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Abstract

Medical Visual Question Answering (MedVQA) serves as
an automated medical assistant, capable of answering pa-
tient queries and aiding physician diagnoses based on med-
ical images and questions. Recent advancements have shown
that incorporating Large Language Models (LLMs) into Med-
VQA tasks significantly enhances the capability for answer
generation. However, for tasks requiring fine-grained organ-
level precise localization, relying solely on language prompts
struggles to accurately locate relevant regions within medi-
cal images due to substantial background noise. To address
this challenge, we explore the use of visual prompts in Med-
VQA tasks for the first time and propose fine-grained adap-
tive visual prompts to enhance generative MedVQA. Specif-
ically, we introduce an Adaptive Visual Prompt Creator that
adaptively generates region-level visual prompts based on im-
age characteristics of various organs, providing fine-grained
references for LLMs during answer retrieval and generation
from the medical domain, thereby improving the model’s pre-
cise cross-modal localization capabilities on original images.
Furthermore, we incorporate a Hierarchical Answer Genera-
tor with Parameter-Efficient Fine-Tuning (PEFT) techniques,
significantly enhancing the model’s understanding of spa-
tial and contextual information with minimal parameter in-
crease, promoting the alignment of representation learning
with the medical space. Extensive experiments on VQA-
RAD, SLAKE, and DME datasets validate the effectiveness
of our proposed method, demonstrating its potential in gener-
ative MedVQA.

Code — https://github.com/OpenMICG/FAVP

Introduction

The convergence of breakthroughs in computer vision (CV)
and natural language processing (NLP) has catalyzed sig-
nificant interest in multimodal tasks, such as visual cap-
tioning (Zhang et al. 2023a,b, 2024; Yu et al. 2024d), vi-
sual grounding (Yuan et al. 2024), and visual question an-
swering (VQA) (Yu et al. 2019, 2020, 2024a,b). Among
these, Medical Visual Question Answering (MedVQA) (Yu
et al. 2024c¢) stands out as a crucial extension in the med-
ical domain. MedVQA necessitates a deep understanding
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ileum with mesenteric lymphadenopathy.

Large Language Model

Questions @

R : What is wrong
with the patient's scan?

R : Is the GI tract is
highlighted by contrast?

Figure 1: Main idea of FAVP. We introduce eight types of
visual prompts (e.g., circle, contour, mask, box) for accurate
localization assistance. Here we show an example of using
the circle.

of medical images at various granular levels and establish-
ing reliable cross-modal associations, which are essential
for assisting physicians in diagnosis, preventing misdiag-
noses, and enhancing patient care efficiency and experience.
Consequently, MedVQA has emerged as a prominent focus
in computer-aided diagnosis. In addition to traditional dis-
criminative MedVQA models, the success of large language
models (LLMs) in general domains has inspired their adap-
tation to the medical field (Liu et al. 2024; Wu et al. 2023; Li
et al. 2024). These models leverage their robust generative
capabilities to address MedVQA tasks better. Despite med-
ical LLMs’ strong zero-shot transfer abilities, there remain
two challenges. (i) For fine-grained, instance-level precise
localization required by MedVQA, language prompts alone
in medical LLMs struggle to accurately identify relevant in-
formation amid substantial background noise, as shown in
Figure 1. (ii) Typically, medical LLMs are featured by large
parameter sizes and extensive training times. Full parameter
fine-tuning across diverse downstream tasks is parameter-
inefficient and compromises model generalization.

