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Abstract

Building trust in reinforcement learning (RL) agents requires understanding why they make
certain decisions, especially in high-stakes applications like robotics, healthcare, and fi-
nance. Existing explainability methods often focus on single states or entire trajectories,
either providing only local, step-wise insights or attributing decisions to coarse, episode-
level summaries. Both approaches miss the recurring strategies and temporally extended
patterns that actually drive agent behavior across multiple decisions. We address this gap
by proposing a fully offline, reward-free framework for behavior discovery and segmentation,
enabling the attribution of actions to meaningful and interpretable behavior segments that
capture recurring patterns appearing across multiple trajectories. Our method identifies
coherent behavior clusters from state-action sequences and attributes individual actions to
these clusters for fine-grained, behavior-centric explanations. Evaluations on four diverse
offline RL environments show that our approach discovers meaningful behaviors and out-
performs trajectory-level baselines in fidelity, human preference, and cluster coherence. Our
code is publicly available 1.

1 Introduction

Explaining the decisions of RL agents is increasingly important as these agents are deployed in high-stakes
domains such as robotics, healthcare, and finance (Sutton & Barto, 2018; Arulkumaran et al., 2017). In-
terpretability is critical for building user trust, assessing safety, and diagnosing failure modes. While many
existing explainability methods in RL focus on input features, individual states or entire episodes, they
often overlook a crucial abstraction: behavioral context. Agent decisions are frequently driven by recurring
strategies that unfold over multiple timesteps and appear repeatedly across episodes. This temporal struc-
ture, which reflects what the agent is doing rather than just where it is, remains underexplored in current
interpretability frameworks.

One line of work focuses on identifying influential features within individual observations. These include
saliency-based techniques (Greydanus et al., 2018), attention heatmaps, and attribution methods adapted
from supervised learning, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017), which
have been applied in RL to highlight input relevance (He et al., 2021; Carbone, 2020; Beechey et al., 2023).
Although effective for local analysis, these methods operate at the level of single timesteps and provide only
snapshot-level insight. As a result, they fail to capture long-term structure in agent behavior.

Other approaches expand the scope by examining how past events influence agent decisions. Causal graph
models (Madumal et al., 2020) aim to explain actions by modeling dependencies between decisions and their
outcomes. Counterfactual techniques such as EDGE (Guo et al., 2021) identify causal features by intervening
on state representations. StateMask (Cheng et al., 2023) takes a different approach, learning to mask parts of
the input sequence that are less relevant for predicting returns. While these methods can highlight important
moments or compress decision histories, they do not capture higher-level behavioral patterns or recurring
strategy components. Their focus remains on local explanations rather than structured descriptions of what
the agent is doing over time.

1https://anonymous.4open.science/r/bexrl-1B19/README.md
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Figure 1: Representative trajectory from the MiniGridTwoGoalsLava environment, annotated with behavior
cluster assignments (c0, c1, etc, best viewed at 200%). The full trajectory is shown left-to-right, top-to-
bottom, with segments assigned to distinct behavior clusters. For example, c2 captures exploration, c0
corresponds to lava traversal, and c3 involves goal approach. This segmentation reveals temporally extended
patterns in agent behavior. Descriptions for all clusters are summarized in Table 1, and visual samples from
each cluster along are provided in Appendix C.

Trajectory-based methods aim to capture longer-term context when explaining agent decisions. For example,
Deshmukh et al. (2024) attribute decisions to full trajectories retrieved from offline data that may have
influenced the agent. While this provides more temporal information than single-step explanations, it treats
each trajectory as a whole, without distinguishing between different phases of behavior. As a result, actions
taken during exploration, goal-seeking, or recovery may all be attributed to the same trajectory, making it
hard to tell which specific behavior was responsible for a given decision.

In this work, we propose a behavior-centric framework for post-hoc attribution in RL. Rather than assign-
ing decisions to individual features, single states, or entire trajectories, we segment rollouts into temporally
coherent clusters that capture recurring patterns in agent behavior, as shown in the annotated MiniGridT-
woGoalsLava rollout in Figure 1. Agent decisions are then attributed to these discovered behavior segments,
which are identified in an unsupervised manner and validated through visualization and human evaluation.
This behavior-level attribution enables analysis of how different strategies influence outcomes. For example,
in an autonomous driving scenario, it can reveal that unsafe lane changes consistently occur during a specific
merging behavior. Such insights support systematic identification of policy failures and can inform safety
auditing, strategy refinement, and monitoring of policy drift.

Our main contribution is a behavior-centric explanation framework that attributes agent decisions to unsu-
pervised behavior segments, rather than isolated states or full trajectories. The method operates entirely
offline and does not require access to rewards or the underlying policy model. By clustering sequences of
state-action pairs, we produce behavior-level interpretations of agent decisions that reflect recurring exe-
cution patterns. To our knowledge, this is the first approach to explain RL policies through unsupervised
discovery of behavior segments. We evaluate the framework on four offline RL benchmarks and show that
it identifies coherent behavioral clusters, enables faithful and interpretable attributions, and outperforms
trajectory-level baselines in both quantitative metrics and human studies.
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Figure 2: Overview of the proposed behavior attribution framework. A transformer-based Vector Quantized
Variational Autoencoder (VQ-VAE) is trained on state-action sequences to produce discrete latent codes,
which are used to tokenize trajectories. These tokenized trajectories are then segmented via graph cluster-
ing to discover distinct behavior clusters. Policies are trained on each cluster as well as the full dataset.
During attribution, actions taken by the original policy are compared to those from each cluster policy, and
attribution is made based on minimal mean squared error (MSE), assigning actions to the most behaviorally
aligned cluster. A causal mask ensures that encoding respects the temporal structure of trajectories. The
transformer architecture is described in detail in Appendix B.1.

