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Abstract

Recent work in mechanistic interpretability has proposed decomposing model
parameters rather than activations. We extend Stochastic Parameter Decomposition
(SPD) to Transformer models, proposing an updated causal importance function
suited for sequential data. We demonstrate that SPD can successfully decompose a
toy induction-head model and recover the underlying computations. We also show
that applying SPD to GPT-2-small can successfully locate subcomponents corre-
sponding to interpretable concepts like "golf" and "basketball". This work takes the
first step in the direction of extending SPD to modern models, and shows that we can
use the method to surface interpretable parameter-space mechanisms. Code avail-
able athttps://anonymous.4open.science/r/spd_submission-25BB

1 Introduction

Much of mechanistic interpretability work can be characterised as belonging to one of two waves
[L5]]. In the first, researchers attempted to understand models by dissecting and studying neurons
individually, but this proved infeasible due to polysemanticity [[11]] and superposition [7]]. The second
wave shifted into activation space, where sparse dictionary learning (SDL) [[14] uncovered thousands
of highly-interpretable concepts [5]. However, SDL methods struggle with feature geometry and
anomalies such as feature absorption and splitting [4], while offering no clear definition of what
features actually are. Now, looking towards a third wave, we instead turn to parameter space: Braun
et al. [2]] decompose weights into “mechanism-space* vectors, and Bushnagq et al. [3] extend this with
Stochastic Parameter Decomposition (SPD), which represents weights as sparsely-activating rank-1
matrices. In this work, we extend this method to Transformer models. Our contributions are: a) a
better causal importance function for sequential data, b) fully decomposing a toy model of induction
heads, and ¢) decomposing GPT2-small and locating interpretable subcomponents.

2 Method

SPD decomposes a model’s weights (components) W' € R™*™ into subcomponents (W7, ..., Wé)

where C is a hyperparameter and each W! = Ul @ V!, UL, V! € R such that they are rank
1. We desire that the subcomponents sum to the original component (faithfulness), the output is
approximately reconstructed, and as few subcomponents as possible are required to do so (minimality).
We use the losses from Bushnagq et al and train on their coefficient-weighted sum [3|:

L c 2 L C
Efaithfulness = % Z Z (Wzl] - Z Ui{c‘d,j) 5 Eminimality = Z Z ‘gi(x”p (1)
c=1

=1 1, =1 c=1

S
1 X
ACstochasticﬁrecon = E § DKL (f(l"W/(l', r(é)))v f(CC|W) (2)
s=1
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where f is the model we decompose, 7° is a stochastically-sampled mask of causal importances
(defined in section 2.1), such that any subcomponent is scaled between (g'(z), 1), and ¢’ is the
subcomponent’s causal importance for the input x. The causal importances are learned along with
the decomposition. In addition, we train on L,.c.on, Which is equivalent to Lgtochastic_recon With
all mask-values set to exactly their causal importance (no sampling). This reduces variance across
samples by penalizing deterministic reconstructions, which we find increases training stability.

2.1 Causal Importances

In Bushnagq et al [3]], causal importance for a subcomponent is defined as how ablatable it is. A
causally important subcomponent should have high impact on the output and is therefore not ablatable.
The choice of stochastic losses ensures that this is enforced, as non-important subcomponents may
be arbitrarily turned on, whereas important ones are guaranteed to stay on. Causal importances are
learned with an independent ~y-function (an MLP) per subcomponent, which takes as input either

the inner-activation « x U (a scalar) or x. However, this is suboptimal for models operating on
sequences. Consider the string "Sat by the river bank, the bank manager" and "manager" as the
query-token. Independent v-MLPs would be forced to assign the same causal importance score to
the 2 instances of bank, even though the latter is likely to be more important for the output[ﬂ This
is especially true for the OV-circuit, where 2 value vectors with the same representation may be
unequally attended to. Motivated by this, we apply attention with a minimal attention network (1
head, 1 layer, QK'V-only) across the tokens prior to computing g. We use learned, relative positional
encodings in the attention-network for expressivity and learned absolute positional encodings on the
value-vectors, such that the downstream y-MLP also has positional awareness. This means that for
subcomponents (W7, ..., Wé) and positions (1, ..., n), we decide causal importance gi,n via:

. L _ KT +r,
9in = 0ou(ve(Zn)), where @ (so max( N ) > D 4)

where V and z,, have absolute, learned positional encodings, r,, is the row of learned, relative
positional biases, 7. are independent MLPs per subcomponent as in the previous literature, and o 7

is the leaky-hard sigmoid function. While this scales worse than the original implementation, we
implement this efficiently with flex-attention [6]. See the appendix for a speed comparison.

