
Decomposition of Small Transformer Models

Casper L. Christensen∗

Independent
Logan Riggs Smith

Independent

Abstract

Recent work in mechanistic interpretability has shown that decomposing models in
parameter space may yield clean handles for analysis and intervention. Previous
methods have demonstrated successful applications on a wide range of toy models,
but the gap to "real models" has not yet been bridged. In this work, we extend
Stochastic Parameter Decomposition (SPD) to Transformer models, proposing
an updated causal importance function suited for sequential data and a new loss
function. We demonstrate that SPD can successfully decompose a toy induction-
head model and recover the expected 2-step circuit. We also show that applying
SPD to GPT-2-small can successfully locate subcomponents corresponding to
interpretable concepts like "golf" and "basketball". These results take the first step
in the direction of extending SPD to modern models, and show that we can use the
method to surface interpretable parameter-space mechanisms.

1 Introduction

Much of mechanistic interpretability work can be characterised as belonging to one of two waves
[16]. In the first, researchers attempted to understand models by dissecting and studying neurons
individually, but this proved infeasible due to polysemanticity [12] and superposition [9]. The
second wave shifted into activation space, where sparse dictionary learning (SDL) [15] uncovered
thousands of highly-interpretable concepts [7]. However, SDL methods struggle with feature geometry
and anomalies such as feature absorption and splitting [4], while offering no clear definition of
what features actually are. Newer methods operate directly in parameter-space and provide a
complementary line of work: Braun et al. [2] decompose weights into “mechanism-space“ vectors,
and Bushnaq et al. [3] extend this with Stochastic Parameter Decomposition (SPD), which represents
weights as sparsely-activating rank-1 matrices. In this work, we extend this method to Transformer
models. Our contributions are: a) a causal importance function for sequential data, b) decomposing
a toy model of induction heads, c) a loss function that enables faithful decomposition over few
examples, and d) decomposing GPT2-small and locating interpretable subcomponents.

2 Motivation

Mechanistic interpretability has mostly progressed through methods that operate on activations.
Sparse dictionary learning, causal tracing, and circuit discovery let us ask, for a given input, “what
fired and what did it do?” These approaches are powerful, but they do not yet give us a canonical way
to factor the model itself into a small set of reusable mechanisms: features can split, and the geometry
of the learned features is often left unexplained. Recent work on parameter-space decomposition
argues that if gradient descent writes mechanisms directly into the weights, then it is natural to look
for mechanisms in that same space.

∗Casper L. Christensen was funded by the Pivotal research fellowship throughout this project.

3 Parameter Decomposition

Attribution-based Parameter Decomposition (APD) makes this idea concrete: it flattens a trained
network into parameter “components,” trains them to sum back to the original network (faithfulness),
and then uses batch top-k to select the most highly attributed components, to make only a few
components active on each example (minimality + simplicity). Stochastic Parameter Decomposition
(SPD) keeps the same goal, but makes it more practical by working with rank-1 subcomponents
and by learning a causal-importance function instead of hard-coding top-k. Concurrently, Chrisman
et al. [5] propose Local Loss Landscape Decomposition (L3D), which also learns sparsely active
parameter-space directions, but does so by reconstructing per-sample gradients of a divergence, rather
than the weights themselves. Their sparsity is induced by a top-k reconstruction in gradient space,
and their subnetworks are allowed to be higher-rank via Tucker decompositions. We directly extend
the SPD line of work.

4 Method

SPD aims to provide interpretability by learning aa decomposed model that matches the original
model’s computations. Specifically, we want a decomposition that is faithful to the original model,
reconstructs the original model’s output for a given input x, , and is minimal.

SPD decomposes a model’s weights (components) W l ∈ Rn×m into subcomponents (W l
1, ...,W

l
C)

where C is a hyperparameter and each W l
c = U⃗ l

c ⊗ V⃗ l
c , U

l
c, V

l
c ∈ Rd, such that they are rank 1. For

any given input x, we can assemble a weight matrix W ′l =
∑C

c=1 α ·W l
c α ∈ [0, 1], which we can

use instead of W l. α then determines how "active" a subcomponent is on a given input. In practice,
α ∼ U(glc(x), 1), where glc(x) is the causal importance of subcomponent c in layer l on x. We define
rs as the mask of all α-samples across all layers and rl,(s) as the mask of α-samples for layer l.

