, 128, 3),

in T.unroll(4):
.ptx_cp_async("uint8", A_shared.data
.ptx_cp_async("uint8", B_shared.data
_commit_group()
t_group(0)
tern(
gemm_ss<128, 128, 32, 2, 2, 0, 0>",
_access_ptr(A_shared.data, 0, block_M * block_K, 1),
_access_ptr(B_shared.data, 0, block_K * block_N, 1),
_access_ptr(C_local.data, 0, 128, 3),

0, A.data,
0, B.data,

0, 16)
0, 16)

(b) Lowered Tensor IR

Figure 13: A side-by-side comparison showing how tile-level FTG-IR is lowered into Tensor IR.
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K COMPARISON OF FLASHMLA IMPLEMENTATIONS ON DIFFERENT
ARCHITECTURES: NVIDIA vs. AMD

det

)
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Q: T.Tensor, a_pe: T.Tensor, KV: T.Tensor,
K_pe: T.Tensor, Output: T.Tensor,

with T.Kernel(heads // ./ (block_H, kv_group_num), batch

{QCéhared = T alloc_shared{ (B1ock_, dini, dtype)
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det
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ale = T.alloc_fragnent ((block_H], accun_dtype)
scores_sun = T.alloc_fragment ([block_H], accum_dtype)
logsum = T.alloc_fragment ([block_H], accun_dtype)
cur_kv_head = hid // (Kv_group_num // block_H)
T.copy(Qlbid, hid * (hid + 1) *
T.copy(0_pe(bid, hid *
T.f1ll(acc.0, )
T.£111(logsun, 0)
T.f111(scores_max, -T.infinity(accun_dtype))
loop_range = T.ceildiv(seqlen_kv, block_N)
for k in T.Pipelined(loop_range, num_stages=nun_stages)
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T.copy(K_pelbid, k * block_N:(k + 1) * block_N, cur_kv_head, :1, K_pe_shared)

T.gemm(Q_shared, , acc_s, transpose_
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T.copy (scores_max, scores_max_prev)
T.f111(scores_max
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policy=FullCol, clear_accum
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T.reduce_max(acc_s, scores_max, dim=', clears )
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for 1,3 in T.Parallel(block W, dim)

K_pe_shared = T.alloc_shared((block N, pe_dim], dtype)
acc_s = T.alloc_fragment ([block_H, block N, accum_dtype)

acc_s_cast = T.alloc_fragment ([block_H, block_N], dtype)

{‘ace_o = T.alloc_fragnent ([block_H, dim], accu_dtype)
I

SCores_max = T.a10c_fragnent|[BIoCK H], accum-dtype)
scores_max_prev = T.alloc_fragment ([block_H], accum_dtype)
scores_scale = T.alloc_fragment ([block_H], accum_dtype)
scores_sum = T.alloc_fragment ([block_H], accum_dtype)
logsum = T.alloc_fragment ([block_H], accum_dtype)
cur_kv_head = hid // (kv_group_num // block_H)
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for k in T.Pipelined(loop_range, num_stages=num_stages)
T.copy(<V[bid, k * block_N:(k + 1) * block_N, cur_kv_head, :1,
T.copy(K_pelbid, k * block_N:(k + 1) * block_N, cur_kv_head,

T.gemm(Q_local, , acc_s, transpose_B b
T.gemm(Q_pe_local, K_pe_shared, acc_s, transpose_B

, :1, Q_local)

(hid + 1) * . 11, Q_pe_local)

)
1, K_pe_shared)

policy=FullRow, clear_accum:
, policy=FullRow)

T.copy (scores_max, scores_max_prev)
T.f1ll(scores_max, -T.infinity(accun_dtype))
T.reduce_max(acc_s, scores_max, dim=', clears )
for 1 in T.Parallel(block_H)
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Figure 14: Comparison of FlashMLA implementations targeting NVIDIA (left) and AMD (right)
architectures.