2 Related Work

Behavior Discovery in RL. Structured behavior discovery has been studied extensively in RL to support
temporal abstraction, planning, and policy reuse. The Options framework (Sutton et al., 1999; Precup,
2000) formalized temporally extended actions. Later works (Bacon et al., 2017; Harb et al., 2017; Jin
et al., 2022) proposed learning such abstractions from data using intrinsic or extrinsic signals. Unsupervised
skill discovery approaches (Eysenbach et al., 2018; Achiam et al., 2018; Villecroze et al., 2022) maximize
diversity or rely on nonparametric clustering to identify latent behaviors. In the offline setting, OPAL (Ajay
et al., 2021) and Diffuser (Janner et al., 2022) utilize learned behavioral embeddings to support planning or
imitation.

LAPO (Schmidt & Jiang, 2024) and Genie (Bruce et al., 2024) extend these ideas by discretizing behavior
via VQ-based latent spaces for downstream control or simulation. However, such methods are designed for
learning compact action spaces or optimizing policies, not for attributing observed behavior. In contrast,
we apply sequence-level discretization to state-action trajectories for the purpose of discovering coherent
behavior segments. These are subsequently segmented via a graph-based approach to yield interpretable
behavior units that support post-hoc explanation in a reward-free, offline setting.

Explainability in RL. A key objective in Explainability in Reinforcement Learning (XRL) is to under-
stand why an agent takes a particular action. Feature-level methods attribute decisions to salient input
regions using gradient-based techniques (Greydanus et al., 2018; Zahavy et al., 2017) or perturbation-based
importance (Puri et al., 2019; Iyer et al., 2018). Others adopt techniques like LIME (Ribeiro et al., 2016)
and SHAP (Lundberg & Lee, 2017) to explain decisions in reinforcement learning by attributing importance
to input features (Beechey et al., 2023; Zhang et al., 2022).

Other works focus on attributing importance to individual transitions. EDGE (Guo et al., 2021) uses coun-
terfactuals to identify which state features caused a particular action. StateMask (Cheng et al., 2023) learns
to mask non-critical observations without degrading performance, enabling step-level saliency. RICE (Cheng
et al., 2024) extends this idea by identifying critical states and reinitializing the agent from them to improve
training. AIRS (Yu et al., 2023) and Liu et al. (Liu et al., 2023) attribute decisions to specific moments using

3



Under review as submission to TMLR

reward gradients or visual cues. These methods effectively highlight pivotal decisions, but typically focus on
isolated steps or episodes and do not uncover structured behavioral patterns that persist across trajectories.
Moreover, many of them rely on reward signals or environment access, whereas our approach is fully offline
and reward-free, identifying behavioral structure from trajectories alone.

Several approaches instead operate at the level of trajectory segments or full rollouts. HIGHLIGHTS (Amir
& Amir, 2018) selects representative snippets to summarize policy behavior but does not explain individual
actions. AOC (Sun et al., 2023) retrieves similar decisions from a corpus to justify actions, but formulates
explanation as policy construction rather than post-hoc analysis. Deshmukh et al. (Deshmukh et al., 2024)
are most closely related to our work, as they attribute actions to full trajectories retrieved from offline
data. However, their method treats each trajectory as a single unit, which can bundle together multiple
distinct behaviors and reduce attribution granularity. In contrast, we decompose trajectories into temporally
coherent, recurring behavior modules and associate each action with its corresponding behavior. This allows
for structured, behavior-level attribution grounded in patterns that recur across episodes.

Some approaches aim to explain agent behavior by modeling its internal structure or learning simplified
surrogates. Causal frameworks (Madumal et al., 2020; Pawlowski et al., 2020) build structural models to
answer contrastive or counterfactual queries, revealing why specific actions were taken. These methods can
offer deep insight into decision rationale, but often rely on access to predefined or learned causal graphs,
which may be hard to obtain in complex domains. Distillation-based approaches (Coppens et al., 2019;
Verma et al., 2019) approximate policies using decision trees or symbolic programs. While interpretable,
they focus on replicating outputs rather than exposing the underlying decision process, offering limited
insight into the factors or abstractions that drive decision-making.

Latent Discretization in RL Discrete representations have proven useful for structuring policies and
simplifying planning in RL. VQ-VAEs (Oord et al., 2017) have been adopted for compressed modeling (Hafner
et al., 2020), action quantization (Luo et al., 2023), and hierarchical decision-making (Nachum et al., 2018).
LAPO (Schmidt & Jiang, 2024) recovers symbolic latent actions via inverse dynamics, and Genie (Bruce
et al., 2024) learns behavior tokens for autoregressive simulation. Unlike these methods, we do not use
discretization to build a control policy. Instead, we leverage it to recover a graph-structured segmentation
over trajectories, enabling post-hoc analysis and modular attribution of learned behaviors.

