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Abstract

Recent work in mechanistic interpretability has proposed decomposing model1

parameters rather than activations. We extend Stochastic Parameter Decomposition2

(SPD) to Transformer models, proposing an updated causal importance function3

suited for sequential data. We demonstrate that SPD can successfully decompose a4

toy induction-head model and recover the underlying computations. We also show5

that applying SPD to GPT-2-small can successfully locate subcomponents corre-6

sponding to interpretable concepts like "golf" and "basketball". This work takes the7

first step in the direction of extending SPD to modern models, and shows that we can8

use the method to surface interpretable parameter-space mechanisms. Code avail-9

able at https://anonymous.4open.science/r/spd_submission-25BB10

1 Introduction11

Much of mechanistic interpretability work can be characterised as belonging to one of two waves12

[15]. In the first, researchers attempted to understand models by dissecting and studying neurons13

individually, but this proved infeasible due to polysemanticity [11] and superposition [7]. The second14

wave shifted into activation space, where sparse dictionary learning (SDL) [14] uncovered thousands15

of highly-interpretable concepts [5]. However, SDL methods struggle with feature geometry and16

anomalies such as feature absorption and splitting [4], while offering no clear definition of what17

features actually are. Now, looking towards a third wave, we instead turn to parameter space: Braun18

et al. [2] decompose weights into “mechanism-space“ vectors, and Bushnaq et al. [3] extend this with19

Stochastic Parameter Decomposition (SPD), which represents weights as sparsely-activating rank-120

matrices. In this work, we extend this method to Transformer models. Our contributions are: a) a21

better causal importance function for sequential data, b) fully decomposing a toy model of induction22

heads, and c) decomposing GPT2-small and locating interpretable subcomponents.23

2 Method24

SPD decomposes a model’s weights (components) W l ∈ Rn×m into subcomponents (W l
1, ...,W

l
C)25

where C is a hyperparameter and each W l
c = U⃗ l

c ⊗ V⃗ l
c , U l

c, V
l
c ∈ Rd, such that they are rank26

1. We desire that the subcomponents sum to the original component (faithfulness), the output is27

approximately reconstructed, and as few subcomponents as possible are required to do so (minimality).28

We use the losses from Bushnaq et al and train on their coefficient-weighted sum [3]:29

Lfaithfulness =
1
N

L∑
l=1

∑
i,j

(
W l

i,j −
C∑

c=1

U l
i,cV

l
c,j

)2

, Lminimality =

L∑
l=1

C∑
c=1

|glc(x)|p (1)

30

Lstochastic_recon =
1

S

S∑
s=1

DKL(f(x|W ′(x, r(s))), f(x|W ) (2)
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31

Lstochastic_recon_layerwise =
1

LS

L∑
l=1

S∑
s=1

DKL

(
f(x |W 1, . . . ,W l(x, rl,(s)), . . . ,WL), f(x |W )

)
(3)

where f is the model we decompose, rs is a stochastically-sampled mask of causal importances32

(defined in section 2.1), such that any subcomponent is scaled between (glc(x), 1), and glc is the33

subcomponent’s causal importance for the input x. The causal importances are learned along with34

the decomposition. In addition, we train on Lrecon, which is equivalent to Lstochastic_reconwith35

all mask-values set to exactly their causal importance (no sampling). This reduces variance across36

samples by penalizing deterministic reconstructions, which we find increases training stability.37

2.1 Causal Importances38

In Bushnaq et al [3], causal importance for a subcomponent is defined as how ablatable it is. A39

causally important subcomponent should have high impact on the output and is therefore not ablatable.40

The choice of stochastic losses ensures that this is enforced, as non-important subcomponents may41

be arbitrarily turned on, whereas important ones are guaranteed to stay on. Causal importances are42

learned with an independent γ-function (an MLP) per subcomponent, which takes as input either43

the inner-activation x × U⃗ (a scalar) or x. However, this is suboptimal for models operating on44

sequences. Consider the string "Sat by the river bank, the bank manager" and "manager" as the45

query-token. Independent γ-MLPs would be forced to assign the same causal importance score to46

the 2 instances of bank, even though the latter is likely to be more important for the output 1. This47

is especially true for the OV-circuit, where 2 value vectors with the same representation may be48

unequally attended to. Motivated by this, we apply attention with a minimal attention network (149

head, 1 layer, QKV-only) across the tokens prior to computing g. We use learned, relative positional50

encodings in the attention-network for expressivity and learned absolute positional encodings on the51

value-vectors, such that the downstream γ-MLP also has positional awareness. This means that for52

subcomponents (W l
1, ...,W

l
C) and positions (1, ..., n), we decide causal importance glc,n via:53

glc,n = σH

(
γl
c(x̄n)

