Reinforcement Learning from Bagged Reward

Yuting Tang':2* Xin-Qiang Cai'* Yao-Xiang Ding?
Qiyu Wu! Guoqing Liu* Masashi Sugiyama?'!
IThe University of Tokyo, Japan
2RIKEN Center for Advanced Intelligence Project, Japan
3Zhejiang University, China
Microsoft Research Al4Science, China

Abstract

In Reinforcement Learning (RL), it is commonly assumed that an immediate reward
signal is generated for each action taken by the agent, helping the agent maximize
cumulative rewards to obtain the optimal policy. However, in many real-world
scenarios, immediate reward signals are not obtainable; instead, agents receive
a single reward that is contingent upon a partial sequence or a complete trajec-
tory. In this work, we define this challenging problem as Reinforcement Learning
from Bagged Reward (RLBR), where sequences of data are treated as bags with
non-Markovian bagged rewards. We provide a theoretical study to establish the
connection between RLBR and standard RL in Markov Decision Processes (MDPs).
To effectively explore the reward distributions within these bags and enhance policy
training, we propose a Transformer-based reward model, the Reward Bag Trans-
former, which employs a bidirectional attention mechanism to interpret contextual
nuances and temporal dependencies within each bag. Our empirical evaluations
reveal that the challenge intensifies as the bag length increases, leading to the
performance degradation due to reduced informational granularity. Nevertheless,
our approach consistently outperforms existing methods, demonstrating the least
decline in efficacy across varying bag lengths and excelling in approximating the
original MDP’s reward distribution. The code is available at an anonymous link:
https://anonymous.4open.science/r/RLBR-F66E/,

1 Introduction

Reinforcement Learning (RL) has achieved remarkable success in various domains, including au-
tonomous driving [23]], continuous control [4H6], complex game playing [39, 3], and financial
trading [47]. One common and essential assumption for most RL algorithms is the availability
of immediate reward feedback at each time step of the decision-making process. However, this
assumption is violated in many real-world applications. Recognizing this gap, numerous stud-
ies [45 121} 1141134, 150] have explored the concept of delayed rewards, primarily focusing on trajectory
feedback where rewards are allocated at the end of a sequence. Similarly, sparse reward settings,
where agents receive infrequent and instance-specific feedback, present significant challenges in the
well-known exploration-exploitation trade-off [36, (9, [8]].

On the other hand, real-world applications, such as autonomous driving (see Fig.[I)), often feature
complex non-immediate reward structures that neither sparse rewards nor trajectory feedback can
fully capture. Providing reward for every action is impractical, and focusing only on end goals
ignores crucial aspects of the journey. Typically, rewards are linked to completing specific tasks or
sequences of actions, rather than individual actions or the final objective L1, [15]. However, previous
studies (see Fig.[2)) mainly focused on learning desirable policies with immediate rewards [40, 44]],

*Equal contribution.

38th Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

https://anonymous.4open.science/r/RLBR-F66E/

Reward Bag Reward Bag Reward Bag

Figure 1: An example of the reward bag structure on an autonomous driving trajectory. Each segment
of the driving sequence is evaluated and assigned a score by an evaluator, and the score for each
sequence is integrated based on the performance at each step.

trajectory feedback [43, (1], or sparse rewards where feedback is infrequent and tied only to the current
instance [36, |9, 35]], tending to fail under such scenarios.

To address these challenges, we introduce Reinforcement Learning from Bagged Rewards (RLBR),
which better aligns with real-world scenarios by considering the cumulative effect of a series of
state-action pairs. In RLBR, we define sequences of state-action pairs as bags, each associated with a
cumulative bagged reward. This framework includes both the traditional RL setting, where each bag
only contains a single instance (the first line of Fig.[2), and the trajectory feedback setting, where a
bag spans an entire trajectory (the third line of Fig. [2). Furthermore, RLBR offers the potential to
reduce the labeling workload by lessening the frequency of reward annotations. However, this benefit
is balanced by increased learning complexity due to the reduced granularity of information.

In the RLBR framework, our focus is on leveraging bagged reward information to discern the
significance of each instance within a bag and to understand the relationships among different
bags. The challenge lies in accurately interpreting the contextual nuances within individual bags, as
the instances within a bag are time-dependent on each other and their contributions to the bagged
reward vary. Given the importance of context in RLBR, we turn to the bidirectional attention
mechanism [38] 143} |10]], renowned for its effectiveness in contextual understanding, especially for
time-dependent data. Specifically, we propose a Transformer-based reward model, leveraging the
bidirectional attention mechanism to adeptly interpret context within a bag and allocate rewards to
each instance accurately. This model can be utilized to enhance general RL algorithms, such as Soft
Actor-Critic (SAC) [16], for environments with bagged rewards.

Our research contributes to the field in several ways. First, we establish the RLBR framework as a
general problem setting and connect it theoretically to traditional Markov Decision Processes (MDPs),
elaborated in Section[3] In Section[d] we introduce a Transformer-based reward model designed to
assign rewards to individual instances while capturing environmental dynamics. Additionally, we
propose an algorithm that alternates between optimizing this reward model and the policy, thereby
enhancing the effectiveness of both components. Finally, in Section 3} our experiments show that
the performance of baseline methods drops as the bag length increases, indicating that the larger
bag length will increase the learning difficulty. Furthermore, we experimentally demonstrate the
superiority of our method through comparative performance analyses and validate the ability of the
proposed model to mimic the reward distribution of the ground truth MDP, highlighting its contextual
understanding and adaptability to environmental dynamics.

2 Related Work

RL with Trajectory Feedback. RL with Trajectory Feedback (RLTF), termed episodic rewards or
delayed rewards in some works (see the third line in Fig.[2), has become increasingly prominent in
many applications [45} [1}[50]. A key approach to this challenge is reward redistribution, aiming to
assign rewards to individual instances more effectively. Return Decomposition for Delayed Rewards
(RUDDER) [1] used a return-equivalent formulation for precise credit assignment, with advancements
incorporating expert demonstrations and language models [32} 25| |46]]. Iterative Relative Credit
Refinement (IRCR) [14] presented a uniform reward redistribution model based on equal contributions
from all state-action pairs, while Randomized Return Decomposition (RRD) [34] proposed a novel
upper bound for return-equivalent assumptions, integrating return decomposition with uniform reward
redistribution. Additionally, Han et al. [17]] modified RL algorithms to use sequence-level information,
helping agents learn from broader structures and long-term outcomes. However, our focus is on

Reward

Types of Reward Toy Examples of Trajectories (Length N) Markovian Frequency

Immediate Reward Yes N
(Traditional L) | - — - -

Sparse Reward Yes [1,N]
Trajectory Feedback No 1
Bagged Reward No [1,N]

. Instance with observed reward. Instance with latent reward. l:l Instance with no reward.