Faithfulness is enforced by requiring that all subcomponents sum to their original component. This
means that the original model is the case where α = 1 everywhere. This ensures that we can always
recover the real model from its decomposition, and restricts the decomposition’s ability to learn some
alternative factorisation of the original model’s parameters. Let the model and its decomposition be
respectively f and f ′, we then obtain a minimal decomposition by ensuring that f(x) ≈ f ′(x) while
assigning glc(x) > 0 to as few subcomponents as possible.

This naturally leads to the losses from Bushnaq et al [3], and we train on a coefficient-weighted sum
of them. See A.4 for a description of a training step.

Lfaithfulness =
1
N

L∑
l=1

∑
i,j

(
W l

i,j −
C∑

c=1

U l
i,cV

l
c,j

)2

, Lminimality =

L∑
l=1

C∑
c=1

|glc(x)|p (1)

Lstochastic_recon =
1

S

S∑
s=1

DKL(f(x|W ′(x, r(s))), f(x|W)) (2)

Lstochastic_recon_layerwise =
1

LS

L∑
l=1

S∑
s=1

DKL

(
f(x |W 1, . . . ,W l(x, rl,(s)), . . . ,WL), f(x |W)

)
(3)

The stochastic sampling serves 2 purposes: it creates a mechanism by which subcomponents can
still be turned on (and thus provide gradient signal) even if their causal importance became 0, and,
because reconstruction should happen with as few subcomponents as possible, it sets the causal
importance as the lower bound for how active a subcomponent can be without significantly changing
the output. The layer-wise loss ensures that each decomposed weight must be substitutable in the
original model without changing the output, further restricting the decomposition’s ability to derive
an equivalent model. In addition, we train on Lrecon, which is equivalent to Lstochastic_recon with
all mask-values set to exactly their causal importance (no sampling). The stochastic loss gives noisier
signals, where the deterministic version tightens the lower bound and helps convergence.

2

4.1 Causal Importances

In Bushnaq et al [3], causal importance for a subcomponent is defined as how ablatable it is. We
follow this same convention, noting that ablations are not truly causal, because they are subject to
interactions within the model [6]. Within this definition, a causally important subcomponent should
have high impact on the output and is therefore not ablatable. The choice of stochastic losses ensures
that this is enforced, as non-important subcomponents may be arbitrarily turned on, whereas important
ones are guaranteed to stay on. Causal importances are learned with an independent γ-function
(an MLP) per subcomponent, which takes as input either the inner-activation x × U⃗ (a scalar) or
x. However, this is suboptimal for models operating on sequences. Consider the string "Sat by the
river bank, the bank manager" and "manager" as the query-token. Independent γ-MLPs would be
forced to assign the same causal importance score to the 2 instances of bank, even though the latter
is likely to be more important for the output 2. This is especially true for the OV-circuit, where 2
value vectors with the same representation may be unequally attended to. Motivated by this, we apply
attention with a minimal attention network (1 head, 1 layer, QKV-only) across the tokens prior to
computing g. We use learned, relative positional encodings in the attention-network for expressivity
and learned absolute positional encodings on the value-vectors, such that the downstream γ-MLP also
has positional awareness. This means that for subcomponents (W l

1, ...,W
l
C) and positions (1, ..., n),

we decide causal importance glc,n via:

glc,n = σH

(
γl
c(x̄n)

)
, where x̄n =

(
softmax

(
qnK

⊤ + rn√
dk

)
V

)
⊕ xn (4)

where V and xn have absolute, learned positional encodings, rn is the row of learned, relative
positional biases, γl

c are independent MLPs per subcomponent as in the previous literature, and σH

is the leaky-hard sigmoid function. While this scales worse than the original implementation, we
implement this efficiently with flex-attention [8]. See the appendix for a speed comparison.

5 Experiments

5.1 Induction Heads

Figure 1: The type of sequence we train on for the induction-head task.

Figure 1 shows an example of the data generated for the task. Formally, we sample n− 2 tokens from
a vocabulary V , and we then insert 2 s-tokens; one randomly and one at the end of the sequence.
The task is to predict the token following the first s-token (we call this token the m-token). The
s-tokens are unique such that they serve as an indicator for induction. Crucially, this task is only
solvable by first moving information from s to m, and then m to the final s, which forces the model
to form an induction-head [13]. We train a 2 layer, 1-head-per-layer attention-only Transformer [17]
on sequences of this form, such that we can later decompose it. See Table 3 for our hyperparameters.
We consider loss only on the final token during model training and decomposition. We analyse the
recovered circuit and its consistency with the original model.

