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Abstract

The efficiency of attention is important due to its quadratic time complexity. We en-
hance the efficiency of attention through two key contributions: First, we leverage
the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation.
Our implementation achieves 1038 TOPS on RTX5090, which is a 5× speedup
over the fastest FlashAttention on RTX5090. Experiments show that our FP4 atten-
tion can accelerate inference of various models in a plug-and-play way. Second,
we pioneer low-bit attention to training tasks. Existing low-bit attention works
like FlashAttention3 and SageAttention focus only on inference. However, the
efficiency of training large models is also important. To explore whether low-bit
attention can be effectively applied to training tasks, we design an accurate and
efficient 8-bit attention for both forward and backward propagation. Experiments
indicate that 8-bit attention achieves lossless performance in fine-tuning tasks
but exhibits slower convergence in pretraining tasks. The code is available at
https://github.com/thu-ml/SageAttention.
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Figure 1: The upper left figure shows the kernel speedup on RTX5090. The other two figures show
the end-to-end inference speedup of generating a video using HunyuanVideo on RTX5090. Note that
FlashAttention3 can only run on Hopper GPUs, so FlashAttention2 is already the fastest on RTX5090.

1 Introduction

Motivation. The efficiency of attention is critical for generation models, especially given their
quadratic time complexity with longer sequences [1, 2]. Quantization offers an effective way to
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accelerate inference by utilizing low-bit Tensor Cores in GPUs [3]. The new FP4 Tensor Cores
in Blackwell GPUs deliver significantly faster performance compared to FP16 [4]. We want to
propose a novel FP4 attention implementation that provides plug-and-play compatibility for inference
acceleration. Beyond inference, training efficiency is equally important. However, no prior work has
explored low-bit attention for training large models. To address this gap, we design a trainable 8-bit
attention to explore its feasibility in training tasks.

To the best of our knowledge, we are the first work that designs FP4 attention for inference and the
first work to explore the feasibility of low-bit attention for training large models.

Challenges. There are two primary obstacles for FP4 attention and one key difficulty for 8-bit
trainable attention. First, (C1) FP4 quantization suffers from severe value limitations (only 15
representable values), making both per-tensor and per-token quantization approaches inadequate for
preserving model accuracy. Second, (C2) The attention map P consists primarily of small values
in the range [0, 1]. When directly quantized to FP4, these values force the scaling factors into an
extremely narrow dynamic range. However, hardware requires the quantization factors to be in FP8
data type. This leads to significant accuracy loss when presenting these scale factors in FP8. Third,
(C3) When employing 8-bit attention during training, we find that the attention map gradients are
particularly vulnerable to quantization errors, resulting in accumulated errors in the input gradients.

Our Method. To address (C1), we propose to use FP4 microscaling quantization for the two matrix
multiplications in attention, i.e., QK⊤ and PV . By constraining the quantization group size to
1x16 (instead of per-tensor or per-channel), our method effectively contains outlier effects within
each block while improving FP4 quantization accuracy. To overcome (C2), we propose a two-level
quantization method for P to fully utilize the presentative range of the FP8 scaling factor, enhancing
the quantization accuracy of P . Specifically, this approach first normalizes each token’s range to
[0, 448× 6] through per-token quantization, then applies FP4 microscaling quantization for enhanced
precision. To address (C3), we identify the most accuracy-sensitive matrix multiplication among the
five in backpropagation and maintain its accuracy in FP16.

Result. Our FP4 attention, named SageAttention3, could achieve 1038 TOPS on RTX5090, which
is a 5× speedup than FlashAttention. Furthermore, we demonstrate that 8-bit trainable attention,
named SageBwd, could achieve lossless performance when fine-tuning base models for instruction-
following tasks, but is not suitable for pretraining tasks.

Contribution. Our work makes the following key contributions:

(1) We design the first FP4 attention to accelerate inference, achieving 1000+ TOPS on RTX5090.

(2) We propose the first trainable low-bit attention, enabling accelerated training with lossless
fine-tuning performance, while revealing key insights for low-bit attention in training.
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Figure 2: Workflow of microscaling FP4 attention.

2 Preliminary

FlashAttention. The attention computation contains two matrix multiplications and one softmax
calculation: S = QK⊤, P = Softmax(S), O = PV . The Q,K, V are in the shape of N × D,
where N means the sequence length and D means the dimension of an attention head. P, S are in
the shape of N ×N . FlashAttention divides Q to blocks {Qi} in the shape of Bq ×D, and divides
K,V to {Ki}, {Vi} in the shape of Bkv ×D. Then it uses online softmax to avoid the large memory
IO for S and P : Sij = QiK

⊤
j , Pij = OnlineSoftmax(Sij), Oij = PijVj .
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Notation. For simplicity, we omit subscripts and use Q,K,V,S,P,O to denote the matrix blocks
in FlashAttention, while retaining full subscript notation in Algorithm 1, 2, and 3.

Quantization. Quantization is used to accelerate Matmul by converting two matrices from high-
bit to low-bit with scale factors. Take INT8 quantization for Matmul AB as an example, where
A and B are in FP16 data type. It can be formulated: sA = max(|A|)/127, Â = ⌈A/sA⌋,
sB = max(|B|)/127, B̂ = ⌈B/sB⌋, where Â, B̂ are in INT8 and the others are in FP32. Then,
AB ≈ ÂB̂ × sA × sB , which can be accelerated by the INT8 Tensor Core. The granularity of
quantization is determined by the dimensions reduced by the max operation. For example, in per-
token quantization, the max is computed along each row of a matrix. In per-block quantization, the
max is computed on a block of a matrix, which in our paper means a FlashAttention block.

3 FP4 Attention for Inference Acceleration

This section presents our microscaling FP4 attention through three key components: (1) the fundamen-
tal workflow for applying microscaling FP4 quantization to attention in Section 3.1, (2) the two-level
quantization approach for the attention map in Section 3.2, and (3) critical hardware implementation
optimization in Section 3.3.
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Figure 3: Analysis of the benefit of two-level quantization. (a) shows the distribution of P̃. (b) and
(c) show the distribution of sP using direct quantization and two-level quantization. (d) and (e) show
the error of sP and P̃ using direct quantization and two-level quantization.