Evaluation in XRL Surveys on explainable reinforcement learning (Cheng et al., 2025; Vouros, 2022)
emphasize the lack of unified evaluation standards. While fidelity, interpretability, and human alignment
are commonly used, most work focuses on feature saliency or trajectory summaries. Few methods address
behavior-level explainability. Our approach introduces structured, temporally grounded explanations via
unsupervised behavior discovery. We evaluate it through fidelity scores, cluster coherence, and human
preference, offering a distinct contribution to the XRL landscape.

3 Method

We propose a three-stage framework for post-hoc behavior discovery and attribution in offline reinforcement
learning. First, we train a transformer-based VQ-VAE to discretize state-action trajectories into latent codes
that capture temporally extended behavioral motifs. Next, we construct a behavior graph using these codes
and apply spectral clustering to identify coherent behavior segments. Finally, we attribute actions from a
pretrained policy to the discovered behaviors by comparing them with cluster-specific behavior models. This
framework enables structured, interpretable analysis of agent behavior directly from offline data.

3.1 Behavior Discovery

Behavior discovery is at the core of our framework, where we identify and segment meaningful sub-trajectories
from offline RL data. The process begins with a transformer-based Vector Quantized Variational Autoencoder
(VQ-VAE) trained in a sequence-to-sequence fashion, producing discrete latent codes for each time step,
which are later used for segmentation.
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The encoder processes sequences of state-action pairs {(st, at), (st+1, at+1), . . . , (st+k, at+k)}, where st ∈ Rn

(or s ∈ Rn×n for image-based observations), and at ∈ Rm. Positional encodings and causal masking ensure
temporally valid and autoregressive representation learning. The encoder outputs latent vectors zt ∈ Rd,
which are then discretized via a learned codebook C = {c1, c2, . . . , cN }, by computing:

q(zt) = arg min
ci∈C

∥zt − ci∥2 (1)

The VQ-VAE loss combines codebook and commitment objectives:

Lvq = E
[
∥zt − sg(cq)∥2]

+ E
[
∥sg(zt) − cq∥2]

(2)

where sg(·) denotes stop-gradient. The decoder reconstructs future states {ŝt+1, ŝt+2, . . . } using only past
information. The total training objective is:

L = Lrecon + αLvq, where Lrecon = E

[
k∑

t=1
∥st − ŝt∥2

]
(3)

Using state-action pairs instead of only states is key to discovering behavior-centric latent representations.
Prior works like LAPO (Schmidt & Jiang, 2024) and Genie (Bruce et al., 2024) have shown that when only
states are used as input, the learned latents tend to capture action-like primitives, effectively forming a
latent action space. In contrast, by including actions alongside states, the model learns representations that
reflect what the agent actually did in each context, leading to latents that correspond to temporally extended
behaviors rather than individual action decisions. Similar insights are seen in Deshmukh et al. (2024), which
also incorporate action and reward information to better isolate the behaviors underlying agent decisions.

Although the VQ-VAE provides per-timestep discretization, the autoregressive attention in transformers
leads to delay in token shifts relative to behavior change. Further, minor input perturbations can yield
different latent codes for the same behavior. To address this, we apply a graph-based segmentation that
smooths the raw discretization into coherent behavior segments.

3.2 Behavior Segmentation

To uncover structured behaviors from offline RL data, we segment trajectory sequences using a graph-based
approach over latent tokens. Each token is a discrete representation of a state-action chunk, obtained via
vector quantization in the behavior discovery stage. The segmentation graph captures both how frequently
these tokens transition into one another and how similar they are in latent space, capturing both temporal
and structural coherence.

Formally, we define a graph G = (V, E), where each node vi ∈ V corresponds to a codebook token ci, and
edge weights encode a hybrid of transition dynamics and latent similarity:

wij = (1 − λ) · Count(ci → cj) + λ · ∥ci − cj∥2
2 (4)

Here, Count(ci → cj) is the normalized frequency of transitions in the dataset, while the Euclidean term
penalizes large jumps in latent space. The hyperparameter λ ∈ [0, 1] controls the trade-off between temporal
continuity and spatial clustering. We empirically ablate λ in Appendix A and show that moderate values
consistently yield better segmentation. This hybrid weighting is necessary: transition-only graphs may over-
segment due to noise or repeated transitions between distinct behaviors, while distance-only graphs may
merge temporally distinct behaviors with similar representations. Combining both allows the method to
recover temporally extended, recurring behavioral motifs.

We apply spectral clustering to segment the resulting graph. First, we compute the symmetric similarity
matrix S as Sij = wij + wji, and construct the unnormalized Laplacian:

L = D − S, where Dii =
∑

j

Sij (5)

5



Under review as submission to TMLR

The top k eigenvectors of L embed the graph nodes into a lower-dimensional space, where connected compo-
nents become geometrically separable. The number of clusters k is determined via eigengap analysis. Each
cluster corresponds to a distinct behavior, and each timestep in the dataset is labeled accordingly.

We also compare this segmentation approach with alternatives, such as clustering directly in latent space
(e.g., k-means) or over raw state-action pairs. As discussed in Appendix A, spectral clustering consistently
outperforms these alternatives by yielding more temporally stable and semantically meaningful clusters.

