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Abstract

The use of the adaptive learning rate (ALR) in stochastic gradient-based methods has be-
come a wide practice in machine learning, even become a default mode in training deep
learning. Different variants of ALR techniques, including AdaGrad, Adam, AMSGRAD,
and RMSProp, have reported significant success in improving stochastic optimization. De-
spite these empirical successes, there is an extremely lack of clear comprehending how var-
ious ALR techniques affect both theoretical and empirical behaviors of powered stochastic
gradient-based algorithms. Even, the impact of existing ALR techniques in common stochas-
tic gradient-based algorithms is still under-explored. To fill the gap, this work develops a
novel powered stochastic gradient-based algorithm with generalized adaptive learning rates,
coined ADAptive Powered Stochastic Gradient Descent (ADA-PSGD), for nonconvex op-
timization problems. We particularly elucidate numerous connections of ADA-PSGD to
existing ALR techniques. Moreover, we prove a faster convergence rate of ADA-PSGD for
nonconvex optimization problems. Further, we show that ADA-PSGD achieves a gradient
evaluation cost of O

(
n+ L2‖1‖2

p(1− α1β1)−1ε−2) (α1 ∈ [0, 1] and β1 ∈ [0, 1)) to find an
ε-approximate stationary point, which is comparable to the well-known algorithmic lower
bound. Finally, we empirically demonstrate that our ADA-PSGD algorithm leads to greatly
improved training in different machine learning tasks. Further, we hope that the robustness
of ADA-PSGD to crucial hyper-parameters will spur interest from both researchers and
practitioners.

1 Introduction

In order to solve many applications of science and engineering, what are the generations of researchers have
been hard working is fast and robust optimization algorithms. Stochastic optimization, such as stochastic
gradient descent (SGD), has reported tremendous success in many areas of machine learning (Liu et al.,
2024), computer vision (Croitoru et al., 2023), management science (Chen et al., 2024), etc., although
its operation is much simplicity. During recent years, many efforts and attempts have been proposed to
modifying stochastic optimization, including but not limited to (1) high-order information (Cao et al., 2023);
(2) conjugate gradient (Yang, 2023b); (3) Powerball techniques (Zhou et al., 2021); (4) momentum (Loizou
& Richtárik, 2020); (5) adaptive learning rates (Zhang et al., 2022); (6) Polyak learning rate (Orvieto et al.,
2022); (7) importance sampling (Zhao & Zhang, 2015); (8) mini-batching sampling (Cotter et al., 2011);
(9) shuffling strategy (Malinovsky et al., 2023). Actually, most of the existing techniques are contributed
to utilize the way of renewing gradient direction (e.g., (1)-(4)), or updating the learning rate (e.g., (5), (6))
to accelerate stochastic optimization methods. This work mainly focuses on the development of Powerball
techniques and adaptive learning rates in improving stochastic optimization, referring two main guidelines
to advance the progress of stochastic optimization currently.

Adaptive learning rates, also familiar with adaptive gradient methods, often acquire the learning rate by the
form of exponentially decaying average of squared historical gradient values. Specifically, AdaGrad (Duchi
et al., 2011) and its variants, such as RMSProp (Tieleman et al., 2012), Adam (Kingma, 2014), AMSGRAD
(Reddi et al., 2018), etc., are representative because of their fast training speed. Although prevailing, adaptive
gradient methods are observed to generalize poorly in contrast to plain SGD, or even fail to converge even
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under well-defined problems (e.g., convex case). Then a large number of existing studies are conducted to
establish the convergence guarantee of adaptive gradient methods. For example, originally, Kingma (2014)
analyzed that Adam with decreasing effective learning rates converged to an optimal solutions for convex
case. Nevertheless, the mistake of the proof in (Kingma, 2014) was pointed out by Reddi et al. (2018), who
also exemplified the divergence of Adam on a simple convex problem. Further, Reddi et al. (2018) provided
one reason that adaptive gradient methods diverge practically is the exponential moving average adopted in
the algorithms and showed that the introduction of long-term memory of previous gradients into adaptive
gradient methods can fix this issue, leading to AMSGRAD. Considering the techniques in (Ward et al., 2020)
and extending them to the Adam optimizer, Défossez et al. (2022) offered a simple proof of the convergence
of Adam and AdaGrad under the assumptions of smooth gradients and almost sure uniform bound on the
`∞ norm of the gradients. More information about adaptive gradient methods is discussed in Section 2.

In contrast, Powerball methods (Zhou et al., 2021; Yuan et al., 2019) improve stochastic optimization by
adding a power coefficient γ ∈ [0, 1) to the gradient, which is orthogonal to the adaptive gradient methods
in accelerating stochastic optimization. More generally, we can regard the Powerball method as the steepest
gradient descent approach with respect to the p-norm, where p = 1 + (1/γ). Interestingly, Newton-type
methods, employing curvature information of the model, usually converge faster than the steepest gradient
descent and conjugate gradient methods. More interestingly, Newton-type algorithms are also viewed as the
steepest gradient descent methods with the ellipsoidal norm. This also demonstrates that why the Powerball
technique can improve stochastic optimization from the side. Zhou et al. (2021) applied the Powerball
technique into SGD and SGD with momentum (SGDM), respectively, leading to pbSGD and pbSGDM, and
proved that the convergence rates of pbSGD and pbSGDM is comparable to well-known convergence rates for
SGD and SGDM on nonconvex functions. Yang (2023a) further improved powered stochastic optimization
by utilizing the advantage of variance-reduced technique and showed that their proposed PB-SVRGE method
converged with rate O( 1√

1+2BT ), where B represented batch sample per iterative step and T denotes the
total number of iterations.