Figure [T4]illustrates the code-level divergences between the FlashMLA implementations for NVIDIA
and AMD architectures. While the high-level algorithmic structure remains unified, the implemen-
tation diverges to exploit distinct architectural strengths. First, Region 1 highlights the memory
scope allocation for Query (Q) tiles, where the NVIDIA backend utilizes shared memory while the
AMD backend prioritizes register memory. Similarly, Regions 2 and 5 collectively illustrate the
divergence in intermediate accumulator storage: NVIDIA buffers these results in shared memory,
whereas AMD maintains them directly in registers. Regarding output strategy, Regions 3 and 7 show
that NVIDIA stages the output tile in shared memory to ensure coalesced transactions, in contrast to
AMD, which performs a direct copy from registers to global memory. Finally, Regions 4 and 6 depict

the adaptation of GEMM policies, employing a FullCol strategy for NVIDIA and FullRow for AMD
to ensure optimal instruction performance.

L COMPARISON WITH RECENT SYSTEMS

Table [7|evaluates Causal MHA on an H100 (B = 64, H = 64, D = 128). TileLang is more concise
than Tilus (Ding et al, 2025) (66 vs. 83 LOC) while achieving a 59%-75% performance gain. Table
[evaluates the same MHA on an RTX 4090 (B = 16, H = 32, D = 128). TileLang achieves the

best performance among baselines and outperforms the latest Tilus by 3%—4% with significantly
fewer lines of code.

seq_len

1024
2048
4096

Tilus (ms)

6.85
25.65
97.14

TileLang (ms)

4.29
15.69
55.44

Table 7: Performance of Causal MHA on H100 (B = 64, H = 64, D = 128).
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seq_len FA2 (tflops) Triton (tflops) Tilus (tflops) TileLang (tflops)

MHA 1024 137.58 106.61 133.82 143.40
2048 151.46 121.44 154.36 159.03
4096 162.70 129.75 159.26 162.79
8192 164.10 134.40 161.60 165.56
LoC 389 197 393 138

Table 8: Performance and Lines of Code(LoC) of Causal MHA on RTX 4090 (B = 16, H = 32, D =
128).

(M,N,K) TileLang (ms)  Gluon (ms) Helion (ms)  Tilus (ms)
8192, 1024, 8192 0.16 0.30 0.26 0.31
8192, 8192, 8192 1.40 2.22 1.64 2.97
8192, 28672, 8192 5.09 7.82 5.87 10.19
8192, 8192, 28672 5.09 7.77 5.89 10.02

Table 9: Comparison of TileLang, Gluon (LoC = 68), Helion (LoC = 24), and Tilus (LoC = 110) on
GEMM workloads.

seq_len TileLang (ms) Helion (ms)

1024 0.17 0.19
2048 0.33 0.36
4096 0.65 0.71
8192 1.28 1.41
16384 2.53 3.01
32768 5.08 5.56

Table 10: Performance of Mamba-chunk-scan on H100, with batch size 8, 80 attention heads, model
dimension 64, dstate 128, and sequence lengths ranging from 1024 to 32768. Helion LOC=116,
TileLang LOC=114.
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We evaluate the latest official Helion (PyTorch, [2025) and Gluon (OpenAl, 2025) examples that
support execution on Hopper, covering both GEMM and Mamba-chunk-scan workloads. As shown in
Table[9] TileLang achieves 1.15-1.62x, 1.52-1.83%, and 1.87-2.12x speedups over Helion, Gluon,
and Tilus, respectively.

On Mamba-2-chunk-scan, TileLang further provides 1.10-1.19x speedups over Helion, as reported
in Table

The differences are attributable to design limitations in existing DSLs. Helion lacks an effective
tile-recommendation system, making optimization difficult and causing long tuning times (over 20
minutes). Gluon lacks appropriate abstractions and interfaces for pipeline scheduling, which makes it
difficult to achieve effective overlap of computation and memory operations. Second, Gluon operates
at a lower programming abstraction level, requiring users to manually make a larger number of design
and optimization decisions. As a result, writing high-performance kernels in Gluon is considerably
more challenging. This is also reflected by the fact that the Gluon implementation of GEMM requires
substantially more lines of code than the corresponding TileLang implementation. Tilus exposes
thread-block-level control over shared memory and registers, but without tile abstraction and critical
tile-related optimization. In contrast, TileLang’s tile-recommendation mechanism efficiently identifies
good tile configurations, and its pipeline-inference strategy generates an effective schedule that
overlaps computation and memory I/O. These additions provide a clearer qualitative and quantitative
comparison among recent DSLs and further highlight TILELANG’s performance and usability
advantages.

M BASELINE COMMIT HASHES

To ensure reproducibility, we provide the specific commit hashes for the baselines used in our
experiments that were not specified in the main text (see Table [TT).