3.1 Microscaling FP4 Attention

FP4 microscaling quantization. Given a matrix X ∈ RN×d, we quantize it to X̂ in FP4 data type
with a scale factor matrix sX in FP8 data type. Specifically, X is partitioned into Xij ∈ R1×n blocks,
where each 1 × n block corresponds to one scale factor sij . The FP4 microscaling quantization
([X̂, sX = ϕ(X)]) and dequantization (X ′ = ϕ−1(X̂, sX)) can be formulated as follows.

Quantization ϕ: sij = max(|X|)/6, X̂ij = ⌈Xij/sij⌋ (1)

Dequantization ϕ−1: X ′
ij = sij × X̂ij (2)

Where the ⌈·⌋ means FP4 rounding.

FP4 microscaling quantization Matmul. Consider a matrix multiplication AB, where A and B are
in FP16 precision. The speed of the Matmul is about 200 TOPS on RTX5090. In contrast, the speed of
the FP4 microscaling Matmul is about 1600 TOPS, which is an 8x speedup. The FP4 microscaling
Matmul instruction (FP4MM) takes four inputs, i.e., Â, sA, B̂, sB , and the output C equals to the
Matmul result between ϕ−1(Â, sA) and ϕ−1(B̂, sB):

C = FP4MM(Â, sA, B̂, sB) (3)

Attention computation. We accelerate attention computation by applying FP4 microscaling quanti-
zation to both matrix multiplications: QK⊤ and PV.

Q̂, sQ = ϕ(Q), K̂, sK =ϕ(K⊤), S = FP4MM(Q̂, sQ, K̂, sK)

P̃ =OnlineSoftmax(S)

P̂, sP = ϕ(P̃), V̂, sV =ϕ(V), O = FP4MM(P̂, sP, V̂, sV) (4)

3



It is important to note that our hardware implementation builds on FlashAttention, where the matrices
Q, K, P̃, and V in our formulation correspond to FlashAttention’s tiled Q, K, P̃ , and V blocks as
described in Section 2. Additionally, to enhance the attention accuracy, we adopt the smoothing Q
and K in SageAttention2 [5]. The complete algorithm is presented in Algorithm 1.

Data type determination. There are two choices for the FP4 data type [6]. The first one is the NVFP4,
which is in E2M1 data type and its quantization block size is 1 × 16 and its scale factor is in E4M3
data type. The second one is the MXFP4, which is also in E2M1 data type. However, its quantization
block size is 1× 32 and its scale factor is in E8M0 data type. We choose NVFP4 because the accuracy
of NVFP4 is much higher than that of MXFP4 in attention quantization. Empirical results: Table 1(a)
shows the accuracy of MXFP4 and NVFP4 using real Q, K, V across all layers of CogVideoX. Results
indicate that the accuracy of NVFP4 outperforms that of MXFP4.

Algorithm 1: Implementation of the microscaling FP4 attention.
1: Input: Matrices Q(FP16),K(FP16), V (FP16) ∈ RN×d, block size Bq, Bkv .
2: Preprocessing: K = K −mean(K) // Smoothing K of SageAttention.
3: Divide Q to Tm = N/Bq blocks {Qi}; divide K, and V to Tn = N/Bkv blocks {Ki}, {Vi} ;
4: for i = 1 to Tm do
5: q̄i = mean(Qi), (sQ, Q̂i) = ϕ(Qi − q̄i) ; // Smoothing Q of SageAttention2.
6: for j in [1, Tn] do
7: (sK, K̂j) = ϕ(K⊤

j ) , (sV, V̂j) = ϕ(Vj) ;
8: Sij = FP4MM(Q̂i, sQ, K̂j , sK) + GEMV(q̄i,K⊤

j ) ; // Smoothing Q.
9: mij = max(mi,j−1, rowmax(Sij)), P̃ij = exp(Sij −mij),

lij = emi,j−1−mij li,j−1 + rowsum(P̃ij) ;
10: sP1 = rowmax(P̃ij)/(448× 6), P̃ij = P̃ij/sP1 , sP2 , P̂ij = ϕ(P̃ij); // two-level quantization
11: Oij = diag(emi,j−1−mij )Oi,j−1 + FP4MM(P̂ij , sP2 , V̂j , sV)× sP1

12: end for
13: Oi = diag(li,Tn)

−1Oi,Tn ;
14: end for
15: return O = {Oi}

3.2 Two-level Scaling for P̃

Applying microscaling FP4 quantization for P̃ presents a challenge to attention accuracy. For
example, Fig. 12( c) shows direct quantization severely degrades output quality, producing results
substantially different from full-precision outputs. Our analysis reveals that the issue occurs because
microscaling NVFP4 quantization requires the scale factor to be represented in E4M3 FP8 format [7],
rather than the FP32 data type typically used for scale factors. This causes accuracy loss when the
scale factor is directly converted to E4M3 format. To better understand this accuracy loss, we analyze
the data distribution of P̃ and its scale factors in Fig. 3. Since P̃ is computed using online softmax [8],
the values in each microscaling block P̃ij fall [0, 1]. Consequently, the scale factor (scale factor =
max(P̃ij)/6) ranges between 0 and 0.167. This narrow range leads to inefficient usage of E4M3’s
representable range, increasing accuracy loss. To reduce accuracy loss by fully utilizing E4M3’s range,
we propose a two-level quantization method for the P̃ matrix. Specifically, we first quantize each
row of P̃ to [0, 448× 6]. Then we apply the standard FP4 quantization ϕ for the quantized P̃. The
two-level quantization can be formulated as follows:

sP1 = rowmax(P̃)/(448× 6), P̃2 = P̃/sP1 , sP2 , P̂2 = ϕ(P̃2)

(P̃ ≈ P̂2 × sP2 × sP1), O = FP4MM(P̂2, sP2 , V̂, sV)× sP1 (5)

Where P̃, P̃2, and sP1 are in FP32 data type. sP2 and sV are in FP8 data type. P̂2 and V̂ are in FP4
data type.

