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Abstract
Causal effect estimation is critical to a range of
scientific disciplines. Existing methods for this
task either require interventional data, knowledge
about the ground-truth causal graph, or rely on as-
sumptions such as unconfoundedness, restricting
their applicability in real-world settings. In the do-
main of tabular machine learning, Prior-data fitted
networks (PFNs) have achieved state-of-the-art
predictive performance, having been pre-trained
on synthetic data to solve tabular prediction prob-
lems via in-context learning. To assess whether
this can be transferred to the harder problem of
causal effect estimation, we pre-train PFNs on
synthetic data drawn from a wide variety of causal
structures, including interventions, to predict in-
terventional outcomes given observational data.
Through extensive experiments on synthetic case
studies, we show that our approach allows for
the accurate estimation of causal effects without
knowledge of the underlying causal graph. We
also perform ablation studies that elucidate Do-
PFN’s scalability and robustness across datasets
with a variety of causal characteristics.

1. Introduction
The estimation of causal effects is fundamental to scientific
disciplines such as medicine, economics, and the social
sciences (Pearl, 2009; Varian, 2016; Imbens, 2024; Wu et al.,
2024). Questions such as “Does a new drug reduce the risk
of cancer?” and “What is the impact of minimum wage on
employment?” can only be answered by taking the causal
nature of the problem into account.

The widely accepted gold standard for assessing causal ef-
fects are randomized controlled trials (RCTs). While RCTs
allow for the direct estimation of causal effects, they can
sometimes be unethical or expensive, and, in many cases,
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simply impossible. In contrast to experimental data from
RCTs, observational data is more accessible, collected with-
out interfering in the independent and identically distributed
(i.i.d) data-generating process. Estimating causal effects
from observational data alone can be challenging or even
impossible without strict assumptions (Spirtes et al., 1993).

Various methods have been proposed to address the prob-
lem of causal effect estimation, typically relying on the
assumption of unconfoundedness (Rosenbaum & Rubin,
1983). This assumption states that, conditional on a set of
observed covariates, treatment assignment is independent of
the potential outcomes. While this condition enables iden-
tification of causal effects from observational data, it can
be difficult to verify or justify in practice, as it requires that
relevant confounders are observed and properly accounted
for (Hernán & Robins, 2010; Imbens & Rubin, 2015).

Many applications of causality involve tabular data. Prior-
data fitted networks (PFNs; Müller et al., 2022) have re-
cently transformed the landscape of tabular machine learn-
ing. In spite of being pre-trained only on synthetic data,
TabPFN has produced impressive results on real-world ma-
chine learning benchmarks (McElfresh et al., 2023; Xu et al.,
2025; Hollmann et al., 2025). Given these remarkable find-
ings, it is timely to assess whether a similar meta-learning
approach could help us tackle harder problems that are
causal rather than merely predictive. As a first step, our
goal is to extend PFNs to the problem of estimating condi-
tional interventional distributions (CIDs).

Our contributions
1. We propose Do-PFN, a pre-trained foundation model

that can predict interventional outcomes from obser-
vational data, and prove that it provides an optimal
approximation of the conditional intervention distri-
bution (CID) with respect to the chosen prior over
data-generating models.

2. We evaluate the performance of Do-PFN on six case
studies across more than 1,000 synthetic datasets. For
both predicting CID and conditional average treatment
effects (CATEs), Do-PFN (1) achieves competitive
performance with baselines that have access to the
true causal graph (typically not available in practice)
and (2) statistically significantly outperforms all other
baselines.
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Figure 1. Do-PFN overview: Do-PFN performs in-context learning (ICL) for causal effect estimation, predicting conditional interventional
distributions (CIDs) based on observational data alone. In pre-training, a large number of structural causal models (SCMs) is sampled.
For each SCM, we sample an entire dataset of Mob observational data points Dob = {(tobj ,xob

j , yob
j )}M

ob

j=1 . We also sample M in

interventional data points Din = {(tink ,xin
k , yin

k )}M
in

k=1 . To simulate inference, we input (tin, xin) along with the entire observational
dataset Dob, which can have various sizes and dimensionalities. Subsequently, the transformer makes predictions ŷ, and we calculate the
pre-training loss L(ŷ, yin) between the predictions ŷ and the ground truth interventional outcomes yin. Pre-training repeats this procedure
across millions of sampled SCMs to meta-learn how to perform causal inference in context. On new, unseen datasets, Do-PFN leverages
the many simulated interventions it has seen during pre-training to predict CIDs, relying only on observational data and requiring no
information about the causal graph or model.

2. Background and related work
Structural causal models Structural causal models
(SCMs; Pearl, 2009; Peters et al., 2017) specify the mecha-
nisms to generate the variables from their (causal) parents
in a a directed acyclic graph (DAG) Gψ via structural equa-
tions zk = fk(zPA(k), ϵk), where fk is a function, zPA(k)

denotes the parents of variable k in G and ϵk is a random
noise variable.

Interventions and causal effects In the context of SCMs,
performing an intervention do(t) for a variable T ∈
{z1, z2, . . . , zK} that is part of the SCM ψ corresponds
to removing all incoming edges into the node representing
t and fixing the value of the variable T to the value t. We
assume the “treatment” T to be binary such that t ∈ {0, 1}.
The causal effect of this intervention on an outcome y is
captured by p(y|do(t), ψ).