Figure 2: Comparison of four different types of reward settings in RL. In traditional RL, a reward is
given based on each instance [40, 144]], whereas in sparse reward settings, only some instances receive
rewards [36, 9, 135]. Both types of rewards are Markovian. Trajectory feedback and the proposed
bagged reward both address non-Markovian situations; however, trajectory feedback provides only
one reward signal for the entire trajectory [45, 1], while bagged rewards can include multiple reward
signals within the sequence.

the original, unobservable rewards within reward bags, not the aggregated bagged rewards. Our
experiments (see Section[5) show that the method by Han et al. [17] is ineffective for long sequences.

Following the previous methodology, we adopt a reward redistribution learning strategy to enhance
policy learning in the context of reward bags. However, conventional reward redistribution methods
fail to effectively extract information from bag-level rewards, as they did not take the structure of the
bag into consideration. Our experimental results demonstrate that directly applying previous methods
to the reward bag setting does not yield results as promising as those achieved by our algorithm.

RL with Sparse Rewards. The sparse reward setting (see the second line in Fig. [2)) presents
significant challenges due to infrequent feedback, making it difficult for agents to effectively explore
the environment and discover successful strategies. To address this challenge, various methods have
been developed to enhance exploration. Reward shaping strategies [29, 18, 41] added rewards to
actions in a way that guides the agent towards better policies without altering the original reward
function. Curiosity-driven methods [31}37] encouraged agents to explore the environment by visiting
unseen states, potentially solving tasks with sparse rewards. Additionally, curriculum learning in RL
[12,136] involved presenting an agent with a sequence of tasks with gradually increasing complexity,
allowing the agent to eventually solve the initially given sparse reward task.

In contrast to sparse rewards, which are typically infrequent Markovian signals associated with
individual state-action pairs, bagged rewards depend on the cumulative effect of sequences of state-
action pairs and are non-Markovian, requiring context from the entire sequence to accurately assess
the contribution of each instance.

Transformers for RL. Transformers, introduced by Vaswani et al. [43]], have proven effective in
RL environments requiring high sample efficiency and generalization, such as StarCraft [44] 48]
and DMLab30 [30]. They have also been used for sequential modeling in offline RL [7} [20] and
as reward models in policy learning from offline datasets [22]]. Luo et al. [27] combined deep
convolution transfer learning models and inverse RL for reward function acquisition, while Zhang
et al. [49] transformed non-Markovian reward processes into Markovian ones, enhancing online
interaction efficiency. For reward bags, where rewards are linked to sequences of state-action pairs,
Transformers are ideal due to their ability to handle long-range dependencies. Our approach leverages
a Transformer-based model to redistribute bag-level rewards into instance-level rewards, capitalizing
on the Transformer’s proficiency in sequential data analysis and attention mechanisms.

3 Reinforcement Learning from Bagged Reward

In this section, we first provide preliminaries on RL with immediate rewards and trajectory feedback,
and then formulate the RLBR problem with an extension of the traditional MDP, the Bagged Reward
MDP (BRMDP). We further conduct a theoretical analysis of the relationship between the BRMDP
and the traditional MDP, showing that solving RLBR problems not only relaxes the demands on reward
acquisition but also guarantees finding the optimal policy even with limited reward information.

3.1 Preliminaries

We consider finite-horizon RL in this paper, which is traditionally modeled using a finite MDP, where
rewards are promptly provided for each state-action pair [40]]. This paradigm is encapsulated in a tuple
M= (S, A, P,r,u),withs € Sand a € A as the sets of states and actions, P as the state transition
probability function, r as the immediate reward function, and (as the initial state distribution. The
primary objective in this framework is to discover a policy m = p(a|s) that maximizes the cumulative
sum of rewards over a horizon length 7"

J(m) :EW,P,M|:TX_:1T(SMW)]- 1

t=0

Distinct from this traditional approach, RLTF offers feedback only after a complete sequence of
actions, or a trajectory [[1}50]. A trajectory 7 = {(so, ao), ($1,@1),. .., (s7-1,ar—1)} includes T
state-action pairs, with a reward Ry,,;(7) that is the sum of latent immediate rewards ZtT;Ol (8¢, at),
but only the cumulative reward is observable at the end of the trajectory. Denoting by 7 () as the
distribution of trajectories induced by m, P, u, the learning objective in RLTF is to maximize the
expected trajectory-based reward:

Jiraj() = Er () [Rep(T)]-)

3.2 Problem Formulation

We formally define the setting of RLBR, which has a granularity of rewards in between the above
two settings. First, we define the notion of bags, which are sub-pieces of complete trajectories. A
trajectory 7 is divided into several neighboring bags, and a bag of size n;, which starts from time 7, is
defined as B; ., = {(8i,i)s -+, (Sitn;—15Gitn;—1)},0 < i <i+mn; — 1 <T — 1. Afterward, we
define the BRMDP to navigate the complexities of the aggregated non-Markovian reward signals:

Definition 1 (BRMDP). A BRMDP is defined by the tuple (S, A, P, R, i), where

» S and A are sets of states and actions.

* P is the state transition probability function.

* R denotes the reward function over bagged reward: R(B; ,,,) = ii;”*l r(st, at).

* L represents the initial state distribution.

The essential properties of BRMDP are two-fold: 1) only bagged rewards can be obtained by the
learner, not immediate rewards; 2) the bagged reward is the accumulated sum of immediate rewards
within the bag. In the RLBR framework, a bag B; ,,, metaphorically aggregates individual rewards
from a contiguous sequence of state-action pairs into a unified reward unit. A trajectory 7 is a
composite of a set of bags, denoted as B, which ensures that each trajectory includes at least one
reward bag. We further assume a bag partition function defined by the environment: G : 7 — B,
which is a task-dependent function for generating bags given an input trajectory. Consequently, the
learning objective of the policy is to maximize the accumulated bagged rewards:

Ji () = Em){) R(B)]g]. @

BeB,

Notably, if each bag comprises a single instance (n; = 1,V0 < ¢ < T — 1), RLBR simplifies to
standard RL. Conversely, if a single bag encompasses the entire trajectory (ng = 7°), RLBR reduces
to RLTF. This adaptability highlights the capacity of the RLBR framework to accommodate varying
reward structure scenarios.

3.3 Equivalence of Optimal Policies in the BRMDP and the Original MDP

In the BRMDP, agents are unable to directly observe the immediate reward linked to each state-action
pair. Nonetheless, we aim for agents to optimize policies in environments where bagged rewards are
accessible and to perform well on the original task. To unify the learning objectives of the BRMDP

. Reward Prediction B;, €7

' ,
£:(0:Bin) = (S5 7 = R(Bi)))

Next State Prediction (s, @, 5.41) €7
L8550, apSe41) = 1841 = Seaa |

Sequence of Input Data

Figure 3: The illustration of the Reward Bag Transformer (RBT) architecture. The Causal Transformer
is used for reward representation by processing sequences of input data consisting of state-action
pairs. The bidirectional attention layer is used for reward redistribution, utilizing the outputs of
the Causal Transformer to predict instance-level rewards. Predicting the next state helps the model
understand the environment, thereby improving reward prediction.

with those of the traditional MDP, we formulate a theorem that crystallizes this relationship. The
significance of this theorem lies in its assertion that the optimal policy derived in a BRMDP setting is
congruent with that of an MDP when the bagged rewards are considered as cumulative sums. This
finding not only validates the theoretical underpinnings of our approach but also affirms its practical
relevance across various RL paradigms.