Empirical results: As shown in Fig. 3, our two-level quantization maximizes the E4M3 range utilization
for sP, thereby reducing both the numerical representation error of sP and the quantization error of
P̃. A more formal theoretical analysis is provided in Appendix A.5. Table 1(b) shows the accuracy of
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two-level quantization against naive direct quantization, using real Q, K, V from layers of CogVideoX.
Results indicate that two-level quantization boosts the accuracy.

3.3 Implementation and Optimization on Hardware

Permutation for K. Unlike FP16, the FP32 accumulator’s memory layout in FP4 MatMul [9] differs
from its operand A’s register layout (shown in Fig. 20 and 19). Performing thread shuffles to match
operand A’s layout would degrade kernel performance. Our solution transforms the accumulator
layout (Fig. 21) by permuting the P tile’s columns. To maintain correct MatMul, we correspondingly
rearrange K’s columns, which can be fused with the quantization kernel.

Reuse shuffle. The in-kernel micro-scaling quantization of P̃ requires finding the max value of 16
consecutive row elements. However, as shown in Fig. 21, these 16 elements are distributed across
four threads, necessitating intra-thread max reduction followed by inter-thread shuffling, significantly
slowing down the kernel. We optimize this by fusing quantization with online softmax, which also
computes row-wise maxima. First, we compute the max over 16 elements in S and reuse it in the
subsequent softmax max-reduction. This fusion reduces redundant shuffles and max operations by
50%, yielding about 10% whole kernel speedup.

Producer warp epilogue. In conventional warp-specialized kernels, consumer warps typically handle
both MatMul and store operations while producers merely load inputs, with ping-pong scheduling
between consumers enabling stage overlap [10]. However, register constraints make this approach
infeasible for our FP4 attention kernel. Instead, we implement ping-pong scheduling between
producer warps: while one producer loads inputs for the next MatMul operation, another concurrently
stores outputs to global memory, with consumer warps solely responsible for transferring MatMul
results from registers to shared memory. This novel design overlaps MatMul and global memory
stores within register constraints, boosting throughput.

4 INT8 Attention for Training

Low-bit quantization attention works, such as FlashAttention3 and SageAttention, are only for
inference. In this section, we propose an INT8 attention for training, named SageBwd, which quantizes
six of seven matrix multiplications in attention to INT8, achieving no performance degradation in fine-
tuning tasks. Besides, we implement both INT8 SageBwd and FP8 SageBwd and conduct comparison
experiments, proving INT8 SageBwd is superior to FP8 SageBwd in Section 5.4.

Algorithm 2: Forward pass of the 8-bit attention.
1: Input: FP16 matrices Q,K, V ∈ RN×d, and block size Bq, Bkv .
2: Km = mean(K); K ← K −Km ; // Smooth-k technique.
3: Divide Q to Tm = N/Bq blocks {Qi}; divide K, and V to Tn = N/Bkv blocks {Ki}, {Vi} ;
4: Quantization: {sQ, Q̂i} = {ψ(Qi)}, {sK, K̂i} = {ψ(K⊤

i )}, {sV, V̂i} = {ψ(Vi)} ; // Per-block.
5: for i = 1 to Tm do
6: Oi ∈ RBq×D = (0), Li ∈ RBq = (0), mi ∈ RBkv = (0) ;
7: for j in [1, Tn] do
8: Sij = MM(Q̂i, K̂j)× sQ × sK ;
9: mij = max(mi,j−1, rowmax(Sij)), P̃ij = exp(Sij −mij),

lij = emi,j−1−mij li,j−1 + rowsum(P̃ij);
10: sP = exp(rowmax(Sij)−mij)/127, P̂ij = P̃ij/sP ; // Per-token quantization.
11: Oij = diag(emi,j−1−mij )Oi,j−1 + MM(P̂ij , V̂j)× sP × sV
12: end for
13: Oi = diag(li,Tn)

−1Oi,Tn ;
14: Li = mi,Tn + log(li,Tn) ;
15: end for
16: return O = {Oi}, L = {Li} ;
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4.1 Forward

There are two matrix multiplications in the forward pass of attention:

S = QK⊤, O = PV (6)

Per-token quantization for P. Following SageAttention [11], we apply smoothing K and per-block
INT8 quantization for the QK⊤. However, for the P̃V, a static per-block INT8 quantization with a
static scale factor of 1/127 for P̃ is inaccurate [11]. Fortunately, we find applying per-token INT8
quantization for P̃V and per-block INT8 quantization for V can enhance the attention accuracy.
Furthermore, we eliminate the need for explicit max operations on P by reusing both global and
local maximum values from the online softmax computation (Line 9 in Algorithm 2). The algorithm
for the forward is shown in Algorithm 2.

Given our extensive use of INT8 per-block quantization in trainable attention, we formalize the
process as follows. For each FlashAttention block X, the quantization process sX, X̂ = ψ(X) can
be formulated as:

sX = max(|X|)/127, X̂ = X/sX (7)

Algorithm 3: Backward pass of the 8-bit attention.

1: Input: {sQ, Q̂i}, {sK, K̂i}, {sV, V̂i}, Km, O, {Li} from forward, dO ∈ RN×d, block size Bq, Bkv ;
2: D = rowsum(dO ◦O), divide D to Tm = N/Bq blocks {Di};
3: for j = 1 to Tn do
4: for i in [1, Tm] do
5: Sij = MM(Q̂i, K̂j)× sQ × sK ; Pij = exp(Sij − Li) ;
6: sP, P̂ij = ψ(Pij), sdO, d̂Oi = ψ(dOi) ; // INT8 per-block quantization.
7: dVj ← dVj + MM(P̂⊤

ij , d̂Oi)× sP × sdO ;
8: dPij = MM(dO,V⊤

j ) ; // Keep in FP16.
9: dSij = Pij ◦ (dPij −Di) ; sdS, d̂Sij = ψ(dSij) ; // INT8 per-block quantization.

10: dQi ← dQi + MM(d̂Sij , K̂j)× sdS × sK + rowsum(dSij)Km ; // Backward for smooth-k.