5.2 GPT2-Small

One hope of methods like SPD is the ability to elicit latent knowledge. Decomposing over data points
naturally creates a correspondence between the amount of data we decompose over and the proportion
of the model we can "explain". However, in some cases, we may want to concretely investigate the
model’s behaviour on only a small amount of data points. To investigate this, we create a dataset of 2
sentences that GPT-2 correctly predicts the last token for: "Kobe Bryant plays the sport of basketball"

2Note that this does not necessarily apply to the QK-circuit in Transformers with absolute positional
encodings, as the representations will differ slightly. For RoPE encodings that are not applied until after the
projections, this will matter as the γ-MLPs will be positionally-unaware.

3

and "Tiger Woods plays the sport of golf", and use these examples to decompose GPT2-small [14].
We analyse subcomponents unique to each example by suppressing their specific directions through
orthogonal projection W ← W −

∑r
k=1

(
û⊤
k W v̂k

)
ûk v̂

⊤
k , ûk = uk

∥uk∥ , v̂k = vk

∥vk∥ . We also
check this suppression on a 100-example synthetic fact set (A.3.4) to show the edit is not purely
single-example overfitting. When a decomposition covers only a small proportion of the original
model, the unused components can instead become targets for the decomposed model to write new
computation into. This can be more minimal if the decomposition develops a smaller circuit, but
prevents us from interpreting the original model. We introduce randomised partial versions of the
reconstruction losses that evaluate only a subset of decomposed layers at a time. This prevents the
decomposed model from being able to rely on any of its subcomponents being consistently important.

Lrecon_partial = DKL

(
f
(
x |W 1, . . . ,W l∈M(x, gl(x)), . . . ,WL

)
, f(x |W)

)
, (5)

Lstochastic_recon_partial =
1

S

S∑
s=1

DKL

(
f
(
x |W 1, . . . ,W l∈M(s)

(x, rl,(s)), . . . ,WL
)
, f(x |W)

)
,

(6)
whereM⊆ {1, ..., L}. See A.3.3 for further discussion on this approach.

6 Results

6.1 Induction Heads

s1 m s2 random

Q0 0.000 1.000 0.000 0.001
K0 1.000 0.050 0.000 0.183
V0 1.000 0.000 0.000 0.000

Q1 0.000 0.000 1.000 0.000
K1 0.000 1.000 0.000 0.000
V1 0.000 5.053 0.000 0.000

(a) Average active subcomponents.

Total unique

Q0 1
K0 1
V0 1

Q1 1
K1 1
V1 11

(b) Total unique sub-
components.

Metric Value

Lfaithful 3e−9
Lrecon 1e−4
Lrecon_layerwise 1e−4
DKLAttn (Layer 1) 0.385
DKLAttn (Layer 2) 0.002
DKLAttn (Mean) 0.194

(c) Evaluation metrics.

Table 1: Results for the induction-head toy model decomposition

Q0 K0 V0 Q1 K1 V1
Matrix

0

2

4

6

8

10

Su

bc
om

po
ne

nt
s

SVD
SPD (this work)

Figure 2: SPD vs. greedy SVD low-rank approx-
imation (Algorithm 2). Even on a very simple
model, SPD finds a more minimal decomposition
that matches the full model’s output distribution.

For the induction head toy model, only two po-
sitions matter per layer; m must first attend to
s1 and ’understand’ that it follows s1, and then
s2 must attend to m to obtain m’s identity. We
see in Table 1a that subcomponents are assigned
largely to the relevant positions, and Table 1b
shows a very small amount of unique subcompo-
nents. Table 1c shows almost-zero faithfulness,
which indicates that if we consider all subcompo-
nents causally important, we recover exactly the
original model. Lrecon andLrecon_layerwise are
equivalent to substituting all the weight matrices
in the original; either all at once or layer-by-
layer. This can be compared to ablating all the
presumed-unimportant components of a model
and seeing if it still works.