Cluster # HalfCheetah-
medium-v2

MiniGridTwo
GoalsLava

Seaquest-
mixed-v0

Pen-
expert-v1

0 Jump prep using hind legs Crossing lava Exploration variety Final pose adjustment
1 Running on hind legs Running into obstacle/wall Idle Gameplay Initial grasp
2 Leaping forward Exploration variety Transition stage Manipulating pen
3 Gait transition Approaching goals Moving downwards Stable hand
4 Bounding with accel. Forward exploration Agent killed Noisy cluster
5 Bounding Stuck at wall Random firing Pose adjustment
6 Fall recovery Continuous motion Moving right –
7 Accel. leap Transition phase Moving left –
8 Bounding gait Grid exploration Exploration variety –
9 Initial states Transition phase Filling oxygen –
10 – Corner exploration – –
11 – Clean exploration – –

Table 1: Interpretable behavior clusters discovered across four benchmark environments. Descriptions are
based on visual inspection of representative samples per cluster. Visuals samples and detailed descriptions
for each cluster across all environments are available in Appendix C.

3.3 Attributing Actions to Behaviors

We attribute policy actions to discovered behavior clusters to explain agent decisions in terms of learned
behavioral motifs. A policy π is trained on the full dataset. For each behavior cluster k, we train a behavior
cloning model Mk using its trajectory segments.

In continuous action spaces, attribution uses MSE:

k∗ = arg min
k

MSE(a, âk), MSE(a, âk) = 1
d

d∑
i=1

(ai − âk,i)2 (6)

In discrete domains, attribution uses cross-entropy:

k∗ = arg min
k

LCE(pa, pk), LCE(pa, pk) = −
C∑

j=1
pa,j log(pk,j) (7)

This process yields behavior-level explanations for each action, helping clarify which learned behavior motif
best accounts for a given decision.

4 Experiments

We evaluate the effectiveness of our framework for behavior discovery and attribution using three bench-
mark environments from d4rl—halfcheetah-medium-v2, seaquest-mixed-v0, and pen-expert-v1—as well as
a custom environment, MiniGridTwoGoalsLava, based on the MiniGrid suite. These environments span a
broad spectrum of RL challenges: halfcheetah-medium-v2 involves high-dimensional continuous locomotion;
seaquest-mixed-v0 is a discrete-action Atari domain with dense visual input and long-horizon objectives; pen-
expert-v1 requires precise dexterous manipulation with high-dimensional proprioceptive and object-centric
observations; and MiniGridTwoGoalsLava supports goal-conditioned navigation with clearly interpretable
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Figure 3: A sample sequence from HalfCheetah with cluster labels. cx in the center of each frame denotes
the assigned cluster. For instance, Cluster 0 involves hind-leg loading before a leap, Cluster 1 captures
front-leg acceleration, and Cluster 2 corresponds to high-speed forward jumps. Full cluster definitions are in
Table 1; Sample sequences from each cluster can be found in Appendix C.

behavior switches. The datasets for the D4RL environments were collected using partially trained PPO
(Schulman et al., 2017)(halfcheetah), DQN (Mnih et al., 2015) (seaquest), and scripted expert policies
(pen), as described in Fu et al. (2020), and reflect varying levels of sub-optimality to simulate realistic offline
conditions. The dataset for MiniGridTwoGoalsLava was generated by us using a PPO policy trained to
approximately 30–40% task success. Our pipeline uses a transformer-based VQ-VAE model to discretize
state-action sequences into latent codes, which are used to construct a behavior graph over time. Spectral
clustering is then applied to obtain segmented trajectories, as described in Section 3.2. To assess the robust-
ness of our method, we conduct a broad ablation study varying the codebook size, number of clusters, graph
construction parameters (e.g., λ for balancing transition vs. latent similarity), and architecture components.
Full results are presented in Appendix A, with hyperparameters listed in Appendix B.1.

4.1 Behavior Discovery and Segmentation

We evaluate whether the behavior clusters discovered by our framework reflect temporally coherent and
semantically meaningful segments across four offline RL environments. The segmentation is based on latent
codes obtained from a VQ-VAE trained on state-action sequences, post-processed using a spectral clustering
algorithm over a graph constructed from transition frequency and latent similarity. This hybrid formulation
enables the discovery of segments that are both structurally consistent and behaviorally distinct.

As summarized in Table 1, our method isolates a range of interpretable behaviors across environments.
In MiniGridTwoGoalsLava, clusters include exploring near walls, crossing lava, and approaching goals. In
seaquest-mixed-v0, we observe clusters corresponding to oxygen refilling, directional movement, and repet-
itive firing. For halfcheetah-medium-v2, the clusters capture different locomotion modes such as bounding,
leaping, and gaits involving instability or braking.

Figures 1, 5, 3 & 4 provide rollout-level visualizations of the discovered clusters, highlighting how behavior
boundaries align with high-level shifts in strategy or movement. Cluster assignments typically remain stable
within consistent behaviors and change sharply at clear behavioral transitions, often at action-level granular-
ity. Across episodes, we observe that similar behavior types are consistently grouped together—suggesting
that the framework recovers reusable, high-level behavior patterns rather than overfitting to surface-level
differences in input.
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Figure 4: Sample trajectory from pen-expert-v1 with cluster labels. The trajectory is visualized with a
frameskip of 2, cx under each frame shows cluster id. Full details of clusters definitions can be found in
Table 1 and representative samples from each cluster can be found in Appendix C. This image is best viewed
at 200% zoom.