)
, where x̄n =

(
softmax

(
qnK

⊤ + rn√
dk

)
V

)
⊕ xn (4)

where V and xn have absolute, learned positional encodings, rn is the row of learned, relative54

positional biases, γl
c are independent MLPs per subcomponent as in the previous literature, and σH55

is the leaky-hard sigmoid function. While this scales worse than the original implementation, we56

implement this efficiently with flex-attention [6]. See the appendix for a speed comparison.57

3 Experiments58

3.1 Induction Heads59

Figure 1: The type of sequence we train on for the induction-head task.

Figure 1 shows an example of the data generated for the task. Formally, we sample n − 2 tokens60

from a vocabulary V , and we then insert 2 s-tokens; one randomly and one at the end of the sequence61

[8]. The task is to predict the token following the first s-token (we call this token the m-token). The62

s-tokens are unique such that they serve as an indicator for induction. Crucially, this task is only63

solvable by first moving information from s to m, and then m to the final s, which forces the model64

to form an induction-head [12].65

1Note that this does not necessarily apply to the QK-circuit in Transformers with absolute positional
encodings, as the representations will differ slightly. For RoPE encodings that are not applied until after the
projections, this will matter as the γ-MLPs will be positionally-unaware.

2



We train a 2 layer, 1-head-per-layer attention-only Transformer [16] to on sequences of this form,66

such that we can later decompose it. See table 3 for our hyperparameters. We consider loss only on67

the final token both when training the model and when decomposing it. We analyse the recovered68

circuit and its consistency with the original model.69

3.2 GPT2-Small70

One hope of methods like SPD is the ability to elicit latent knowledge. To investigate this, we71

create a dataset of 2 sentences that GPT-2 correctly predicts the last token for: "Kobe Bryant plays72

the sport of basketball" and "Tiger Woods plays the sport of golf", and use just these examples to73

decompose GPT2-small [13]. We analyse the subcomponents and supress specific subcomponents74

via orthogonal projection W ← W −
∑r

k=1

(
û⊤
k W v̂k

)
ûk v̂

⊤
k , ûk = uk

∥uk∥ , v̂k = vk
∥vk∥ .75

In addition to measuring changes on the examples, we use an additional synthetic, fact-based test76

set of 100 examples in our evaluation. To reduce the possibility of "cheating" (i.e., learning an77

output-equivalent function through compensatory errors across layers) given the small dataset, we78

introduce a randomized partial version of the reconstruction losses (detailed in the appendix) that79

evaluate only a subset of layers at a time, such that the model cannot rely on any one layer.80

4 Results81

4.1 Induction Heads82

s1 m s2 random

Q0 0.000 1.000 0.000 0.001
K0 1.000 0.050 0.000 0.183
V0 1.000 0.000 0.000 0.000

Q1 0.000 0.000 1.000 0.000
K1 0.000 1.000 0.000 0.000
V1 0.000 5.053 0.000 0.000

(a) Average active subcomponents.

Total unique

Q0 1
K0 1
V0 1

Q1 1
K1 1
V1 11

(b) Total unique sub-
components.

Metric Value

Lfaithful 3e−9
Lrecon 1e−4
Lrecon_layerwise 1e−4
DKLAttn (Layer 1) 0.385
DKLAttn (Layer 2) 0.002
DKLAttn (Mean) 0.194

(c) Evaluation metrics.

Table 1: Results for the induction-head toy model decomposition
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Figure 2: SPD vs. greedy SVD low-rank approx-
imation[2]. Even on a very simple model, SPD
finds a more minimal decomposition that matches
the full model’s output distribution.