Theorem 1. Consider a BRMDP where the bagged reward is defined as the sum of rewards for
state-action pairs from the corresponding MDP contained within the same bag. In this context, the
set of optimal policies for the standard MDP 11, aligns with that of the BRMDP 11, implying that
I = 1.

The detailed proof of Theorem [I] is deferred to Appendix [B] By this theorem, we can see that
optimizing a policy on a BRMDP is equivalent to optimizing on the original MDP. The crux of the
matter is how to accurately redistribute the bagged rewards so that the policies learned under these
distributed rewards are more close to the policies on the original MDP.

4 Reward Bag Transformer

This section delves into the intricacies of leveraging the bidirectional attention mechanism [38},
for reward redistribution, designs a Transformer architecture, and outlines a comprehensive algorithm
for the cultivation of efficient policies under the BRMDP framework.

4.1 Reward Redistribution based on Bidirectional Attention Mechanism

Building on the foundation of Theorem T]that optimal policies in the BRMDP and MDP are equivalent,
our focus shifts to the crucial process of redistributing rewards within a bag from the BRMDP. To
capture the contextual influence of each instance within the sequence, the Causal Transformer [43] is
a natural choice as a sequential prediction model. Traditionally, Transformers in RL are used in a
unidirectional manner [[7, (19, 28]], where only previous instances influence the current prediction due
to the unobservability of future instances. However, given that our bagged rewards are non-Markovian
and both preceding and subsequent instances affect the contribution of the current instance to the
bagged reward, a bidirectional attention mechanism [38} [43] becomes pivotal. This mechanism
connects both past and future instances within a bag, enabling a more comprehensive understanding of
contextual influences. By quantitatively evaluating the contribution of each instance, the bidirectional
attention mechanism facilitates nuanced and effective reward redistribution.

Algorithm 1 Policy Optimization with RBT

1: Initialize replay buffer D, RBT parameters 6.

2: for trajectory 7 collected from the environment do

3 Store trajectory 7 with bag information {(B; ., R(Bin;))} B, .. e, inD.
4 Sample batches from D and estimate bag loss based on Eq. (7). '

5: Update RBT parameters 6 based on the estimated loss.
6

7

8:

Relabel rewards in D using the updated RBT.
Optimize policy using the relabeled data by off-the-shelf RL algorithms (such as SAC [16]).
end for

4.2 Proposed Approach

We introduce the Reward Bag Transformer (RBT), a novel approach designed for the BRMDP
framework. The RBT is engineered to comprehend the complex dynamics of the environment through
bags and to precisely predict instance-level rewards, facilitating effective reward redistribution.

Causal Transformer for Reward Representation. Referring to Fig. [3] the RBT comprises a
Causal Transformer [43}133]], which maintains the chronological order of state-action pairs [[7,[19].
For each time step ¢ in a sequence of M time steps, the Causal Transformer, represented as a
function f, processes the input sequence o = {sq,ao,...,Sp—1,an—1}, generating the output
{z:}M1 = f(0). By aligning the output head x; with the action token a;, we directly model the
consequence of actions, which are pivotal in computing immediate rewards and predicting subsequent
states, which in turn aids the model in better understanding the environmental dynamics.

Bidirectional Attention Layer for Reward Redistribution. Once we have obtained the output
embeddings {xt}tj\ial, for reward prediction, they pass through a bidirectional attention layer to
produce {ft}t]‘igl, where 7y = 7¢(s¢, a;) with 6 being the RBT parameters. This layer addresses the
unidirectional limitation of the Causal Transformer architecture [43l33]], integrating past and future
contexts for enhanced reward prediction accuracy. For state prediction, x; is input into a state linear
decoder, yielding the predicted next state $;11 = So(s¢, at).

The core of the RBT architecture is its bidirectional attention mechanism. For each output embedding
x4, we apply three different linear transformations to obtain embeddings for query q; € R?, key
k; € R¢, and value v; € R. Then the instance-level reward is calculated by

qt7kt’>}t/
softmax(R 4
E N7 Oy - v 4

where d is the embedding dimension of the key. The rescaling operation is used to prevent extremely
small gradients as in Vaswani et al. [43]]. This mechanism enables the RBT to consider both the
immediate and contextual relevance of each state-action pair in the trajectory when predicting rewards.

4.3 Learning Objectives

The learning objectives of the RBT are twofold: reward prediction within each reward bag and state
transition forecasting. These objectives are critical for enabling the model to navigate the complex
dynamics of BRMDP environments.

Reward Prediction. The RBT is trained to ensure that, for each reward bag, the sum of predicted
instance-level rewards matches the total bagged reward. This is vital for maintaining the integrity of
the reward structure in the BRMDP framework. The loss function for this objective is expressed as

i+n;—1 2
['r(ga Bi,nl) - (Z f't - R(Bz,n7)> 5 (5)
t=1

where B; ,,, represents the reward bag starting at time step ¢ with length n;, and R(B; ;) is the total
reward for this bag. This formulation encourages the RBT to learn a nuanced distribution of rewards
across states and actions within a bag. At the same time, it ensures that the sum of redistributed
rewards matches the total bagged reward, maintaining consistency as per Theorem I}

State Transition Forecasting. Alongside reward prediction, the RBT is tasked with accurately
predicting the next state in the environment given the current state and action. This capability is
crucial for understanding the dynamics of the environment. The corresponding loss function is:

Ls(0; 56, a8, 5041) = [|8041 — s, (6)
where || - || denotes the £2-norm. This loss emphasizes the model’s understanding of dynamics.
Composite Loss. The final learning objective combines the reward and state prediction losses:

Ebag(e) = TE/D [‘Cr(97 Bl,nL) Bz,nL S B‘r}

@)
+ ﬁTLED [Ls(0; sty a, 5041)| (56, ar, 5041) € 7],

where the coefficient 5 > 0 balances the two loss components, and D denotes the replay buffer.

The RBT’s dual predictive capacity is its key advantage, enabling precise reward redistribution
to individual instances and forecasting the next state. This leverages environmental dynamics for
enhanced reward distribution as experimentally evidenced in the ablation study in Appendix [D.2]
Integrated with off-the-shelf RL algorithms such as SAC [16], the RBT can enhance policy learning
within the BRMDP framework, as outlined in Algorithmm

S Experiment

In the following experimental section, we scrutinize the efficacy of our proposed method using
benchmark tasks from both the MuJoCo [2] and the DeepMind Control Suite [42] environments,
focusing on scenarios with bagged rewards. We assess the performance of our method to understand
its overall effectiveness and examine whether the RBT reward model accurately predicts rewards.