To address these challenges, we treat MedVQA as a
generative task and introduce Fine-grained Adaptive Visual



Prompts (FAVP) to enhance generative MedVQA. Our pro-
posed framework integrates an Adaptive Visual Prompt Cre-
ator, which adaptively generates region-level visual prompts
based on the characteristics of different organs within med-
ical images. This mechanism provides fine-grained visual
references for LLMs, thereby improving the accuracy of
cross-modal localization when generating answers from the
medical domain. To our knowledge, we are the first to ex-
plore the use of visual prompts in MedVQA, demonstrating
its significant effectiveness in open-set questions. We fur-
ther explore different types of instance-level visual prompts,
and ultimately select the most effective visual prompt based
on the characteristics of different datasets. Furthermore, our
model incorporates a Hierarchical Answer Generator, de-
signed to extract hierarchical high-semantic representations
from fine-grained visual features and map these represen-
tations into the language space to generate medical an-
swers. Additionally, we integrate parameter-efficient fine-
tuning (PEFT) techniques, which significantly enhance the
model’s spatial and contextual comprehension with minimal
parameter augmentation, thereby promoting the representa-
tion learning process within the medical domain.

Overall, the main contributions of this paper can be sum-
marized as follows:

* We propose Fine-grained Adaptive Visual Prompts
(FAVP) to enhance the performance of generative Med-
VQA. The Adaptive Visual Prompt Creator (AVPC)
adaptively generates region-level visual prompts based
on image characteristics of various organs, providing
fine-grained references for medical LLMs during answer
generation, thereby improving the model’s precise cross-
modal localization capabilities on original images.

* We are the first to explore different types of organ-level
visual prompts in MedVQA tasks and ultimately select
the most effective visual prompt for eliciting intrinsic
knowledge from LLMs based on the distinct character-
istics of different datasets.

¢ We introduce a Hierarchical Answer Generator (HAG)
to extract hierarchical high-semantic visual representa-
tions and fully retrieve and generate accurate answers in
the language space from LLMs. Additionally, we inte-
grate parameter-efficient Fine-Tuning (PEFT) techniques
within HAG, significantly enhancing the model’s spatial
and contextual understanding with minimal parameters.

* Extensive experiments on VQA-RAD, SLAKE, and
DME datasets validate the effectiveness of our proposed
method, demonstrating its potential in open medical
question answering.

Related Works

Medical Visual Question Answering (MedVQA) aims to au-
tomatically provide answers to questions based on given
medical images. Current mainstream approaches are mainly
divided into discriminative and generative methods. The dis-
criminative methods select answers from a predefined an-
swer set via classification. PubMedCLIP (Eslami, Meinel,
and De Melo 2023) validated the effectiveness of transfer-
ring the CLIP architecture to the Med-VQA task. M3AE
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(Chen et al. 2022) proposed a multimodal self-supervised
pretraining paradigm based on masked autoencoders to learn
domain knowledge in the medical field. PMC-CLIP (Lin
et al. 2023) constructed a larger dataset, PMC-OA, and pre-
trained a CLIP-style model. (Zhang et al. 2023c) aligned
the pre-trained vision encoder and LLLM via visual instruc-
tion tuning and constructed the PMC-VQA dataset. Al-
though these approaches perform well on closed-set prob-
lems, they completely restrict the model’s ability to han-
dle open-set questions. Consequently, another generative
method has emerged, generally combined with LLMs. Gen-
erative methods are not limited by a candidate answer set
and can provide detailed answers to diverse open-set ques-
tions in the real world, significantly improving generaliza-
tion. Due to the success of LLMs such as GPT-4 (Achiam
et al. 2023) and LLaMA-2 (Touvron et al. 2023), numerous
LLMs tailored for the medical field have emerged, becom-
ing the mainstream in generative methods. Notable works
include ChatDoctor (Yunxiang et al. 2023), PMC LLaMA
(Wu et al. 2023), and Huatuo (Wang et al. 2023), etc. These
models are fine-tuned on specific medical datasets based on
open-source LLMs and can provide accurate and detailed
guidance to patients in need. Visual Med Alpaca (Shu et al.
2023) is currently the earliest known attempt to incorporate
medical images as input in a multimodal medical model. It
converts images into intermediate representations and com-
bines them with text input for the LLM. However, this ap-
proach may be limited by the pre-trained image caption-
ing models. LLaVA-Med (Li et al. 2024) proposed a new
curriculum learning method using a biomedical multimodal
dataset constructed with GPT-4, adapting LLaVA (Liu et al.
2024) to the biomedical domain. Unlike the existing meth-
ods, our approach utilizes fine-grained visual prompts to fa-
cilitate precise localization of image regions by large multi-
modal models, thereby providing more accurate answers.