Table 11: Commit hashes for baseline frameworks.

N

System Commit Hash

Gluon 61cefSbdbfe2f£179208£057d72c0b43b4885e5d2
Helion 9a30bd18dcd87e08784691d5799%elaf71fe0502£
Tilus 505£566210319e2£f55eeeddc393£01a203950510
Ansor 64969035£fd4f3clddcc23caa84d567b£90e33889c¢
ThunderKittens 572073a3935£91a268d37d5262cee0d950c2e9b2
Marlin 1£25790bdd49fbab3106164a24666dade68d7¢c90
Block-Sparse-Attention 6ec5a27a0cd6bd92ea6296698d64e460c73da27e
ComposableKernel b8893b933963e86b76fa3fal088ededc4504119£9

Tilus (Variant?)
FlashAttention-2 (FA2)
TritonBench

b2085f5ea08c504efeb2cab’/cfaae3cd99701634
5d2cd3bcbaeff6felbfc5d0£f£489451b0d4827a6
a490be73ba84ab977de5¢cf£78055aldcb2e314£40

OPERATOR SHAPES IN OUR BENCHMARK
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Table 12: Matrix shapes in our FP16 Matmul evaluation

| DO DI D2 D3

8192 8192 8192 8192
1024 8192 28672 8192
8192 8192 8192 28672

M
N
K

Table 13: Matrix shapes in our Fused Dequantize-Matmul evaluation

| MO MI M2 M3

1 1 1 1
1024 8192 28672 8192
8192 8192 8192 28672

M
N
K

Table 14: FlashAttention and Block Sparse Attention(with 50%, 90% sparsity) shapes in our evalua-
tion

| FAOO FAl FA2 FA3 FA4 FA5 FA6 FA7

batch 64 64 64 64 64 64 64 64
nheads 64 64 64 64 64 64 64 64
seq_len 1024 2048 4096 8192 1024 2048 4096 8192
head_dim | 128 128 128 128 128 128 128 128
causal false false false false true true true true

Table 15: FlashMLA shapes in our evaluation

| FMLAO FMLAl1 FMLA2 FMLA3

batch 64 64 64 64

nheads 128 128 128 128
seq_len 1024 2048 4096 8192
head_dim 512 512 512 512
pe_dim 64 64 64 64

causal false false false false

Table 16: Convolution-2D shapes in our evaluation

\ConvO Convl Conv2 Conv3d Conv4 ConvS Conv6 Conv7

N 128 128 128 128 128 128 128 128
C 2048 512 512 512 256 1024 512 64
H 7 7 14 7 14 14 28 56
W 7 7 14 7 14 14 28 56
F 512 2048 512 512 256 256 128 64
K 1 1 3 3 3 1 1 1
S 1 1 2 1 1 1 1 1
D 1 1 1 1 1 1 1 1
P 0 0 1 1 1 0 0 0
G 1 1 1 1 1 1 1 1
HO 7 7 7 7 14 14 28 56
WO 7 7 7 7 14 14 28 56
Count 2 3 1 2 5 5 3 1
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Table 17: Chunk-Gated-Delta-Net kernel shapes in our evaluation

| CGDNO CGDN1 CGDN2 CGDN3 CGDN4 CGDN5

batch 1 1 1 64 64 64
nheads 32 32 32 32 32 32
seq_len 16384 32768 65536 1024 2048 4096

head_dim 128 128 128 128 128 128

Table 18: Vertical Slash Sparse Attention shapes in our evaluation

| VSSAO VSSAl VSSA2 VSSA3

batch 1 1 1 1
nheads 1 1 1 1
seq_len 8192 16384 32768 65536

head_dim 64 64 64 64
vertical size 1000 1000 800 1000
slash size 600 200 600 600

Table 19: Attention Sink shapes in our evaluation

| Sink0  Sinkl ~ Sink2  Sink3

batch 1 1 1 1
nheads 64 64 64 64
kv_heads 8 8 8 8

seq_len 1024 2048 4096 8192
kv_seq_len | 1024 2048 4096 8192
head_dim 64 64 64 64

casual true true true true
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O KERNEL IMPLEMENTATIONS

0.1 MATRIX MULTIPLICATION (MATMUL)

JJit
def Matmul (A: T.Tensor, B: T.Tensor, C: T.Tensor):
with T.Kernel (N // block_N, M // block_M,
threads=threads) as (bx, by):
A_shared = T.alloc_shared(block_M, block_K)
B_shared = T.alloc_shared(block_K, block_N)
C_local = T.alloc_fragment (block_M, block_N)

T.clear (C_local)

for k in T.Pipelined(K // block_K, num_stages=2):
T.copy (A[by % block_M, k = block_K], A_shared)
T.copy (B[k * block_K, bx x block_N], B_shared)
T.gemm (A_shared, B_shared, C_local)

T.copy(C_local, C[by % block_M, bx * block_NJ)

Figure 15: Kernel Implementation of Matrix Multiplication.