5.1 Compare with SOTA Methods

Experiment Setting. We evaluated our method on eight benchmark tasks from both the MuJoCo lo-
comotion suite, including Ant-v2, Hopper-v2, HalfCheetah-v2, and Walker2d-v2, and the DeepMind
Control Suite, including cheetah-run, quadruped-walk, fish-upright, and cartpole-swingup. Differing
from standard environments where rewards are assigned at each step, our approach involved assigning
a cumulative reward at the end of each bag while assigning a reward of zero to all other state-action
pairs within the bag. The maximum length for each episode was fixed at 1000 steps across all tasks.

Baselines. In the comparative analysis, our framework was rigorously evaluated against several
leading algorithms in the domain of RL with delayed reward:

* SAC [16]: It directly utilized the original bagged reward information for policy training
using the SAC algorithm.

* TRCR [14]]: Tt adopted a non-parametric uniform reward redistribution approach by using
the sum of immediate per-step rewards as a stand-in for trajectory returns. We have adapted
IRCR for bagged reward setting.

* RRD [34]]: It employed a reward model trained with a randomized return decomposition
loss. We have adapted RRD for bagged reward setting.

* LIRPG [51]: It learned an intrinsic reward function to complement sparse environmental
feedback, training policies to maximize combined extrinsic and intrinsic rewards. We use
the same code provided by the paper.

e HC [17]: The HC-decomposition framework was utilized to train the policy using a value
function that operates on sequences of data. This approach decoupled the value function
approximation task for the current step from the historical trajectory. We employed the code
as provided by the original paper.

While methods like RUDDER [[1] and Align-RUDDER [32] are known for addressing the problem of
trajectory feedback, previous studies [[14} 34, |50] have shown superior performance using referenced
methods. Additionally, since Align-RUDDER relies on successful trajectories for scoring state-
action pairs, which is impractical in MuJoCo [32], we ultimately excluded both methods from our
comparison. Besides, detailed descriptions of the model parameters and hyper-parameters used
during training are provided in Appendix [C] More experimental results are included in Appendix [D.1]

7

Hopper-v2

Ha

IfCheetah-v2

Walker2d-v2

Return

14000

100001

12000{ g

—

8000

6000

Return

4000

20001+

B

6000

5000

4000

3000

Return

2000{

1000

2000

5 25 0 100 200 500 9999 3 E3 00 200 500 9999 E3 100 200 500 9999 3 75 50 100 200 500 9999
Bag Length Bag Length Bag Length Bag Length

cheetah-run quadruped-walk fish-upright cartpole-swingup

] 9 . < DR S e e

———

Return
Return
Return

-

5 B3 10 200 500 9999 3 B3 10 200 500 9999 3 £ 00 200 500 9999 5 25 50 10 200 500 9999
Bag Length Bag Length Bag Length Bag Length

Figure 4: Performance comparison in MuJoCo (top row) and DeepMind Control Suite (bottom row)
environments with six different fixed-length reward bag settings (5, 25, 50, 100, 200, and 500) and
trajectory feedback (labeled as 9999). The mean and standard deviation are displayed over 6 trials
with different random seeds across a total of 1e6 time steps.

Table 1: Performance comparison across arbitrary reward bag configurations over 6 trials with 1e6
time steps for training, presenting average scores and standard deviations. “Narrow” refers to bags
with lengths varying arbitrarily from 25 to 200 and narrow intervals between -10 to 10. “Broad”
denotes the setting with bag lengths varying arbitrarily from 100 to 200 and broad interval variations
from -40 to 40. The best and comparable methods based on the paired t-test at the significance level
5% are highlighted in boldface.

Bag Setting | Environment | SAC IRCR RRD LIRPG HC RBT(ours)

Ant-v2 0.87 368.69 2272.39 -756.78 106.92 5122.50

(2.98) (119.74) (835.86) (763.66) (153.86) (206.44)

Hopper-v2 317.72 3353.35 2184.41 126.13 510.66 3499.54

Narrow (5217 (6197) (807.71) (30.18) (94.49) (76.62)
HalfCheetah-v2 788.45 10853.85 9709.62 1101.38 4027.25 11282.24

(1737.57) (573.72) (1479.73) (124845) (441.01) (266.08)

Walker2d-v2 193.07 4144.65 3536.90 123.43 309.19 4983.39

(48.40) (673.66) (546.66) (50.97) (171.69) (311.09)

Antv2 -3.31 368.69 1323.50 -1264.08 597 5167.79

4.15) (15846) (1079.60) (416.86) (20.08) (303.83)

Hopper-v2 329.48 3296.20 1102.38 203.01 701.84 3499.53

Broad 4421) (21635 (892.12) (177.80) (149.44) (94.00)
HalfCheetah-v2 43.96 9158.14 4199.16 924.26 4460.80 10837.15

(94.32) (1402.62) (1476.85) (1110.97) (518.94) (254.99)

Walker2d-v2 176.09 4179.08 330.96 194.95 447.45 5202.38

(49.81) (937.42) (79.26) (98.05) (155.63) (248.35)

5.1.1 Fixed-Length Reward Bags

In the fixed-length reward bag experiment, we conducted experiments with six bag lengths (5, 25,
50, 100, 200, and 500) and trajectory feedback (labeled as 9999) across each environment. The
experimental design followed the problem setting, which assumed that the conclusion of one reward
bag directly preceded the beginning of the next. It aimed to illustrate the influence of varying bag
lengths on the results, providing insight into how bag size affected the performance of the learning
algorithm within these environments.

As shown in Fig.[d] the SAC method, using bagged rewards directly from the environment, suffers
from a lack of guidance in agent training due to missing reward information. This issue worsens with
longer bag lengths, indicating that increased reward sparsity leads to less effective policy optimization.
The IRCR and RRD methods, treating rewards uniformly within a reward bag, outperform SAC,
suggesting benefits from even approximate guidance. However, notable variance in their results
indicates potential consistency and reliability issues. The LIRPG exhibits subdued performance
across tasks, as it is proposed to solve sparse reward problems [S1], which is Markovian and does not
align the reward bag setting. The HC method excels only with shorter bag lengths, suggesting that
this value function modification method struggles to utilize information from longer sequences. The
proposed RBT method consistently outperforms the other approaches across all the environments and

Rewards Comparison

2 Pred Reward
True Reward (unobservable)
Bagged Reward (observable)

0 200 400 600 800 1000

Figure 5: Comparison of predicted rewards with true rewards and aggregated bagged rewards.

bag lengths, showing that it is not only well-suited for environments with short reward bags but also
capable of handling large reward bag scenarios. This demonstrated the capability of RBT to learn
from the sequence of instances and, by integrating bagged reward information, accurately allocate
rewards to instances, thereby guiding better policy training.