11: dKj ← dKj + MM(d̂S
⊤
ij , Q̂i)× sdS × sQ ;

12: end for
13: end for
14: return dQ, dK, dV ;

4.2 Backward

There are five matrix multiplications in the backward pass of attention:

S = QK⊤, dV = P̃⊤dO, dP = dOV⊤, dQ = dSK, dK = dS⊤Q (8)

We observe that whether applying quantizing to dOV⊤ has a significant impact on the accuracy of
the gradient of Q,K. This is because the accuracy of dOV⊤ directly determines the accuracy of dP
and dS (see computational dependencies in Algorithm 3). The accuracy loss in dS will continuously
accumulate errors into dQ and dK during the recurrent process along the sequence length in FlashAt-
tention’s backward pass, meaning longer sequences lead to greater error accumulation. Therefore,
we maintain dOV⊤ in FP16 while accelerating the other four matrix multiplications using INT8
per-block quantization. The algorithm for the forward is shown in Algorithm 3. Empirical results:
Table 1 (c) shows the accuracy of the dQ with and without quantization of dOV⊤. We find that the
accuracy of dQ is significantly improved when keeping dOV⊤ in FP16.

Table 1: Accuracy ablation using different quantization strategies.

(a) Different FP4 choices

Type CosSim↑ L1↓ RMSE↓
MXFP4 98.37% 0.294 0.994
NVFP4 99.52% 0.077 0.201

(b) Different scale strategies for P̃

Method CosSim L1 RMSE

Direct 93.32% 0.193 1.103
Two-level 99.52% 0.077 0.201

(c) Different data types for dOV⊤

Method CosSim L1 RMSE

INT8 97.47% 0.171 2.440
FP16 99.77% 0.039 0.692
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Figure 4: Speed comparison between SageAttention3 and Baselines (RTX5090, headim=128).
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Figure 5: Speed comparison between SageAttention3 and Baselines (RTX5090, headim=64).
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Figure 7: Speed comparison between SageBwd and Baselines (RTX4090, headim=64).

Table 2: End-to-end metrics comparison on various models.

Model Attention CLIPSIM ↑ CLIP-T ↑ VQA-a ↑ VQA-t ↑ FScore ↑

CogvideoX
Full-Precision (16bit) 0.1865 0.9968 70.476 69.875 4.780
SageAttention2 (8bit) 0.1880 0.9969 69.414 70.750 4.534
SageAttention3 (4bit) 0.1881 0.9969 69.860 70.364 4.035

Hunyuan
Video

Full-Precision (16bit) 0.1838 0.9993 68.998 78.891 1.4793
SageAttention2 (8bit) 0.1836 0.9993 69.497 77.019 1.4741
SageAttention3 (4bit) 0.1866 0.9993 70.552 75.440 1.232

Mochi
Full-Precision (16bit) 0.1828 0.9990 61.9840 61.0000 1.8042
SageAttention2 (8bit) 0.1819 0.9990 61.0093 60.3732 1.7539
SageAttention3 (4bit) 0.1800 0.9993 61.863 59.429 1.649

Model Attention FID ↓ sFID ↓ CLIP ↑ IR ↑

Flux
Full-Precision (16bit) 162.812 146.980 31.409 0.91
SageAttention2 (8bit) 163.107 146.213 31.436 0.90
SageAttention3 (4bit) 162.121 142.839 31.450 0.94

Stable-Di
ffusion3.5

Full-Precision (16bit) 166.421 146.379 31.93 0.93
SageAttention2 (8bit) 164.986 148.557 32.01 0.93
SageAttention3 (4bit) 166.102 145.587 32.01 0.92
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Figure 8: Pretraining and Finetuing loss curves of BF16 and 8-bit atttention.

Table 3: 8-bit attention finetune results on Qwen2.5 and Llama3.2 models.
Model Method GSM8K(Acc↑) DROP(F1↑) MMLU(Acc↑) HELLASWAG(Acc↑)

Qwen2.5 (1.5B) BF16 0.521 0.733 0.569 0.905

SageBwd 0.520 0.734 0.574 0.911

Qwen2.5 (3B) BF16 0.601 0.785 0.640 0.944

SageBwd 0.607 0.782 0.653 0.943

Llama3.2 (1B) BF16 0.259 0.641 0.464 0.828

SageBwd 0.268 0.637 0.458 0.823

5 Experiments

Main results. SageAttention3 is faster than FlashAttention and xformers by 5× and 11× on
RTX5090, and maintains end-to-end metrics across various models. Furthermore, SageBwd is faster
than FlashAttention and xformers by 1.67× and 3× on RTX4090, and achieves no measurable
degradation in fine-tuning tasks.

5.1 Setup

Models and attentions. We validate the effectiveness of SageAttention3 and SageBwd across
a diverse set of representative models from language, image, and video generation. Specifically,
we conduct experiments on: Qwen2.5 [12] and Llama3.2 [13] for text2text, CogvideoX [14],
HunyuanVideo [15], and Mochi [16] for text2video, Flux [17], and Stable-Diffusion3.5 [18]
for text2image. We compare our method with FlashAttention2 [19], xformers [20], SageAtten-
tion [11], and SageAttention2 [5]. Please note that FlashAttention3 can only run on Hopper GPUs,
so FlashAttention2 is already the fastest version for RTX5090 and RTX4090.

Datasets, metrics, and hyperparameters. For the details about the datasets, metrics, and hyperpa-
rameters we used, please refer to Appendix A.3.

Implementation. We implement SageAttention3 using CUTLASS [21] and CUDA, and imple-
ment SageBwd using OpenAI Triton [22].
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Figure 9: Visible examples of video generation on HunyuanVideo (left) and image generation on
Stable-Diffusion3.5 (right).
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Table 4: End-to-end speedup performance using SageAttention3 and SageBwd.

(a) Inference latency using SageAttention3.

Model Original Sage1 Sage2 Sage3

CogvideoX (2B) 64 s 55 s 46 s 27 s
HunyuanVideo 489 s 257 s 240 s 164 s

(b) One iteration training latency using SageBwd.

Model Original SageBwd

Llama (8K) 2.1 s 1.9 s
Llama (16K) 6.0 s 5.2 s

5.2 Efficiency and Effectiveness

Kernel Speed. Fig. 4 and 5 show the kernel speed of SageAttention3 and baselines on RTX5090.
We can see that SageAttention3 achieves 4~5× speedup over FlashAttention2 and 8~11× speedup
over xformers. Fig. 6 and 7 show the forward+backward speed of SageBwd and baselines on RTX4090.
It shows that SageBwd achieves 1.67× speedup at most than FlashAttention2 and a higher speedup
than FlashAttention2 implemented in Triton and xformers.