Investigating the concrete mechanisms, we learn that K0’s objective is to align the representation of
token n with the positional encoding of n+ 1. When we do not add positional encodings prior to
projecting m through the Q-matrix, the attention-strength from m to s1 drops from 1.0 to 0.0941,
even if s1’s key gets to retain its positional information. Q1 and K1 implement the circuit in which s2
attends to m, and we see considerably more active subcomponents in V1 for m’s position. We believe
this is because m’s identity among 128 tokens must be unambiguously separable in the residual
stream at the final position, and therefore higher rank than 1 is required to carry that information.

4

6.2 GPT2-Small

Basketball Golf Test Set
Evaluation Point

None

Golf

Basketball

Both

Su
pr

es
sio

n
0.620 0.620 0.330

0.620 0.090 0.320

0.030 0.630 0.320

0.030 0.090 0.310

Probability on Last Token

Figure 3: Ablating the slices associated with
recovered facts has significantly higher effect on
the specific data points.

Figure 4: Both the first and last name for Kobe
Bryant appear to carry basketball information
and removing a rank 1 slice from both is most
effective.

For the 2 examples, we find 96 active subcomponents in total, which is a 99% size reduction compared
to the whole model 3. We find 2 subcomponents that uniquely activate in the layer 0 MLP for tokens
"obe" and "Bryant" and 1 uniquely for "Woods", that significantly reduce the probability of the sport
being correctly predicted, if we suppress their directions in the original model. We see in figure 3 that
these effects are isolated, which suggests we may have discovered where the network "stored" that
fact. This extends previous work [11] which initially suggested facts may be stored closer towards the
middle of the network, but where follow-up work [10] came to the same conclusions we do, namely
that you can edit a fact somewhere the network does not store it. Our results suggest some facts
originate as early as the very first MLP layer, and propagate through the network. Interestingly, we
find that for the "Kobe Bryant" example, we must suppress a rank-1 direction on both the first and
last name, to maximally reduce the output probability. We believe this is because "Kobe" has a strong
enough association with basketball by itself, whereas "Tiger" generally does not refer to a name.
Importantly we suppress only the athlete→ sport direction. If we reverse the direction and prompt
with "The most famous athlete in golf is..", the model accurately answers "Tiger Woods". This is
consistent with previous research [11] [1], which finds that knowledge is stored asymmetrically in
language models.

7 Discussion

While our results suggest that SPD can be extended to Transformer models, several limitations remain.
First, our experiments are restricted to small-scale models, leaving open questions about scalability
to larger architectures. Second, the causal importance parameterisation introduces additional com-
putational overhead. Third, our evaluation is qualitative and task-specific, so further benchmarks
are needed to establish generality across architectures and tasks. We also note the difficulty in
establishing ground truth even for small, toy Transformers. While we obtain evidence that suggests
our decompositions may be faithful, this is largely obtained through ablations.

Our results show that parameter decomposition can surface semantically specific mechanisms in
Transformers. For induction heads, SPD recovers the expected two-step copy circuit. For GPT-2-
small, ablating up to 2 rank-1 slices selectively reduces the probability of the targeted fact (e.g.,
“golf” for Tiger Woods) while leaving unrelated examples largely unaffected. This indicates that SPD
yields narrow, causally relevant directions rather than broad capacity that would degrade performance
indiscriminately.

These findings suggest that parameter-space objects can act as clean handles for mechanistic interven-
tions. In future work we plan to extend this work to larger models, and to improve our definition of
causal importance for computations with feature interactions.

3One caveat: Causal importance of subcomponents in the attention-mechanism. For instance, if a QK-circuit
ends up with 0 active subcomponents, that circuit is still used, but attention is uniform (softmax over 0-vector).
For this reason, we also do not compare sparsity or size with e.g pruning methods.

5

Acknowledgements

We thank Lucius Bushnaq, Dan Braun, and Lee Sharkey for frequent debate, and for open-sourcing the
development of SPD and allowing us to contribute. Morgan Simpson, Tobias Häberli, Euan McLean,
and Tilman Räuker were responsible for facilitating this research through the Pivotal Fellowship and
also provided research management – we are grateful to all of you. We also thank Rachael DeVries
for extensive feedback on the manuscript. Finally, we thank Riya Tyagi, Kyle Reynoso, Frederik
Hytting Jørgensen, and Jasmina Urdshals for giving feedback on earlier versions of this work and
participating in brainstorming.

References
[1] Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz

Korbak, and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a".
arXiv preprint arXiv:2309.12288, 2023.