A central object of interest for this paper is the CID (Shpitser
& Pearl, 2006) that additionally conditions on a vector x
comprising several variables in the SCM,

p(y|do(t),x). (1)

A CID answers a question like “What is the distribution of
outcomes given that (i) a patient has features x and (ii) an
intervention do(t) is performed?” CIDs enable the estima-
tion of CATEs: τ(x) := E [y|do(1),x]− E [y|do(0),x].

Estimating causal effects Various methods allow for the
direct estimation of causal effects from experimental data

(Shalit et al., 2017; Kennedy, 2023; Nie & Wager, 2021).
However, RCT data is often difficult to access. It might be
easier, or even the only option, to access an observational
dataset Dob = {(yobj , tobj , xobj )}Mob

j=1 of passively collected
samples (yobj , t

ob
j , x

ob
j ) ∼ p(y, t,x).

When approaching causal effect estimation from the frame-
work of do-calculus (Pearl, 2009), practitioners first need
to construct an SCM ψ that they believe (or have in-
ferred) to represent the ground-truth data-generating process.
The rules of do-calculus subsequently allow to determine
whether and how the desired causal effect can be estimated
from the data. The Neyman-Rubin framework (Imbens &
Rubin, 2015) defines causal effects as contrasts between
potential outcomes y1 ∼ p(y|do(1)) and y0 ∼ p(y|do(0)),
and relies on a set of key assumptions, critically ignorability
(or unconfoundedness). Machine-learning based methods
that are conceptualized in this framework include causal
trees (Athey & Imbens, 2016), causal forests (Wager &
Athey, 2018), as well as T-, S- and X-learners (Künzel et al.,
2019).

PFNs and amortized Bayesian inference In our context,
we define amortized (Bayesian) inference as learning the
mapping D 7→ p(y|x,D) from a dataset to a posterior; that
is, the amortization occurs at the dataset level. Neural pro-
cesses (Garnelo et al., 2018a;b; Nguyen & Grover, 2022)
and various techniques from the field of simulation-based
inference (Wildberger et al., 2023; Gloeckler et al., 2024;
Vasist et al., 2023) perform amortized inference in the afore-
mentioned manner. Recently, PFNs have been proposed as
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an amortized inference framework, emphasizing the role of
large-scale pre-training and realistic simulators of synthetic
data, referred to as the prior (Müller et al., 2022).

Amortized causal inference Regarding amortized causal
inference, Sauter et al. (2025) consider the problem of meta-
learning causal inference, proposing to learn the shift in
distributions of all nodes in the SCM when performing an
intervention. However, this approach fails to outperform a
conditioning-based baseline even in a two-variable setting.
Bynum et al. (2025) propose to use amortized inference
to learn various causal effects, where they focus on low-
dimensional SCMs with up to three nodes and do not target
the CID, but only point estimates, thus ignoring uncertainty.

3. Methodology: causal inference with PFNs
Modeling assumptions We now formalize how to con-
duct causal inference with PFNs, more precisely how to esti-
mate conditional interventional distributions (CIDs) defined
as p(y|do(t),x) from observational data Dob. A central
component of our approach to causal effect estimation is to
posit a prior p(ψ) over SCMs. We further require that every
sampled SCM ψ ∼ p(ψ) allows to simulate observational
data from p(yob, tob,xob|ψ) by sampling noise ϵ ∼ p(ϵ) that
is propagated through the SCMs ψ. Additionally, a prior
p(tin) over possible values for the treatment variable is re-
quired to sample values for the interventions. Samples from
the distribution p(yin,xin|ψ, do(tin)) over outcomes and
covariates given this intervention then result from forward-
propagating through the intervened-upon SCM. Please refer
to Algorithm 1 and Appendix B for more details on the
data-generating process we use to train the PFN.

The assumptions above imply the following form of the
CID:

p(yin|do(tin),xin) =∫
p(yin|do(tin),xin, ψ) p(ψ|xin)dψ.1 (2)

Assuming a prior p(ψ) over SCMs, and thus also over causal
graphs Gψ, can be seen as an extension of the classical do-
calculus approach where typically a fixed causal graph G̃ψ,
or even a fixed SCM ψ̃, is used as the basis for further
inference. Compared to the assumptions typically made in
the potential outcomes framework, our method also includes
scenarios without the unconfoundedness assumption.

Approximating the CID Ultimately, we are interested
in obtaining a model qθ(yin|do(tin),xin,Dob)2 that is as
close as possible to the CID p(yin|do(tin),xin, ψ) for all

2We use the do-notation in qθ(y
in|do(tin),xin,Dob) to indi-

cate that our model approximates the distribution of the outcome
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Figure 2. Case studies: Visualization of the graph structures of
our six causal case studies, requiring Do-PFN to automatically
perform adjustment based on the front-door and back-door criteria.
Treatment variables t are visualized in orange, covariates x in red,
and outcomes y in blue. Gray variables represent unobservables,
not shown to any of the methods yet influencing the generated
data.

relevant treatment values t, SCMs ψ, and covariate-vectors
xin, while only taking observational data Dob into ac-
count. The core idea of Do-PFN is to achieve this by
prior fitting, i.e., minimizing the negative log-likelihood
− log qθ(y

in|do(tin),xin,Dob) on data from the synthetic
data-generating process (Müller et al., 2022) via stochastic
gradient descent (lines 19 and 20 in Algorithm 1). Theorem
A.1, detailed in Appendix A shows our prior fitting proce-
dure (Algorithm 1) achieves the goal of yielding an optimal
approximation of the CID from observational data.