3 Experiments

3.1 Induction Heads

Figure 1: The type of sequence we train on for the induction-head task.

Figure [I| shows an example of the data generated for the task. Formally, we sample n — 2 tokens
from a vocabulary V, and we then insert 2 s-tokens; one randomly and one at the end of the sequence
[8]]. The task is to predict the token following the first s-token (we call this token the m-token). The
s-tokens are unique such that they serve as an indicator for induction. Crucially, this task is only
solvable by first moving information from s to m, and then m to the final s, which forces the model
to form an induction-head [12].

"Note that this does not necessarily apply to the QK-circuit in Transformers with absolute positional
encodings, as the representations will differ slightly. For RoPE encodings that are not applied until after the
projections, this will matter as the -MLPs will be positionally-unaware.
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We train a 2 layer, 1-head-per-layer attention-only Transformer [[16] to on sequences of this form,
such that we can later decompose it. See table [3|for our hyperparameters. We consider loss only on
the final token both when training the model and when decomposing it. We analyse the recovered
circuit and its consistency with the original model.

3.2 GPT2-Small

One hope of methods like SPD is the ability to elicit latent knowledge. To investigate this, we
create a dataset of 2 sentences that GPT-2 correctly predicts the last token for: "Kobe Bryant plays
the sport of basketball" and "Tiger Woods plays the sport of golf", and use just these examples to
decompose GPT2-small [13]. We analyse the subcomponents and supress specific subcomponents
via orthogonal projection W'« W — 370, (i Wor) ax 0, G = by, O = ok
In addition to measuring changes on the examples, we use an additional synthetic, fact-based test
set of 100 examples in our evaluation. To reduce the possibility of "cheating” (i.e., learning an
output-equivalent function through compensatory errors across layers) given the small dataset, we
introduce a randomized partial version of the reconstruction losses (detailed in the appendix) that

evaluate only a subset of layers at a time, such that the model cannot rely on any one layer.

4 Results

4.1 Induction Heads

S1 m S2 random Total unique Metric Value
Qo 0000 1.000 0000 0.001 Q0 1 L rounron 3¢9
Ko 1000 0050 0000 0.183 Ko 1 oot le—4
Vo 1000 0000 0000 0.000 Vo 1 Lo s le—4
Q1 0.000 0.000 1.000 0.000 Q1 1 Dk Attn (Layer 1) 0385
K; 0.000 1.000 0.000 0.000 K 1 Dg Attn (Layer 2)  0.002
Vi 0000 5053 0000  0.000 Vi 11 DirAttn Mean) 0194

(a) Average active subcomponents. (b) Total unique sub- (¢) Evaluation metrics.
components.

Table 1: Results for the induction-head toy model decomposition

For the induction head toy model, only two po-
sitions matter per layer; m must first attend
to s; and ’understand’ that it follows s;, and
then s, must attend to m to obtain m’s iden-
tity. We see in table[Th that subcomponents are
assigned largely to the relevant positions, and
table [I] shows a very small amount of unique
subcomponents. Table [Tk shows almost-zero
faithfulness, which indicates that if we consider Qo Ko Vo Matrin @ K Vi

all subcomponents causally important, we re-

cover exactly the original model. Lyccon and  Figure 2: SPD vs. greedy SVD low-rank approx-
Lyecon_tayerwise ar€ equivalent to substituting imation[2]]. Even on a very simple model, SPD
all the weight matrices in the original; either all  finds a more minimal decomposition that matches

at once or layer-by-layer. This can be compared  the full model’s output distribution.
to ablating all the presumed-unimportant com-

ponents of a model and seeing if it still works.

