Towards Decomposition of Transformer Models

Anonymous Author(s)

Affiliation Address email

Abstract

Recent work in mechanistic interpretability has proposed decomposing model parameters rather than activations. We extend Stochastic Parameter Decomposition (SPD) to Transformer models, proposing an updated causal importance function suited for sequential data. We demonstrate that SPD can successfully decompose a toy induction-head model and recover the underlying computations. We also show that applying SPD to GPT-2-small can successfully locate subcomponents corresponding to interpretable concepts like "golf" and "basketball". This work takes the first step in the direction of extending SPD to modern models, and shows that we can use the method to surface interpretable parameter-space mechanisms. Code available at https://anonymous.4open.science/r/spd_submission-25BB

11 1 Introduction

2

3

5

6

7

8

9

10

13

14

15

16

17

19

20

21

22

23

24

Much of mechanistic interpretability work can be characterised as belonging to one of two waves [15]. In the first, researchers attempted to understand models by dissecting and studying neurons individually, but this proved infeasible due to polysemanticity [11] and superposition [7]. The second wave shifted into *activation space*, where sparse dictionary learning (SDL) [14] uncovered thousands of highly-interpretable concepts [5]. However, SDL methods struggle with feature geometry and anomalies such as feature absorption and splitting [4], while offering no clear definition of what features actually are. Now, looking towards a third wave, we instead turn to parameter space: Braun et al. [2] decompose weights into "mechanism-space" vectors, and Bushnaq et al. [3] extend this with Stochastic Parameter Decomposition (SPD), which represents weights as sparsely-activating rank-1 matrices. In this work, we extend this method to Transformer models. Our contributions are: a) a better causal importance function for sequential data, b) fully decomposing a toy model of induction heads, and c) decomposing GPT2-small and locating interpretable subcomponents.

2 Method

25 SPD decomposes a model's weights (components) $W^l \in \mathbb{R}^{n \times m}$ into subcomponents $(W^l_1,...,W^l_C)$ 26 where C is a hyperparameter and each $W^l_c = \vec{U^l_c} \otimes \vec{V^l_c}, \ U^l_c, V^l_c \in \mathbb{R}^d$, such that they are rank 1. We desire that the subcomponents sum to the original component (faithfulness), the output is 28 approximately reconstructed, and as few subcomponents as possible are required to do so (minimality). 29 We use the losses from Bushnaq et al and train on their coefficient-weighted sum [3]:

$$\mathcal{L}_{faithfulness} = \frac{1}{N} \sum_{l=1}^{L} \sum_{i,j} \left(W_{i,j}^{l} - \sum_{c=1}^{C} U_{i,c}^{l} V_{c,j}^{l} \right)^{2}, \quad \mathcal{L}_{minimality} = \sum_{l=1}^{L} \sum_{c=1}^{C} |g_{c}^{l}(x)|^{p} \quad (1)$$

$$\mathcal{L}_{stochastic_recon} = \frac{1}{S} \sum_{s=1}^{S} D_{KL}(f(x|W'(x,r^{(s)})), f(x|W)$$
 (2)

30

$$\mathcal{L}_{stochastic_recon_layerwise} = \frac{1}{LS} \sum_{l=1}^{L} \sum_{s=1}^{S} D_{KL} \Big(f(x \mid W^1, \dots, W^l(x, r^{l,(s)}), \dots, W^L), \ f(x \mid W) \Big)$$
(3)

where f is the model we decompose, r^s is a stochastically-sampled mask of causal importances (defined in section 2.1), such that any subcomponent is scaled between $(g_c^l(x), 1)$, and g_c^l is the subcomponent's causal importance for the input x. The causal importances are learned along with the decomposition. In addition, we train on \mathcal{L}_{recon} , which is equivalent to $\mathcal{L}_{stochastic_recon}$ with all mask-values set to exactly their causal importance (no sampling). This reduces variance across samples by penalizing deterministic reconstructions, which we find increases training stability.