Architecture and training details Do-PFN is a trans-
former with a similar architecture as TabPFN (Hollmann
et al., 2025). In order to specialize this architecture for
predicting CIDs, we simply add a special indicator to the
internal representation of each input dataset to specify that
the first column is the treatment and the rest are covariates.
Do-PFN has 7.3 million parameters and is trained with Al-
gorithm 1, with details in Appendix B. This takes 48 hours
on a single RTX-2080.

4. Experiments
We evaluate Do-PFN’s performance in CID prediction and
CATE estimation against a competitive set of causal and
tabular machine learning baselines (see Appendix C.3). We
provide our pre-trained models, pre-training data generating
code, and case study datasets at https://anonymous.
4open.science/r/Do-PFN-ICML.

4.1. CID prediction

First, we evaluate our longest trained model, Do-PFN,
against a set of baselines for the task of predicting the CID
p(y|do(t),x). In Figure 3, we visualize box-plots3 of nor-
malized mean squared error (NMSE) across our six case
studies. For a description of NMSE, please see Appendix

yin given an intervention on tin. This is formally not the re-
sult of applying the do-calculus to an observational distribution
qθ(y

in|tin,xin,Dob).
3Our box-plots visualize median values, 25% (Q1) and 75%

(Q3) quantiles, interquartile range IQR = Q3−Q1, and whiskers
1.5×Qi

3

https://anonymous.4open.science/r/Do-PFN-ICML
https://anonymous.4open.science/r/Do-PFN-ICML
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Figure 3. CID prediction: Box-plots and critical difference (CD)
diagrams depicting distributions of normalized mean squared error
(NMSE) of Do-PFN and our regression baselines in conditional
interventional distribution (CID) prediction.

C.2. We also provide a critical difference (CD) diagram
below, indicating average ranking across all case studies. A
lower CD-value is better; and bold lines connect pairs of
models whose performance does not differ by a significant
amount (not applicable in Figure 3).

Effectiveness of pre-training objective In Figure 3, we
first observe that Do-PFN performs statistically significantly
better4 than the following tabular regression models: Ran-
dom Forest, TabPFN (v2), as well as a regression model
pre-trained on our prior to predict observational outcomes
(dubbed ”Dont-PFN”). This result shows that our pre-
training objective results in a model that precisely approxi-
mates the CID as opposed to the standard posterior predic-
tive distribution.

Gold-standard comparison (CID) When comparing Do-
PFN to our “gold standard” baselines (Appendix Figure
8), we observe that Do-PFN performs competitively with
equally expressive models which (explicitly or implicitly)
know the graph structure.

4.2. CATE estimation

Comparison to causal machine learning In estimating
CATE values, we again observe that our largest model Do-
PFN-CATE statistically significantly outperforms both the
Do-PFN-CATE S-Learner (Künzel et al., 2019) and a causal
forest double machine learning (DML) approach (Wager
& Athey, 2018; Chernozhukov et al., 2018), even on our
relatively simple case studies (Figure 4).

Gold-standard comparison (CATE) We also observe
that in the CATE estimation setting, Do-PFN-CATE per-
forms closer to the gold standard DoWhy-CATE (Cntf.)
than previously in the more challenging CID prediction
(Appendix Figure 9). We highlight that Do-PFN-CATE
is especially competitive on the “Front-Door” and “Back-
Door” case studies, where none of the models are given

4Significance is assessed using a post-hoc Nemenyi test imple-
mented in the Autorank package (Herbold, 2020).

Figure 4. CATE estimation: Box-plots and critical difference
(CD) diagrams depicting distributions of normalized mean squared
error (NMSE) of Do-PFN-CATE and our causal baselines in con-
ditional average treatment effect (CATE) estimation.

access to the unobserved variable; hence DoWhy loses the
fundamental advantage that it had in other settings.

4.3. Ablations

The key takeaways from our ablations are that Do-PFN
performs strongly on small datasets, shows invariance to
graph complexity and base treatment effects, and correctly
accounts for uncertainty arising from unidentifiability. (Ap-
pendix D).

4.4. Hybrid synthetic-real-world data

We further find that Do-PFN can effectively estimate CIDs
and CATEs on the Amazon product sales dataset (Blöbaum
et al., 2023) and the law school admissions problem (Kusner
et al., 2017), where, in the absence of ground-truth interven-
tional outcomes we calculate NMSE with respect to DoWhy
(Cntf.), our “gold-standard” baseline (Appendix E).

5. Conclusion
We introduced Do-PFN, a pre-trained transformer leverag-
ing ICL to learn to predict interventional outcomes from
observational data. Our empirical results on controlled syn-
thetic setups suggest that Do-PFN outperforms a strong
set of tabular and causal machine learning baselines, while
performing competitively with equally expressive models
which are being given the true underlying causal graph.

Do-PFN’s generalization capability critically depends on its
synthetic prior, adequately capturing real-world complexity.
As our current validation is mainly based on synthetic data,
Do-PFN’s robustness to prior-reality mismatches and its per-
formance on real-world datasets require further systematic
exploration. Furthermore, while Do-PFN can reflect uncer-
tainty arising from unidentifiability, a complete statistical
understanding remains an open research area.

In conclusion, we are optimistic about Do-PFN’s prospects
to become part of the standard machine learning toolkit,
thus helping to give causal effect estimation the broad ac-
cessibility that its real-world relevance deserves.