Method
Overview

Traditional methods treat MedVQA as a classification task
where the goal is to select the most likely answer a from the
set A containing all candidate answers, conditioned on the
question Q and the image Z. The task can be formulated as:

a = argmaxP(a | Z, Q).
acA

)

However, candidate answer sets are not provided in ad-
vance in the actual diagnosis, which hinders the openness of
the system. In this paper, we leverage the powerful genera-
tive capabilities of the large language model to address the
open MedVQA task in a generative manner.

T

p(alz, Q) = [[ platlars—1.Z, Q),

t=1

2)

where a is the ground truth answer while 7' denotes the
length of a. As illustrated in Figure 2, our framework mainly
consists of an Adaptive Visual Prompt Creator (AVPC) and
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Figure 2: FAVP framework consists of two main components: the Adaptive Visual Prompt Creator (AVPC) at the top and
the Hierarchical Answer Generator (HAG) at the bottom. The AVPC generates organ-level visual prompts to enhance the
model’s precise localization capabilities. Meanwhile, the HAG utilizes fine-grained visual prompts to learn hierarchical visual
representations and to retrieve implicit knowledge from LLMs through cross-modal retrieval. Magnification is recommended

to ensure detailed visualization.

a Hierarchical Answer Generator (HAG). The AVPC adap-
tively generates organ-level visual prompt candidates for im-
ages using grid-wise keypoints. The HAG aims to lever-
age these visual prompt candidates along with higher-level
semantic feature representations extracted from the global
image to query the intrinsic knowledge within the LLM in
the language feature space, which enables the generation of
more comprehensive open responses. The HAG includes a
shared Vision Transformer (ViT), a Hierarchical Extractor,
and the LLM.

Adaptive Visual Prompt Creator

Visual prompts significantly enhance model capabilities in
interpreting visual information by offering essential guid-
ance and context, thereby improving the accuracy of im-
age content analysis. Recent studies have utilized CLIP’s
capabilities to encode images and superimpose visual cues,
yet this approach did not translate effectively to MedVQA
datasets. Unlike datasets used for visual grounding tasks,
which include annotations specifying object locations for
easy application of visual prompts, MedVQA datasets lack
such annotations for organs or specific objects. To enable the
model to focus more on fine-grained image details, it is nat-
ural to apply visual prompts to enhance the model’s under-
standing of region-level visual features. In scenarios where
ground truth masks are unavailable, existing methods typi-
cally rely on proposals generated by pre-trained detectors.
However, detectors are not commonly utilized in the Med-
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VQA domain. To generate fine-grained visual prompts, we
propose the Adaptive Visual Prompt Creator (AVPC), which
can adaptively produce various forms of visual prompts
based on automatically generated keypoints, such as boxes,
circles, masks, etc. Prior to generating the visual prompts,
for the original image Z € R7”*WxC¢ ‘where H, W, and C
represent height, width, and channel, respectively, we gen-
erate a uniform grid of points according to the predefined
number of keypoints. By overlaying this keypoint grid onto
the original image Z, we obtain the augmented image Z,.
Subsequently, Z and Z, are fed into the Image Encoder and
Prompt Encoder, respectively, to obtain the Image embed-
ding &; and Prompt embedding &,.

& = IE(I)7 gp = PE(Ig)a 3)
where ITE, PE denote the Image Encoder and the Prompt
Encoder.