I SsVD
I SPD (this work)

# Subcomponents

Investigating the concrete mechanisms, we learn that K’s objective is to align the representation of
token n with the positional encoding of n + 1. When we do not add positional encodings prior to
projecting m through the Q-matrix, the attention-strength from m to s; drops from 1.0 to 0.0941,
even if s1’s key gets to retain its positional information. )1 and K; implement the circuit in which s
attends to m, and we see considerably more active subcomponents in V; for m’s position. We believe
this is because m’s identity among 128 tokens must be umambigiously separable in the residual
stream at the final position, and therefore higher rank than 1 is required to carry that information.
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4.2 GPT2-Small

Probability on Last Token Buthl 0.03
None 0.620 0.330
@ Golf 0.090 0.320 g
S Basketball -JENUUED 0.630 0.320 ¢ FirsE name
2]
Basketball Golf Test Set 0.0 01 02 0.3 04 0s o6 07
Evaluation Point Probability of 'basketball’

Figure 4: Both the first and last name for Kobe
Bryant appear to carry basketball information
and removing a rank 1 slice from both is most
effective.

Figure 3: Ablating the slices associated with
recovered facts has significantly higher effect on
the specific data points.

For the 2 examples, we find 96 active subcomponents in total, which is a 99% size reduction compared
to the whole model El We find 2 subcomponents that uniquely activate in the layer 0 MLP for tokens
"obe" and "Bryant” and 1 uniquely for "Woods", that significantly reduce the probability of the sport
being correctly predicted, if we supress their directions in the original model. We see in figure 3] that
these effects are isolated, which suggests we may have discovered where the network "stored" that
fact. This extends previous work [10] which initially suggested facts may be stored closer towards the
middle of the network, but where follow-up work [9]] came to the same conclusions we do, namely
that you can edit a fact somewhere the network does not store it. Our results suggest some facts
originate as early as the very first MLP layer, and propagate through the network. Interestingly, we
find that for the "Kobe Bryant" example, we must supress a rank-1 direction on both the first and last
name, to maximally reduce the output probability. We believe this is because "Kobe" has a strong
enough association with basketball by itself, whereas "Tiger" generally does not refer to a name.
Importantly we supress only the athlete — sport direction. If we reverse the direction and prompt
with "The most famous athlete in golf is..", the model accurately answers "Tiger Woods". This is
consistent with previous research [10] 1], which finds that knowledge is stored asymmetrically in
language models.

5 Discussion

While our results suggest that SPD can be extended to Transformer models, several limitations remain.
First, our experiments are restricted to small-scale models, leaving open questions about scalability
to larger architectures. Second, the causal importance parameterization introduces additional com-
putational overhead. Third, our evaluation is qualitative and task-specific, so further benchmarks
are needed to establish generality across architectures and tasks. We also note the difficulty in
establishing ground truth even for small, toy Transformers. Nonetheless, we believe our analysis
shows the obtained decompositions are largely faithful to the underlying model mechanisms.

Our results show that parameter decomposition can surface semantically specific mechanisms in
Transformers. For induction heads, SPD recovers the expected two-step copy circuit. For GPT-2-
small, ablating up to 2 rank-1 slices selectively reduces the probability of the targeted fact (e.g.,
“golf” for Tiger Woods) while leaving unrelated examples largely unaffected. This indicates that SPD
yields narrow, causally relevant directions rather than broad capacity that would degrade performance
indiscriminately.

These findings suggest that parameter-space objects can act as clean handles for mechanistic interven-
tions. In future work we plan to extend this work to larger models, and to improve our definition of
causal importance for computations with feature interactions.