4
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Impact Statement
The goal of our work is to advance the field of causal infer-
ence, a field which we believe has broad positive applica-
tions, especially in the field of medicine, the social sciences,
and the natural sciences. While we believe that the under-
lying goal of understanding causal mechanisms from data
is exploratory by nature, we do acknowledge that causal in-
ference could be applied by bad actors. The causal machine
learning community should become increasingly aware of
possible misuse and risks as their methods become more
and more applicable in real-world scenarios.
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A. Proof of Proposition A.1
Theorem A.1. Performing stochastic gradient descent according to Algorithm 1 corresponds to minimizing the expected
forward Kullback-Leibler divergence between the conditional interventional distribution p(yin|xin, do(tin), ψ) and the
distribution qθ(yin|do(tin),xin,Dob) parameterized by the model,

Exin,tin,Dob,ψ

[
DKL

[
p(yin|xin, do(tin), ψ)||qθ(yin|do(tin),xin,Dob)

] ]
. (3)

Here, the expectation is taken with respect to the data-generating distribution defined in Algorithm 1.

The proof follows from applying the conditional independences between variables implied by the data-generating process in
Algorithm 1.

Let us try to provide some insight about Proposition A.1: (i) It does not state that we can estimate all causal effects in the
traditional sense. To see this, note that the expectation is taken with respect to the synthetic data-generating process. We
could even drop the assumption of independent noise terms in our SCMs, to train a model that covers the non-Markovian
case, and the proposition would still hold. (ii) Moreover, since our prior over SCMs does not necessarily imply identifiability
of causal effects, an ideal property of our model would be that qθ(yin|do(tin),xin,Dob) accurately captures the uncertainty
in the outcome y arising from the unidentifiability of the causal effect of do(tin) on yin. Section D.1 discusses empirical
results indicating that Do-PFN is indeed able to do so.

The risk for a single interventional data point when using the NLL loss, as in Algorithm 1 takes the following form:

Rθ =

∫ ∫ ∫ ∫
− log(qθ(y

in|do(tin),xin,Dob))p(Dob, tin, yin,xin)dDobdtindyindxin (4)

Let’s consider p(Dob, tin, yin,xin). Then we can obtain by first marginalizing out the distribution p(ψ) of Structural Causal
Models (SCMs) and, second, utilizing the factorization of the joint distribution implied by the data generating process in
Algorithm 1:

p(Dob, tin, yin,xin) =
∫
p(Dob, tin, yin,xin, ψ)dψ = ∫

p(yin,xin|do(tin), ψ)p(tin|Dob)p(Dob|ψ)p(ψ)dψ (5)

Now, we can use that
p(yin,xin|do(tin), ψ) = p(yin|xin, do(tin), ψ)p(xin|do(tin), ψ).

Further:

p(xin|do(tin), ψ)p(tin|Dob)p(Dob|ψ)p(ψ) = p(Dob, tin,xin, ψ). (6)

This implies

p(Dob, tin, yin,xin) =
∫
p(yin|xin, do(tin), ψ)p(Dob, tin,xin, ψ)dψ (7)

Plugging this into equation 4 followed by using that the cross entropy between two distributions p and q is equal to the
Kullback-Leibler divergence between p and q plus the entropy of p, formally H(p, q) = H(p) + DKL(p||q), a fact used by
Müller et al. (2022) and Barber & Agakov (2004) in analogous scenarios, yields:
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Rθ =
∫ ∫ ∫ ∫ ∫

− log(qθ(y
in|do(tin),xin,Dob))

p(yin|xin, do(tin), ψ)p(Dob, tin,xin, ψ)dDobdtindyindxindψ

=

∫ ∫ ∫ ∫
DKL

[
p(yin|xin, do(tin), ψ)||qθ(yin|do(tin),xin,Dob)

]
p(Dob, tin,xin, ψ)dDobdtindxindψ + C (8)

This implies that minimizing Rθ results in a (forward) Kullback-Leibler optimal approximation of p(yin|do(tin), ψ,xs)
with the model qθ(yin|do(tin),xs,Dob) in expectation over the data simulated from p(ψ,Dob, tin,xin).

Please note that analogous to PFNs, the optimality only holds when the expectation is taken with respect to the synthetic
data-generating process. However, theoretical results by Nagler (2023) and a plethora of empirical findings regarding the
transferability of PFNs to real-world scenarios, as well as related approaches (Hollmann et al., 2025; Hoo et al., 2024;
Reuter et al., 2025), provide evidence that synthetic prior fitting can lead to strong real-world performance.
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Algorithm 1 Prior-fitting with SGD. Do-PFN is pre-trained on pairs of synthetic observational and interventional datasets;
the model is trained to predict interventional outcomes yin given a covariate-vector xin, the value of an intervention tin and
an observational dataset Dob.

1: Input: Number of datasets N , minimum and maximum observational samples Mmin,Mmax, learning rate α
2: for i = 1, 2, . . . , N do
3: Draw ψi ∼ p(ψ) {Draw an SCM}
4: Initialize Dobi ← ∅
5: Draw Mob ∼ Uniform({Mmin,Mmin + 1, . . . ,Mmax}) {Number of observational data points}
6: for j = 1, . . . ,Mob do
7: Sample noise ϵj ∼ p(ϵ)
8: Draw yobj , t

ob
j ,x

ob
j ∼ p(yob, tob,xob|ψi, ϵj)

9: Dobi ← Dobi ∪ {(yobj , tobj ,xobj )}
10: end for
11: Initialize Dini ← ∅
12: Set Min =Mmax −Mob