[2] Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, and Lee Sharkey. Interpretabil-
ity in parameter space: Minimizing mechanistic description length with attribution-based
parameter decomposition. arXiv preprint arXiv:2501.14926, 2025.

[3] Lucius Bushnaq, Dan Braun, and Lee Sharkey. Stochastic parameter decomposition. arXiv
preprint arXiv:2506.20790, 2025.

[4] David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and
Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoen-
coders. arXiv preprint arXiv:2409.14507, 2024.

[5] Brianna Chrisman, Lucius Bushnaq, and Lee Sharkey. Identifying sparsely active circuits
through local loss landscape decomposition. arXiv preprint arXiv:2504.00194, 2025.

[6] Ian Covert, Scott Lundberg, and Su-In Lee. Explaining by removing: A unified framework for
model explanation. Journal of Machine Learning Research, 22(209):1–90, 2021.

[7] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,
2023.

[8] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A pro-
gramming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496,
2024.

[9] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy mod-
els of superposition. Transformer Circuits Thread, 2022. https://transformer-circuits.
pub/2022/toy_model/index.html.

[10] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform
editing? surprising differences in causality-based localization vs. knowledge editing in language
models. Advances in Neural Information Processing Systems, 36:17643–17668, 2023.

[11] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022.

[12] Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncovering
the different types of features learned by each neuron in deep neural networks. arXiv preprint
arXiv:1602.03616, 2016.

[13] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,

6

https://transformer-circuits.pub/2022/toy_model/index.html
https://transformer-circuits.pub/2022/toy_model/index.html

Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html.

[14] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[15] Lee Sharkey. Taking features out of superposition with sparse au-
toencoders. https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/
interim-research-report-taking-features-out-of-superposition, 2022.
LessWrong post.

[16] Lee Sharkey. Mech interp is not pre-paradigmatic. https://www.lesswrong.com/posts/
beREnXhBnzxbJtr8k/mech-interp-is-not-pre-paradigmatic, 2025. LessWrong post.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

7

https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.lesswrong.com/posts/beREnXhBnzxbJtr8k/mech-interp-is-not-pre-paradigmatic
https://www.lesswrong.com/posts/beREnXhBnzxbJtr8k/mech-interp-is-not-pre-paradigmatic

A Appendix

A.1 Causal Importance Algorithm

Algorithm 1 Minimal Attention Causal Importance

Require: Input x ∈ RB×s×d

Require: ΓL = (γl
1, ..., γ

l
C) // A function that assigns C causal importances per layer

Require: Learnable RelPosEnc ∈ R2·s×d

Require: Learnable AbsPosEnc ∈ Rs×d

Require: Learnable Q,K, V ∈ Rd×d

Ensure: Output Gl ∈ RB×s×C

1: xpos ← x+ AbsPosEnc(x)
2: q ← Q(x); k ← K(x); v ← V (xpos)
3: r ← RelPosEnc(s)
4: xcombined ← softmax(qk

⊤+r√
d

)v // Implemented with Flex Attention
5: xcombined ← concat(xcombined, xpos)
6: Gl ← Γl(xcombined)
7: return Gl

Sequence Length

Method 16 64 1024 10240*

Scalar 12 12 9 11
Vector 13 13 10 11
Attention (no flex) 10 10 2 1
Attention (flex) 10 10 6 6

Table 2: Iterations per second for different γ-MLP inputs on the induction-head decomposition task.
*Batch size modified from 64 to 4 for sequence length 10240 due to memory limits.

8

A.2 Induction-Head Transformer

A.2.1 Hyperparameters

Model hyperparameters
Batch Size 1024
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.01
Learning Rate Schedule Constant
Learning Rate Warmup 1000
Steps 100000

Dmodel 16
Posenc Shortformer
Use Layer Norm False
Use FF False

Vocab Size 128
Sequence Length 64

Table 3: Hyperparameters for the Induction
Head toy-model task

Decomposition hyperparameters
Batch Size 1024
Optimizer Adam
Learning Rate 0.001
Learning Rate Schedule Cosine
Learning Rate Warmup 0
Steps 100000

C 100
Dgate 16
CI-function Attention

Stochastic Recon β 1
Stochastic Layerwise Recon β 1
Recon β 0.5
Faithfulness β 1000
Importance Minimality β 0.02
Pstart 0.9
Pfinal 0.1
Anneal P? True
Last Token Only? True

Table 4: Hyperparameters for the Induction
Head decomposition task

A.2.2 Loss Curve

Figure 5: Loss curve for the Induction Head Transformer showing that expected phase changes are
present.