The process of generating visual prompts using the AVPC
module is primarily divided into two steps. In the first step,
we use SAM-Med2D (Cheng et al. 2023) to obtain a global
mask o that encompasses all relevant organs as follows:

0= SAMMed(gz; gpv T)ﬂ (4)

where 7 represents the Non-maximum Suppression (NMS)
threshold, a critical hyperparameter that influences the final
outcome of the global mask. Using the global mask directly
as a visual prompt may lead to coupling between local de-
tails. Therefore, to further enhance the focus on fine-grained



local details, in the second step, we employ adaptive visual
prompting to segment the global mask p into instance-level
local masks ¢; € o = {<1,...,sn}, where N is the total
number of instances. These single-organ local masks can be
extended into various forms of local visual prompts, such as
boxes, circles, contours, etc. Various forms of visual prompt
candidates, encapsulating precise regional details, are illus-
trated in Figure 2. Ultimately, only one type of local visual
prompt from the prompt candidates will be selected as the
final input for the Hierarchical Answer Generator.

Hierarchical Answer Generator

To avoid being limited by a predefined set of answers,
we treat MedVQA as a generative task and propose the
Hierarchical Answer Generator. By using fine-grained vi-
sual prompts generated by the AVPC to query the intrinsic
knowledge of LLM, we leverage its powerful generative ca-
pabilities to achieve true open question answering. Specifi-
cally, the Hierarchical Answer Generator comprises a shared
ViT, a Hierarchical Extractor, and a LLM.

First, we input the set of local masks marked with visual
prompts, {<1,...,sn}, along with the original image 7 into
the shared ViT, extracting hierarchical visual features and
obtaining both instance-level local representations of organs
and the global representation of the image.

flvfg:ViT(§1a~'~7§N;I)7 (5)

where fi = {f},...,fN} € REXNXP)XD anq f, €
REXPXD 'with B, P, and D representing batch size, num-
ber of patches, and dimension, respectively.

Subsequently, we concatenate the local and global visual
features along the second dimension to obtain the final visual
features f, € REX((N+1)XP)xD Ty shift the extraction of
visual representations from the natural image space to the
medical image space while introducing minimal parameters,
we use Parameter-Efficient Fine-Tuning (PEFT) techniques
by integrating LoRA (Hu et al. 2021) on the shared ViT.
Specifically, during training, the shared ViT parameters are
frozen, and only the low-rank adaptation layer is updated.

Following this, we employ our proposed hierarchical ex-
tractor W(-) to learn higher-semantical visual representa-
tions from f, and map f, into the language feature space to
obtain hierarchical visual tokens V. The hierarchical extrac-
tor includes a Q-Former (Li et al. 2023) and a linear layer.

(6)

Finally, the LLM takes V' and the question Q as inputs, pro-
ducing the final answer a.

V = ¥(f,) = Linear(Qformer(f,)).

a = LLM(V, Q). @)
Training LLM from scratch for MedVQA demands sub-
stantial computational resources and extensive annotated
datasets. Therefore, we also employ the PEFT techniques on
LLM to reduce computational cost. Notably, we only apply
PEFT to the LLM during the fine-tuning phase.

The final objective is to minimize the cross-entropy loss
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using Teacher Forcing strategy with ground truth answer a.

min Lce(0),

T (3)
s.t. Ece = - ZIOgPO (dt | I, Q; C~'/1:t71) .

t=1

Here, T is the length of the ground-truth answer, and a;.,—1
denotes the preceding tokens in the ground-truth answer se-
quence. The symbol 6 signifies the trainable parameters.

Training Stages

Our overall framework training is carried out in three
stages, progressively adapting the general-domain multi-
modal LLM model to the biomedical domain.

Stage 1. To achieve cross-modal alignment between medical
images and text, we utilize the radiology part of the ROCO
dataset (Pelka et al. 2018). For each sample, given the image
input, the model is required to predict the original caption.
In training, we only update the linear layer in the hierarchi-
cal extractor and the low-rank adaptation layer in the shared
ViT while keeping other weights frozen.