For the induction head toy model, only two po-83

sitions matter per layer; m must first attend84

to s1 and ’understand’ that it follows s1, and85

then s2 must attend to m to obtain m’s iden-86

tity. We see in table 1a that subcomponents are87

assigned largely to the relevant positions, and88

table 1 shows a very small amount of unique89

subcomponents. Table 1c shows almost-zero90

faithfulness, which indicates that if we consider91

all subcomponents causally important, we re-92

cover exactly the original model. Lrecon and93

Lrecon_layerwise are equivalent to substituting94

all the weight matrices in the original; either all95

at once or layer-by-layer. This can be compared96

to ablating all the presumed-unimportant com-97

ponents of a model and seeing if it still works.98

Investigating the concrete mechanisms, we learn that K0’s objective is to align the representation of99

token n with the positional encoding of n+ 1. When we do not add positional encodings prior to100

projecting m through the Q-matrix, the attention-strength from m to s1 drops from 1.0 to 0.0941,101

even if s1’s key gets to retain its positional information. Q1 and K1 implement the circuit in which s2102

attends to m, and we see considerably more active subcomponents in V1 for m’s position. We believe103

this is because m’s identity among 128 tokens must be umambigiously separable in the residual104

stream at the final position, and therefore higher rank than 1 is required to carry that information.105
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4.2 GPT2-Small106

Basketball Golf Test Set
Evaluation Point

None

Golf

Basketball

Both

Su
pr

es
sio

n
0.620 0.620 0.330

0.620 0.090 0.320

0.030 0.630 0.320

0.030 0.090 0.310

Probability on Last Token

Figure 3: Ablating the slices associated with
recovered facts has significantly higher effect on
the specific data points.

Figure 4: Both the first and last name for Kobe
Bryant appear to carry basketball information
and removing a rank 1 slice from both is most
effective.

For the 2 examples, we find 96 active subcomponents in total, which is a 99% size reduction compared107

to the whole model 2. We find 2 subcomponents that uniquely activate in the layer 0 MLP for tokens108

"obe" and "Bryant" and 1 uniquely for "Woods", that significantly reduce the probability of the sport109

being correctly predicted, if we supress their directions in the original model. We see in figure 3 that110

these effects are isolated, which suggests we may have discovered where the network "stored" that111

fact. This extends previous work [10] which initially suggested facts may be stored closer towards the112

middle of the network, but where follow-up work [9] came to the same conclusions we do, namely113

that you can edit a fact somewhere the network does not store it. Our results suggest some facts114

originate as early as the very first MLP layer, and propagate through the network. Interestingly, we115

find that for the "Kobe Bryant" example, we must supress a rank-1 direction on both the first and last116

name, to maximally reduce the output probability. We believe this is because "Kobe" has a strong117

enough association with basketball by itself, whereas "Tiger" generally does not refer to a name.118

Importantly we supress only the athlete→ sport direction. If we reverse the direction and prompt119

with "The most famous athlete in golf is..", the model accurately answers "Tiger Woods". This is120

consistent with previous research [10] [1], which finds that knowledge is stored asymmetrically in121

language models.122

5 Discussion123

While our results suggest that SPD can be extended to Transformer models, several limitations remain.124

First, our experiments are restricted to small-scale models, leaving open questions about scalability125

to larger architectures. Second, the causal importance parameterization introduces additional com-126

putational overhead. Third, our evaluation is qualitative and task-specific, so further benchmarks127

are needed to establish generality across architectures and tasks. We also note the difficulty in128

establishing ground truth even for small, toy Transformers. Nonetheless, we believe our analysis129

shows the obtained decompositions are largely faithful to the underlying model mechanisms.130

Our results show that parameter decomposition can surface semantically specific mechanisms in131

Transformers. For induction heads, SPD recovers the expected two-step copy circuit. For GPT-2-132

small, ablating up to 2 rank-1 slices selectively reduces the probability of the targeted fact (e.g.,133