?One caveat: Causal importance of subcomponents in the attention-mechanism. For instance, if a QK-circuit
ends up with 0 active subcomponents, it is still "in-use", but attention is uniform (softmax over 0-vector). For
this reason, we also do not compare sparsity or size with e.g pruning methods.
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Appendix

Causal Importance: algorithm

Algorithm 1 Minimal Attention Causal Importance

Require: Input 2z ¢ RE*sxd

Require: TX = (44, .., WZC) /I A function that assigns C' causal importances per layer
Require: Learnable RelPosEnc € R?5*¢

Require: Learnable AbsPosEnc € R**¢

Require: Learnable Q, K,V € R%xd

Ensure: Output G! € RBXsxC

AN A S ol

Tpos <— & + AbsPosEnc(x)

g Qx); k<« K(z); v V(Tpos)

r < RelPosEnc(s)

Teombined softmax(L\/gr)v // Tmplemented with Flex Attention
Tcombined < Concat(xcombined7 xpos)

Gl — Fl (xcombined)

return G'

Sequence Length
Method 16 64 1024 10240*
Scalar 12 12 9 11
Vector 13 13 10 11
Attention (no flex) 10 10 2 1
Attention (flex) 10 10 6 6

Table 2: Tterations per second for different v-MLP inputs on the induction-head decomposition task.
*Batch size modified from 64 to 4 for sequence length 10240 due to memory limits.
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Induction-Head Transformer:

hyperparameters

Model hyperparameters

Batch Size 1024
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.01
Learning Rate Schedule Constant
Learning Rate Warmup 1000
Steps 100000
D model 16
Posen. Shortformer
Use Layer Norm False
Use FF False
Vocab Size 128
Sequence Length 64

Table 3: Hyperparameters for the Induction

Head toy-model task

Induction-Head Transformer: loss curve

Decomposition hyperparameters

Batch Size 1024
Optimizer Adam
Learning Rate 0.001
Learning Rate Schedule Cosine
Learning Rate Warmup 0
Steps 100000
C 100
Dyate 16
CI-function Attention
Stochastic Recon 3 1
Stochastic Layerwise Recon 3 1
Recon 3 0.5
Faithfulness g 1000
Importance Minimality 0.02
P, start 0.9
Prinal 0.1
Anneal P? True
Last Token Only? True

Table 4: Hyperparameters for the Induction

Head decomposition task

Training Loss Curve

lo] o

lol} 4

1071 A

1072 A

1073 i

Loss

1074 5

1075 o

107 4

1077 4

—— Training Loss

T
0 20000

T
40000

T T T
60000 80000 100000

Steps

Figure 5: Loss curve for the Induction Head Transformer showing that expected ’phase changes’ are

present.
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Induction-Head Transformer: SVD-baseline

Algorithm 2 Greedy Rank-1 SVD Pruning

Require: Weight matrices {I¥;} from target model M
Require: Dataset D = {z;}

Require: Tolerance 7

Require: Loss function £ // Dy, in our case.
Ensure: Reduced-rank weight matrices {W; }

1:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

Decompose each W; with SVD: W, = U;S;V,"

current_loss < 0
P+ M(D)
while current_loss < 7 do
for W; that still has rank > 0 do:
Form W/ by removing its smallest remaining singular value/vector
Define M as M with W; replaced by W/
Q « M(D)
Evaluate L; = Dy, (P||Q)
Pick index j with lowest L;
if L; < 7 then
Update W; <— W/ in M
current_loss < L;
else
break
end if
end for
end while ~
return pruned weight matrices {W; }
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GPT-2 facts

Decomposition hyperparameters

Batch Size 2
Optimizer AdamW
Learning Rate 0.001
Weight Decay 0.05
Learning Rate Schedule Constant
Learning Rate Warmup 0.01
Steps 20000
C 768
D gate 64
CI-function vector
Stochastic Recon /3 0.1
Partial Stochastic Recon 3 10
Stochastic Layerwise Recon 3 0.1
Recon 3 0.1
Partial Recon 3 10
Faithfulness (3 1000000
Importance Minimality /3 0.05
P, start 0.9
P final 0.1
Anneal P? True
Last Token Only? False

Figure 6: Hyperparameters for the GPT2 decomposition task

Impact of restoring MLP after corrupted input Impact of restoring MLP after corrupted input
0.15
K 0.08 T
obe* iger*
Bryant* 0.06 woods* - 0.10
plays plays -
the . the 1
0.04 e 0.05
sport sport
of 0.02 of 1
0 5 p(basketball) 0 5 p(golf)
center of interval of 10 restored MLP layers center of interval of 10 restored MLP layers

Figure 7: Causal tracing on the Kobe Bryant  Figure 8: Causal tracing on the Tiger Woods
example example

In this section we do some additional investigation into fact storage in GPT2-small. Figure[7]and
[8 show the result of running causal tracing from Meng et al.[10] on our 2 fact-examples. Causal
tracing suggests that the fact can be edited all the way from layer 0 MLPs to the layer 5 MLPs. In our
findings, we see evidence that the athlete — sport association is present as early as after the first MLP
layer. The fact is editable up until the fifth MLP layer, after which the information is likely moved
across the sequence with attention.