13: for k = 1, 2, . . . ,Min do
14: Sample noise ϵk ∼ p(ϵ)
15: Draw xink ∼ p(xin|ψi, ϵk) {Pre-treatment values of covariates}
16: Draw tink ∼ p(tin) {Draw value for intervention}
17: Draw yink ∼ p(yin|do(tink ), ψi, ϵk)
18: Dini ← Dini ∪ {(yink , tink ,xink )}
19: end for
20: Compute Li(θ) =

∑Min

k=1 − log qθ(y
in
k |do(tink ),xink ,Dobi )

21: θ ← θ − α∇Li(θ) {Gradient descent}
22: end for

B. Details on the prior-fitting procedure
In this section, we provide the details of the data-generating process in Algorithm 1 that represents our modeling assumptions.
From the perspective of PFNs, this data-generating process represents Do-PFN’s ”prior”. Concretely, our prior-fitting
procedure involves the following key steps:

Sampling the SCM: First, for every iteration i = 1, 2, . . . , N , an SCM ψi is sampled. This is achieved by first sampling a
DAG via topological sorting of vertices (Manber, 1989). For each node k in the graph, we uniformly at random sample the
nonlinearity γ to be one of the following functions: the quadratic function x 7→ x2, x 7→ ReLU(x), and x 7→ tanh(x). We
define the mechanisms in the SCM to take the form of an additive noise model (ANM) fk(zPA(k), ϵk) = γ(

∑
l∈PA(k) wlzl)+

ϵk. The weights of the SCM are sampled using a Kaiming initialization wl ∼ Uniform(− 1√
|PA(k)|

, 1√
|PA(k)|

) for l =

1, 2, . . . , |PA(k)|, where |PA(k)| denotes the number of parents of node k.

Sampling observational data: Next, observational data is sampled according to the SCM ψi. More specifically, a
dataset Dobi is filled with Mob data points, where the number of data points is drawn uniformly between Mmin = 10 and
Mmax = 2, 200. Each element in Dobi is generated by first sampling a noise vector ϵj ∼ p(ϵ) which is passed through the
SCM to generate each element yobj , t

ob
j ,x

ob
j .

Sampling interventional data: To sample an element in the interventional dataset Dini , with M in =Mmax −Mob data
points, first, a noise vector ϵk ∼ p(ϵ) is sampled again. Subsequently a covariate-vector xink is sampled from p(x|ψi, ϵk).
This ensures that the vector xink characterizes the subject k prior to the intervention. After sampling the value for the
treatment tink , we perform the intervention do(tink ) and sample yink from the intervened-upon SCM using the same noise ϵk
as before5.

5Because the noise is held constant to produce the pre-interventional covariate-vector, xin
k , and interventional outcomes, yin

k , this
process can also be seen as simulating counterfactuals or single potential outcomes.
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Gradient descent For each iteration i = 1, 2, . . . , N , an observational dataset Dobi and an interventional dataset Dini are
generated. These datasets are utilized to compute the negative log-likelihood under our model qθ. This loss is calculated
with respect to predicting the interventional outcome yink based on the value of the intervention tink , the covariates xink , and
the observational dataset Dobi . Subsequently, a gradient step is taken on the negative log-likelihood. In practice, we perform
mini-batch stochastic gradient descent using the Adam optimizer (Kingma & Ba, 2014).

C. Experimental details
C.1. Synthetic case studies

Case studies We introduce several causal case studies that pose unique challenges for causal effect estimation, requiring
adjustment based on the satisfaction of front-door and back-door criteria (Figure 2). We additionally generate three case
studies not visualized in Figure 2, which ablate over smaller dataset sizes Mmax ∼ Uniform([5, 100]), complex graph
structures with number of nodes K ∼ Uniform([4, 10]), and finally a “Common Effect” case study which we show to be
easily solved even by standard regression models (Appendix Figure 11).

Synthetic data generation For each case study visualized in Figure 2, we independently sample 100 datasets with the
corresponding graph structure, varying the SCM parameters as described in Appendix B. We also vary the number of
samples, standard deviation of noise terms, as well as edge weights and non-linearities. The structural equations for our case
studies, as well as details regarding how SCM parameters are sampled, are provided in Appendix C.1 and Appendix Table 1.

The standard deviation σexo of the exogenous noise is sampled from σexo ∼ Uniform([1, 3]). For the standard deviation of
the additive noise terms, we sample β ∼ Beta(1, 5), and then set σϵ = 0.3 · β.

The functions fzk take the form fa(zk, ϵ) = γ(
∑
l∈PA(k) wlzl) + ϵ. The weights of the SCM are sampled using a

Kaiming initialization wl ∼ Uniform(− 1√
|PA(k)|

, 1√
|PA(k)|

) for l = 1, 2, . . . , |PA(k)|, where |PA(k)| denotes the number

of parents of node k. The nonlinearities fa are sampled uniformly at random from the set {f1, f2, f3} where f1(x) = x2,
f2(x) = tanh(x) and f3 = ReLU(x) = max(0, x). Details on the case studies can be found in Table 1.

In this section we provide the details on all considered case studies from Section C.1.