Stage 2. We keep the weights of the LLM and shared ViT
frozen, and update the whole Hierarchical Extractor and the
low-rank adaptation layer of ViT. To train our proprietary
VQA model, we utilize PMC-VQA (Zhang et al. 2023c) in
stage 2, a large-scale dataset that encompasses a broad range
of modalities and diseases.

Stage 3. We train and evaluate our model on three down-
stream MedVQA datasets, i.e., VQA-RAD (Lau et al. 2018),
SLAKE (Liu et al. 2021), and DME (Tascon-Morales,
Mairquez-Neila, and Sznitman 2022). During training, we
freeze the original weights of the LLM while updating the
low-rank adaptation layer. Concurrently, the Hierarchical
Extractor and the low-rank adaptation layer of the shared
ViT are updated. For evaluation, we set the model weights
to a frozen state, prohibiting any updates.

Experiments
Experiments Setup

Datasets and Evaluation Metrics. We fine-tune and eval-
uate FAVP on three Medical VQA datasets, i.e., VQA-RAD,
SLAKE, and DME. Following LLaVA-Med (Li et al. 2024),
for closed-set questions, we report the accuracy based on the
presence of ground-truth tokens in the generated sequences.
For open-set questions, we use recall to assess the propor-
tion of ground-truth tokens appearing in the generated se-
quences. Compared to discriminative methods that predict
directly from a set of candidates, our approach more closely
aligns with the nature of open-set settings and presents a
greater challenge. For the DME dataset, we report overall
accuracy and consistency metrics.

Implementation Details. We conduct all experiments on
GeForce RTX 4090 GPUs. For the HAG module, we utilize
ViT-G/14 (Zhai et al. 2022) as the shared ViT, Q-Former and
linear layer as the Hierarchical Extractor while Vicuna 7B
(Chiang et al. 2023) as the LLM. The Hierarchical Extrac-
tor consists of Q-Former and a linear layer. The Q-Former



VQA-RAD SLAKE
Method Ref Open Closed | Ref Open Closed Parameter
Generative Methods
Med-MoE (Jiang et al. 2024) - 52.6 84.6 - 85.3 86.8 3.6B
LLaVA-Med (Li et al. 2024) - 64.8 83.1 - 87.1 86.8 7B
FAVP (From Vicuna) - 71.9 88.2 - 87.2 88.1 0.1B
FAVP (From LLaMA-2) - 68.1 89.0 - 85.6 87.9 0.1B
Discriminative Methods
Prefix T. Medical LM (Van Sonsbeek et al. 2023) - - - 84.3 - 82.0 60M
PubMedCLIP (Eslami, Meinel, and De Melo 2023) | 60.1 - 80.0 | 78.4 - 82.5 0.1B
M3AE (Chen et al. 2022) 67.2 - 83.5 80.3 - 87.8 0.4B
PMC-CLIP (Lin et al. 2023) 67.0 - 84.0 81.9 - 88.0 0.2B
MedVInT-TE (Zhang et al. 2023c) 69.3 - 84.2 88.2 - 87.7 0.2B

Table 1: Performance comparison with prior state-of-the-art methods on VQA-RAD and SLAKE datasets. For open-set ques-
tions, recall is reported for the free-form generative method under the column Open, while accuracy for discriminative methods
is listed under the column Ref. For closed-set questions, accuracy is documented in the column Closed. Bold indicates FAVP

achieves new SoTA.