“golf” for Tiger Woods) while leaving unrelated examples largely unaffected. This indicates that SPD134

yields narrow, causally relevant directions rather than broad capacity that would degrade performance135

indiscriminately.136

These findings suggest that parameter-space objects can act as clean handles for mechanistic interven-137

tions. In future work we plan to extend this work to larger models, and to improve our definition of138

causal importance for computations with feature interactions.139

2One caveat: Causal importance of subcomponents in the attention-mechanism. For instance, if a QK-circuit
ends up with 0 active subcomponents, it is still "in-use", but attention is uniform (softmax over 0-vector). For
this reason, we also do not compare sparsity or size with e.g pruning methods.
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Appendix191

Causal Importance: algorithm192

Algorithm 1 Minimal Attention Causal Importance

Require: Input x ∈ RB×s×d

Require: ΓL = (γl
1, ..., γ

l
C) // A function that assigns C causal importances per layer

Require: Learnable RelPosEnc ∈ R2·s×d

Require: Learnable AbsPosEnc ∈ Rs×d

Require: Learnable Q,K, V ∈ Rd×d

Ensure: Output Gl ∈ RB×s×C

1: xpos ← x+ AbsPosEnc(x)
2: q ← Q(x); k ← K(x); v ← V (xpos)
3: r ← RelPosEnc(s)
4: xcombined ← softmax( qk

⊤+r√
d

)v // Implemented with Flex Attention
5: xcombined ← concat(xcombined, xpos)
6: Gl ← Γl(xcombined)
7: return Gl

Sequence Length

Method 16 64 1024 10240*

Scalar 12 12 9 11
Vector 13 13 10 11
Attention (no flex) 10 10 2 1
Attention (flex) 10 10 6 6

Table 2: Iterations per second for different γ-MLP inputs on the induction-head decomposition task.
*Batch size modified from 64 to 4 for sequence length 10240 due to memory limits.
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Induction-Head Transformer: hyperparameters193

Model hyperparameters
Batch Size 1024
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.01
Learning Rate Schedule Constant
Learning Rate Warmup 1000
Steps 100000

Dmodel 16
Posenc Shortformer
Use Layer Norm False
Use FF False

Vocab Size 128
Sequence Length 64

Table 3: Hyperparameters for the Induction
Head toy-model task

Decomposition hyperparameters
Batch Size 1024
Optimizer Adam
Learning Rate 0.001
Learning Rate Schedule Cosine
Learning Rate Warmup 0
Steps 100000

C 100
Dgate 16
CI-function Attention

Stochastic Recon β 1
Stochastic Layerwise Recon β 1
Recon β 0.5
Faithfulness β 1000
Importance Minimality β 0.02
Pstart 0.9
Pfinal 0.1
Anneal P? True
Last Token Only? True

Table 4: Hyperparameters for the Induction
Head decomposition task

Induction-Head Transformer: loss curve194

Figure 5: Loss curve for the Induction Head Transformer showing that expected ’phase changes’ are
present.
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Induction-Head Transformer: SVD-baseline195

Algorithm 2 Greedy Rank-1 SVD Pruning

Require: Weight matrices {Wi} from target modelM
Require: Dataset D = {xb}Nb=1
Require: Tolerance τ
Require: Loss function L // DKL in our case.
Ensure: Reduced-rank weight matrices {W̃i}

1: Decompose each Wi with SVD: Wi = UiSiV
⊤
i

2: current_loss← 0
3: P ←M(D)
4: while current_loss ≤ τ do
5: for Wi that still has rank > 0 do:
6: Form W ′

i by removing its smallest remaining singular value/vector
7: Define M̃ asM with Wi replaced by W ′

i

8: Q← M̃(D)
9: Evaluate Li = DKL(P ||Q)

10: Pick index j with lowest Lj

11: if Lj ≤ τ then
12: Update Wj ←W ′

j inM
13: current_loss← Lj

14: else
15: break
16: end if
17: end for
18: end while
19: return pruned weight matrices {W̃i}

9



GPT-2 facts196

Decomposition hyperparameters
Batch Size 2
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.05
Learning Rate Schedule Constant
Learning Rate Warmup 0.01
Steps 20000

C 768
Dgate 64
CI-function vector

Stochastic Recon β 0.1
Partial Stochastic Recon β 10
Stochastic Layerwise Recon β 0.1
Recon β 0.1
Partial Recon β 10
Faithfulness β 1000000
Importance Minimality β 0.05
Pstart 0.9
Pfinal 0.1
Anneal P? True
Last Token Only? False