38 2.1 Causal Importances

In Bushnaq et al [3], causal importance for a subcomponent is defined as how ablatable it is. A 39 causally important subcomponent should have high impact on the output and is therefore not ablatable. 40 The choice of stochastic losses ensures that this is enforced, as non-important subcomponents may 41 be arbitrarily turned on, whereas important ones are guaranteed to stay on. Causal importances are 42 learned with an independent γ -function (an MLP) per subcomponent, which takes as input either 43 the inner-activation $x \times \vec{U}$ (a scalar) or x. However, this is suboptimal for models operating on 44 sequences. Consider the string "Sat by the river bank, the bank manager" and "manager" as the 45 query-token. Independent γ -MLPs would be forced to assign the same causal importance score to 47 the 2 instances of bank, even though the latter is likely to be more important for the output ¹. This is especially true for the OV-circuit, where 2 value vectors with the same representation may be 48 unequally attended to. Motivated by this, we apply attention with a minimal attention network (1 49 head, 1 layer, QKV-only) across the tokens prior to computing g. We use learned, relative positional 50 encodings in the attention-network for expressivity and learned absolute positional encodings on the 51 value-vectors, such that the downstream γ -MLP also has positional awareness. This means that for 52 subcomponents $(W_1^l,...,W_C^l)$ and positions (1,...,n), we decide causal importance $g_{c,n}^l$ via:

$$g_{c,n}^l = \sigma_H(\gamma_c^l(\bar{x}_n)), \quad \text{where } \bar{x_n} = \left(\operatorname{softmax}\left(\frac{q_n K^\top + r_n}{\sqrt{d_k}}\right)V\right) \oplus x_n$$
 (4)

where V and x_n have absolute, learned positional encodings, r_n is the row of learned, relative positional biases, γ_c^l are independent MLPs per subcomponent as in the previous literature, and σ_H is the leaky-hard sigmoid function. While this scales worse than the original implementation, we implement this efficiently with flex-attention [6]. See the appendix for a speed comparison.

58 3 Experiments

61

62

3.1 Induction Heads

Figure 1: The type of sequence we train on for the induction-head task.

Figure 1 shows an example of the data generated for the task. Formally, we sample n-2 tokens from a vocabulary V, and we then insert 2 s-tokens; one randomly and one at the end of the sequence [8]. The task is to predict the token following the first s-token (we call this token the m-token). The s-tokens are unique such that they serve as an indicator for induction. Crucially, this task is only solvable by first moving information from s to m, and then m to the final s, which forces the model to form an induction-head [12].

¹Note that this does not necessarily apply to the QK-circuit in Transformers with absolute positional encodings, as the representations will differ slightly. For RoPE encodings that are not applied until *after* the projections, this will matter as the γ -MLPs will be positionally-unaware.

We train a 2 layer, 1-head-per-layer attention-only Transformer [16] to on sequences of this form, such that we can later decompose it. See table 3 for our hyperparameters. We consider loss only on the final token both when training the model and when decomposing it. We analyse the recovered circuit and its consistency with the original model.

3.2 GPT2-Small

70

71

72

73

74 75

76

77

78 79

80

85

86

87

88

89

90

91

92

93

94

95

96

97

98

100

101

102

103

104

One hope of methods like SPD is the ability to elicit latent knowledge. To investigate this, we create a dataset of 2 sentences that GPT-2 correctly predicts the last token for: "Kobe Bryant plays the sport of basketball" and "Tiger Woods plays the sport of golf", and use just these examples to decompose GPT2-small [13]. We analyse the subcomponents and supress specific subcomponents via orthogonal projection $W\leftarrow W-\sum_{k=1}^r \left(\hat{u}_k^{\intercal}W\hat{v}_k\right)\hat{u}_k\hat{v}_k^{\intercal}, \quad \hat{u}_k=\frac{u_k}{\|u_k\|}, \quad \hat{v}_k=\frac{v_k}{\|v_k\|}$. In addition to measuring changes on the examples, we use an additional synthetic, fact-based test set of 100 examples in our evaluation. To reduce the possibility of "cheating" (i.e., learning an output-equivalent function through compensatory errors across layers) given the small dataset, we introduce a randomized partial version of the reconstruction losses (detailed in the appendix) that evaluate only a subset of layers at a time, such that the model cannot rely on any one layer.

81 4 Results

(a)

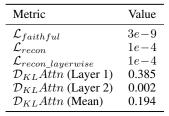
2 4.1 Induction Heads

	s_1	m	s_2	random
Q_0	0.000	1.000	0.000	0.001
K_0	1.000	0.050	0.000	0.183
V_0	1.000	0.000	0.000	0.000
Q_1	0.000	0.000	1.000	0.000
K_1	0.000	1.000	0.000	0.000
V_1	0.000	5.053	0.000	0.000

Average active subcomponents.	
-------------------------------	--

	Total unique
$\overline{Q_0}$	1
K_0	1
V_0	1
Q_1	1
K_1	1
V_1	11

⁽b) Total unique subcomponents.