While these visualizations offer qualitative validation, we also conducted a human study (described next) to
quantitatively assess the interpretability of the discovered behavior clusters. Participants described sample
segments from different clusters and provided confidence scores, allowing us to measure agreement and
semantic coherence.

4.1.1 Human Study: Behavior Interpretability

To evaluate the semantic coherence of our discovered clusters, we conducted a two-part human study. Part
A was designed to assess whether clusters correspond to behaviors that are interpretable and describable by
humans.

For each of the four environments, we randomly sampled three behavior clusters. For each cluster, three
representative trajectory segments were selected and shown to 15 participants who had prior familiarity with
the tasks. Participants were asked to (1) describe the cluster behavior in natural language, and (2) rate
their confidence on a 1–5 scale. We computed the average pairwise cosine similarity between the textual
descriptions using MiniLM sentence embeddings, after subtracting a shared embedding representing the
general environment context. Higher intra-cluster similarity indicates consistent human interpretations of
the behavior.
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Figure 5: Sample from Seaquest-mixed-v0 with cluster labels. cx under each frame shows cluster id. Cluster
3: moving down, Cluster 6: moving right, Cluster 9: oxygen refill. See Table 1 for more. We further present
sample sequences from each cluster in Appendix C.

Environment Cluster1 Cluster2 Cluster3 AvgCosine AvgConfidence
seaquest-mixed-v0 0.68 0.69 0.63 0.67 5.00
MiniGridTwoGoalsLava 0.68 0.64 0.58 0.63 4.33
halfcheetah-medium-v2 0.61 0.65 0.61 0.62 5.00
pen-expert-v1 0.64 0.61 0.57 0.61 4.33

Table 2: Intra-cluster cosine similarities and average confidence scores for human-written descriptions of
sampled behavior clusters across four environments. Higher cosine values indicate greater semantic agreement
among annotators, reflecting stronger behavioral coherence within clusters. For comparison, the average
cosine similarity between randomly selected descriptions from different clusters was 0.42.

The consistently high cosine similarities and confidence scores across environments suggest that our clusters
are semantically meaningful and interpretable for most participants. Participants often used similar phrases
(e.g., “approaching goal”, “crossing obstacle”, “leaping forward”) to describe different samples from the same
cluster, supporting the behavioral consistency captured by our framework.

4.2 Behavior Attribution

To validate the relevance of discovered behaviors, we perform action-level attribution by training a separate
behavior cloning (BC) model for each cluster. Details about the BC models and their training can be found
in Appendix B.2. These models serve as local approximators for how each behavior typically responds in
given states. For any observed action, we identify the most likely behavior by comparing the output of these
models to the agent’s actual action.

In continuous control environments (e.g., halfcheetah-medium-v2 ), we compute the mean squared error
(MSE) between the action predicted by each cluster model and the ground truth action. The cluster min-
imizing this error is selected as the behavior attribution. In discrete domains (e.g., seaquest-mixed-v0,
MiniGridTwoGoalsLava), we compare action probability distributions using cross-entropy.

This attribution mechanism consistently assigns decisions to plausible behavior clusters across environments.
For example, in seaquest-mixed-v0, sequences involving upward swimming and rapid shooting are reliably
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attributed to distinct clusters. In halfcheetah-medium-v2, the attribution clearly distinguishes between be-
haviors like high-speed bounding and slower gait transitions. These results suggest that the segmented
behaviors not only reflect semantic structure but also support faithful explanation of policy behavior. At-
tribution examples are visualized in Figure 6.

4.2.1 Human Study: Attribution Quality

To evaluate whether our behavior-level attributions align with human intuition, we conducted Part B of the
human study. In this setting, participants (n = 15) were shown the context (preceding and following frames)
surrounding an agent action and asked to select which of four video segments best explained that decision.
The four options were: (1) the behavior segment attributed by our method, (2) the trajectory retrieved by
Deshmukh et al. (2024), and (3–4) randomly sampled segments of similar length from other clusters.

Importantly, we presented segments as short videos without metadata to reduce cognitive bias from sequence
length or cluster labels. This task tests whether the attributed behavior segment is perceived as a plausible
and semantically meaningful explanation for the observed action, grounded in the prior context.

Environment %Ours %Deshmukh et al. (2024) %Random
pen-expert-v1 85.7 14.3 0.0
MiniGridTwoGoalsLava 61.9 28.5 9.5
seaquest-mixed-v0 68.4 31.6 0.0
halfcheetah-medium-v2 81.3 13.9 4.7

Table 3: Human preference scores across environments for the segment attributed by our method, the
trajectory-level baseline from Deshmukh et al. (2024), and random segments. Across all environments, our
method was most frequently selected as the best explanation. The largest margins were observed in pen-
expert-v1 and halfcheetah-medium-v2, highlighting the benefit of fine-grained, behavior-centric attribution.