5.1.2 Arbitrary Reward Bags

To validate the effectiveness of our approach under more complex conditions, we designed an
experiment that allowed for overlaps or gaps between reward bags, and the length of each bag was no
longer fixed. This setup simulated more realistic scenarios and tested the robustness of our method.

The results, as detailed in Table[I] affirm the superior performance of the proposed RBT method in
these complex reward settings. Notably, other baseline methods that rely on reward model training
experience a significant drop in effectiveness, primarily due to sample scarcity impacting model
accuracy and policy learning. In contrast, the IRCR method, which distributes rewards uniformly
without a model, maintains its efficacy in some environments. This outcome suggests that while
approximate rewards can still guide policy learning, incorrect rewards can be highly detrimental.
The consistent success of our approach in various reward bag scenarios indicates its potential for
application to a broader range of reward structures, highlighting its versatility and robustness in
handling more intricate reward dynamics.

5.2 Case Study

The previous experimental results showcase the superiority of RBT over baselines. This led to an
intriguing inquiry: Is the RBT reward model proficient in accurately redistributing rewards? To
investigate this question, we performed an experiment focused on reward comparison, utilizing a
trajectory generated by an agent trained in the Hopper-v2 environment with a bag length of 100. As
shown in Fig.[5] which spans 1000 steps, RBT-predicted rewards, unobservable true rewards, and
observable bagged rewards (presented in a uniform format for better visualization) are compared. The
figure indicates that the rewards predicted by the RBT closely match the trends of the true rewards.
This observation suggest that the RBT is effective at reconstructing true rewards from bagged rewards,
despite the coarse nature of the environmental reward signals.

6 Conclusion

In this paper, we introduce a general learning framework, Learning from Bagged Rewards (RLBR),
and make theoretical connections between our learning objectives and traditional MDPs to ensure
the justification of our approach. Building on this problem, we propose a Transformer-based
reward model, the Reward Bag Transformer (RBT), to efficiently redistribute rewards by interpreting
contextual information within bags as well as understanding environmental dynamics. The efficacy of
RBT is demonstrated through extensive experiments, outperforming existing delayed-reward methods
in various reward bag scenarios. Besides, our case studies highlight the RBT’s ability to effectively
reallocate rewards, maintaining fidelity to the original MDP structure. While the sum-form bagged
reward currently integrated into RLBR addresses most scenarios, as evidenced by previous studies
on trajectory feedback [34, 1} [51]], there is value in exploring other forms of reward aggregation.
Future research will investigate alternative reward structures, such as maximum values or complex
combinations of latent rewards, to better capture the nuances of dynamic real-world environments.
This exploration aims to enhance the adaptability and effectiveness of the RLBR framework in a
broader range of applications.

References

[1] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.
Rudder: Return decomposition for delayed rewards. Advances in Neural Information Processing
Systems, 32, 2019.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[3] X.-Q. Cai, Y.-X. Ding, Y. Jiang, and Z.-H. Zhou. Imitation learning from pixel-level demonstra-
tions by hashreward. In AAMAS °21: 20th International Conference on Autonomous Agents
and Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021, pages 279-287, 2021.

[4] X.-Q. Cai, Y.-X. Ding, Z.-X. Chen, Y. Jiang, M. Sugiyama, and Z.-H. Zhou. Seeing differently,
acting similarly: Heterogeneously observable imitation learning. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023.

[5] X.-Q. Cai, P. Zhang, L. Zhao, B. Jiang, M. Sugiyama, and A. J. Llorens. Distributional pareto-
optimal multi-objective reinforcement learning. In The Thirty-seventh Conference on Neural
Information Processing Systems, NeurIPS 2023, New Orleans, US, Dec. 10-16, 2023, 2023.

[6] X.-Q. Cai, Y.-J. Zhang, C.-K. Chiang, and M. Sugiyama. Imitation learning from vague feedback.
In The Thirty-seventh Conference on Neural Information Processing Systems, NeurIPS 2023,
New Orleans, US, Dec. 10-16, 2023, 2023.

[7] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34, 2021.

[8] Z.-X. Chen, X.-Q. Cai, Y. Jiang, and Z.-H. Zhou. Anomaly guided policy learning from imper-
fect demonstrations. In 215t International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2022, Auckland, New Zealand, May 9-13, 2022, pages 244-252, 2022.

[9] R. Devidze, P. Kamalaruban, and A. Singla. Exploration-guided reward shaping for rein-
forcement learning under sparse rewards. Advances in neural information processing systems,
2022.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis,
MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171-4186. Association
for Computational Linguistics, 2019.

[11] J. Early, T. Bewley, C. Evers, and S. Ramchurn. Non-markovian reward modelling from
trajectory labels via interpretable multiple instance learning. Advances in Neural Information
Processing Systems, 35, 2022.

[12] C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement
learning agents. In International Conference on Machine Learning. PMLR, 2018.

[13] R. Frostig, M. J. Johnson, and C. Leary. Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 4(9), 2018.

[14] T. Gangwani, Y. Zhou, and J. Peng. Learning guidance rewards with trajectory-space smoothing.
Advances in Neural Information Processing Systems, 33, 2020.

[15] M. Gaon and R. Brafman. Reinforcement learning with non-markovian rewards. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, 2020.

[16] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In International Conference on Machine
Learning. PMLR, 2018.

10

[17] B. Han, Z. Ren, Z. Wu, Y. Zhou, and J. Peng. Off-policy reinforcement learning with delayed
rewards. In International Conference on Machine Learning. PMLR, 2022.

[18] Y. Hu, W. Wang, H. Jia, Y. Wang, Y. Chen, J. Hao, FE. Wu, and C. Fan. Learning to utilize shaping
rewards: A new approach of reward shaping. Advances in Neural Information Processing
Systems, 33, 2020.

[19] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34, 2021.

[20] M. Janner, Q. Li, and I. Mordatch. Reinforcement learning as one big sequence modeling
problem. arXiv preprint arXiv:2106.02039, 2021.

[21] N. R. Ke, A. G. ALIAS PARTH GOYAL, O. Bilaniuk, J. Binas, M. C. Mozer, C. Pal, and
Y. Bengio. Sparse attentive backtracking: Temporal credit assignment through reminding.
Advances in neural information processing systems, 31, 2018.

[22] C. Kim, J. Park, J. Shin, H. Lee, P. Abbeel, and K. Lee. Preference transformer: Modeling
human preferences using transformers for RL. In International Conference on Learning
Representations, 2023.

[23] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez. Deep
reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 23(6):4909-4926, 2021.