(c) Evaluation metrics.

Table 1: Results for the induction-head toy model decomposition

For the induction head toy model, only two positions matter per layer; m must first attend to s_1 and 'understand' that it follows s_1 , and then s_2 must attend to m to obtain m's identity. We see in table 1a that subcomponents are assigned largely to the relevant positions, and table 1 shows a very small amount of unique subcomponents. Table 1c shows almost-zero faithfulness, which indicates that if we consider all subcomponents causally important, we recover exactly the original model. \mathcal{L}_{recon} and $\mathcal{L}_{recon_layerwise}$ are equivalent to substituting all the weight matrices in the original; either all at once or layer-by-layer. This can be compared to ablating all the presumed-unimportant components of a model and seeing if it still works.

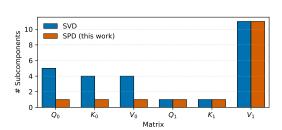
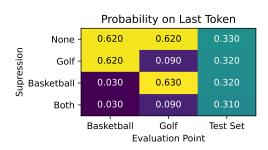
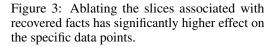


Figure 2: SPD vs. greedy SVD low-rank approximation[2]. Even on a very simple model, SPD finds a more minimal decomposition that matches the full model's output distribution.

Investigating the concrete mechanisms, we learn that K_0 's objective is to align the representation of token n with the positional encoding of n+1. When we do not add positional encodings prior to projecting m through the Q-matrix, the attention-strength from m to s_1 drops from s_2 to s_3 drops from s_4 to s_4 attends to s_4 and we see considerably more active subcomponents in s_4 for s_4 position. We believe this is because s_4 denoted and s_4 denoted at the final position, and therefore higher rank than s_4 is required to carry that information.

4.2 GPT2-Small





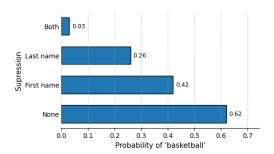


Figure 4: Both the first and last name for Kobe Bryant appear to carry basketball information and removing a rank 1 slice from both is most effective.

For the 2 examples, we find 96 active subcomponents in total, which is a 99% size reduction compared to the whole model ². We find 2 subcomponents that uniquely activate in the layer 0 MLP for tokens "obe" and "Bryant" and 1 uniquely for "Woods", that significantly reduce the probability of the sport being correctly predicted, if we supress their directions in the original model. We see in figure 3 that these effects are isolated, which suggests we may have discovered where the network "stored" that fact. This extends previous work [10] which initially suggested facts may be stored closer towards the middle of the network, but where follow-up work [9] came to the same conclusions we do, namely that you can edit a fact somewhere the network does not store it. Our results suggest some facts originate as early as the very first MLP layer, and propagate through the network. Interestingly, we find that for the "Kobe Bryant" example, we must supress a rank-1 direction on both the first and last name, to maximally reduce the output probability. We believe this is because "Kobe" has a strong enough association with basketball by itself, whereas "Tiger" generally does not refer to a name. Importantly we supress only the athlete \rightarrow sport direction. If we reverse the direction and prompt with "The most famous athlete in golf is..", the model accurately answers "Tiger Woods". This is consistent with previous research [10] [1], which finds that knowledge is stored asymmetrically in language models.

5 Discussion

While our results suggest that SPD can be extended to Transformer models, several limitations remain. First, our experiments are restricted to small-scale models, leaving open questions about scalability to larger architectures. Second, the causal importance parameterization introduces additional computational overhead. Third, our evaluation is qualitative and task-specific, so further benchmarks are needed to establish generality across architectures and tasks. We also note the difficulty in establishing ground truth even for small, toy Transformers. Nonetheless, we believe our analysis shows the obtained decompositions are largely faithful to the underlying model mechanisms.