These results suggest that human evaluators consistently find our behavior-level attributions to be more
plausible and semantically aligned with the observed action than those derived from full trajectory matches.
The stronger preference in high-dimensional or continuous control domains such as pen and halfcheetah
indicates that segment-level grounding is particularly helpful when agent behavior varies smoothly or consists
of overlapping motifs.

4.3 Quantitative Evaluation: Cluster Soundness and Structural Quality

To complement the qualitative and human studies, we quantitatively evaluate our discovered behavior clus-
ters using two perspectives: (1) how consistently each cluster captures policy-aligned behavior (cluster
soundness), and (2) how structurally coherent and well-separated the clusters are in latent space (structural
quality). These evaluations aim to assess whether the clusters are not only interpretable but also statistically
meaningful.

Cluster Soundness via Fidelity Score. To assess whether our discovered clusters represent distinct
and consistent behavioral modes, we compute the Average Fidelity Score (AFS): the mean prediction error
between a behavior cloning (BC) model trained per cluster and the original policy. A low AFS implies
that the cluster encapsulates a coherent policy fragment. To assess the distinctiveness of each cluster, we
compare this to a random baseline where actions are assigned to clusters uniformly at random (Rand-Ours),
maintaining the same cluster sizes.

Table 4 shows that the AFS gap between our clusters and the random assignment is substantial, indicating
that each of our clusters captures a unique behavioral pattern. In contrast, for Deshmukh et al. (2024), the
fidelity scores of their clusters and their random baseline (Rand-Deshmukh et al. (2024)) are often very close.
This suggests their segments are not strongly aligned with distinct decision-making behavior, and that their
clusters may be less behaviorally meaningful.

Structural Cluster Quality. In addition to fidelity, we evaluate the structural properties of the discovered
clusters in the latent space using two standard unsupervised clustering metrics. The Silhouette Score (SS)
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Figure 6: Attribution results for various environments. The attribution, as described in Section 3.3, is
performed for the middle frame in each sequence (indicated with a dashed border). To provide better
temporal context, both preceding and succeeding frames are shown. The assigned behavior cluster is noted
on the right. Across all environments, the assigned clusters align well with the observed behavior. For
example, in HalfCheetah, cluster 1 corresponds to hind-leg running, while cluster 4 captures bounding
accelerating motion. Similarly in Sequest, cluster 9 corresponds to filling oxygen and cluster 3 corresponds
to downward motion. Similar consistency is also seen for MiniGrid and Pen.

captures how well each latent token fits within its assigned cluster versus the next-best alternative—higher
values indicate better separation. The Davies-Bouldin Score (DB) compares intra-cluster dispersion to inter-
cluster separation—lower values are better. Together, these metrics reflect whether the latent structure of
the clustering is compact and distinct.

As shown in Table 5, our method generally produces clusters with better separation (higher SS) and lower
within-cluster variance (lower DB) than Deshmukh et al. (2024), particularly in continuous and high-
dimensional settings such as halfcheetah-medium-v2 and seaquest-mixed-v0. In MiniGridTwoGoalsLava,
the baseline scores slightly better due to its LSTM-based encoder specialized for discrete grid settings,
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Environment Ours Rand-Ours Deshmukh et al. (2024) Rand-Deshmukh et al. (2024)
halfcheetah-medium-v2 0.36 2.29 0.05 0.09
seaquest-mixed-v0 0.59 0.98 0.13 0.17
MiniGridTwoGoalsLava 0.47 0.68 0.09 0.10
pen-expert-v1 0.16 0.49 0.13 0.20

Table 4: Average Fidelity Score (AFS) for our method, random cluster assignments, and the trajectory-level
baseline from Deshmukh et al. (2024). AFS is computed as the error between the main policy (trained on
the full dataset) and the output of the behavior model corresponding to a given cluster. Scores are averaged
over 200 randomly selected actions from 20 episodes. In our method, the larger gap between attributed and
random cluster scores (Ours vs. Rand-Ours) indicates that the discovered clusters capture clearly distinct
behaviors. In contrast, the small gap observed for the baseline suggests its clusters are less behaviorally
differentiated.

whereas our model uses a uniform transformer backbone across all environments. Despite this, our approach
yields more interpretable segments (as seen in AFS and human studies), suggesting that structural metrics
alone may not fully capture behavior-level coherence.

Environment Silhouette Score ↑ Davies-Bouldin ↓
Ours Deshmukh et al. (2024) Ours Deshmukh et al. (2024)

halfcheetah-medium-v2 0.24 0.14 1.68 2.13
seaquest-mixed-v0 0.21 0.12 1.88 2.19
MiniGridTwoGoalsLava 0.37 0.48 1.44 1.19
pen-expert-v1 0.20 0.20 1.47 1.32

Table 5: Structural cluster quality using Silhouette and Davies-Bouldin scores across four environments. Our
method yields more compact and separated clusters in continuous control (halfcheetah-medium-v2) and high-
dimensional image-based tasks (seaquest-mixed-v0). In grid-based domains such as MiniGridTwoGoalsLava,
the LSTM-based encoder of the baseline offers better numerical clustering scores, though these do not always
translate to semantically meaningful behaviors (see Table 4 and human studies).