Motivation. Powered stochastic optimization algorithms are gradient modifiers via a nonlinear transfor-
mation, which is totally different from the mechanism of adaptive learning rates in accelerating stochastic
optimization algorithms. However, very usual, the selection of learning rates for powered stochastic opti-
mization algorithms is more challenging than SGD due to the nonlinear transformation and is lacking of
studies to solve this issue to date. On the other side, although this work is inspired by adaptive gradient
methods, there exist too many different adaptive gradient methods at present. Therefore, one is greatly
desirable to know that which certain type of adaptive gradient methods are the best for enhancing pow-
ered stochastic optimization algorithms. More generally, it is suspicious that whether a unified analysis of
powered stochastic optimization algorithms with various adaptive gradient methods can be established.

The above discussions further inspire us to come up with the following research questions:

1) Can we utilize both the Powerball technique and the rule of adaptive learning rates to develop new
provable, fast and robust stochastic gradient-based algorithms for practical applications of science
and engineering?

2) Naturally, for various existing adaptive learning rates, e.g., AdaGrad, Adam, RMSProp, AMS-
GRAD, etc., which one is more suitable for the powered stochastic optimization algorithms?

3) Further, does there exist a unified analysis for powered stochastic optimization algorithms with dif-
ferent adaptive learning rates?

In this work, we answer these questions by developing a new algorithm, coined ADAptive Powered Stochastic
Gradient Descent (ADA-PSGD). We provide its theoretical guarantees for different adaptive learning rates.
More specifically, a unified convergence analysis of ADA-PSGD under different adaptive learning rates is
provided.

Our contribution. At last, we summarize our contributions in this work as follows:
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(1) We propose a new powered stochastic gradient-based algorithm with generalized adaptive learning
rates (Algorithm 3 in Section 4) for solving the nonconvex optimization problem. Our algorithm
contains most of existing adaptive learning rates, e.g., RMSProp, Adam, NAdam (Dozat, 2016).

(2) We establish a unified convergence analysis of our algorithm with different adaptive learning rates in
the nonconvex optimization background under standard assumptions (a.k.a., the L-Lipschitz smooth
gradient and bounded variance conditions).

(3) We prove that our algorithm obtains gradient computation cost of O
(
n+ L2‖1‖2

p(1− α1β1)−1ε−2)
(α1 ∈ [0, 1] and β1 ∈ [0, 1)) to find an ε-approximate stationary point, which matches the algorithmic
lower bound, attaining by modern stochastic gradient-based algorithms, e.g., SVRG (Johnson &
Zhang, 2013), SARAH (Nguyen et al., 2017), SPIDER (Fang et al., 2018), etc.

(4) We, by comparing state-of-the-art stochastic gradient-based algorithms, empirically demonstrate
that our algorithm leads to significantly improved training in various machine learning tasks. More-
over, tons of numerical experiments verify the robustness of ADA-PSGD to crucial hyper-parameters.

2 Related Work

Most of the existing studies pay much attention to how the Powerball function improves stochastic opti-
mization algorithms, but do not care about the effect of the learning rate in powered stochastic optimization
algorithms. For instance, Yuan et al. (2019) showed a positive effect of the Powerball technique in accel-
erating both (stochastic) gradient-based and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
approaches. Zhang & Bailey (2022) demonstrated the potential of the Powerball technique in improving
the zeroth-order distributed primal-dual stochastic coordinate method. More recently, we found that Yang
(2023a) proposed using the Barzilai-Borwein-like technique to compute the learning rate for the powered
stochastic gradient-based algorithm. Yang & Li (2024) applied the hypergradient descent technique into the
powered stochastic gradient-based algorithm to acquire the learning rate.

In addition, whereas adaptive gradient methods are significantly popular in well-studied stochastic gradient-
based algorithms, most of the existing studies usually explores one of them for stochastic gradient-based
algorithms. Several recent works attempt to offer a unified perspective of stochastic gradient-based algo-
rithms with different adaptive gradient methods. Xiao et al. (2024) provided a comprehensive research on
the convergence of Adam-family approaches by developing a new two-timescale framework for nonsmooth
optimization, where their proposed framework contained various preferred Adam-family methods (including
Adam, AMSGRAD, etc). By equipping a general form of the second-order moment, Jiang et al. (2023) in-
troduced and analyzed a unified framework for Adam-type algorithms (referred to as UAdam) for nonconvex
stochastic setting, where UAdam included NAdam, AMSGRAD, AdaBound (Luo et al., 2019), etc.

3 Preliminaries

Many practical applications in computer vision, machine learning, and natural language processing are
attributed to addressing the following composite minimization:

min
x∈Rd

F (x) = 1
n

n∑
i=1

fi(x). (1)

where each fi(x) : Rd → R usually denotes a smooth and possibly nonconvex function for i ∈ [n] :=
{1, · · · , n}.

Throughout the paper, let ‖x‖ and ‖x‖p denote the Euclidean norm and `p-norm of x, respectively. For
vector x, we employ (x)i to denote its i-th coordinate. We use ∇F (w) to denote the gradient of F (w). We
denote [n] = {1, 2, . . . , n}. We write 〈x, y〉 as the inner product of vectors x and y. We write E[z] as the
expectation of a random variable z. For any given two sequences, {an} and {bn}, we denote an = O(bn), if
there exists a constant C > 0 such that an ≤ Cbn.