Figure 6: Hyperparameters for the GPT2 decomposition task

Figure 7: Causal tracing on the Kobe Bryant
example

Figure 8: Causal tracing on the Tiger Woods
example

In this section we do some additional investigation into fact storage in GPT2-small. Figure 7 and197

8 show the result of running causal tracing from Meng et al.[10] on our 2 fact-examples. Causal198

tracing suggests that the fact can be edited all the way from layer 0 MLPs to the layer 5 MLPs. In our199

findings, we see evidence that the athlete→ sport association is present as early as after the first MLP200

layer. The fact is editable up until the fifth MLP layer, after which the information is likely moved201

across the sequence with attention.202

Editing a fact comes down to correlating a specific read direction U⃗ (K⃗ in [10]) with a desired write203

direction V⃗ . Under that framing, it is easy to see how any MLP that encounters a certain fact before204

the unembedding. In Meng et al.[10] they edit facts by solving a small optimization problem to yield205

V⃗ that maximises the probability of the fact they want to predict. The key-vector K⃗ – the input to the206

MLP – could in theory be anything. In later layers the basketball-concept may have already been207

written to the residual stream and we are introducing a mapping from basketball to e.g. football.208

In figure 9 we take this to the extreme, and show that you can actually entirely zero-out the layer in209

which it is most beneficial to edit the fact, showing conclusively that the fact does not live there. Note210

10
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Figure 9: The effect of zeroing out entire MLP-layers in GPT2-small on the "Kobe Bryant plays the
sport of" example

that the drop in probability to 0 when zeroing out layer 0 does not imply the fact lives there – zeroing211

out this layer simply destroys the model.212

Partial losses213

When decomposing large models over very few samples, the model has room to "cheat" the task and214

simply learn a function that produces the same output. Specifically, we often see this in the form215

of the model maintaining one layer (the last) with a suboptimal amount of subcomponents active,216

such that it can keep the other layers very sparse. If you consider a model decomposed over just the217

example "Tiger Woods plays golf", it is easy to see how the model could just learn a handful of rank-1218

subcomponents in the final layer, that writes the relevant token directions onto the residual stream,219

instead of learning the actual underlying mechanism. When decomposing over larger datasets, this220

effect is minimised as the "cheating" subcomponents would incur heavy reconstruction losses for all221

other examples.222

To circumvent this, we introduce 2 new losses:223

Lrecon_partial = DKL

(
f
(
x |W 1, . . . ,W l∈M(x, gl(x)), . . . ,WL

)
, f(x |W )

)
, (5)

Lstochastic_recon_partial =
1

S

S∑
s=1

DKL

(
f
(
x |W 1, . . . ,W l∈M(s)

(x, rl,(s)), . . . ,WL
)
, f(x |W )

)
,

(6)

whereM⊆ {1, ..., L}.224

These are equivalent to Lrecon and Lstochastic_recon, but they sample only some subset of layers in225

the model to replace and leave everything else in the target model intact. This severely reduces the226

ability for the model to implement "cheating" mechanisms in any layer, as it 1) may not be able to227

rely on that layer and 2) these mechanisms might clash with the weight matrices of the full model.228
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Fact dataset229

S e r en a W i l l i a m s i s a p r o f e s s i o n a l t e n n i s p l a y e r
The G r e a t Wall o f China i s i n China
The Mona L i s a was p a i n t e d by Leonardo da V i n c i
Mount E v e r e s t i s t h e t a l l e s t mounta in on E a r t h
The E i f f e l Tower i s l o c a t e d i n P a r i s F r an c e
Usain B o l t i s t h e f a s t e s t man i n t h e wor ld
The P a c i f i c Ocean i s t h e l a r g e s t ocean on E a r t h
A l b e r t E i n s t e i n d e v e l o p e d t h e t h e o r y o f r e l a t i v i t y
J .K. Rowling wro te t h e Harry P o t t e r s e r i e s
The Amazon R i v e r f l o w s t h r o u g h South America
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Figure 10: Excerpt from GPT-5 generated "fact" dataset.
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