0.2 DEQUANTIZED MATRIX MULTIPLICATION

LJjit
def dequantize_gemv (A: T.Tensor, B: T.Tensor, C: T.Tensor):

with T.Kernel(T.ceildiv (N, n_partition), M, threads=(reduce_thread, n_partition))

A_local = T.alloc_local((micro_size_k,), in_dtype)

B_quant_local = T.alloc_local([micro_size_k_compressed], storage_dtype)
B_dequantize_local = T.alloc_local([micro_size_k], in_dtype)

accum_res = T.alloc_local((l,), accum_dtype)

reduced_accum_res = T.alloc_local((l,), accum_dtype)

T.clear (accum_res)
for ko in T.serial (T.ceildiv (K, block_K)):
for v in T.vectorized(micro_size_k):

A_local[v] = A[by, ko % block_K + kr % micro_size_k + v]

for v in T.vectorized(micro_size_k_compressed) :
B_quant_local[v] = B[
bx » n_partition + ni,

ko % (reduce_thread * micro_size_k_compressed) +

kr * micro_size_k_compressed + v,

1

T.call_extern(
"fast_decode_int4d",
T.address_of (B_quant_local[0]),
T.address_of (B_dequantize_local[0]),
dtype=in_dtype,

)

for ki in T.serial (micro_size_k):

accum_res[0] += A_local[ki] * B_dequantize_locall[ki]

with T.attr(

T.comm_reducer (lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),

"reduce_scope",
T.reinterpret (T.uint64 (0), dtype="handle"),

T.evaluate(
T.tvm_thread_allreduce (

T.uint32 (1),
accum_res[0],

True,
reduced_accum_res[0],
kr,

dtype="handle",
))
if kr == 0:
C[by, bx » n_partition + ni] = reduced_accum_res[0]

as

(bx,

by) :

Figure 16: Implementation of Weight-Only Quantization (Wgp4_gomi Arpis) Matmul using TILE-
LANG, showcasing support for mixed-precision computations via a simple form.
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0.3 FLASH ATTENTION IMPLEMENTATION

Ljit
def flash_attention(Q: T.Tensor, K: T.Tensor, V: T.Tensor, Output: T.Tensor):
with T.Kernel (

Q_shared = T.alloc_shared([block_M, dim], dtype)
K_shared = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_N, dim], dtype)
O_shared = T.alloc_shared([block_M, dim], dtype)
s = T.alloc_fragment ([block_M, block_N], accum_dtype)

acc_
acc_
acc_

s_cast = T.alloc_fragment ([block_M, block_N], dtype)

o = T.alloc_fragment ([block_M, dim], accum_dtype)

scores_max = T.alloc_fragment ([block_M], accum_dtype)
scores_max_prev = T.alloc_fragment ([block_M], accum_dtype)
scores_scale = T.alloc_fragment ([block_M], accum_dtype)
scores_sum = T.alloc_fragment ([block_M], accum_dtype)
logsum = T.alloc_fragment ([block_M], accum_dtype)

HHAaA

.copy (Q[bz, bx % block_M: (bx + 1) * block_M, by, :], Q_
.fill(acc_o, 0)

.fill (logsum, 0)

.fill (scores_max, -T.infinity (accum_dtype))

loop_range = (

for

for

T.min(T.ceildiv(seg_len, block_N), T.ceildiv(

(bx + 1) * block_M, block_N)) if is_causal else
k in T.Pipelined(loop_range, num_stages=num_stages) :
T.copy (K[bz, k % block_N:(k + 1) = block_ N, by, :1,

if is_causal:
for i, j in T.Parallel(block_M, block_N):

T.ceildiv(seqg_len, block_M), heads, batch, threads=threads) as (bx, by, bz):

shared)