3



Under review as submission to TMLR

Generic adaptive gradient methods. Algorithm 1 presents a generic framework of adaptive gradient
methods. Various popular stochastic optimization algorithms can be shown by Algorithm 1 through specified
different choice of φt and ψt, where φt offers how the momentum term at t-th timestep is computed, and ψt
offers how the adaptive learning rate at t-th timestep is computed. For instance, in Adam, we have

Adam :
{
φt(g1, . . . , gt) = (1− β1)

∑t
i=1 β

t−i
1 gi,

ψt(g1, . . . , gt) = (1− β2)
∑t
i=1 β

t−i
2 g2

i ,
(2)

where φt(g1, . . . , gt) is derived from mt = β1mt−1 + (1 − β1)gt and ψt(g1, . . . , gt) is derived from lt =
β2vt−1 + (1− β2)g2

t . Two parameters β1 and β2 are belonging to (0, 1).

In contrast, in RMSProp, we have

RMSProp :
{
φt(g1, . . . , gt) = gt,

ψt(g1, . . . , gt) = (1− β2)
∑t
i=1 β

t−i
2 g2

i ,
(3)

Algorithm 1 Generic adaptive gradient method setup
Require: : {αt}Tt=1: step size, {φt, ψt}Tt=1: function to evaluate momentum and adaptive learning rate,

ε ∈ (0, 1).
1: for t = 1 to T do
2: gt = ∇fnt(xt) (Compute gradients at t-th timestep)
3: mt = φt(g1, . . . , gt) (Compute momentum)
4: lt = ψt(g1, . . . , gt) (Compute adaptive learning rate)
5: xt+1 = xt − αtmt/(

√
lt + ε) (Renew parameters)

6: end for

Powered stochastic optimization algorithms. Algorithm 2 is the framework of powered stochastic
optimization algorithms. In Algorithm 2, the mapping σγ , named the Powerball function, is applied to each
element of gt, that is σγ(gt) = (σγ((gt)1), σγ(gt)2), · · · , σγ((gt)d))T . The Powerball function σ(·) : R→ R is
of the form σγ(a) = sign(a)|a|γ for γ ∈ [0, 1), where sign(a) goes to the sign of a if a 6= 0, or 0 if a = 0. In
particular, for γ = 1, Algorithm 2 reduces to plain SGD, while for γ = 0, Algorithm 2 goes to SIGNSGD
(Bernstein et al., 2018).

Algorithm 2 Powered stochastic optimization algorithm setup
Require: : {αt}Tt=1: step size, γ ∈ [0, 1): power coefficient

1: for t = 1 to T do
2: gt = ∇fnt(xt) (Compute gradients at t-th timestep)
3: xt+1 = xt − αtσγ(gt) (Renew parameters)
4: end for

4 The Algorithm

We equip powered stochastic optimization algorithms with generalized adaptive learning rates by introducing
the quasi-hyperbolic momentum (QHM) into adaptive gradient methods, where QHM solves Problem (1)
with the following update scheme (Ma & Yarats, 2019):

QHM :
{
mt = βmt−1 + (1− β)gt,
xt = xt−1 − η[χmt + (1− χ)gt],

(4)

where χ ∈ [0, 1]. Following will show the connections of QHM with several existing momentum methods.

Actually, Adam-family methods often adopt the heavy-ball momentum (HBM) (Li et al., 2021a) whose
update scheme is

HBM :
{
mt = βmt−1 + (1− β)gt,
xt = xt−1 − ηmt.

(5)
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Different from the original HBM method, Adam-family methods is normalized by 1 − β, which not only
alleviates dependence of the update step magnitude on the momentum coefficient β, but permits the inter-
pretation of mt as a weighted average of previous gradients. Under the case χ = 1, QHM is reduced to
HBM. In contrast, under the case χ = 0, QHM is reduced to plain SGD.

Several studies (Zhou et al., 2022; Chen et al., 2022) accelerate adaptive gradient methods from the per-
spective of Nesterov’s accelerated gradient (NAG), whose update scheme is usually formulated as (Nesterov,
2013)

NAG :

 gt = ∇Fnt(xt − α(1− β)mt−1),
mt = βmt−1 + gt,
xt = xt−1 − ηmt,

(6)

where NAG updates parameters by using the gradient at the extrapolation point x′t = xt− (1−β)(xt−xt−1)
that is different from HBM. More specifically, setting χ = β, QHM turns out to be a normalized variant of
NAG with an additional factor 1− β.

Now, we are ready to describe our algorithm, referred to as ADA-PSGD, in Algorithm 3.

Algorithm 3 ADA-PSGD
Require: base learning rate η, outer loop size S, batch sample B, the preconditioned parameters ε, η, γ,
α1, α2, β1, and β2
Initialize: x̃0, G0

0 = 0, and U0
0 = 0

for s = 1 to S do
x̃ = xs0 = x̃s−1

gs = ∇F (x̃)
for k = 1 to K do

Select random mini-batch nk from [n] with B samples
V sk = ∇Fnk(xsk−1)−∇Fnk(x̃) + gs

Gsk = β1G
s
k−1 + (1− β1)V sk

Usk = β2U
s
k−1 + (1− β2)(∇Fnk(xsk−1))2

xsk = xsk−1 − η
[

σγ(α1G
s
k+(1−α1)V sk )√

α2Usk+(1−α2)(∇Fnk (xs
k−1))2+ε

]
end for
x̃s = xsK

end for

Remark: To know ADA-PSGD well, some explanations for ADA-PSGD are presented here.