Observed Confounder Observed Mediator Confounder + Mediator

ϵt, ϵy ∼ N (0, σϵ)

x1 ∼ N (0, σexo)

t = ft(x1, ϵt)

y = fy(x1, t, ϵy)

ϵx1 , ϵy ∼ N (0, σϵ)

t ∼ Uniform({0, 1})
x1 = fx1(t, ϵx1)

y = fy(x1, t, ϵy)

ϵx1
, ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1(t, ϵx1)

y = fy(x1, x2, t, ϵy)
Unobserved Confounder Back-Door Criterion Front-Door Criterion
ϵt, ϵy ∼ N (0, σϵ)

x1, x2 ∼ N (0, σexo)

t = ft(x1, x2, ϵt)

x1 = fx1
(t, ϵx1

)

y = fy(x1, x2, t, ϵy)

ϵx1
, ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1
(x2, ϵx1

)

y = fy(x1, x2, ϵy)

ϵx1
, ϵt, ϵy ∼ N (0, σϵ)

x2 ∼ N (0, σexo)

t = ft(x1, ϵt)

x1 = fx1
(x2, ϵx1

)

y = fy(x1, x2, ϵy)

Table 1. Structural equations for all causal case studies.
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C.2. Evaluation metric

We evaluate our results in terms of normalized mean squared error (NMSE), as it allows results to be compared across
datasets. We define NMSE below:

NMSE(y, ŷ) =
1

n

n∑
i=1

[
yi − ŷi

max(y)−min(y)

]2
(9)

C.3. Description of baselines

C.3.1. CONDITIONAL INTERVENTIONAL DISTRIBUTION PREDICTION

• Dont-PFN: a TabPFN regression model (Hollmann et al., 2025) pre-trained on our prior to approximate the posterior
predictive distribution (PPD) p(yob|xob,Dob).

• DoWhy (Int./Cntf.): a structural causal model ψ fit to observational samples Dob and the graph structure Gψ. The
constructed SCM is used to predict interventional (Int.) and counterfactual (Cntf.) outcomes. Crucially, TabPFNClas-
sifier and TabPFNRegressor models (Hollmann et al., 2025) are used approximate binary and continuous structural
equations.

• Random Forest: an ensemble of decision trees (Breiman, 2001) trained on Dob

• Do-PFN-Graph: a TabPFN regression model pre-trained for 5 hours to approximate the CID p(ydo|xob,Dob) on fixed
graph structures from our case studies.

• Do-PFN-Short: a TabPFN regression model pre-trained for 20 hours on varying graph structures of up to 5 nodes to
approximate the CID p(ydo|xob,Dob)

• Do-PFN: a TabPFN regression model pre-trained for 40 hours on varying graph structures of up to 10 nodes to
approximate the CID p(ydo|xob,Dob)

• Do-PFN-Mixed: Do-PFN-Short pre-trained varying whether additive noise terms are sampled from zero-mean
Gaussian, Laplacian, Students-T, and Gumbel distributions.

C.3.2. CONDITIONAL AVERAGE TREATMENT EFFECT ESTIMATION

• Causal Forest (DML): a double machine learning (DML) approach based on (Wager & Athey, 2018) that combines
multiple causal trees to estimate conditional average treatment effects (CATEs). Hyperparameters are tuned using
exhaustive search.

• Do-PFN-CATE: Do-PFN applied to predict the specific quantity:

τ̂ = Eyin∼qθ(yin|do(tin=1),xin,Dob)[y
in]− Eyin∼qθ(yin|do(tin=0),xin,Dob)[y

in] (10)

• DoWhy-CATE (Int./Cntf.): DoWhy (Int./Cntf.) used as an S-Learner (Künzel et al., 2019) to estimate conditional
average treatment effects (CATEs). When DoWhy (Cntf.) is used, noise terms are inferred and held constant across
forward passes.

• Dont-PFN-CATE: Dont-PFN used as an S-Learner (Künzel et al., 2019) to estimate conditional average treatment
effects (CATEs)

C.4. Software

We use Pytorch (Paszke, 2019) to implement all our experiments. Our implementation of the causal prior is based on the
Causal Playground library (Sauter et al., 2024) and the codebase used for TabPFN (Hollmann et al., 2023; 2025). We use
Matplotlib (Hunter, 2007), Autorank (Herbold, 2020) and Seaborn (Waskom, 2021) for our plots.
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Figure 5. Graph size and complexity: Ablating the performance of Do-PFN and DoWhy across different graph complexities. We find
that Do-PFN maintains its competitive performance for increasingly complex graphs.

D. Supplementary Results
D.1. Ablation studies

Dataset size and complexity First, we observe in Figure 6 (right) that Do-PFN exhibits strong performance on small
datasets. In an evaluation of NMSE in CATE estimation across datasets with a varying number of samples drawn such that
Mmax ∼ Uniform([5, 2000]), we observe that Do-PFN-CATE performs competitively with DoWhy-CATE (Cntf.) and its
performance continues to improve and becomes more consistent as dataset size grows. We also find that Do-PFN performs
competitively to DoWhy-CATE (Cntf.) across graph complexities, with slightly larger improvements for more complex
graphs (Appendix D.1). Furthermore, we find that Do-PFNs can effectively use additional data points to alleviate increasing
levels of noise (Appendix D.1).

Treatment effect We also show in Figure 6 (left) that Do-PFN remains relatively consistent in NMSE across different
base rate levels of the average treatment effect (ATE). This result shows that Do-PFN is robust to different magnitudes of the
ATE, which is beneficial in cases of problem misspecification, for example when a specified treatment does not influence an
outcome.