[24] I. Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

[25] Y. Liu, Y. Luo, Y. Zhong, X. Chen, Q. Liu, and J. Peng. Sequence modeling of temporal credit
assignment for episodic reinforcement learning. arXiv preprint arXiv:1905.13420, 2019.

[26] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2018.

[27] W. Luo, J. Zhang, P. Feng, D. Yu, and Z. Wu. A Deep Transfer-Learning-Based Dynamic
Reinforcement Learning for Intelligent Tightening System . International Journal of Intelligent
Systems, 2021.

[28] V. Micheli, E. Alonso, and F. Fleuret. Transformers are sample-efficient world models. In
International Conference on Learning Representations, 2023.

[29] A.Y.Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning. PMLR,
1999.

[30] E. Parisotto, H. F. Song, J. W. Rae, R. Pascanu, C. Gulcehre, S. M. Jayakumar, M. Jaderberg,
R. Kaufman, A. Clark, S. Noury, et al. Stabilizing transformers for reinforcement learning.
arXiv preprint arXiv:2006.10729, 2020.

[31] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning. PMLR, 2017.

[32] V. Patil, M. Hofmarcher, M.-C. Dinu, M. Dorfer, P. M. Blies, J. Brandstetter, J. Arjona-Medina,
and S. Hochreiter. Align-rudder: Learning from few demonstrations by reward redistribution.
In International Conference on Machine Learning. PMLR, 2022.

[33] A.Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language understanding
by generative pre-training. 2018.

[34] Z.Ren, R. Guo, Y. Zhou, and J. Peng. Learning long-term reward redistribution via randomized
return decomposition. In International Conference on Learning Representations, 2021.

[35] D. Rengarajan, G. Vaidya, A. Sarvesh, D. Kalathil, and S. Shakkottai. Reinforcement
learning with sparse rewards using guidance from offline demonstration. arXiv preprint
arXiv:2202.04628, 2022.

11

https://github.com/ikostrikov/jaxrl

[36] M. Riedmiller, R. Hafner, T. Lampe, M. Neunert, J. Degrave, T. Wiele, V. Mnih, N. Heess,
and J. T. Springenberg. Learning by playing solving sparse reward tasks from scratch. In
International Conference on Machine Learning. PMLR, 2018.

[37] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak. Planning to explore via
self-supervised world models. In International Conference on Machine Learning. PMLR, 2020.

[38] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for machine
comprehension. In International Conference on Learning Representations, 2016.

[39] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
L. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484-489, 2016.

[40] R. Sutton and A. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054-1054, 1998.

[41] P. Tambwekar, M. Dhuliawala, L. J. Martin, A. Mehta, B. Harrison, and M. O. Riedl. Con-
trollable neural story plot generation via reward shaping. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence. International Joint Conferences on
Artificial Intelligence Organization, 2019.

[42] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[44] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 2019.

[45] C.J. C. H. Watkins. Learning from delayed rewards. 1989.

[46] M. Widrich, M. Hofmarcher, V. P. Patil, A. Bitto-Nemling, and S. Hochreiter. Modern hopfield
networks for return decomposition for delayed rewards. In Deep RL Workshop NeurIPS 2021,
2021.

[47] H. Yang, X.-Y. Liu, S. Zhong, and A. Walid. Deep reinforcement learning for automated stock
trading: An ensemble strategy. In Proceedings of the first ACM international conference on Al
in finance, pages 1-8, 2020.

[48] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,
T. Lillicrap, E. Lockhart, et al. Deep reinforcement learning with relational inductive biases.
International Conference on Learning Representations, 2019.

[49] H.Zhang, H. Wang, and Z. Kan. Exploiting transformer in sparse reward reinforcement learning
for interpretable temporal logic motion planning. IEEE Robotics and Automation Letters, 2023.

[50] Y. Zhang, Y. Du, B. Huang, Z. Wang, J. Wang, M. Fang, and M. Pechenizkiy. Interpretable
reward redistribution in reinforcement learning: A causal approach. volume 36, 2023.

[51] Z. Zheng, J. Oh, and S. Singh. On learning intrinsic rewards for policy gradient methods.
Advances in Neural Information Processing Systems, 31, 2018.

12

A Broader Impact

In this work, we introduce the problem of Reinforcement Learning from Bagged Reward (RLBR),
and propose the Reward Bag Transformer to address it. On the one hand, we recognize that
these techniques could raise some potential issues. As collecting bagged rewards is much more
convenient and natural than gathering instance-level rewards, this could lead to some risks of abusing
unauthorized data. On the other hand, we believe that developing these techniques is still necessary
for the importance of solving reinforcement learning tasks with bag-level feedback. Furthermore,
there are many techniques for preserving data privacy, which can be compatible with our approach to
avoid such problems.

B Omitted Proof

Theorem 1. Consider a BRMDP where the bagged reward is defined as the sum of rewards for
state-action pairs from the corresponding MDP contained within the same bag. In this context, the
set of optimal policies for the standard MDP 11, aligns with that of the BRMDP 11, implying that
II = Ilp.

Proof. Let us consider the structure of bagged rewards within BRMDP. For a given bag B, ,,, the
bagged reward R(B; ,,) is the sum of the individual rewards of the state-action pairs contained within
it, given by:

1+n;—1

R(B;n,) = Z r(sg, ar).

t=1i

Over a complete trajectory 7, the cumulative reward in BRMDP can be expressed as the sum of the
rewards from all the bags along the trajectory:

1

i+n;—1
Z R(B) = Z R(Bin,) = Z (Z r(st,at)> = Z r(se, at),

BEB, i€z, i€z, t=i t=0
where Z, denotes the set of initial timestep indices for B € B,.

The policy optimization objective in BRMDP, Jg (), aims to maximize the expected sum of bagged
rewards along the trajectory from ¢ = 0, which is equivalent to maximizing the standard cumulative
reward in MDP, J(r):

Jo(m) = Er) [32% #()o]
T—-1

=Erp, { Z r(s¢, at)} = J(m).

t=0

Given that the expected cumulative rewards for any policy in the BRMDP and MDP frameworks are
equivalent, under the condition of infinite exploration or exhaustive sampling within the state-action
space, the sets of optimal policies for each framework also coincide, implying that IT = IIg. O

C Experiment Settings and Implementation Details

Benchmarks with Bagged Rewards. We introduced a novel problem setting in the suite of
MuJoCo and DeepMind Control Suite locomotion benchmark tasks, termed as bagged rewards. Our
simulations ran on the OpenAI Gym platform [2]] and the DeepMind Control Suite [42], featuring
tasks that stretched over long horizons with a set maximum trajectory length of 7" = 1000. We used
MuJoCo version 2.0 for our simulations, which is available athttp://www.mujoco.org/. MuJoCo
is licensed under a commercial license, and we have adhered to its terms of service and licensing
agreements as stated on the official website. The DeepMind Control Suite is available under an
Apache License 2.0, and we have complied with its terms of use.