Method Accu. Cons.
SQUINT (Selvaraju et al. 2020) 80.58 88.17
MVQA (Tascon-Morales et al. 2022) 81.15 89.95
MVQA-CPQA 83.49 94.20
LIMOD (Tascon-Morales et al. 2023a) 83.59 95.78
LQ (Tascon-Morales et al. 2023b) 84.20 -

FAVP 84.73 97.82

Table 2: Performance comparison of FAVP with SoTA ap-
proaches on DME dataset. Accu. and Cons. are the abbrevi-
ations for overall accuracy and consistency criteria. MVQA-
CPQA and MVQA are different variants in the same paper.

learns K = 32 query tokens with a hidden dimension of
size 768. Based on preliminary experiments, we establish
the LoRA rank of ViT at 4 and that of LLM at 8, and we also
discuss them in ablation studies. The trainable components
of the FAVP consist of a Hierarchical Extractor with 108M
parameters and LoRA layers with 5M parameters, resulting
in a total of 113M activation parameters.

During training, we employ the AdamW optimizer with a
learning rate of 1e-4, following a cosine learning rate sched-
ule. The values of 5, and (35 are set to 0.9 and 0.999, respec-
tively. To enhance model generalization and mitigate over-
fitting, we apply a weight decay of 0.05. In HAG, images are
resized to 224224 to align with the encoder.

Quantitative Evaluations

Table 1 presents the comparison of FAVP with existing gen-
erative and discriminative methods on the VQA-RAD and
SLAKE datasets. Firstly, on closed-set questions across both
datasets, FAVP significantly outperforms the current lead-
ing generative and discriminative approaches, demonstrat-
ing its robust capability to perform precise localization and
closed-set categorization under fine-grained visual prompts.
Secondly, for open-set questions, FAVP achieves SoTA re-
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Figure 3: Ablation study on different LoRA ranks of the
shared ViT across VQA-RAD and SLAKE datasets.

sults among generative methods on both datasets, notably
surpassing the advanced generative method LLaVA-Med by
11.0% on the VQA-RAD dataset. Remarkably, our open-
set generation performance even exceeds the SoTA discrim-
inative method MedVInT-TE, which uses a predefined set
of candidate answers. Although the metrics for generative
methods differ from discriminative methods, this indirectly
shows that FAVP can generate answers that are comparable
to, or even more accurate than, those from discriminative
methods without restricting answer choices. Thirdly, with
the aid of lightweight technology, FAVP requires only 0.1B
trainable parameters, equivalent to just 1.4% of the param-
eter size used by LLaVA-Med, yet surpasses SOTA meth-
ods. Meanwhile, the performance variance across different
LLM initializations on FAVP is minor, with Vicuna gener-
ally proving more adept at the MedQA task.

Table 2 demonstrates that FAVP achieves SoTA perfor-
mance in both accuracy and consistency metrics on the DME
ocular dataset, indicating its excellent generalizability across
different medical imaging modalities. Furthermore, a 2.04%
higher consistency metric compared to LIMOD suggests
that FAVP’s proficiency in ocular lesion assessment bene-
fits from precise regional localization, substantially reducing
contradictions in answers generated for different questions
within the same image.



VQA-RAD SLAKE
LLM LoRA Open Closed Avge. | Open Closed Avge.
0 67.8 85.7 76.8 | 83.0 85.8 84.4
2 67.4 88.2 77.8 | 84.8 86.4 85.6
Vicuna 4 69.6 85.7 77.7 | 833 86.5 84.9
8 71.9 88.2 80.1 | 87.2 88.1 87.7
16 67.8 87.1 715 | 83.2 86.3 84.8
0 63.8 85.3 746 | 824 84.1 83.3
2 66.7 89.3 78.0 | 83.9 86.3 85.1
LLaMA-2 4 69.9 84.9 774 | 853 87.0 86.2
8 68.1 8.0 78.6 | 8.6 879  86.8
16 59.6 84.6 72.1 | 84.4 86.5 85.5

Table 3: Ablation study on different LLMs and the setting of LLM’s LoRA ranks. Avge. denotes the average value of accuracy
across open and closed column. Bold indicates the best performance, while underline denotes the second-best performance.