Our results show that parameter decomposition can surface semantically specific mechanisms in Transformers. For induction heads, SPD recovers the expected two-step copy circuit. For GPT-2-small, ablating up to 2 rank-1 slices selectively reduces the probability of the targeted fact (e.g., "golf" for Tiger Woods) while leaving unrelated examples largely unaffected. This indicates that SPD yields narrow, causally relevant directions rather than broad capacity that would degrade performance indiscriminately.

These findings suggest that parameter-space objects can act as clean handles for mechanistic interventions. In future work we plan to extend this work to larger models, and to improve our definition of causal importance for computations with feature interactions.

²One caveat: Causal importance of subcomponents in the attention-mechanism. For instance, if a QK-circuit ends up with 0 active subcomponents, it is still "in-use", but attention is uniform (softmax over 0-vector). For this reason, we also do not compare sparsity or size with e.g pruning methods.

References

- [1] Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz
 Korbak, and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a".
 arXiv preprint arXiv:2309.12288, 2023.
- 144 [2] Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, and Lee Sharkey. Interpretabil-145 ity in parameter space: Minimizing mechanistic description length with attribution-based 146 parameter decomposition. *arXiv* preprint arXiv:2501.14926, 2025.
- [3] Lucius Bushnaq, Dan Braun, and Lee Sharkey. Stochastic parameter decomposition. *arXiv* preprint arXiv:2506.20790, 2025.
- [4] David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, Satvik Golechha, and
 Joseph Bloom. A is for absorption: Studying feature splitting and absorption in sparse autoencoders. arXiv preprint arXiv:2409.14507, 2024.
- [5] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoencoders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600, 2023.
- [6] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A programming model for generating optimized attention kernels. arXiv preprint arXiv:2412.05496, 2024.
- [7] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
 Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
 McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superposition. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/toy_model/index.html.
- [8] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752, 2023.
- [9] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform
 editing? surprising differences in causality-based localization vs. knowledge editing in language
 models. Advances in Neural Information Processing Systems, 36:17643–17668, 2023.
- [10] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022.
- 170 [11] Anh Nguyen, Jason Yosinski, and Jeff Clune. Multifaceted feature visualization: Uncovering the different types of features learned by each neuron in deep neural networks. *arXiv preprint* arXiv:1602.03616, 2016.
- [12] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. *Transformer Circuits Thread*, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.
- [13] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Languagemodels are unsupervised multitask learners. 2019.
- 182 [14] Lee Sharkey. Taking features out of superposition with sparse autoencoders. https://www.lesswrong.com/posts/z6QQJbtpkEAX3Aojj/
 184 interim-research-report-taking-features-out-of-superposition, 2022.
 185 LessWrong post.
- 186 [15] Lee Sharkey. Mech interp is not pre-paradigmatic. https://www.lesswrong.com/posts/beREnXhBnzxbJtr8k/mech-interp-is-not-pre-paradigmatic, 2025. LessWrong post.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
 processing systems, 30, 2017.

Appendix

Causal Importance: algorithm

Algorithm 1 Minimal Attention Causal Importance

Require: Input $x \in \mathbb{R}^{B \times s \times d}$ Require: $\Gamma^L = (\gamma_1^l, ..., \gamma_C^l)$ // A function that assigns C causal importances per layer Require: Learnable RelPosEnc $\in \mathbb{R}^{2 \cdot s \times d}$

Require: Learnable AbsPosEnc $\in \mathbb{R}^{s \times d}$ Require: Learnable $Q, K, V \in \mathbb{R}^{d \times d}$ Ensure: Output $G^l \in \mathbb{R}^{B \times s \times C}$

1: $x_{pos} \leftarrow x + \text{AbsPosEnc}(x)$ 2: $q \leftarrow Q(x); \quad k \leftarrow K(x); \quad v \leftarrow V(x_{pos})$ 3: $r \leftarrow \text{RelPosEnc}(s)$

4: $x_{combined} \leftarrow \operatorname{softmax}(\frac{qk^\top + r}{\sqrt{d}})v$ // Implemented with Flex Attention

5: $x_{combined} \leftarrow \operatorname{concat}(x_{combined}, x_{pos})$ 6: $G^l \leftarrow \Gamma^l(x_{combined})$

7: return $G^{\hat{l}}$

	Sequence Length			
Method	16	64	1024	10240*
Scalar	12	12	9	11
Vector	13	13	10	11
Attention (no flex)	10	10	2	1
Attention (flex)	10	10	6	6

Table 2: Iterations per second for different γ -MLP inputs on the induction-head decomposition task. *Batch size modified from 64 to 4 for sequence length 10240 due to memory limits.