In this setting, the agent received a bagged reward at the end of each collected bag. Reward bag
experiments of different bag sizes (5, 25, 50, 100, 200, and 500) and trajectory feedback were set up

13

http://www.mujoco.org/

to verify the effectiveness of the method. To evaluate the efficacy of proposed method, commonly
used trajectory feedback algorithms were adapted to fit the bagged reward setting as baselines. In
these experiments, each reward bag was treated as an individual trajectory, and these modified
algorithms were applied accordingly. Additionally, experiments using standard trajectory feedback
were conducted to provide a comparative baseline within the unique setting. The total episodic
feedback was computed at the end of the trajectory and was the sum of the per-step rewards the agent
had collected throughout the episode. This experiment setting was the same as some previous works
for learning from trajectory feedback [14}[34].

Table 2: Hyper-parameters of RBT.

Hyper-parameter Value
Number of Causal Transformer layers 3
Number of bidirectional attention layers 1
Number of attention heads 4
Embedding dimension 256
Batch size 64
Dropout rate 0.1
Learning rate 0.0001
Optimizer AdamW [26]]
Weight decay 0.0001
Warmup steps 100
Total gradient steps 10000

Implementation Details and Hyper-parameter Configuration. In our experiments, the policy
optimization module was implemented based on soft actor-critic (SAC) [16]]. We evaluated the
performance of our proposed methods with the same configuration of hyper-parameters in all envi-
ronments. The back-end SAC followed the JaxRL implementation [24], which is available under the
MIT License.

The RBT reward model was developed based on the GPT implementation in JAX [[13], which is
available under the Apache License 2.0. Our experiments utilized the Causal Transformer with
three layers and four self-attention heads, followed by a bidirectional self-attention layer with one
self-attention head. For detailed hyper-parameter settings of the RBT, please refer to Table

For the baseline methods, the IRCR [14]] method was implemented based on the descriptions provided
in the original paper. The RRD [34] and LIRPG [51]] methods are both licensed under the MIT
License. The code of HC [[17]] is available in the supplementary material at https://openreview!
net/forum?id=nsjkNB2oKsQ.

To ensure uniformity in the policy optimization process across all methodologies, each was subjected
to 1,000,000 training iterations. For the proposed method, we initially collated a dataset comprising
10,000 time steps to pre-train the reward model. This model then underwent 100 pre-training
iterations, a step deemed essential to adequately prepare the reward model before embarking on
the principal policy learning phase. Following this initial warm-up period, the reward model was
trained for 10 iterations after each new trajectory was incorporated. Moreover, to systematically
gauge performance and progress, evaluations were carried out at intervals of every 5,000 time steps.
The computational resources for these procedures were NVIDIA GeForce RTX 2080 Ti GPU clusters
with 8GB of memory, dedicated to training and evaluating tasks.

D Additional Experimental Results

This section provides further analysis and insights through additional experiments to complement the
main findings presented in the paper.

D.1 Experimental Result of Various-Length Reward Bags

In Table[3] we present the experiment results on various-length reward bags. The experiment depict
in the table showcases the results of various methods applied across different environments with

14

https://openreview.net/forum?id=nsjkNB2oKsQ
https://openreview.net/forum?id=nsjkNB2oKsQ

Table 3: Performance comparison across reward bag with various-length configurations over 3 trials.
In this table, “Short” refers to bags with lengths varying from 25 to 200, and “Long” denotes the
setting with bag lengths from 100 to 500. The best and comparable methods based on the paired

t-test at the significance level 5% are highlighted in boldface.

Bag Setting | Environment | SAC IRCR RRD LIRPG HC RBT(ours)

Ant-v2 3.21 269.12 2661.56 -1407.15 20.03 5359.85

(1.97) (224.66) (1675.65) (504.59) (46.35) (129.28)

Hopper-v2 286.53 3275.05 2508.76 287.38 474.21 3433.06

Short (72.51) (44.68) (690.07) (114.65) (66.93) (96.89)
HalfCheetah-v2 5.92 10480.33 10382.80 1225.35 398243 11073.88

(23.06) (202.27) (516.85) (162.88) (433.75) (181.43)

Walker2d-v2 222.21 3840.30 3999.14 328.97 348.36 5198.09

(66.72) (666.24) (561.49) (107.69) (174.28) (225.50)

Ant-v2 -115.10 215.38 2600.64 -2552.99 -0.53 4897.50

(138.93) (92.94) (1229.27) (419.44) (5.07) (292.93)

Hopper-v2 360.36 3015.96 3089.52 325.84 652.28 3447.64

Long (118.06) (408.08) (433.23) (50.25) (92.41) (83.02)
HalfCheetah-v2 -115.56 594417 8591.38 -571.35 4563.99 10880.76

(35.01) (3421.46) (1048.08) (374.64) (568.19) (441.65)

Walker2d-v2 251.11 3397.93 4221.37 284.27 497.27 4979.07

(144.24) (682.19) (282.75) (7.54) (134.06) (166.95)

Hopper-v2 Walker2d-v2

4000

6000

3500

5000

3000
4000
2500

5 = 3000
2 2000 ~ \ 5
2 —+— SAC g
1500 SAC-shaping 2000
—o— IRCR
10001 —*— RRD \\ 1000
+— LIRPG N
500 HC N I
—e— RBT(ours) —————¢ —* 0
0
5 25 50 100 200 500 9999 5 25 50 100 200 500 9999

Bag Length Bag Length

Figure 6: Performance comparison adding SAC with reward shaping (SAC-shaping) in the Hopper-v2
and Walker2d-v2 environments, displaying both the mean and standard deviation over 6 trials with
different random seeds. The experiments are conducted across six specific fixed bag lengths: 5, 25,
50, 100, 200, and 500, as well as with trajectory feedback, labeled as 9999, in each environment.

varying bag lengths of rewards, where bags are one next to another as in the definition of RLBR. This
experiment reveals that longer bags tend to degrade the performance of most methods. However, our
RBT method appears to be less sensitive to changes in bag length, maintaining robust performance
even when the bag length is equal to the full trajectory. This result aligns with the result in Section[5.1]

D.2 Ablation Study

We conducted comparisons to examine the role of RBT’s modules. As shown in Fig. [7} the full
RBT model consistently outperforms its variants, indicating a synergistic effect when all components
are used together. Performance drops significantly when the bidirectional attention mechanism
is removed, especially in complex environments like Ant-v2 and HalfCheetah-v2, suggesting its
critical role in accurate reward prediction. Additionally, we can observe that removing the next
state prediction component weakens the reward model’s understanding of environmental dynamics,
reducing reward prediction accuracy and hindering policy learning. The greatest performance decline
occurs when both the next state prediction and bidirectional self-attention mechanism are absent,
underscoring their individual and combined importance in building a robust reward model.