(1) We first show the connections between ADA-PSGD and existing adaptive gradient methods. Specifi-
cally, under the case γ = 1, ADA-PSGD (i) is reduced to the Adam-like algorithm when α1 = α2 = 1;
(ii) turns out to the RMSProp-like algorithm when α1 = 0 and α2 = 1; (iii) goes to the NAdam when
α1 = β1 and α2 = 1. More generally, this work extends the family of adaptive gradient methods by
developing ADA-PSGD with γ ∈ (0, 1).

(2) Further, ADA-PSGD uses the stochastic variance-reduced gradient (SVRG) estimator, i.e., V sk =
∇Fnk(xsk−1)−∇Fnk(x̃)+gs, where the SVRG-gradient estimator is also considered in (Dubois-Taine
et al., 2022). Nevertheless, Dubois-Taine et al. (2022) only considers the case of AdaGrad with the
SVRG-gradient estimator and without the Powerball function. Additionally, we also find that Kavis
et al. (2022) proposed ADASPIDER by introducing the SPIDER gradient estimator into AdaGrad.

5 Convergence Analysis

This section provides a theoretical guarantee of ADA-PSGD for the nonconvex optimization problem. The
following common assumptions in analyzing stochastic optimization algorithms are required.
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Assumption 1. The following conditions are kept for the objective function, F (x) and its gradient, in
Problem (1):

(a) The objective function, F (x), has L-Lipschitz smooth gradient, i.e., there exists a positive constant
L such that for ∀x, y ∈ Rd

‖∇F (y)−∇F (x)‖ ≤ L‖y − x‖ (7)

(b) ‖∇Fnk(x)−∇F (x)‖2 has an upper boundary, i.e.,

E[‖∇Fnk(x)−∇F (x)‖2] ≤ σ2

B
, (8)

where, nk ⊂ [n], with B samples.

From the result of Assumption 1(a), the following conclusion for L-smooth function is directly derived:
Lemma 1. (Descent Lemma) Assumption 1(a) indicates that there exists a quadratic upper bound on F

F (y) ≤ F (x) + 〈∇F (x), y − x〉+ L

2 ‖y − x‖
2. (9)

Ghadimi & Lan (2013) proved Lemma 1 by utilizing the Taylor expansion of the function F (x) around x.
This lemma can also be found in (Nesterov, 2013).

To proceed analysis of Theorem 1, the following two lemmas are required.
Lemma 2. For α1G

s
k + (1− α1)V sk , generated by Ada-PSGD, we have the following boundary:

‖α1G
s
k + (1− α1)V sk ‖2

1+γ ≥
1
2(1− α1β1)2‖∇Fnk(xsk−1)‖2

1+γ − ‖(1− α1β1)∇Fnk(x̃)− α1β1G
s
k−1

− (1− α1β1)gs‖2
1+γ . (10)

Proof. Since Gsk = β1G
s
k−1 + (1− β1)V sk and V sk = ∇Fnk(xsk−1)−∇Fnk(x̃) + gs, defined in Algorithm 3, we

easily ascertain
‖α1G

s
k + (1− α1)V sk ‖2

1+γ = ‖α1β1G
s
k−1 + α1(1− β1)V sk + (1− α1)V sk ‖2

1+γ

= ‖α1β1G
s
k−1 + (1− α1β1)V sk ‖2

1+γ

= ‖α1β1G
s
k−1 + (1− α1β1)∇Fnk(xsk−1)− (1− α1β1)∇Fnk(x̃) + (1− α1β1)gs‖2

1+γ

≥ 1
2(1− α1β1)2‖∇Fnk(xsk−1)‖2

1+γ − ‖(1− α1β1)∇Fnk(x̃)− α1β1G
s
k−1

− (1− α1β1)gs‖2
1+γ , (11)

where the first inequality uses the condition ‖a‖2
1+γ ≥ 1

2‖b‖
2
1+γ − ‖b− a‖2

1+γ .

Lemma 3. Under Assumption 1(b), for α1G
s
k+(1−α1)V sk −∇F (xsk−1), we get the following upper boundary

‖α1G
s
k + (1− α1)V sk −∇F (xsk−1)‖2 ≤ 4α2

1β
2
1‖Gsk−1‖2 + 8σ2(1− α1β1)2

B
+ 4α2

1β
2
1‖∇F (xsk−1)‖2. (12)

Proof.
‖α1G

s
k + (1− α1)V sk −∇F (xsk−1)‖2

= ‖α1β1G
s
k−1 + (1− α1β1)[∇Fnk(xsk−1)−∇Fnk(x̃) + gs]−∇F (xsk−1)‖2

= ‖α1β1G
s
k−1 + (1− α1β1)∇Fnk(xsk−1)− (1− α1β1)∇F (x̃)

− (1− α1β1)∇Fnk(x̃) + (1− α1β1)∇F (x̃)− α1β1∇F (xsk−1)‖2

≤ 4α2
1β

2
1‖Gsk−1‖2 + 4(1− α1β1)2‖∇Fnk(xsk−1)−∇F (xsk−1)‖2

+ 4(1− α1β1)2‖∇Fnk(x̃)−∇F (x̃)‖2 + 4α2
1β

2
1‖∇F (xsk−1)‖2

≤ 4α2
1β

2
1‖Gsk−1‖2 + 8σ2(1− α1β1)2

B
+ 4α2

1β
2
1‖∇F (xsk−1)‖2, (13)
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where the first inequality uses the fact (a1 +a2 + . . .+an)2 ≤ n(a2 +a2 + . . .+a2
n) and the second inequality

uses Assumption 1(b).