End-to-end metrics loss of SageAttention3. In Table 2, we compare the end-to-end quality metrics
on various models using SageAttention3 and other attention methods. The results demonstrate
that SageAttention3 almost incurs almost no end-to-end quality loss across these models.

End-to-end metrics loss of SageBwd. To evaluate the effectiveness of SageBwd on training tasks, we
conduct two experiments. First, we fine-tune the base models of Qwen2.5 (3B) and Llama3.2 (1B)
on GSM8K [23], DROP [24], MMLU [25], and HELLASWAG [26] datasets. Fig. 8 (b-e) shows the
fine-tuning loss results, indicating that SageBwd perfectly aligns with BF16. Moreover, our evaluation
of the fine-tuned models’ answer quality across multiple test datasets (Table 3) demonstrates that
SageBwd achieves the same performance as BF16. Second, we conduct pre-training tasks on FineWeb-
Edu [27] using a Llama (400M) [28] model. Fig. 8 (a) shows the loss curve, indicating that while
SageBwd can achieve loss convergence, its convergence speed is relatively slow. This limitation
restricts its applicability in pretraining tasks.

Visible example. Fig. 9 visualizes some comparative examples of video generation on
HunyuanVideo and image generation on Stable-diffsion3.5 using SageAttention3. The
results demonstrate that SageAttention3 maintains full generation quality. Additional visible
examples are provided in Fig. 10, 11, 13, and 14 in the Appendix.

End-to-end speedup. Table 4(a) and 4(b) summarize end-to-end inference and training la-
tency improvements. The results show that SageAttention3 (Table 4(a)) achieved about 3×
(HunyuanVideo) and 2.4× (CogVideoX) end-to-end inference generation speedups on RTX5090.
Furthermore, SageBwd (Table 4(b)) accelerates the training of Llama (1B) by about 1.15× using
8K/16K token micro-batches on RTX4090.

5.3 Benefit of Using Both SageAttention3 and SageBwd

Table 5: Comparison between BF16 and INT8 fine-tuning followed by FP4 inference.

(a) Qwen2.5-1.5B results.

Method GSM8k ↑ MMLU ↑
BF16 Fine-tuning 0.4912 0.4688
SageBwd Fine-tuning 0.5232 0.4934

(b) Qwen2.5-3B results.

Method GSM8k ↑ MMLU ↑
BF16 Fine-tuning 0.5860 0.6000
SageBwd Fine-tuning 0.5945 0.6032

We first apply SageBwd during fine-tuning, followed by SageAttention3 during inference. Specif-
ically, we fine-tuned Qwen2.5 for 1,000 steps using either BF16 or SageBwd, and then evaluated
inference performance using SageAttention3. The results on GSM8k and MMLU are shown in
Table 5, INT8 SageBwd fine-tuning followed by FP4 SageAttention3 inference achieves higher
accuracy on GSM8k and MMLU, suggesting the approaches are complementary. This improvement
is likely because INT8 and FP4 share a more similar representable data distribution, reducing the
mismatch error compared to BF16.
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5.4 INT8 SageBwd vs FP8 SageBwd

We choose INT8 for SageBwd for two key reasons: (1) Higher gradient accuracy in attention backward.
The backward of INT8 attention yields more accurate gradients for Q, K, and V compared to FP8.
We evaluate all layers of CogVideoX-2B and report the L1 error and cosine similarity of the gradients
in Table 6 and Table 7. For fairness, dOV⊤ is kept in FP16 for both methods. As shown in the
results, INT8 SageBwd achieves lower L1 error and higher cosine similarity than FP8 SageBwd. (2)
Wider hardware support. INT8 is supported on almost all modern GPUs, including NVIDIA A100
and many non-NVIDIA devices (e.g., AMD MI250 [29], Ascend 910B [30]), while FP8 support
remains limited to newer architectures. Addintionally, we fine-tune Qwen2.5-1.5B and Qwen2.5-3B
for 1,000 steps using either INT8 or FP8 SageBwd (both with dOV⊤ kept in FP16 for fairness),
and then inference with FP4 SageAttention3. As shown in Table 8, models fine-tuned with INT8
attention achieve higher accuracy on both GSM8K and MMLU benchmarks.

Table 6: L1 error of Q, K, and V gradients.
Method dQ ↓ dK ↓ dV ↓
INT8 SageBwd 0.0290 0.0317 0.0423
FP8 SageBwd 0.0696 0.0999 0.0873

Table 7: Cos similarity ofQ,K, and V gradients.
Method dQ ↑ dK ↑ dV ↑
INT8 SageBwd 0.9987 0.9993 0.9995
FP8 SageBwd 0.9880 0.9910 0.9955

Table 8: Comparison of INT8 and FP8 SageBwd fine-tuning on Qwen2.5 models.
(a) Qwen2.5-1.5B

Method GSM8K ↑ MMLU ↑
INT8 Fine-tuning 0.5232 0.4934
FP8 Fine-tuning 0.5031 0.4689

(b) Qwen2.5-3B

Method GSM8K ↑ MMLU ↑
INT8 Fine-tuning 0.5945 0.6032
FP8 Fine-tuning 0.5868 0.5907

6 Related Work

Recent efficient attention works [31] that utilize hardware features to accelerate attention computation
methods mainly include the following: FlashAttention [32] introduces tiling to reduce the GPU
memory I/O between global memory and on-chip SRAM, achieving significant speedup. FlashAtten-
tion2 [19] improves the parallelism and warp partition strategies. FlashAttention3 [33] exclusively
optimizes the kernel speed on the Hopper GPUs. xformers [20] accelerates attention using dedicated
CUDA kernels. SageAttention [11] and SageAttention2 [5, 34] accelerate attention using quantiza-
tion and some novel outlier smoothing techniques. RingAttention [35] extends FlashAttention to
multi-GPU/Node environments. In these works, although FlashAttention3 proposes a version of FP8
attention, it has failed to be applied to video generation models in a plug-and-play way [5]. Moreover,
the FP8 attention in FlashAttention3 does not support the backward pass, limiting its applicability
to training tasks. Additionally, numerous efficient attention variants have emerged, including linear
attention [36, 37, 38, 39, 40, 41] and sparse attention [42, 43, 44, 45, 46, 47, 48, 49, 50, 2, 51, 52, 53].
Although these works represent promising research directions, they are orthogonal to our work.