Prompt VQA-RAD SLAKE
Open Closed | Open Closed

Mask 70.9 88.6 86.2 88.6
Blur Mask 70.7 86.8 86.7 88.4
Circle 71.9 88.2 85.6 87.9
Blur Circle Mask | 65.8 87.1 86.0 87.4
Box 71.1 86.0 86.4 88.6
Blur Box Mask 66.9 87.1 85.9 87.4
Contour 68.3 88.2 87.2 88.1
Keypoint 69.0 87.1 86.2 87.0
w/o Prompt 67.5 86.4 85.1 87.2

Table 4: Ablation study on different types of prompt. Bold
indicates the best performance, while underline denotes the
second-best performance.

Ablation Studies

LoRA rank settings and different LLMs. To determine
the impact of different LoORA ranks of the shared ViT on the
enhancement of Answer generation performance through vi-
sual prompts, we manually select four representative visual
prompts and conduct ablation studies with LoRA ranks set
at 0, 2, 4, and 8. For conciseness, the reported metrics are
the average scores for open-set and closed-set questions. It
can be observed from Figure 3 that optimal performance for
most visual prompts is achieved when the rank is set to 4.
Both excessively high and low LoRA ranks tend to degrade
answer quality. We hypothesize that too low LoRA rank may
hinder the model’s transition from general to medical do-
mains, while too high rank might introduce excessive train-
able parameters, potentially diluting the domain knowledge
already acquired in the frozen layers. Therefore, in subse-
quent experiments, we set the LoRA rank of ViT to 4. Si-
multaneously, as shown in Table 3, we conduct ablation ex-
periments on the LoRA rank setting of LLM and various
LLM architectures. The results indicate that both Vicuna
and LLaMA-2 achieve optimal performance when the LoORA
rank is set to 8, as measured by average QA performance.
In particular, Vicuna slightly outperforms LLaMA-2, which
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VQA-RAD SLAKE
Stage I Stage 2 Open Closed | Open Closed
X X 577 783 | 831 824
v X 487 768 | 79.8  82.0
X v 558 831 | 823 837
v v 719 882 | 872  88.1

Table 5: Ablation study on different training stages. Stage 3
is enabled across all settings as the downstream fine-tuning
phase, with details omitted in the table for conciseness.

may be attributed to Vicuna’s specific optimization and fine-
tuning for medical-related data and tasks, while LLaMA-2’s
general design and optimization strategy can result in com-
paratively lower performance for specialized domain tasks.

Different types of visual prompts. To evaluate the ef-
fectiveness of different types of visual prompts in query-
ing latent medical knowledge from Large Language Mod-
els (LLMs), we conduct ablation studies on eight visual
prompts, including Mask, Circle, Box, and Contour. As ob-
served in Table 4, most visual prompts contribute to perfor-
mance gains in the MedVQA task, and the optimal visual
prompt varies across different datasets. While focusing on
performance in open-set problems and also considering the
effects on closed-set questions, Circle and Contour emerged
as the most effective visual prompts for the VQA-RAD and
SLAKE datasets, respectively.

Impact of different training stages. In addition to fine-
tuning on the downstream datasets in stage 3, separate ab-
lation studies are conducted on stages 1 and 2. As observed
in Table 5, using either stage 1 or stage 2 in isolation does
not yield optimal results. Notably, employing only stage 1
results in performance that is even slightly lower than the
non-pretrained baseline. This can be attributed to the use of
image captioning as the pretraining task in stage 1, where
the general medical knowledge acquired does not general-
ize well across the large-scale MedVQA dataset in stage 2,
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Figure 4: Ablation study on the NMS threshold 7 and the
number of keypoints.

resulting in increased noise during fine-tuning in stage 3.
The substantial improvement in accuracy when both stages
1 and 2 are active further confirms that only their collabora-
tion can effectively enhance the model’s capabilities in mul-
timodal knowledge mining and feature representation learn-
ing, thereby benefiting subsequent fine-tuning.