The main theoretical result of ADA-PSGD is given in Theorem 1.

Theorem 1. Suppose Assumption 1, Lemma 1, Lemma 2 and Lemma 3 hold and choose nk ⊆ [n] with B
samples. Let x∗ = arg minx∈Rd F (x) and {xsk}

K,S
k=1,s=1 generated by ADA-PSGD. For any T ≥ 1, ADA-PSGD

leads to

E

[
1
T

S∑
s=1

K∑
k=1
‖∇Fnk(xsk−1)‖2

1+γ

]
≤ 4L‖1‖p

(1− θ)T (1− α1β1)2 [F (x̃0)− F (x∗)] + 16‖1‖pσ2

(1− θ)Bθ , (14)

where θ > 0.

Proof. Based on the L-smooth property of the loss function, F (w), and the definition of xsk that is xsk =

xsk−1 − η
[

σγ(α1G
s
k+(1−α1)V sk )√

α2Usk+(1−α2)(∇Fnk (xs
k−1))2+ε

]
, defined in Algorithm 3, we have

E[F (xsk)] ≤ E
[
F (xsk−1) + 〈∇F (xsk−1), xsk − xsk−1〉+ L

2 ‖x
s
k − xsk−1‖2

]
= E

[
F (xsk−1)− η

〈
∇F (xsk−1), σγ(α1G

s
k + (1− α1)V sk )√

α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε

〉
+ Lη2

2

∥∥∥∥ σγ(α1G
s
k + (1− α1)V sk )√

α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε

∥∥∥∥2]
= E

[
F (xsk−1)− η

〈
α1G

s
k + (1− α1)V sk ,

σγ(α1G
s
k + (1− α1)V sk )√

α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε

〉
+ η

·
〈
α1G

s
k + (1− α1)V sk −∇F (xsk−1), σγ(α1G

s
k + (1− α1)V sk )√

α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε

〉]
+ Lη2

2

·
∥∥∥∥ σγ(α1G

s
k + (1− α1)V sk )√

α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε

∥∥∥∥2]
. (15)

For convenience, in the following, the token, ♦, is used to represent α1G
s
k + (1− α1)V sk and the token, M, is

used to represent
√
α2Usk + (1− α2)(∇Fnk(xk−1))2 + ε. Considering η =

〈
♦, σγ(♦)

M

〉/
L
∥∥∥σγ(♦)
M

∥∥∥2
> 0,

we have

E[F (xsk)] ≤ E
[
F (xsk−1)−

(〈
♦,
σγ(♦)
M

〉/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)
·
〈
♦,
σγ(♦)
M

〉
+ L

2

(〈
♦,
σγ(♦)
M

〉/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)2

·
∥∥∥∥σγ(♦)
M

∥∥∥∥2
+
(〈
♦,
σγ(♦)
M

〉/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)〈
♦−∇F (xsk−1), σγ(♦)

M

〉]
= E

[
F (xsk−1)−

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2
+ 1

2L

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2

+
(〈
♦,
σγ(♦)
M

〉/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)〈
♦−∇F (xsk−1), σγ(♦)

M

〉]
. (16)
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Rearranging the inequality (16), we further have

E[F (xsk)] ≤ E
[
F (xsk−1)− 1

2L

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2
+
(〈
♦,
σγ(♦)
M

〉/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)
〈
♦−∇F (xsk−1), σγ(♦)

M

〉]
≤ E

[
F (xsk−1)− 1

2L

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2

+ 1
2L

(∣∣∣∣〈♦, σγ(♦)
M

〉∣∣∣∣/L

∥∥∥∥σγ(♦)
M

∥∥∥∥2)∥∥♦−∇F (xsk−1)
∥∥∥∥∥∥σγ(♦)

M

∥∥∥∥]
= E

[
F (xsk−1)− 1

2L

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2

+ 1
2L

(∣∣∣∣〈♦, σγ(♦)
M

〉∣∣∣∣/L

∥∥∥∥σγ(♦)
M

∥∥∥∥)∥∥♦−∇F (xsk−1)
∥∥]

≤ E
[
F (xsk−1)− 1

2L

(〈
♦,
σγ(♦)
M

〉)2/
L

∥∥∥∥σγ(♦)
M

∥∥∥∥2

+ θ

2L

(〈
♦,
σγ(♦)
M

〉)2/∥∥∥∥σγ(♦)
M

∥∥∥∥2
+ 1

2Lθ · ‖♦−∇F (xsk−1)‖2
]

= E
[
F (xsk−1)− 1− θ

2L

(〈
♦,
σγ(♦)
M

〉)2/∥∥∥∥σγ(♦)
M

∥∥∥∥2
+ 1

2Lθ · ‖♦−∇F (xsk−1)‖2
]

= E
[
F (xsk−1)− 1− θ

2L
|〈♦, σγ(♦)〉|2

‖σγ(♦)‖2 + 1
2Lθ · ‖♦−∇F (xsk−1)‖2

]
, (17)

where the second inequality uses the Cauchy-Schwartz inequality and the third inequality employs the fact
2ab ≤ θa2 + 1

θ b
2 (θ > 0).