9

A.2.3 SVD Baseline

Algorithm 2 Greedy Rank-1 SVD Pruning

Require: Weight matrices {Wi} from target modelM
Require: Dataset D = {xb}Nb=1
Require: Tolerance τ
Require: Loss function L // DKL in our case.
Ensure: Reduced-rank weight matrices {W̃i}

1: Decompose each Wi with SVD: Wi = UiSiV
⊤
i

2: current_loss← 0
3: P ←M(D)
4: while current_loss ≤ τ do
5: for Wi that still has rank > 0 do:
6: Form W ′

i by removing its smallest remaining singular value/vector
7: Define M̃ asM with Wi replaced by W ′

i

8: Q← M̃(D)
9: Evaluate Li = DKL(P ||Q)

10: Pick index j with lowest Lj

11: if Lj ≤ τ then
12: Update Wj ←W ′

j inM
13: current_loss← Lj

14: else
15: break
16: end if
17: end for
18: end while
19: return pruned weight matrices {W̃i}

10

A.3 GPT-2

A.3.1 Hyperparameters

Decomposition hyperparameters
Batch Size 2
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.05
Learning Rate Schedule Constant
Learning Rate Warmup 0.01
Steps 20000

C 768
Dgate 64
CI-function vector

Stochastic Recon β 0.1
Partial Stochastic Recon β 10
Stochastic Layerwise Recon β 0.1
Recon β 0.1
Partial Recon β 10
Faithfulness β 1000000
Importance Minimality β 0.05
Pstart 0.9
Pfinal 0.1
Anneal P? True
Last Token Only? False

Figure 6: Hyperparameters for the GPT2 decomposition task

A.3.2 Fact Location

Figure 7: Causal tracing on the Kobe Bryant
example

Figure 8: Causal tracing on the Tiger Woods
example

Figure 7 and 8 show the result of running causal tracing from Meng et al.[11] on our 2 fact-examples.
Causal tracing suggests that the fact can be edited all the way from layer 0 MLPs to the layer 5 MLPs.
In our findings, we see evidence that the athlete→ sport association is present as early as after the
first MLP layer. The fact is editable up until the fifth MLP layer, after which the information is likely
moved across the sequence with attention.

Editing a fact comes down to correlating a specific read direction U⃗ (K⃗ in [11]) with a desired write
direction V⃗ . Under that framing, it is easy to see how any MLP that encounters a certain fact before
the unembedding. In Meng et al.[11] they edit facts by solving a small optimisation problem to yield
V⃗ that maximises the probability of the fact they want to predict. The key-vector K⃗ – the input to the

11

Figure 9: The effect of zeroing out entire MLP-layers in GPT2-small on the "Kobe Bryant plays the
sport of" example. Dashed line is the full model’s output probability.

MLP – could in theory be anything. In later layers the basketball-concept may have already been
written to the residual stream and we are introducing a mapping from basketball to e.g. football.

In figure 9 we take this to the extreme, and show that you can actually entirely zero-out the layer in
which it is most beneficial to edit the fact, showing conclusively that the fact does not live there. Note
that the drop in probability to 0 when zeroing out layer 0 does not imply the fact lives there – zeroing
out this layer simply destroys the model.

A.3.3 Partial losses

When decomposing large models over very few samples, the decomposed model is likely to be much
smaller than the original model. This means that the decomposed model has room to cheat and simply
learn a function that produces the same output, by creating new mechanisms and putting them in
the components that are unused in the original model. It can then drive all other causal importances
to 0 through optimising for minimality. This creates a decomposition that is likely more minimal,
but does not teach us anything about the original model. Specifically, we often see this in the form
of the model maintaining one layer (the last) with a suboptimal amount of subcomponents active,
such that it can keep the other layers very sparse. If you consider a model decomposed over just
the example "Tiger Woods plays golf", it is easy to see how the model could just learn a handful of
rank-1 subcomponents in the final layer, that writes the relevant token directions onto the residual
stream, instead of learning the underlying mechanism. When decomposing over larger datasets, this
effect is minimised as the cheating subcomponents would incur heavy reconstruction losses for all
other examples.