7 Conclusions

In this paper, we make two key contributions. Firstly, we design SageAttention3, the first mi-
croscaling FP4 attention for inference acceleration, achieving 1038 TOPS on RTX5090, which is a 5×
speedup than the fastest FlashAttention on RTX5090. Experiments show that SageAttention3 could
accelerate various models with no end-to-end quality metrics degradation. Secondly, we introduce
the first trainable 8-bit attention (SageBwd) for training acceleration and explore its feasibility in
training tasks. We find that the 8-bit attention could achieve lossless performance in fine-tuning
tasks, but currently has some limitations in pertaining tasks.

Future Work. First, while SageBwd demonstrates faster performance than FP16 implementation, we
observe a noticeable gap between its current speed and theoretical upper bounds. This gap may be
caused by suboptimal Triton kernel implementations, which we plan to further optimize. Second, and
more importantly, investigating the application of low-bit attention in pretraining tasks presents a
promising research direction worthy of exploration.
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A Appendix

A.1 Visible Comparison Examples
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Figure 10: Visible examples of image generation on Stable-Diffusion3.5.
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Figure 11: Visible examples of image generation on Flux.

(a) Full-Precision (b) Two-level quantization (c) Direct quantization

Figure 12: Visual comparison of different scale strategies for P̃ from CogVideoX.
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Figure 13: Visible examples of video generation on CogVideoX.
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Figure 14: Visible examples of video generation on HunyuanVideo.
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Fig. 10 and Fig. 11 show additional visual comparison examples of image generation tasks. Fig. 13
and Fig. 14 show more visual comparison examples of video generation tasks.

A.2 Additional Kernel Speed Comparison

Fig. 15 and Fig. 16 show the forward kernel speed of SageBwd. Fig. 17 and Fig. 18 show the
backward kernel speed of SageBwd. SageBwd achieved a 2x speed up than FlashAttention in the
forward propagation. SageBwd achieved a 1.2~1.6x speed up than FlashAttention in the backward
propagation.
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Figure 15: Forward speed comparison between SageBwd and Baselines (RTX4090, headim=128).
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Figure 16: Forward speed comparison between SageBwd and Baselines (RTX4090, headim=64).
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Figure 17: Backward speed comparison between SageBwd and Baselines (RTX4090, headim=128).
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Figure 18: Backward speed comparison between SageBwd and Baselines (RTX4090, headim=64).
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A.3 Datasets, Metrics, and Hyperparameters

Datasets. Text-to-video models are evaluated using the open-sora [54] prompt sets. Text-to-image
models are assessed on COCO annotations [55]. Language models are evaluated on GSM8K [23],
DROP [24], MMLU [25], and HELLASWAG [26] datasets.

End-to-end metrics. For text-to-text models, we use Accuracy (Acc.) and F1-Score (F1). For text-to-
video models, we evaluate the quality of generated videos on five metrics: CLIPSIM and CLIP-Temp
(CLIP-T) [56] to measure the text-video alignment; (VQA-a) and (VQA-t) to assess the video
aesthetic and technical quality, respectively; and Flow-score (FScore) for temporal consistency [57].
For text-to-image models, generated images are evaluated in three aspects: FID [58] and sFID [59]
for fidelity evaluation, Clipscore (CLIP) [60] for text-image alignment, and ImageReward (IR) [61]
for human preference.

Accuracy metrics. We use three metrics to assess the accuracy of quantized attention output O′

compared to attention output in full-precision O: First, we flatten O′ and O into vectors in the shape
of 1 × n. Then, Cosine similarity: CosSim =

∑
OO′/

√∑
O2
√∑

O′2, Relative L1 distance:
L1 =

∑ |O −O′|/∑ |O|, Root mean square error: RMSE =
√
(1/n)

∑
(O −O′)2.

Hyperparameters. For pretraining tasks, we use a 400M model with a hidden size of 1024, 20
layers, an intermediate size of 3072, and 16 attention heads. The training uses a learning rate of 1e-3
with linear decay over 1000 warmup steps, and each step processes 2M tokens. For finetuning tasks,
we train for 700 steps using a learning rate of 3e-5 with linear decay and 100 warmup steps with a
batch size of 32 on GSM8K dataset and 128 on MMLU, DROP, and HELLASWAG datasets.
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Figure 19: FP4 operand A register layout - rows 0 and 8, thread 0-3, entries 0-15.
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Figure 20: FP32 accumulator register layout - rows 0 and 8, thread 0-3, entries 0-15.
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Figure 21: Permuted FP32 accumulator register layout - rows 0 and 8, thread 0-3, entries 0-15.

A.4 Additional Experiments of using SageBwd

Table 9–14 show Qwen2.5 (1.5B), Qwen2.5 (3B), and Llama3.2 (3B) fine-tuning results on four
datasets with five different random seeds. The average and standard deviation show SageBwd is
highly consistent with BF16 across various random seeds.
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Table 9: Comparison of SageBwd and BF16 performance on GSM8K and DROP across different
seeds on Qwen2.5 (1.5B).

Seed GSM8K DROP

SageBwd BF16 SageBwd BF16

42 0.5133 0.5125 0.7316 0.7364
233 0.5027 0.5042 0.7269 0.7295
1234 0.4973 0.4973 0.7329 0.7342
5678 0.5201 0.5208 0.7340 0.7332
1 0.5049 0.5057 0.7278 0.7404

Avg 0.5077 0.5081 0.7307 0.7348
Std 0.0090 0.0089 0.0032 0.0040

Table 10: Comparison of SageBwd and BF16 performance on MMLU and HellaSwag across different
seeds on Qwen2.5 (1.5B).