According to the Hölder inequality, we conclude that

‖σγ(♦)‖2 =
d∑
i=1
|(♦)i|2γ

≤

(
d∑
i=1

1p
) 1
p
(

d∑
i=1

(|(♦)i|2γ)q
) 1
q

= ‖1‖p

(
d∑
i=1
|(♦)i|1+γ

) 2γ
1+γ

, (18)

where γ is belonging to the interval (0, 1) with p = 1+γ
1−γ and q = 1+γ

2γ .

Further, we have the following quantity

|〈♦, σγ(♦)〉|2

‖σγ(♦)‖2 ≥

(∑d
i=1 |(♦)i|1+γ

)2

‖1‖p
(∑d

i=1 |(♦)i|1+γ
) 2γ

1+γ
=
‖♦‖2

1+γ

‖1‖p
. (19)
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The results in (20) and (19) infer the following inequality

E[F (xsk)] ≤ E
[
F (xsk−1)− 1

2L
‖♦‖2

1+γ

‖1‖p
+ 1

2Lθ‖♦−∇F (xsk−1)‖2
]

≤ E
[
F (xsk−1)− 1− θ

2L‖1‖p

(
1
2(1− α1β1)2‖∇Fnk(xsk−1)‖2

1+γ

− ‖(1− α1β1)∇Fnk(x̃)− α1β1G
s
k−1 − (1− α1β1)gs‖2

1+γ

)
+ 1

2Lθ

(
4α2

1β
2
1‖Gsk−1‖2 + 8(1− α1β1)2σ2

B
+ 4α2

1β
2
1 · ‖∇F (xsk−1)‖2

)]
= E

[
F (xsk−1)− 1− θ

4L‖1‖p
(1− α1β1)2‖∇F (xsk−1)‖2

1+γ

+ 1− θ
2L‖1‖p

‖(1− α1β1∇Fnk(x̃)− α1β1G
s
k−1)− (1− α1β1)gs‖2

1+γ + 4α2
1β

2
1

2Lθ ‖G
s
k−1‖2

+ 4(1− α1β1)2σ2

LBθ
+

2α2
1β

2
1‖∇F (xsk−1)‖2

Lθ

]
. (20)

where the second inequality uses Lemma 2 and Lemma 3.

To satisfy the above inequality, we just need to satisfy the following quantity

E[F (xsk)] ≤ E
[
F (xsk−1)− (1− θ)(1− α1β1)2

4L‖1‖p
‖∇Fnk(xsk−1)‖2

1+γ + 4(1− α1β1)2σ2

LBθ

]
. (21)

Telescoping the inequality (21) over k = 1, . . . ,K, we get

E[F (xsK)] ≤ E
[
F (xs0)− (1− θ)(1− α1β1)2

4L‖1‖p

K∑
k=0
‖∇Fnk(xsk−1)‖2

1+γ + 4(1− α1β1)2σ2(K + 1)
LBθ

]
. (22)

Since x̃s = xsK and x̃s−1 = xs0 (shown in Algorithm 3), we further get

E[F (x̃s)] ≤ E
[
F (x̃s−1)− (1− θ)(1− α1β1)2

4L‖1‖p

K∑
k=1
‖∇Fnk(xsk−1)‖2

1+γ + 4(1− α1β1)2σ2(K + 1)
LBθ

]
. (23)

Through summing (23) over s = 1, . . . ,S, we obtain

E

[
S∑
s=1

K∑
k=1
‖∇Fnk(xsk−1)‖2

1+γ

]
≤ 4L‖1‖p

(1− θ)(1− α1β1)2 [F (x̃0)− F (x̃K)] + 16‖1‖pσ2(K + 1)(S + 1)
(1− θ)Bθ

≤ 4L‖1‖p
(1− θ)(1− α1β1)2 [F (x̃0)− F (x∗)] + 16‖1‖pσ2(K + 1)(S + 1)

(1− θ)Bθ , (24)

where the second inequality uses the fact x∗ = arg minF (x).

Finally, dividing T on both sides of the inequality (24), the desired results is got.

To acquire an ε-approximate stationary point, i.e., E
[

1
T

∑S
s=1

∑K
k=1 ‖∇Fnk(xsk−1)‖2

1+γ

]
≤ ε, we just satisfy

4L‖1‖p
(1−θ)T (1−α1β1)2 [F (x̃0) − F (x∗)] + 16‖1‖pσ2

(1−θ)Bθ ≤ ε. In particular, considering B = O(T ), ADA-PSGD in order

9
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to obtain an ε-approximate stationary point requires T = O
(

4θ‖1‖pC+16‖1‖p(1−α1β1)σ2

(1−θ)(1−α1β1)θε

)
, where we set C =

F (x̃0)− F (x∗). Further, consider K = o(n) and since the total iteration numbers T has been some multiple
of K, therefore, the overall gradient complexity of ADA-PSGD for nonconvex case is O

(
n+ L2‖1‖2

p

(1−α1β1)ε2

)
.

Note that, for nonconvex optimization problems, earlier studies extended the existing variance-reduced
frameworks, attaining the first speeds of order O

(
n+ n2/3

ε2

)
(Reddi et al., 2016; Zhou et al., 2018). The

most recent nonconvex stochastic gradient-based algorithms with variance-reduced techniques approximate
this gap and acquire the optimal gradient complexity of

(
n+ n1/2

ε2

)
(Li et al., 2021b; Pham et al., 2020).