15

Ant-v2 Hopper-v2 HalfCheetah-v2 Walker2d-v2

6000 4000 14000 6000

B e G——
3500 12000 —_— s000
——
5

5000 {

4000 { +
2500 > v 8000
3000 { 3000

30001 4 =2 10000 "\‘:X\;‘
v | - 000

£

2000 2 6000
g
<

Return
Return
Return

2000 1500 4000 2000

1000{ 1000 2000 1000

500 0
o

H 25 50 100 200 500 9999 5 25 50 100 200 500 9999 - 25 50 100 200 500 9999 5 25 50 100 200 500 9999
Bag Length Bag Length Bag Length Bag Length

Figure 7: Ablation study of reward model components across various environments. The chart
presents mean and standard deviation of rewards over 6 trials with 1e6 timesteps, showcasing the
efficacy of the full proposed method relative to its variants without certain features.

Rewards Comparison

IS

V

Reward
w
\\

Pred Reward
True Reward (unobservable)
—— Bagged Reward (observable)

1 0‘0 0

Figure 8: Rewards comparison and agent states in a trajectory with a bag length of 100 in the Hopper-
v2 environment. The top graph compares predicted rewards against true rewards and aggregated
bagged rewards.

D.3 Rewards Comparison in Hopper-v2 with Bagged Rewards

Fig. [§shows a comparison of predicted rewards, true rewards, and aggregated bagged rewards for a
trajectory with a bag length of 100 in the Hopper-v2 environment. It shows how well the predicted
rewards align with the true and bagged rewards over the course of the trajectory, highlighting the
effectiveness of the reward model.

Beneath the figure, a series of images depicts a complete jump cycle by the agent, illustrating its
motion sequence: mid-air, landing, jumping, and returning to mid-air. Red boxes highlight specific
states that correspond to reward peaks and troughs, representing moments of maximum, minimum,
and moderate rewards. In the Hopper-v2 environment, rewards consist of a constant “healthy reward”
for operational integrity, a ‘“forward reward” for progress in the positive x-direction, and a “control
cost” for penalizing large actions. At peak reward instances, the agent is typically fully grounded in
an optimal posture for forward leaping, which maximizes the “forward reward” through pronounced
x-direction movement. Concurrently, it sustains the “healthy reward” and minimizes “control cost”
through measured, efficient actions. This analysis underscores that the RBT can adeptly decode the
environmental dynamics and the nuanced reward redistribution even under the setting of RLBR.

D.4 Reward Shaping

To complement our findings, we conducted additional experiments on reward shaping, following
the naive shaping approach described in Hu et al. [18]]. These experiments were performed in the
Hopper-v2 and Walker2d-v2 environments due to the availability of task-specific weights from the
original paper. As shown in the Fig.[f] the performance of SAC with reward shaping (SAC-shaping)
varies with different bag lengths.

At shorter bag lengths, SAC-shaping tends to perform worse than standard SAC, possibly because the
more frequent but less informative rewards add noise to the training process. However, as bag length
increases, SAC-shaping slightly outperforms SAC, likely because the shaped rewards offer clearer,
longer-term signals that assist in learning effective policies when rewards are less frequent. Essentially,

16

Seq len = 100, Relabel len = 25 Seq len = 200, Relabel len = 25 Seq len = 500, Relabel len = 25

6000 6000 6000

bag_len_25
50001 —— bag_len_100 5000 5000
—— bag_len_9999
4000 4000 4000
e 2 " e
@ 3000 @ 3000 @ 3000
3 3 3
o 2000 o 2000 o 2000
1000 / 1000 1000
0 0 0
200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
Epoch Epoch Epoch
&500 Seq len = 100, Relabel len = 50 %000 Seq len = 200, Relabel len = 50 &000 Seq len = 500, Relabel len = 50
5000 5000 /,/' 5000
4000 o 4000 4000
e B2 e
@ 3000 @ 3000 @ 3000
3 3 3
o 2000 o 2000 o 2000
1000 1000 1000
0 0 0
200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
Epoch Epoch Epoch
- - - - — - N\
— Seq len = 100, Relabel len = 100 000 Seq len = 200, Relabel len = 100 p— Seq len = 500, Relabel len = 100
5000 5000 5000
4000 4000 4000
e B e
@ 3000 @ 3000 @ 3000
3 3 3
o 2000 o 2000 o 2000
1000 1000 1000
0 0 0
200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000 200000 400000 600000 800000 1000000
Epoch Epoch _ Epoch)

Figure 9: Learning curves on Ant-v2 with different length of input sequence in training (Seq len)
and predict length during relabeling process (Relabel len), based on 3 independent runs with random
initialization. Within each of the smaller graphs, the curves represent results from experiments with
different bag lengths. Specifically, there are three bag lengths evaluated: 25, 100, and what is labeled
as 9999, which we interpret as a proxy for trajectory feedback. The graph highlighted by the red box
indicates our chosen parameter setting for the experiment, which is a input sequence length of 100
and a predict length of 500.

reward shaping at longer bag lengths creates a more stable and beneficial learning signal for policy
improvement. The figure demonstrates that while reward shaping improves SAC performance with
larger bag sizes, our RBT method consistently outperforms both. RBT excels because it not only
smooths the rewards but also redistributes them by considering the context within each bag. This
comprehensive approach allows RBT to more accurately capture environmental complexities, leading
to better performance across different bag lengths, indicating its robustness and efficiency in utilizing
extended sequences of data.

D.5 Architecture Sensitivity

Fig. Billustrates the sensitivity of our architecture to different input sequence lengths during training
(Seq len) and prediction lengths during reward relabeling (Relabel len) in the Ant-v2 environment.
The learning curves, based on three independent runs with random initialization, show how varying
these parameters affects the performance of the agent.

Although the configuration highlighted by the red box (Seq len of 500 and Relabel len of 100)
demonstrates the best performance, the results also show that our proposed model is capable of
learning effectively across various other configurations. This analysis underscores the importance
of tuning input sequence length during training and prediction length during reward relabeling for
optimal performance, while also demonstrating the ability of the RBT model to learn under different
parameter settings, showcasing its flexibility and effectiveness in reinforcement learning tasks.

17

	Introduction
	Related Work
	Reinforcement Learning from Bagged Reward
	Preliminaries
	Problem Formulation
	Equivalence of Optimal Policies in the BRMDP and the Original MDP

	Reward Bag Transformer
	Reward Redistribution based on Bidirectional Attention Mechanism
	Proposed Approach
	Learning Objectives

	Experiment
	Compare with SOTA Methods
	Fixed-Length Reward Bags
	Arbitrary Reward Bags

	Case Study

	Conclusion
	Broader Impact
	Omitted Proof
	Experiment Settings and Implementation Details
	Additional Experimental Results
	Experimental Result of Various-Length Reward Bags
	Ablation Study
	Rewards Comparison in Hopper-v2 with Bagged Rewards
	Reward Shaping
	Architecture Sensitivity