5 Limitations

The proposed framework, while effective in discovering and attributing behaviors, has certain limitations.
In highly stochastic environments such as halfcheetah-medium-v2, noisy or frequent behavior transitions
can result in overlapping segments that are less clearly delineated. While most clusters correspond to
interpretable behaviors, a few exhibit ambiguity, making it difficult to precisely characterize their semantic
content. Moreover, our graph-based segmentation relies on hand-crafted similarity measures and traditional
spectral clustering, which may not optimally adapt to diverse environments. Future work could investigate
graph neural network-based segmentation methods that learn task-specific similarity structures and provide
more robust behavior partitioning.

6 Conclusion

We introduced a post-hoc framework for discovering and attributing behavior-level patterns in offline rein-
forcement learning. By combining sequence-level discretization through a transformer-based VQ-VAE with
graph-based segmentation via spectral clustering, our method extracts interpretable, temporally extended
behaviors from raw trajectories. Attribution is performed by matching policy actions to behavior-specific
models, enabling fine-grained explanations of decisions. Evaluations across diverse domains, including loco-
motion, manipulation, and Atari-style control, demonstrate that the discovered segments align with semanti-
cally meaningful behaviors and offer improved interpretability over trajectory-level baselines. While current
results are limited to offline settings, future extensions could explore applications in debugging, auditing,
and safe deployment of RL agents in real-time systems.
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A Appendix A: Ablation Studies

A.1 Alternative Clustering Strategies

We evaluate the effectiveness of our clustering approach by comparing it against simpler alternatives. Specif-
ically, we assess whether learned representations are necessary for high-quality segmentation and whether
spectral clustering offers benefits over standard methods like K-means. These comparisons help isolate the
contribution of each component—representation learning and clustering algorithm—to the overall quality of
behavior segmentation.

A.1.1 Clustering Raw State-Action Pairs

To evaluate the necessity of learning representations, we compare our method against a baseline where
clustering is performed directly on raw state-action pairs, without any VQ-VAE encoder. As shown in Table 6,
this results in significantly worse clustering performance across all environments. The clusters tend to be
noisy and inconsistent, with poor separation between distinct behaviors and no temporal coherence. These
results demonstrate the importance of using a representation model like VQ-VAE to transform trajectories
into discrete, behavior-centric codes that capture higher-level structure.
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Table 6: Clustering performance when applied directly to raw state-action pairs. Absence of VQ-based
representation results in weak and noisy clusters.

Environment Silhouette Score ↑ Davies-Bouldin Score ↓
halfcheetah-medium-v2 0.20 1.97
pen-expert-v1 0.13 2.23
MiniGridTwoGoalsLava 0.10 2.14
seaquest-mixed-v0 0.03 8.88

A.1.2 Spectral Clustering vs K-Means

We also compare spectral clustering, our default segmentation method, with standard K-means applied
to the learned VQ-VAE embeddings. As shown in Table 7, spectral clustering outperforms K-means in
both Silhouette Score and Davies-Bouldin Score across environments. Unlike K-means, spectral clustering
leverages the global structure of the transition graph and is better suited for identifying temporally smooth
and behaviorally meaningful clusters.

Table 7: Comparison between spectral clustering and K-means applied to latent embeddings. Spectral
clustering produces more temporally coherent and behaviorally meaningful clusters.

Environment Method Silhouette Score ↑ Davies-Bouldin Score ↓
halfcheetah-medium-v2 Spectral 0.24 1.75
halfcheetah-medium-v2 K-Means 0.20 1.97
MiniGridTwoGoalsLava Spectral 0.37 1.44
MiniGridTwoGoalsLava K-Means 0.30 2.05
pen-expert-v1 Spectral 0.20 1.47
pen-expert-v1 K-Means 0.17 1.82
seaquest-mixed-v0 Spectral 0.22 2.55
seaquest-mixed-v0 K-Means 0.21 2.65

A.2 Lambda Factor

Figure 7: Clustering quality metrics across λ values. λ = 0 uses only transition frequency; λ = 1 uses only
latent-space proximity. Best performance typically occurs at intermediate values.
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We study the effect of the λ parameter that controls the trade-off between transition frequency and latent-
space proximity in edge weighting. Figure 7 shows clustering quality metrics (Silhouette and Davies-Bouldin
scores) across λ values. A balanced weighting (λ ≈ 0.3 to 0.5) typically yields the best results, confirming
that both temporal and semantic structure are important for stable segmentation.

A.3 Number of Codebooks

We evaluate the sensitivity of our method to the number of codebook entries in the VQ-VAE, as this
hyperparameter governs both representational capacity and interpretability. Using too few codebook entries
limits the expressiveness of the latent space, resulting in poor reconstruction and insufficient coverage of
behavior diversity. On the other hand, very large codebooks can lead to sparsely used or entirely inactive
(dead) codes, reducing interpretability and increasing latent fragmentation.

To select an appropriate codebook size, we consider two metrics: (1) normalized reconstruction loss, which
assesses how well the latent space encodes input sequences, and (2) codebook occupancy, defined as the
proportion of codebook entries used at least once over the final 10% of training steps. This smoothing avoids
instability from early-phase underutilization.