With the SVRG-gradient estimator, Yang (2023a) proved the powered stochastic gradient-based method
required O

(
n+ L2‖1‖2

p

ε2

)
gradient computations to acquire an ε-approximate stationary point for nonconvex

case. Comparing these results, we conclude that the complexity of our ADA-PSGD method matches that of
state-of-the-art stochastic gradient-based algorithms.

6 Numerical Evaluation

This section empirically demonstrates the efficacy of ADA-PSGD by comparing it with state-of-the-art
stochastic gradient-based algorithms. More specifically, we conduct numerical experiments on two common
machine learning tasks, logistic regression (LR) with `2-norm regularization and the squared hinge loss
support vector machine (SVM) with `2-norm regularization:

(LR) min
x∈Rd

F (x) = 1
n

n∑
i=1

log(1 + exp(−biaTi x)) + λ

2 ‖x‖
2. (25)

(SVM) min
x∈Rd

F (x) = 1
n

n∑
i=1

([
1− biaTi x

]
+

)2
+ λ

2 ‖x‖
2, (26)

where {ai, bi}ni=1 ∈ Rd × {+1,−1} is a set of training datasets and λ = 0.01 denotes a regularization
parameter. In addition, to significantly confirm the efficacy of our ADA-PSGD algorithm, we conduct
numerical experiments on the nonconvex LR problem:

min
x∈Rd

F (x) = 1
n

n∑
i=1

log(1 + exp(−biaTi x)) + λ̃r(x), (27)

where r(x) =
∑d
i=1

x2
i

1+x2
i
denotes a non-convex regularizer. In the nonconvex LR problem, we adopt λ̃ = 0.1

for different datasets.

We have performed experiments on four classification datasets, a8a, covtype, w8a, MNIST , CIFAR− 10,
and ijcnn1, where they are coming from LIBSVM website (Chang & Lin, 2011). Detailed information of
these datasets is provided in Table 1.

Table 1: The detailed Information of benchmark datasets
Data set Sample size (n) Dimension (d)

a8a 22,696 123
covtype 581,012 54
ijcnn1 49,990 22
w8a 49,749 300
CIFAR− 10 60,000 1,024
MNIST 60,000 784

10
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6.1 Comparison ADA-PSGD with Other Methods

This section compares our ADA-PSGD algorithm with several preferred algorithms: Adam (Kingma, 2014),
AdaGrad (Duchi et al., 2011), RMSProp (Tieleman et al., 2012), AMSGRAD (Reddi et al., 2018), SVRG
(Johnson & Zhang, 2013), pbVRGD-HD (Yang & Li, 2024), and PB-SVRGE-RSBB (Yang, 2023a). Specifi-
cally, Adam, AdaGrad, RMSProp, and AMSGRAD are four classical adaptive gradient methods. pbVRGD-
HD and PB-SVRGE-RSBB are two advanced powered stochastic gradient-based methods, where the former
used the hypergradient descent technique to compute the learning rate and the latter used the BB-like
technique to compute the learning rate.

For Adam and AMSGRAD, we adopt β1 = 0.9 and β2 = 0.999 for different datasets. For RMSProp, we
adopt β = 0.9 on all datasets. For pbVRGD-HD, we set γ = 0.9, α = 0.01 and β = 0.01 for different
datasets. For PB-SVRGE-RSBB, we also set γ = 0.9 on all datasets. For our ADA-PSGD algorithm, we
set γ = 0.9, α1 = 0.9, α2 = 0.9, β1 = 0.1, β2 = 0.9, and ε = 1 for different datasets. In addition, on the
convex LR problem, we set η = 0.04 on a8a, ijcnn1, and covtype, and η = 0.06 on w8a for our ADA-PSGD
algorithm. In contrast, on the SVM problem, we also take η = 0.04 on a8a, ijcnn1, and covtype, but η = 0.1
on w8a for ADA-PSGD.

Figures 1(a), 1(b), 1(c), and 1(d) show the comparison results among different methods on LR model. In
contrast, Figures 1(e), 1(f), 1(g), and 1(h) display the comparison results among different methods on SVM
model. All subfigures in Figure 1 clearly demonstrate that our ADA-PSGD method outperforms state-of-
the-art optimization algorithms. Particularly, the comparison results among ADA-PSGD, pbVRGD-HD,
and PB-SVRGE-RSBB confirm the efficacy of adaptive learning rates in powered stochastic gradient-based
algorithms. Also, observed from Figure 1, ADA-PSGD converges faster than Adam, AdaGrad, RMSProp,
and AMSGRAD, which confirms the positive impact of the Powerball technique in improving adaptive
gradient methods.
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Figure 1: Comparison of the considered algorithms on the LR model (top line) and the squared hinge
loss SVM model (bottom line) with a8a (the first column), covtype (the second column), ijcnn1 (the third
column), and w8a (the forth column).

Further, we discuss the numerical behavior of ADA-PSGD on the non-convex LR problem in Fig. 2. Note
that we also compare our ADA-PSGD algorithm with Adam, AdaGrad, RMSProp, AMSGRAD, SVRG,
pbVRGD-HD, and PB-SVRGE-RSBB by performing them on CIFAR − 10 and MNIST . In addition,
pbSGD (Yuan et al., 2019) and PB-SGD-RSBB (Yang, 2023a) are also provided as benchmark optimization
algorithms. The parameter settings of these algorithms are similar to the experiments on LR and SVM. It
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is observed from Fig. 2 that ADA-PSGD still achieves better performance than state-of-the-art stochastic
optimization algorithms on the nonconvex LR problem, which further demonstrates the positive role of the
Powerball technique in enhancing adaptive gradient methods.
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(a) CIFAR-10
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Figure 2: Comparison of the considered algorithms on the nonconvex LR model with CIFAR − 10 (left)
and MNIST (right).