Seed MMLU HellaSwag

SageBwd BF16 SageBwd BF16

42 0.5814 0.5873 0.9089 0.9065
233 0.5746 0.5785 0.9082 0.9049
1234 0.5805 0.5836 0.9025 0.9047
5678 0.5736 0.5693 0.9112 0.9053
1 0.5830 0.5823 0.9058 0.9075

Avg 0.5786 0.5802 0.9073 0.9058
Std 0.0043 0.0069 0.0033 0.0012

Table 11: Comparison of SageBwd and BF16 performance on GSM8K and DROP across different
seeds on Qwen2.5 (3B).

Seed GSM8K DROP

SageBwd BF16 SageBwd BF16

42 0.5982 0.6232 0.7800 0.7812
233 0.5997 0.5974 0.7786 0.7812
1234 0.6156 0.6103 0.7786 0.7824
5678 0.6065 0.6012 0.7816 0.7853
1 0.6171 0.6073 0.7813 0.7832

Avg 0.6074 0.6079 0.7800 0.7827
Std 0.0001 0.0001 0.0000 0.0000

Table 12: Comparison of SageBwd and BF16 performance on MMLU and HellaSwag across different
seeds on Qwen2.5 (3B).

Seed MMLU HellaSwag

SageBwd BF16 SageBwd BF16

42 0.6434 0.6425 0.9419 0.9402
233 0.6431 0.6437 0.9405 0.9402
1234 0.6492 0.6492 0.9414 0.9429
5678 0.6531 0.6400 0.9430 0.9440
1 0.6510 0.6454 0.9446 0.9434

Avg 0.6480 0.6442 0.9423 0.9421
Std 0.0000 0.0000 0.0000 0.0000
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Table 13: Comparison of SageBwd and BF16 performance on GSM8K and DROP across different
seeds on Llama3.2 (1B).

Seed GSM8K DROP

SageBwd BF16 SageBwd BF16

42 0.2722 0.2547 0.6367 0.6447
233 0.2661 0.2570 0.6456 0.6424
1234 0.2616 0.2873 0.6439 0.6352
5678 0.2684 0.2585 0.6372 0.6409
1 0.2646 0.2335 0.6393 0.6441

Avg 0.2666 0.2582 0.6405 0.6414
Std 0.0000 0.0003 0.0000 0.0000

Table 14: Comparison of SageBwd and BF16 performance on MMLU and HellaSwag across different
seeds on Llama3.2 (3B).

Seed MMLU HellaSwag

SageBwd BF16 SageBwd BF16

42 0.4665 0.4705 0.8230 0.8319
233 0.4646 0.4560 0.8327 0.8256
1234 0.4702 0.4757 0.8202 0.8243
5678 0.4580 0.4639 0.8232 0.8276
1 0.4666 0.4691 0.8218 0.8236

Avg 0.4652 0.4670 0.8242 0.8266
Std 0.0000 0.0000 0.0000 0.0000

A.5 Transposing V .

Performing the forward propagation of attention in full FP4 precision poses additional challenges
compared to FP16. The input tensors Q, K, and V are typically contiguous in the head dimensions.
However, the row-major constraints on FP4 MMA for the second GEMM necessitate V to be
contiguous in the sequence length dimension. Calling a standalone pre-processing transpose kernel
for this purpose incurs excessive overhead, particularly during inference, which is often a memory-
bound situation. We address the problem by kernel fusion. For the first problem, we fuse the transpose
of V into the quantization kernel, thereby avoiding additional I/O overhead.

A.6 Accmulated Quantization Error Analysis.

Table 15: Layer-wise L1 error analysis of SageAttention3 on CogVideoX-2B. The second row
shows the results by retaining the three most sensitive layers in FP16.

Method Layer1 ↓ Layer10 ↓ Layer20 ↓ Layer30 ↓
Use SageAttention3 directly 0.0076 0.0922 0.1146 0.0571
Keep 3 most sensitive layers in FP16 0.0076 0.0447 0.0773 0.0429

To explore the issue of accumulated quantization error across layers, we conduct an analysis using
SageAttention3 on CogVideoX-2B and report the per-layer L1 error in Table 15. We observe that
the accumulated error generally increases with layer depth, though it occasionally decreases in deeper
layers, suggesting partial error cancellation. To mitigate this drift, we apply a simple yet effective
strategy: keeping the three layers with the largest observed error growth in FP16 precision. As shown
in the table, this adjustment significantly reduces the overall error accumulation across layers.
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A.7 Ablation of Smoothing Techniques.

Table 16: Ablation of attention accuracy with different smoothing methods on CogVideoX-2B.
Smoothing K and Smoothing Q are techniques from SageAttention and SageAttention2.

Method Cossim ↑ L1 Error ↓ RMSE ↓
None 0.915642 0.335867 0.303483
SmoothQuant 0.930125 0.267617 0.252883
Hadamard 0.941222 0.262047 0.223970
Smoothing_Q 0.982848 0.115658 0.125862
Smoothing_K 0.991176 0.094832 0.097668

To investigate the impact of different smoothing strategies on attention accuracy, we compare several
existing techniques, including SmoothQuant [62] and Hadamard transformations, which provide
per-token or per-tensor scaling control. However, we find these methods less effective in our
setting. SageAttention3 inherits the smoothing Q and smoothing K mechanisms introduced in
SageAttention2. We conduct an ablation study on all layers of CogVideoX-2B to evaluate their
effects. As shown in Table 16, both smoothing Q and smoothing K yield substantially higher cosine
similarity and lower reconstruction errors, demonstrating their effectiveness in stabilizing quantized
attention computation.

A.8 Theoretical Speed Comparison.

Table 17: Theoretical throughput comparison between FlashAttention3 and SageAttention3 across
different GPUs.

Method B300 TOPS ↑ B200 TOPS ↑ RTX5090 TOPS ↑
FlashAttention3 2500 2500 209.5
FlashAttenion3 (FP8) 5000 5000 419
SageAttention3 (FP4) 15000 10000 1676

To provide a theoretical comparison with FlashAttention3, we refer to NVIDIA’s official documen-
tation on throughput (TOPS) across different precisions. Since FlashAttention3 is currently only
supported on H100 GPUs, a direct empirical comparison is not feasible. Instead, we estimate the
theoretical compute throughput of both FlashAttention3 and our SageAttention3 on GPUs that sup-
port FP4 Tensor Cores (B300, B200, and RTX5090). As summarized in Table 17, SageAttention3
achieves substantially higher theoretical peak throughput, highlighting its potential for further accel-
erating attention computation beyond FlashAttention-3.