T.ceildiv(seq_len, block_N))

K_shared)

i >= k % block N + j, 0,

policy=T.GemmWarpPolicy.FullRow)

acc_s[i, j] = T.if_then_else(bx * block M +
~T.infinity (acc_s.dtype))
else:
T.clear (acc_s)
T.gemm (Q_shared, K_shared, acc_s, transpose_B=True,
T.copy (scores_max, scores_max_prev)
T.fill (scores_max, -T.infinity (accum_dtype))
T.reduce_max (acc_s, scores_max, dim=1, clear=False)

for i in T.Parallel (block_M):

scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] = scale)

for i, j in T.Parallel(block_M, block_N):

acc_s[i, j] = T.exp2(acc_s[i, J] * scale - scores_max[i] * scale)

T.reduce_sum(acc_s, scores_sum, dim=1)
for i1 in T.Parallel (block_M):

logsum[i] = logsum[i] % scores_scale[i] + scores_sum[i]

T.copy (acc_s, acc_s_cast)
for i, j in T.Parallel (block_M, dim):
acc_o[i, Jj] #= scores_scalel[i]
T.copy (V[bz, k * block_N:(k + 1) * block_N, by, :],

V_shared)

T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

i, j in T.Parallel (block_M, dim):
acc_o[i, j] /= logsum[i]

T.copy (acc_o, O_shared)
T.copy (O_shared, Output[bz, bx * block_M: (bx + 1) * block_M, by, :1)

Figure 17: Implementation of Flash Attention with TILELANG.
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0.4 FLASHMLA

LJjit
def flash_mla/(
Q: T.Tensor

IMPLEMENTATION

([batch, heads, dim], dtype),

Q_pe: T.Tensor ([batch, heads, pe_dim], dtype),

KV: T.Tensor ([batch, seglen_kv, kv_head_num, dim], dtype),
K_pe: T.Tensor ([batch, seglen_kv, kv_head_num, pe_dim], dtype),
Output: T.Tensor ([batch, heads, dim], dtype),

with T.Kernel (batch, heads // min(block_H, kv_group_num), threads=256

as (bx,

Q_shared = T.alloc_shared([block_H, dim], dtype)

S_shared =
Q_pe_shared
KV_shared =
K_pe_shared
O_shared =

T.alloc_shared([block_H, block_N], dtype)

= T.alloc_shared([block_H, pe_dim], dtype)
T.alloc_shared([block_N, dim], dtype)
= T.alloc_shared([block_N, pe_dim], dtype)

T.alloc_shared([block_H, dim], dtype)

acc_s = T.alloc_fragment ([block_H, block_N], accum_dtype)
acc_o = T.alloc_fragment ([block_H, dim], accum_dtype)

scores_max

= T.alloc_fragment ([block_H], accum_dtype)

scores_max_prev = T.alloc_fragment ([block_H], accum_dtype)
scores_scale = T.alloc_fragment ([block_H], accum_dtype)

Scores_sum

= T.alloc_fragment ([block_H], accum_dtype)

logsum = T.alloc_fragment ([block_H], accum_dtype)

cur_kv_head

= by // (kv_group_num // block_H)

T.use_swizzle (10)

.copy (Q_pe

HHHa A

loop_range
for

.clear
.gemm (

Q_shared, KV_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullCol)

T.gemm (

.fill (acc_o,
.fill (logsum,
.fill (scores_max, -T.infinity (accum_dtype))

.copy (Q[bx, by % VALID_BLOCK_H: (by + 1) * VALID_BLOCK_H, :], Q_shared)

by) :

[bx, by * VALID_BLOCK_H: (by + 1) + VALID_BLOCK_H, :], Q_pe_shared)

0)

= T.ceildiv(seglen_kv, block_N)

k in T.Pipelined(loop_range, num_stages=2):
T.copy (KV[bx, k * block_N:(k + 1) % block_N, cur_kv_head, :], KV_shared)
T.copy (K_pe[bx, k * block_N:(k + 1) x block_N, cur_kv_head, :], K_pe_shared)
T

T

(acc_s)