Figure 8: Effect of codebook size on normalized reconstruction loss (orange, lower is better) and codebook
occupancy (blue, higher is better) across four environments. Increasing the number of codebooks improves
expressiveness but may reduce code utilization. Our method achieves stable performance when balancing
these two metrics. In most domains, codebook sizes in the 64–128 range yield good trade-offs. Notably, in
MiniGridTwoGoalsLava, a smaller codebook of size 16 offers both low reconstruction loss and high occupancy,
suggesting that optimal codebook size can be environment-dependent.
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Figure 9: Overview of the behavior discovery and segmentation pipeline. A transformer-based VQ-VAE is
trained to encode sequences of state-action pairs into discrete latent codes using a codebook. The encoder
applies causal masking to ensure autoregressive prediction, and the decoder reconstructs future states to
optimize a reconstruction loss. After training, the resulting latent codes are used to construct a transition
graph, which is segmented using spectral clustering to produce semantically coherent behavior clusters. Refer
to Table 8 for full details on the architecture and training.

Hyperparameter halfcheetah-
medium-v2

MiniGrid-
TwoGoalsLava

seaquest-
mixed-v0

pen-expert-v1

Learning Rate (LR) 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−4

Sequence Length (seq_len) 50 Variable (max 40) 30 30
Batch Size 64 32 64 32
Number of Codes 128 16 64 64
Embedding Dimension 128 128 128 128
Combination Param (λ) 0.75 0.45 0.6 0.6
Num Epochs 50 50 50 50
Optimizer Adam Adam Adam Adam
LR Scheduler Linear decay Linear decay Linear decay Linear decay
Teacher Forcing Linear decay to 0 Linear decay to 0 Linear decay to 0 Linear decay to 0
Transformer Heads 4 4 4 4
Encoder/Decoder Layers 4 2 4 4
Transformer Hidden Dim 128 128 128 128
Frame Skip – – 4 –
Hardware A100 GPU A100 GPU A100 GPU A100 GPU

Table 8: Hyperparameter settings for all four environments. Note that sequence length is truncated or
padded for environments with short episodes, and GPU used for all experiments is NVIDIA A100.

B Hyperparameters & Training

B.1 Transformer-based VQ-VAE Architecture

B.2 Behavior Cloning Models

To support attribution and post-hoc analysis, we trained separate Behavior Cloning (BC) models on the
clustered state-action data. Each cluster had a sufficient number of state-action samples to allow reliable
model fitting. However, due to noise in the clustering process, some individual state-action pairs were occa-
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Cluster0: First Grasp of the pen

Cluster1: Final States, the hand is 
almost fully stable with extremely 
minor adjustments being made

Cluster2: Large scale pen pose 
manipulation

Cluster3: Firming the  grasp with 
minimal pen movement 

Cluster5: Final pose adjustment, 
similar to Cluster1, movements 
however are more pronounced

Figure 10: Set of all pen-expert-v1 clusters with their detailed descriptions. Behaviors exhibit different
stages of pen manipulation. Cluster 4 is skipped since there are no representative samples for it as its quite
noisy.

sionally isolated from their surrounding behavior segments. To improve consistency, we applied a smoothing
step that reassigned such outliers to the most frequent cluster label among adjacent steps in the trajectory.

For training, we used a 3-layer multilayer perceptron (MLP) for environments with state-based observations,
and a 3-layer convolutional neural network (CNN) for environments with image-based inputs. The learning
rate and other training details match those in Table 8.

Table 9: Number of state-action pairs per cluster used for BC training across environments.

Environment C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

halfcheetah-medium-v2 11393 10510 10815 10780 5183 9646 6153 11951 2891 3122 – –
seaquest-mixed-v0 9710 3321 2894 7471 6692 9980 7081 7763 3510 7398 – –
MiniGridTwoGoalsLava 942 743 1217 932 936 746 938 432 1215 481 1114 1316
pen-expert-v1 8264 4213 9711 4232 2677 8819 – – – – – –

C Cluster Visualization

To better interpret the discovered behavior clusters, we randomly sample 20 trajectory segments assigned
to each cluster and analyze them based on visual inspection. For each cluster, we then describe the most
common recurring patterns observed across the sampled segments. This process helps illustrate the typical
behaviors captured by each cluster and highlights the consistency of behavioral motifs discovered by our
approach.
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Cluster0:  Cheetah is preparing to jump

Cluster1:  Cheetah is running on hind legs

Cluster2: Cheetah is leaping forward

Cluster4: Cheetah is exhibiting a fast bounding
motion

Cluster8: Cheetah exhibits a stable gait motion

Cluster4: Cheetah falls on front legs and recovers

Cluster3:  Gai Transitions

Cluster5: Stable bounding motion

Cluster7:  Cheetah Exhibits accelerating leaping 
motion

Cluster9:  Cheetah is running on hind legs

Figure 11: Set of all seaquest-mixed-v0 clusters and their detailed descriptions. Most discovered behaviors
show some form of motion. Some clusters are easy to inspect and understand visually but some are difficult
given the nature of the environment. The numbers in the images velocities of the cheetah which provides a
broader context.
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Figure 12: Set of all MiniGridTwoGoalsLava clusters with their corresponding description. Behaviors have
good diversity, exploratory behaviors of distinct varieties are also discovered using this mechanism.
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Figure 13: Set of all seaquest-mixed-v0 clusters and their detailed descriptions. There are some meaningful
behaviors as well as some exploratory clusters where it is hard to exactly define the behavior. This is expected
since the data is from a suboptimal agent, thus exploratory behavior is expected.
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