Uncertainty calibration Next, we explore Do-PFN’s uncertainty calibration, by visualizing the prediction interval
coverage probability (PICP) in Figure 6. A PICP curve equal to the 45-degree diagonal corresponds to a model consistently
yielding prediction intervals with exactly the desired coverage. Being above the diagonal corresponds to under-confident
and being below the diagonal to over-confident prediction intervals. First, we observe that Do-PFN’s uncertainty is slightly
under-confident for theoretically identifiable case studies (the full set of calibration plots can be found in Appendix D.2). In
the ”Unobserved Confounder” case study, the model’s high uncertainty is reflected by a relatively large entropy in its output
distribution (Appendix 12). However, our PICP results show that the model’s uncertainty for this case study is correctly
calibrated.

Graph size and complexity We evaluate Do-PFN’s performance across data generated from graphs of increasing
complexity, sampling 500 datasets generated with graph structures consisting of 4 to 10 nodes and 2 to 43 edges. The result
is visualized in Figure 5. We note that while our data-generating mechanisms are relatively simple from a mathematical
perspective, graph identification is a combinatorially hard problem, with the number of unique Directed Acyclic Graphs
(DAGs) of 10 nodes reaching 4.17 × 1018. Do-PFN performs competitively to DoWhy-CATE (Cntf.) across graph
complexities, with slightly larger improvements for more complex graphs.

Robustness to additive noise We also highlight in Figure 7 (left) that the performance of Do-PFN decreases with an
increase in the standard deviation of additive noise, which corresponds to a larger irreducible error. However, we also
observe in Figure 7 (center-right) that Do-PFN’s performance for different levels of additive noise seems to increase with
dataset size. This means that the NMSE for datasets with a certain amount of additive noise can be reduced up to a certain
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Figure 6. Ablation studies: Do-PFN is relatively insensitive to changing base rates of ATEs (left), and improves with increased number
of observational samples (center-left). The two plots on the right visualize the Prediction interval coverage probability (PICP) of Do-PFN.
The center-right plot shows that in the ”observed confounder” case-study the model is slightly under-confident while, crucially, Do-PFN is
correctly unconfident for the unidentifiable ”Unobserved Confounder” case.

extent with more data.

Figure 7. Robustness to additive noise: Evaluation of Do-PFN’s performance in CID prediction and CATE estimation across different
quantiles (Q1-Q5) of additive noise standard deviation. The density plot (left) shows that Do-PFN’s performance decreases with
(irreducible) additive noise. However, the heatmap (center) shows that for datasets with similar additive noise levels, Do-PFN’s
performance increases with dataset size. This effect is even stronger than for DoWhy-CATE (Cntf.).
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Figure 8. Gold-standard comparison (CID): Box-plots and critical difference (CD) diagrams depicting distributions of normalized mean
squared error (NMSE) of Do-PFN and our ”gold-standard” baselines in conditional interventional distribution (CID) estimation on our six
synthetic case studies. Do-PFN significantly outperforms Do-PFN-Graph and DoWhy (Int.), while performing competitively well with
DoWhy (Cntf.).

Figure 9. Gold-standard comparison (CATE): Box-plots and critical difference (CD) diagrams depicting distributions of normalized
mean squared error (NMSE) of variants of Do-PFN and our baselines in conditional average treatment effect (CATE) estimation on our
six synthetic case studies. Do-PFN-CATE outperforms DoWhy-CATE (Int.) and performs competitively with DoWhy-CATE (Cntf.).
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Figure 10. Comparison of Do-PFN variants (CID): Box-plots and critical difference (CD) diagrams depicting distributions of normalized
mean squared error (NMSE) of Do-PFN variants in conditional interventional distribution (CID) estimation on our six synthetic case
studies. Do-PFN significantly outperforms other variants except Do-PFN-Mixed, which achieves statistically similar performance in half
the pre-training time.

𝒙𝟏

𝒚𝒕

Common
Effect

𝝐𝒚	~	𝑵 𝟎, 𝝈𝝐
𝒙𝟏 ~	𝑵 𝟎, 𝝈𝒆𝒙𝒐
t	~	𝑼 𝟎, 𝟏
𝒚 = 𝒇 𝒙𝟏, 𝒕, 𝝐𝒚

Figure 11. Common effect case study: Visualization of graph structure and structural equations (left) for our ”common effect” case
study, as well as box plots depicting distributions of normalized mean squared error (NMSE) of Do-PFN variants compared to regression
baselines in conditional interventional distribution prediction. Regression baselines perform similarly to Do-PFN variants, as the
intervention does not cause a distribution shift between Dob and Din.

Figure 12. Uncertainty quantification: Cross-entropy (CE) loss (right) and entropy (left) of Do-PFN’s bar distribution output. Do-PFN
is highly uncertain on the “Unobserved Confounder” case study due to unidentifiability. Do-PFN also shows high uncertainty on the
“Observed Mediator” case study, which we argue is due to its only exogenous term being a binary variable, causing the continuous effect
in the outcome to only come from additive noise.)
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D.2. Further calibration plots

Figure 13. Uncertainty calibration: Prediction interval coverage probability (PICP) plots for the ”Observed Mediator”, ”Confounder
+ Mediator”, ”Backdoor Criterion” and ”Frontdoor Criterion” cases. The solid blue line shows the coverage and standard deviation
achieved by Do-PFN, spanning desired probabilities from 0 to 1. The dashed line represents the ideal calibration achievable with access
to the ground-truth CID. Do-PFN is slightly under-confident for identifiable case studies, and, crucially, correctly unconfident for the
”Unobserved Confounder” case.