193 Induction-Head Transformer: hyperparameters

1024
AdamW
0.001
0.01
Constant
1000
100000
16
Shortformer
False
False
128
64

Table 3: Hyperparameters for the Induction Head toy-model task

Decomposition hyperparameters

7 77 7	
Batch Size	1024
Optimizer	Adam
Learning Rate	0.001
Learning Rate Schedule	Cosine
Learning Rate Warmup	0
Steps	100000
С	100
D_{gate}	16
CI-function	Attention
Stochastic Recon β	1
Stochastic Layerwise Recon β	1
Recon β	0.5
Faithfulness β	1000
Importance Minimality β	0.02
P_{start}	0.9
P_{final}	0.1
Anneal P?	True
Last Token Only?	True

Table 4: Hyperparameters for the Induction Head decomposition task

94 Induction-Head Transformer: loss curve

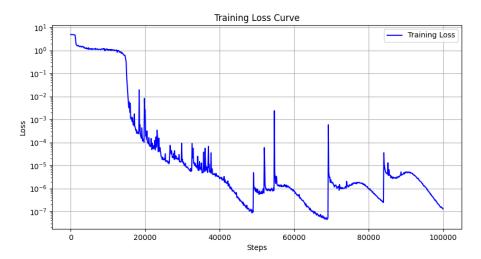


Figure 5: Loss curve for the Induction Head Transformer showing that expected 'phase changes' are present.

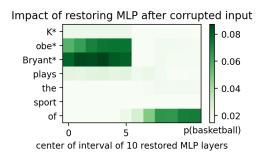
195 Induction-Head Transformer: SVD-baseline

Algorithm 2 Greedy Rank-1 SVD Pruning

```
Require: Weight matrices \{W_i\} from target model \mathcal{M}
Require: Dataset \mathcal{D} = \{x_b\}_{b=1}^N
Require: Tolerance \tau
Require: Loss function \mathcal{L} // D_{KL} in our case.
Ensure: Reduced-rank weight matrices \{\tilde{W}_i\}
 1: Decompose each W_i with SVD: W_i = U_i S_i V_i^{\top}
 2: current\_loss \leftarrow 0
 3: P \leftarrow \mathcal{M}(\mathcal{D})
 4: while current_loss \leq \tau do
 5:
          for W_i that still has rank > 0 do:
               Form W'_i by removing its smallest remaining singular value/vector
 6:
               Define \tilde{\mathcal{M}} as \mathcal{M} with W_i replaced by W'_i
 7:
               Q \leftarrow \tilde{\mathcal{M}}(D)
 8:
               Evaluate L_i = D_{KL}(P||Q)
Pick index j with lowest L_j
 9:
10:
11:
               if L_j \leq \tau then
                    Update W_j \leftarrow W_j' in \mathcal{M} current_loss \leftarrow L_j
12:
13:
14:
               else
15:
                    break
16:
               end if
17:
          end for
18: end while
19: return pruned weight matrices \{\tilde{W}_i\}
```

Decomposition hyperparameters	
Batch Size	2
Optimizer	AdamW
Learning Rate	0.001
Weight Decay	0.05
Learning Rate Schedule	Constant
Learning Rate Warmup	0.01
Steps	20000
С	768
D_{gate}	64
CI-function	vector
Stochastic Recon β	0.1
Partial Stochastic Recon β	10
Stochastic Layerwise Recon β	0.1
Recon β	0.1
Partial Recon β	10
Faithfulness β	1000000
Importance Minimality β	0.05
P_{start}	0.9
P_{final}	0.1
Anneal P?	True
Last Token Only?	False

Figure 6: Hyperparameters for the GPT2 decomposition task



Impact of restoring MLP after corrupted input

T*iger*Woods*plays the sport of 0 5 p(golf)
center of interval of 10 restored MLP layers

Figure 7: Causal tracing on the Kobe Bryant example

Figure 8: Causal tracing on the Tiger Woods example

In this section we do some additional investigation into fact storage in GPT2-small. Figure 7 and 8 show the result of running causal tracing from Meng et al.[10] on our 2 fact-examples. Causal tracing suggests that the fact can be edited all the way from layer 0 MLPs to the layer 5 MLPs. In our findings, we see evidence that the athlete \rightarrow sport association is present as early as after the first MLP layer. The fact is editable up until the fifth MLP layer, after which the information is likely moved across the sequence with attention.