6.2 The Choice of Different Hyper-parameters

Algorithm 3 shows that there are too many hyper-parameters (e.g., α1, α1, β1, β2, γ, etc.) that needed to
be tuned when performing ADA-PSGD. In order to better comprehend our ADA-OSGD method, this part
discusses the numerical behavior of ADA-PSGD with different hyper-parameters.

Figure 3 explores the performance of ADA-PSGD with α1, where we select α1 from {0, 0.3, 0.5, 0.7, 0.9,
1}. Additionally, when executing ADA-PSGD, we uniformly set α2 = 0.9, β1 = 0.9, β2 = 0.9, and ε = 1 on
different datasets. More specifically, Figures 3(a), 3(b), 3(c), and 3(d) conduct experiments on LR model,
and Figures 3(e), 3(f), 3(g), and 3(h) conduct experiments on SVM.

All subfigures in Figure 3 clearly demonstrate the robustness of ADA-PSGD to the hyper-parameter α1.
Actually, when setting α1 = 0, ADA-PSGD turns out to be the powered stochastic gradient-based algorithm
with the RMSProp-like method. In contrast, when setting α1 = 1, ADA-PSGD turns out to be the powered
stochastic gradient-based algorithm with the Adam-like method.

Figure 4 discusses the numerical behavior of ADA-PSGD with β1, where we choose β1 from {0, 0.1, 0.3, 0.5,
0.7. 0.9}. In addition, ADA-PSGD works with α1 = 0.4, α2 = 0.4, β2 = 0.9, and ε = 1 for different datasets.
Similarly, Figures 4(a), 4(b), 4(c), and 4(d) show the numerical results of ADA-PSGD on the LR model,
while Figures 4(e), 4(f), 4(g), and 4(h) display the numerical results of ADA-PSGD on the SVM model.

Observe from Figure 4, ADA-PSGD is also robust to the hyper-parameter β1 on different datasets. It is not
difficult to empirically verify the robustness of ADA-PSGD to other crucial hyper-parameters.

In this segment, we further discuss the effect of γ in ADA-PSGD by conducting experiments on the LR and
SVM models respectively, where γ is chosen from {0, 0.3, 0.5, 0.7, 0.9, 1}. More specifically, the numerical
results of AD-PSGD with different γ are plotted in Figure 5. Note that, when γ = 0, ADA-PSGD can be
regarded as signed powered stochastic gradient-based algorithms with adaptive learning rates. In contrast,
when γ = 1, ADA-PSGD can be viewed as the SVRG-like algorithm with different adaptive learning rates.

Figures 5(a), 5(b), 5(c), and 5(d) perform ADA-PSGD on the LR model, while Figures 5(e), 5(f), 5(g),
and 5(h) run ADA-PSGD on the SVM model. Figure 5 shows that a slightly larger γ results in a better
performance of ADA-PSGD. However, Figure 5 indicates that on most datasets, γ = 0.7 and γ = 0.9 make
our ADA-PSGD method perform better than the case γ = 1, which validate the efficacy of the Powerball
technique in enhancing stochastic gradient-based algorithms.
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Figure 3: The objective gap, F (x̃s) − F (x∗), reported by ADA-PSGD with different α1 on the LR model
(top line) and the squared hinge loss SVM model (bottom line) with a8a (the first column), covtype (the
second column), ijcnn1 (the third column), and w8a (the forth column), where α1 is chosen from {0, 0.3,
0.5, 0.7, 0.9, 1}.
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Figure 4: The objective gap, F (x̃s) − F (x∗), reported by ADA-PSGD with different β1 on the LR model
(top line) and the squared hinge loss SVM model (bottom line) with a8a (the first column), covtype (the
second column), ijcnn1 (the third column), and w8a (the forth column), where β1 is chosen from {0, 0.1,
0.3, 0.5, 0.7, 0.9}.
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Figure 5: The objective gap, F (x̃s)−F (x∗), reported by ADA-PSGD with different γ on the LR model (top
line) and the squared hinge loss SVM model (bottom line) with a8a (the first column), covtype (the second
column), ijcnn1 (the third column), and w8a (the forth column), where γ is chosen from {0, 0.3, 0.5, 0.7,
0.9, 1}.

7 Conclusion

To comprehend the role of adaptive learning rates in powered stochastic gradient-based algorithms, this
work equipped a more generalized adaptive learning rate into powered stochastic gradient-based algorithms,
leading to a novel adaptive powered stochastic gradient-based algorithm, named ADA-PSGD. We clearly
showed numerous connections of our ADA-PSGD to existing adaptive gradient methods, e.g., Adam, NAdam,
RMSProp. A theoretical guarantee of ADA-PSGD for nonconvex optimization problems was established.
We proved a faster convergence rate of ADA-PSGD and pointed out that the complexity of our ADA-PSGD
method matches that of state-of-the-art stochastic gradient-based algorithms with the magnitude O

(
ε−2).

At last, we empirically demonstrated that our ADA-PSGD method leaded to greatly improved training in
different machine learning tasks. Moreover, numerical results validated the robustness of ADA-PSGD to
crucial hyper-parameters. We hope that all theoretical and empirical advantages of ADA-PSGD will spur
interest from both researchers and practitioners.
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