A.9 FlashAttentions vs SageAttentions.

Table 18: Speed–accuracy trade-off of different attention methods.
Method TOPS on 5090 ↑ TOPS on H100 ↑ Accuracy (CosSim) ↑
FlashAttention2 214 338 100.000%
FlashAttention3 (16bit) N/A 470 100.000%
FlashAttention3 (8bit) N/A 890 98.570%
SageAttention1 479 518 99.996%
SageAttention2 (8bit) 643 885 99.995%
SageAttention3 (4bit) 1038 N/A 99.551%

To illustrate the trade-off between accuracy and speed, we recorded the accuracy (Cosine similarity) of
various attention methods across all layers of CogVideoX-2B, along with their theoretical throughput
on RTX5090 and H100 GPUs. These results are summarized in the Table 18.
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A.10 Analysis of Two-Level Quantization.

Proof. We analyze the relative quantization error of P̃ using both direct quantization and
two-level quantization as follows:

For direct quantization, the relative quantization error, denoted as E1, is defined as:

sP, P̂ = ϕ(P̃), E1 =
|sP × P̂− P̃|

|P̃|
(9)

For two-level quantization, the first level proceeds as:

sP1 = rowmax(P̃)/(448× 6), P̃2 = P̃/sP1 ,

The quantization error introduced in this first step is negligible because P̃, P̃2, and sP1
are all

represented in FP32 format.

We focus primarily on the second-level quantization, where the relative quantization error E2 is given
by:

sP2 , P̂2 = ϕ(P̃2), E2 =
|sp2 × P̂2 − P̃2|

|P̃2|
(10)

The key difference between Equation 9 and 10 lies in the range of the FP8 scale factor.

Let {X}n denote the number of distinct representable values in the set X . Then:

in direct quantization:
0 ≤ sP ≤ 0.167, sP ∈ E4M3, {sP}n = 35

In two-level quantization:
0 ≤ sP2 ≤ 448.0, sP2 ∈ E4M3, {sP2}n = 127

Since {E2M1}n = 8, the number of unique outputs after dequantization is:

For direct quantization:

P̃′ = sP × P̂, {P̃′}n = 35× 8 = 280

For two-level quantization:

P̃′
2 = sP2 × P̂2, {P̃′

2}n = 127× 8 = 1016

Let ∆(pi) denote the interval between the two nearest quantization levels surrounding the value
pi ∈ P̃. Then the absolute quantization error satisfies:

|p̂i − pi| ≤
∆(pi)

2
The relative error ε satisfies:

εi ≤
∆(pi)

2× pi

Given that {P̃′
2}n > {P̃′}n, the quantization intervals in the two-level scheme are finer:

∆(P̃2)

P̃2

<
∆(P̃)

P̃

Thus, the relative quantization error satisfies:

|P̃′
2 − P̃2|
P̃2

<
|P′ − P̃|

P̃

Which leads to the conclusion:
E2 < E1
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A.11 Analysis of the Benefit of Keeping dOiV
⊤
j in FP16 in SageBwd.

The backward pass of SageBwd involves 5 MatMuls. The accuracy of Sij = QiK
⊤
j is fully addressed

in SageAttention2. The remaining four are as follows:

(1) dPij = dOiV
⊤
j .

(2) dQi ← dQi + dSijKj

(3) dKj ← dKj + dS⊤
ijQi

(4) dVj ← dVj +P⊤
ijdOi

We choose to keep (1) in FP16, while quantizing others to INT8. This choice can be formally justified:

Proof. Following [63], we assume that any matrix X ∈ Rn×d (e.g. Q,K,V,dO) satisfies:

• The entries in X are mutually independent.

• Xij ∼ N(µX,j , σ
2
X,j), i.e. the distribution of each token is identical.

The quantization error of a matrix X is denoted as:

∆X := sXX̂−X, where sX, X̂ = ψ(X).

For example, consider the error in dQ. Neglecting second-order error terms, we have:

∆dQ = (P ◦ (dO∆V⊤ +∆dOV⊤))K︸ ︷︷ ︸
∆dQ(1) from (1)

+∆dSK+ dS∆K︸ ︷︷ ︸
dQ(2)from (2)

.

Here, dS = P ◦ (dP−D) = P ◦ (dOV⊤ −D), where D = dO⊙O. In element-wise terms (the
subscript denotes a single element):

dSij = Pij

∑

k

dOik(Vjk −Oik) = Pij

∑

k

dOik

(
Vjk −

∑

ℓ

PiℓVℓk

)

Since V is independent of other variables, by linearity of expectation:

E[dSij ] = E

[
Pij

∑

k

dOik

(
µV,k −

∑

ℓ

PiℓµV,k

)]
= 0.

Moreover, as negating V flips the sign of dSij , the PDF of dSij is symmetric. Using a "round-to-
nearest" quantization policy, we have E[∆dS] = 0. Thus

E
[
dQ(2)

]
= E[∆dSK+ dS∆K] = 0,

while E
[
∆dQ(1)

]
is generally non-zero (e.g. when distributions have non-zero means), indicating

that dQ’s error is dominated by ∆dQ(1).

A.12 Broader Impact

This paper presents work that aims to advance the field of efficient machine learning systems. It can
be used to accelerate the inference and training processes of various models. None of the negative
impacts we feel must be specifically highlighted here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Both the Abstract and the Introduction indicate the scope and contributions of
this paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Introduction and Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide and check the proof for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Result can be reproduced according to the sections of Method, Experiment,
and Appendix A.3 sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Source code and instructions will be provided in supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please refer to the Sections of Experiment and Appendex A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: As listed in the Appendix, for those experiments with large errors, we provide
mean and standard deviation values of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the specific computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not release models, generators, or datasets with a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Please refer to the Experiment Section and the Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Please refer to README.md in our following supplemental material submis-
sion.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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