Editing a fact comes down to correlating a specific read direction U (I? in [[10]) with a desired write
direction V. Under that framing, it is easy to see how any MLP that encounters a certain fact before
the unembedding. In Meng et al.[10] they edit facts by solving a small 0pt1rmzat10n problem to yield
V that maximises the probability of the fact they want to predict. The key-vector K —the input to the
MLP - could in theory be anything. In later layers the basketball-concept may have already been
written to the residual stream and we are introducing a mapping from basketball to e.g. football.

In figure [0 we take this to the extreme, and show that you can actually entirely zero-out the layer in
which it is most beneficial to edit the fact, showing conclusively that the fact does not live there. Note

10
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Figure 9: The effect of zeroing out entire MLP-layers in GPT2-small on the "Kobe Bryant plays the
sport of" example

that the drop in probability to O when zeroing out layer 0 does not imply the fact lives there — zeroing
out this layer simply destroys the model.

Partial losses

When decomposing large models over very few samples, the model has room to "cheat" the task and
simply learn a function that produces the same output. Specifically, we often see this in the form
of the model maintaining one layer (the last) with a suboptimal amount of subcomponents active,
such that it can keep the other layers very sparse. If you consider a model decomposed over just the
example "Tiger Woods plays golf", it is easy to see how the model could just learn a handful of rank-1
subcomponents in the final layer, that writes the relevant token directions onto the residual stream,
instead of learning the actual underlying mechanism. When decomposing over larger datasets, this
effect is minimised as the "cheating" subcomponents would incur heavy reconstruction losses for all
other examples.

To circumvent this, we introduce 2 new losses:

Erecon_partial = DKL (f(x ‘ le RN WleM(:Cagl(z))v L) WL)7 f(:l) | W)) ) (5)

S
1 s X
Estochasticfreconfpartial = g ; DKL (f(aj ‘ le RN WIEM( )(SU, Tl’(é)), ey I/VL)7 f(.’L‘ | W)) s
(6)

where M C {1,...,L}.

These are equivalent to L,ccon and Lgtochastic_recon, Dut they sample only some subset of layers in
the model to replace and leave everything else in the target model intact. This severely reduces the
ability for the model to implement "cheating" mechanisms in any layer, as it 1) may not be able to
rely on that layer and 2) these mechanisms might clash with the weight matrices of the full model.

11



229 Fact dataset

Serena Williams is a professional tennis player
The Great Wall of China is in China

The Mona Lisa was painted by Leonardo da Vinci
Mount Everest is the tallest mountain on Earth
The Eiffel Tower is located in Paris France
Usain Bolt is the fastest man in the world

The Pacific Ocean is the largest ocean on Earth
Albert Einstein developed the theory of relativity
J.K. Rowling wrote the Harry Potter series

The Amazon River flows through South America
William Shakespeare wrote Romeo and Juliet
Beethoven composed the Fifth Symphony

The Sahara Desert is in Africa

Apple Inc. was founded by Steve Jobs Steve Wozniak and Ronald Wayne
The sun is a star

The Beatles were a British rock band

Cristiano Ronaldo is a professional soccer player
The Statue of Liberty is in New City

Pablo Picasso was a famous painter

The Nile is the longest river in the world
Charles Darwin developed the theory of evolution
Google was founded in 1998

The Taj Mahal is in India

The Titanic sank in 1912

Jane Austen wrote Pride and Prejudice

The Moon orbits the Earth

Mount Kilimanjaro is in Tanzania

The Leaning Tower of Pisa is in Italy

Walt Disney created Mickey Mouse

Vincent van Gogh painted Starry Night

Figure 10: Excerpt from GPT-5 generated "fact" dataset.
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