Hyperparameters analysis. Figure 4 investigates the im-
pact of the hyperparameters, specifically the number of key-
points and the NMS threshold 7 on the accuracy of an-
swer generation. Empirically, we select keypoints spanning
from 30 to 60, while 7 ranges cover [0.75, 0.80, 0.85, 0.90].
It can be observed that, firstly, when 7 increases to 0.90,
there is a significant performance decline, likely due to the
high threshold causing the omission of masks correspond-
ing to crucial organs, thereby degrading the quality of vi-
sual prompts input during the answer generation phase. Sec-
ondly, as T increases, the accuracy associated with each set
of keypoints initially rises then falls, with most peaks oc-
curring at 7 = 0.80. Furthermore, when 7 = 0.80, the ex-
pansion of keypoints also shows a pattern of initial increase
followed by a decrease in accuracy. This reveals the complex
interplay and potential trade-offs between these two hyper-
parameters in generating visual prompts.

Qualitative Evaluations

Figure 5 presents representative cases and the correspond-
ing visual prompts generated by FAVP across three datasets.
The first three cases demonstrate FAVP’s capability to accu-
rately localize lesions and organs across different imaging
modalities using fine-grained generated visual prompts. No-
tably, the first-row second column shows that FAVP, due to
its strong localization accuracy, can provide more precise
location descriptions than GT, although the corresponding
Recall value decreases significantly. This suggests potential
limitations in current generative MedVQA evaluation met-
rics. Additionally, the final example from the DME dataset
reveals that both FAVP and LLaVA-Med encounter difficul-
ties in inferring diabetic macular edema grades, indicating
that general large models still face limitations in scenarios
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ddloo

Q: What is the location of the
lesion?

GT: Right lower lateral lung field
FAVP: Right lower lateral lung

Q: Where is/are the abnormality
located?

GT: Left Lung, Right

FAVP: Left Lung, Upper Right

field (1.0) (0.75)
LLaVA-Med:Right lung hilum LLaVA-Med:Right Lung, Left
(0.67) (0.33)

Q: What is the diabetic macular
edema grade for this image?

GT: 0

FAVP: grade 2 (0)
LLaVA-Med: The diabetic
macular edema (DME) grade for
this image is 2 (0)

Q: Where is the lesion located?
GT: Right cerebellopontine angle
FAVP: Right cerebellopontine
angle (1.0)

LLaVA-Med:Left

cerebellopontine angle (0.67)

Figure 5: Qualitative examples: incorrect in red, correct
in green. Left column: VQA-RAD dataset. Right column:
SLAKE and DME datasets. The values in parentheses indi-
cate the recall of the current answer compared to GT.

requiring complex medical knowledge reasoning. This mul-
tifaceted exploration provides insights into the capabilities
and potential improvements for FAVP.

Conclusion

This paper treats MedVQA as a generative task and intro-
duces fine-grained adaptive visual prompts to enhance gen-
erative MedVQA. Our framework integrates an Adaptive
Visual Prompt Creator, which adaptively generates region-
level visual prompts based on the characteristics of different
organs within medical images. We further explore different
types of instance-level visual prompts, and ultimately select
the most effective visual prompt based on the characteristics
of different datasets. Furthermore, FAVP incorporates a Hi-
erarchical Answer Generator, designed to extract hierarchi-
cal high-semantic representations from fine-grained visual
features and map them into the language space. We believe
that FAVP represents a significant step towards enhancing
the precise localization capabilities in open MedVQA tasks.
Extensive experiments showcasing FAVP’s prowess. Never-
theless, as FAVP has only been validated on common med-
ical modalities (e.g., X-Ray, CT, MRI), further validation
across additional modalities, such as PET scans, mammog-
raphy, and histopathological images, is necessary to assess
its generalizability. Future work aims to enhance the capa-
bility of FAVP in the reliability of zero-shot generation. We
hope that FAVP can inspire further exploration and applica-
tion of visual prompts in various medical verticals.
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