E. Hybrid synthetic-real-world data
To assess whether Do-PFN’s performance on our synthetic case-studies also extends to real-world-data, we conduct
experiments on two real-world datasets with agreed-upon causal graphs (Figure 14). Those causal graphs allow us to
simulate gold-standard outcomes using the DoWhy library (Sharma & Kiciman, 2020), which makes the evaluation of
Do-PFN and our baselines possible.

The key takeaway of these results is that Do-PFN’s strong performance on synthetic data seems to extend well to real-world
data, producing similar predictions to our gold-standard baselines which receive access to a widely accepted causal graph.

E.1. Amazon sales

The Amazon sales dataset (Blöbaum et al., 2024) contains data on the effect of special shopping events (“Shopping Event?”)
on the profit made from smartphone sales (“Profit”). It further provides variables with information on the spending on ad
campaigns (“Ad Spend”), the price of the device (“Unit Price”), the number of phones sold (“Sold Units”), the number of
page view (“Page Views”), the revenue that day (“Revenue”) and the operational cost (“Operational Cost”). Those eight
variables are connected via the causal graph in Figure 14.

In terms of predicting interventional outcomes, we find that DoPFN has a substantially better normalized mean-squared-
error (NMSE) score than Dont-PFN, Random Forest, and TabPFN (v2). (Plot on the left in Figure 15). DoWhy (Int.),
which we provide with the exact underlying graph, has the best NMSE value that is close to zero. For CATE predictions,
Do-PFN-CATE has a noticeably lower median NMSE value than Dont-PFN-CATE and Causal Forest, which both have a
relatively large variance in terms of their performance. (Plot on the right in 15). Figure 16 visualizes the predictions of
Do-PFN and our baselines vs. the gold-standard interventional outcomes for CID prediction and CATE estimation. Those
plots detail the results above showing that Do-PFN’s predictions closely align with the gold-standard targets.

E.2. Law school admissions

The law school admissions dataset (Figure 14) was drawn from the 1998 LSAC National Longitudinal Bar Passage Study
(Wightman, 1998) and was made popular in the realm of counterfactual fairness due to its appearance in Kusner et al. (2017),
where the variable ”Race” was treated as a protected attribute. We note that we do not address the topic of algorithmic fairness,
but would like to highlight that the ability of Do-PFN to predict interventional outcomes on demographic information could
be a fruitful application in model-bias assessment.

We delve into the effect of ”Race”6 on first-year-average (”FYA”), which is mediated by two variables: undergraduate

6We note that Race in the lawschool dataset is typically treated as a binary variable. We very much disagree with this formulation, and
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𝑨𝒅	𝑺𝒑𝒆𝒏𝒅

𝑷𝒂𝒈𝒆	𝑽𝒊𝒆𝒘𝒔

𝑹𝒆𝒗𝒆𝒏𝒖𝒆

𝑺𝒉𝒐𝒑𝒑𝒊𝒏𝒈	
𝑬𝒗𝒆𝒏𝒕?

𝑼𝒏𝒊𝒕	𝑷𝒓𝒊𝒄𝒆

𝑺𝒐𝒍𝒅	𝑼𝒏𝒊𝒕𝒔

𝑶𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏𝒂𝒍
𝑪𝒐𝒔𝒕

𝑷𝒓𝒐𝒇𝒊𝒕

Amazon Sales

Figure 14. Real-world case studies: Agreed-upon causal graphs for our two real-world case-studies: Amazon Sales and Law School
Admissions.

Figure 15. Amazon sales: Box-plots depicting distributions of normalized mean squared error (NMSE) of Do-PFN-CATE and our causal
baselines in interventional outcome prediction (left) and conditional average treatment effect (CATE) estimation (right).

grade-point-average (”UGPA”) and ”LSAT”, a law school entrance exam in the United-States.

In terms of CID prediction (Figure 18 left) and CATE estimation (Figure 18 right), we find that Do-PFN outperforms all
baselines in its approximation of both quantities. We do however, observe especially strong performance in CATE estimation,
where Do-PFN performs significantly better than S-learner and double machine learning (DML) approaches.

This result is mirrored in Figure 17, where we visualize the match between baseline predictions and gold standard outcomes.
Interestingly, we observe that while Do-PFN is yet to estimate the gold-standard CID values, it does provide a better
separation in predictions between interventions do(0) and do(1). This outcome is consistent with (Robertson et al.,
2024), which shows that a similar strategy of estimating fair outcomes by taking average predictions of only simulating
interventions on the protected attribute and passing this data into standard classification models only removes the direct-effect
of discrimination. We hypothesize that S-learner approaches thus only model the direct-effect of the intervention on the
outcome, and thus fail to include the indirect effects through mediators.

acknowledge that the term ”ethnicity” better describes this complex social construct.
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Figure 16. Amazon Sales: Scatter plots depicting the match between baseline predictions with gold standard outcomes produced by
Do-Why-(CATE) (Int./Cntf.). Green scatter points represent individuals for which the intervention do(ShoppingEvent = 1) is applied,
while blue points represent do(ShoppingEvent = 0).

Figure 17. Law school admissions: Scatter plots depicting the match between baseline predictions with gold standard outcomes produced
by Do-Why-(CATE) (Int./Cntf.). Green scatter points represent individuals for which the intervention do(Race = 1) is applied, while
blue points represent the intervention do(Race = 0).
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Figure 18. Law school admissions: Box-plots depicting distributions of normalized mean squared error (NMSE) of Do-PFN-CATE and
our causal baselines in interventional outcome prediction (left) and conditional average treatment effect (CATE) estimation (right).
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