Editing a fact comes down to correlating a specific read direction \vec{U} (\vec{K} in [10]) with a desired write direction \vec{V} . Under that framing, it is easy to see how *any* MLP that encounters a certain fact before the unembedding. In Meng et al.[10] they edit facts by solving a small optimization problem to yield \vec{V} that maximises the probability of the fact they want to predict. The key-vector \vec{K} – the input to the MLP – could in theory be anything. In later layers the *basketball*-concept may have already been written to the residual stream and we are introducing a mapping from basketball to e.g. football.

In figure 9 we take this to the extreme, and show that you can actually entirely zero-out the layer in which it is most beneficial to edit the fact, showing conclusively that the fact does not live there. Note

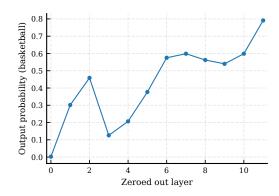


Figure 9: The effect of zeroing out entire MLP-layers in GPT2-small on the "Kobe Bryant plays the sport of" example

that the drop in probability to 0 when zeroing out layer 0 does *not* imply the fact lives there – zeroing out this layer simply destroys the model.

Partial losses

213

When decomposing large models over very few samples, the model has room to "cheat" the task and 214 simply learn a function that produces the same output. Specifically, we often see this in the form 215 of the model maintaining one layer (the last) with a suboptimal amount of subcomponents active, 216 such that it can keep the other layers very sparse. If you consider a model decomposed over just the 217 example "Tiger Woods plays golf", it is easy to see how the model could just learn a handful of rank-1 218 subcomponents in the final layer, that writes the relevant token directions onto the residual stream, instead of learning the actual underlying mechanism. When decomposing over larger datasets, this effect is minimised as the "cheating" subcomponents would incur heavy reconstruction losses for all 221 222 other examples.

223 To circumvent this, we introduce 2 new losses:

$$\mathcal{L}_{recon_partial} = D_{KL} \left(f(x \mid W^1, \dots, W^{l \in \mathcal{M}}(x, g^l(x)), \dots, W^L), f(x \mid W) \right), \tag{5}$$

$$\mathcal{L}_{stochastic_recon_partial} = \frac{1}{S} \sum_{s=1}^{S} D_{KL} \Big(f(x \mid W^1, \dots, W^{l \in \mathcal{M}^{(s)}}(x, r^{l,(s)}), \dots, W^L \Big), f(x \mid W) \Big),$$
(6)

where $\mathcal{M} \subseteq \{1, ..., L\}$.

These are equivalent to \mathcal{L}_{recon} and $\mathcal{L}_{stochastic_recon}$, but they sample only some subset of layers in the model to replace and leave everything else in the target model intact. This severely reduces the ability for the model to implement "cheating" mechanisms in any layer, as it 1) may not be able to rely on that layer and 2) these mechanisms might clash with the weight matrices of the full model.

229 Fact dataset

Serena Williams is a professional tennis player The Great Wall of China is in China The Mona Lisa was painted by Leonardo da Vinci Mount Everest is the tallest mountain on Earth The Eiffel Tower is located in Paris France Usain Bolt is the fastest man in the world The Pacific Ocean is the largest ocean on Earth Albert Einstein developed the theory of relativity J.K. Rowling wrote the Harry Potter series The Amazon River flows through South America William Shakespeare wrote Romeo and Juliet Beethoven composed the Fifth Symphony The Sahara Desert is in Africa Apple Inc. was founded by Steve Jobs Steve Wozniak and Ronald Wayne The sun is a star The Beatles were a British rock band Cristiano Ronaldo is a professional soccer player The Statue of Liberty is in New City Pablo Picasso was a famous painter The Nile is the longest river in the world Charles Darwin developed the theory of evolution Google was founded in 1998 The Taj Mahal is in India The Titanic sank in 1912 Jane Austen wrote Pride and Prejudice The Moon orbits the Earth Mount Kilimanjaro is in Tanzania The Leaning Tower of Pisa is in Italy Walt Disney created Mickey Mouse Vincent van Gogh painted Starry Night

Figure 10: Excerpt from GPT-5 generated "fact" dataset.