We circumvent this with the 2 losses from section 6.2:

Lrecon_partial = DKL

(
f
(
x |W 1, . . . ,W l∈M(x, gl(x)), . . . ,WL

)
, f(x |W)

)
, (7)

Lstochastic_recon_partial =
1

S

S∑
s=1

DKL

(
f
(
x |W 1, . . . ,W l∈M(s)

(x, rl,(s)), . . . ,WL
)
, f(x |W)

)
,

(8)

whereM⊆ {1, ..., L}.
These are equivalent to Lrecon and Lstochastic_recon, but they sample only some subset of layers in
the model to replace and leave everything else in the target model intact. This severely reduces the
ability for the model to implement cheating mechanisms in any layer, as it 1) may not be able to rely
on that layer and 2) these mechanisms might clash with the weight matrices of the full model.

12

A.3.4 Fact dataset

S e r en a W i l l i a m s i s a p r o f e s s i o n a l t e n n i s p l a y e r
The G r e a t Wall o f China i s i n China
The Mona L i s a was p a i n t e d by Leonardo da V i n c i
Mount E v e r e s t i s t h e t a l l e s t mounta in on E a r t h
The E i f f e l Tower i s l o c a t e d i n P a r i s F r an c e
Usain B o l t i s t h e f a s t e s t man i n t h e wor ld
The P a c i f i c Ocean i s t h e l a r g e s t ocean on E a r t h
A l b e r t E i n s t e i n d e v e l o p e d t h e t h e o r y o f r e l a t i v i t y
J .K. Rowling wro te t h e Harry P o t t e r s e r i e s
The Amazon R i v e r f l o w s t h r o u g h South America
Wi l l i am S h a k e s p e a r e wro te Romeo and J u l i e t
Bee thoven composed t h e F i f t h Symphony
The S a ha ra D e s e r t i s i n A f r i c a
Apple I n c . was founded by S t e v e Jobs S t e v e Wozniak and Ronald Wayne
The sun i s a s t a r
The B e a t l e s were a B r i t i s h rock band
C r i s t i a n o Ronaldo i s a p r o f e s s i o n a l s o c c e r p l a y e r
The S t a t u e o f L i b e r t y i s i n New C i t y
Pab lo P i c a s s o was a famous p a i n t e r
The N i l e i s t h e l o n g e s t r i v e r i n t h e wor ld
C h a r l e s Darwin d e v e l o p e d t h e t h e o r y o f e v o l u t i o n
Google was founded i n 1998
The Ta j Mahal i s i n I n d i a
The T i t a n i c sank i n 1912
Jane Austen wro te P r i d e and P r e j u d i c e
The Moon o r b i t s t h e E a r t h
Mount K i l i m a n j a r o i s i n T a n z a n i a
The Lean ing Tower o f P i s a i s i n I t a l y
Walt Disney c r e a t e d Mickey Mouse
V i n c e n t van Gogh p a i n t e d S t a r r y Nigh t

Figure 10: Excerpt from GPT-5 generated "fact" dataset.

13

A.4 Training routine

Algorithm 3 SPD Training Step (Single Minibatch)

Require: Original modelMθ

Require: Decomposed model M̃ϕ

Require: Causal-importance routine Cϕ
Require: Dataset D
Require: Loss functions {Lk}nk=1 with coefficients {λk}nk=1

1: Sample minibatch X ⊂ D
2: Y ←Mθ(X) // run original model
3: C ← Cϕ(X) // compute causal importances on this batch
4: R← SampleMasks(C) // sample stochastic subcomponent masks
5: Ỹ ← M̃ϕ(X;R) // run decomposed model with masks
6: L← 0
7: for k = 1 . . . n do
8: L← L+ λk Lk(X,Y, Ỹ , C,R,Mθ,M̃ϕ)
9: end for

10: Update parameters of M̃ϕ and Cϕ

14

	Introduction
	Motivation
	Parameter Decomposition
	Method
	Causal Importances

	Experiments
	Induction Heads
	GPT2-Small

	Results
	Induction Heads
	GPT2-Small

	Discussion
	Appendix
	Causal Importance Algorithm
	Induction-Head Transformer
	Hyperparameters
	Loss Curve
	SVD Baseline

	GPT-2
	Hyperparameters
	Fact Location
	Partial losses
	Fact dataset

	Training routine