Q_pe_shared,
K_pe_shared,
acc_s,
transpose_B=True,
policy=T.GemmWarpPolicy.FullCol)
T.copy (scores_max, Scores_max_prev)
T.fill (scores_max, -T.infinity (accum_dtype))
T.reduce_max (acc_s, scores_max, dim=1, clear=False)
for i1 in T.Parallel (block_H):

scores_scale[i] = T.exp2(scores_max_prev[i] % scale - scores_max[i

for i,

j in T.Parallel (block_H, block_N):

acc_s[i, j] = T.exp2(acc_s[i, j] » scale - scores_max[i] * scale)
T.reduce_sum(acc_s, scores_sum, dim=1)
T.copy (acc_s, S_shared)
for i1 in T.Parallel (block_H):

logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]

for i,
acc
T.gemm (

j in T.Parallel (block_H, dim):

_o[i, j] == scores_scale[i]

S_shared, KV_shared, acc_o, policy=T.GemmWarpPolicy.FullCol)

for i, j in T.Parallel(block_H, dim):

acc_o[

i, j] /= logsum[i]

T.copy (acc_o, O_shared)
T.copy (O_shared, Output [bx, by * VALID_BLOCK_H: (by + 1) % VALID_BLOCK_H,

Figure 18: Implementation of FlashMLA with TILELANG.
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0.5 BLOCK SPARSE ATTENTION IMPLEMENTATION

for k in T.Pipelined(loop_range, num_stages=num_stages):
if BlockMask[bz, bx, by, k]:
T.copy (K[bz, k % block_N:(k + 1) * block_N, by, :], K_shared)
if is_causal:
for i, j in T.Parallel (block_M, block_N):

acc_s[i, j] = T.if_then_else(bx % block M + i >= k % block_N + 7,

-T.infinity (acc_s.dtype))
else:
T.clear (acc_s)

.gemm (Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

T
T.copy (scores_max, scores_max_prev)

T.fill (scores_max, -T.infinity (accum_dtype))
T

£

.reduce_max (acc_s, scores_max, dim=1, clear=False)
or i in T.Parallel (block_M):
scores_scale[i] = T.exp2(scores_max_prev[i] % scale - scores_max[i]
for i, j in T.Parallel(block_M, block_N):
acc_s[i, j] = T.exp2(acc_s[i, J] * scale - scores_max[i] * scale)

T.reduce_sum(acc_s, scores_sum, dim=1)
for i in T.Parallel (block_M):
logsum[i] = logsum[i] % scores_scale[i] + scores_sum[i]
T.copy (acc_s, acc_s_cast)
for i, j in T.Parallel(block_M, dim):
acc_o[i, j] »= scores_scale[i]
T.copy (V[bz, k % block_N:(k + 1) * block_ N, by, :], V_shared)
T.gemm (acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
for i, j in T.Parallel (block_M, dim):
acc_o[i, j] /= logsum[i]
T.copy (acc_o, O_shared)
T.copy (O_shared, Output[bz, bx * block_M: (bx + 1) * block_ M, by, :])

Figure 19: Implementation of Block Sparse Flash Attention with TILELANG.
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LJjit
def blocksparse_attn(Q: T.Tensor, K: T.Tensor, V: T.Tensor, BlockMask: T.Tensor, Output: T.Tensor):
with T.Kernel (
T.ceildiv(seqg_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
Q_shared = T.alloc_shared([block_M, dim], dtype)
K_shared = T.alloc_shared([block_N, dim], dtype)
V_shared = T.alloc_shared([block_N, dim], dtype)
O_shared = T.alloc_shared([block_M, dim], dtype)
acc_s = T.alloc_fragment ([block_M, block_N], accum_dtype)
acc_s_cast = T.alloc_fragment ([block_M, block_N], dtype)
acc_o = T.alloc_fragment ([block_M, dim], accum_dtype)
scores_max = T.alloc_fragment ([block_M], accum_dtype)
scores_max_prev = T.alloc_fragment ([block_M], accum_dtype)
scores_scale = T.alloc_fragment ([block_M], accum_dtype)
scores_sum = T.alloc_fragment ([block_M], accum_dtype)
logsum = T.alloc_fragment ([block_M], accum_dtype)
T.copy (Q[bz, bx % block_M: (bx + 1) * block_M, by, :], Q_shared)
T.fill (acc_o, 0)
T.fill (logsum, 0)
T.fill (scores_max, -T.infinity (accum_dtype))
loop_range = (
T.min(T.ceildiv(seg_len, block_N), T.ceildiv(
(bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seqg_len, block_N))

0,

* scale)
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