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ABSTRACT

Current speech language models require their core component, the speech codec,
to discretize continuous speech signals into tokens that not only capture high-
level cues for autoregressive modeling but also preserve sufficient acoustic de-
tails for perceptual quality. To address this need, we propose Gogo, a group-
wise granularity-ordered codec that quantizes each group of frames into tokens ar-
ranged from coarse to fine, where coarse tokens encode high-level abstractions and
fine tokens progressively recover low-level details. Building on the granularity-
ordering property of Gogo, we introduce GogoSpeech, a two-stage speech lan-
guage model that performs speech generation by first constructing a coarse speech
backbone at an extremely low token rate and then enriching the backbone with
fine-grained acoustic details. Considering the inherently non-uniform information
distribution in speech signals, we further design a Group Relative Policy Opti-
mization (GRPO)-trained token allocator that adaptively allocates token budgets
to groups based on group-wise complexity. Experimental results demonstrate that
Gogo delivers state-of-the-art reconstruction performance across most metrics at
a token rate of 47. Moreover, evaluations on zero-shot text-to-speech tasks show
that GogoSpeech enables efficient generation by adaptively reducing the average
token rate, and attains state-of-the-art results in long-form speech generation.

1 INTRODUCTION

Large language models (LLMs) such as the GPT series (Brown et al., 2020; OpenAI, 2024) have
demonstrated remarkable capabilities across diverse text-based tasks. Their success has inspired
growing efforts to extend the LLM paradigm to the speech modality, leading to the development
of speech language models (SLMs) capable of understanding and generating spoken language (Ye
et al., 2025b; Fang et al., 2025; Défossez et al., 2024). A common pipeline for SLMs first discretizes
continuous speech into sequences of tokens via an audio codec, then models both text and speech
tokens in an autoregressive framework. The effectiveness of this approach hinges critically on the
codec’s ability to produce tokens that concurrently contain high-level cues (e.g., content, semantics,
and structural attributes) for autoregressive modeling (Ye et al., 2025a) and sufficient acoustic details
(e.g., low-level acoustic fluctuations) for perceptual quality preservation.

Conventional audio codecs, originally designed for compression and transmission, adopt a frame-
wise quantization scheme (Kleijn et al., 2021; Valin et al., 2012; Défossez et al., 2022). While
this enables high-fidelity reconstruction, its strong locality bias limits the codec’s ability to capture
high-level cues needed by SLMs. To address this limitation, recent works have augmented codecs
with self-supervised representations (Défossez et al., 2024; Zhang et al., 2024; Li et al., 2025) or
automatic speech recognition (ASR) features (Du et al., 2024b; Jo et al., 2025; Zeng et al., 2025) to
explicitly inject high-level linguistic and semantic information into the quantization process. How-
ever, the fundamental frame-wise quantization paradigm remains unbroken, inherently limiting the
ability to learn high-level information. Besides, little attention has been given to the non-uniform
information distribution in speech (Dieleman et al., 2021; Voran, 2024). Current approaches gener-
ally allocate one same bitrate to all segments, which leads to redundant coding and low generation
efficiency, especially in less complex segments like silence where a low coding rate would suffice.

To address the aforementioned limitations, we redesign both the codec and SLM framework. As
depicted in Figure 1, we first propose Gogo, a group-wise granularity-ordered codec that processes
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Figure 1: System overview. Only one group is plotted for simplicity. The shading of a token reflects
the granularity of the information it encodes. Best viewed in color.

contiguous frames as groups and generates tokens in a coarse-to-fine order, where coarse tokens
capture high-level information and fine tokens are used to progressively restore low-level acoustic
details. Building on the granularity-ordering property of Gogo, we develop GogoSpeech, a two-
stage SLM for speech generation. In the first stage, a high-level speech backbone, which serves
as a coarse indicator of the target speech, is predicted at a extremely low feature rate (around 14
Hz). This reduced feature rate enhances the stability of autoregressive prediction and mitigates er-
ror accumulation (Arora et al., 2022; He et al., 2021). In the second stage, fine-grained details are
incrementally recovered conditioned on the speech backbone. The feature rate in the second stage is
restored to a standard level to ensure high-fidelity synthesis with precise details. To further enhance
efficiency, we propose a Group Relative Policy Optimization (GRPO)-trained (Shao et al., 2024) to-
ken allocator that dynamically assigns token budgets to every group based on its complexity, thereby
aligning computational resources with the non-uniform information density of speech signals.

Our main contributions in this work are fivefold: (1) proposing a new speech codec, namely Gogo,
featuring group-by-group and granularity-ordered tokenization that better addresses the representa-
tional requirements of SLMs; (2) constructing a new speech language model, namely GogoSpeech,
enabling staged speech generation from high-level abstractions to fine acoustic details; (3) develop-
ing a GRPO-trained token allocator that optimizes efficiency and quality by aligning token budgets
with group-wise complexity; (4) conducting reconstruction experiments to show that Gogo achieves
superior performance compared to state-of-the-art codecs; (5) performing experiments on text-to-
speech (TTS) to show that GogoSpeech achieves better performance with higher stability and effi-
ciency. Demo samples can be found at https://anonymous.4open.science/w/gogo.

2 METHODS

2.1 GOGO

The proposed Gogo, as shown in Figure 2, comprises three main components: an encoder for learn-
ing speech representations, a flow-based generative model (Lipman et al., 2023; Tong et al., 2024)
for mel-spectrogram reconstruction, and a vocoder for converting spectrograms into waveforms.
Additionally, Gogo integrates an ASR module and an autoregressive (AR) prior (Wang et al., 2025;
Yang et al., 2025) to enhance the suitability of the learned speech tokens for downstream generation.

2.1.1 WORKFLOW

Given an input waveform w, we first extract its mel-spectrogram x ∈ Rnf×d, where nf denotes the
number of frames and d the number of mel bins. The spectrogram is then partitioned along the tem-
poral axis into multiple non-overlap groups xi ∈ Rg×d, where g denotes the group size, i ∈ [1, ng]
denotes the group index, and ng = ⌈nf

g ⌉ denotes the total number of groups. The last group
is zero-padded if necessary. Subsequently, each group is concatenated with nq learnable queries
qi ∈ Rnq×d, which yields zi ∈ R(g+nq)×d. The extended sequences zi are encoded by Trans-
former (Vaswani et al., 2017) encoder, after which the xi part is discarded and finite scalar quantiza-
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Figure 2: Architecture of Gogo. Here the group size g is set to 5 and the number of speech queries
nq assigned to each group is set to 3 for demonstration. Best viewed in color.

tion (FSQ) (Mentzer et al., 2024) is applied to the positions corresponding to the learnable queries,
producing speech token indices si ∈ Rnq and their corresponding embeddings q̄i ∈ Rnq×dh , where
dh denotes the hidden dimension. Formally, the tokenization workflow in Gogo is given by:

x = Mel(w),

x1, x2, · · · , xng = Grouping(x),

zi = Cat(xi, qi),

q̄i, si = FSQ(Encoder(zi)),

(1)

where Mel(·) denotes the mel extraction operation, Grouping(·) denotes the grouping operation, and
Cat(·) denotes the concatenation operation.

For reconstruction, q̄i are first padded with (g − nq) placeholder tokens to match the original group
length g, resulting in aligned features x̄i ∈ Rg×dh . All groups’ x̄i are concatenated along the time
axis to generate x̄ ∈ Rnf×dh , which is then fed into a flow-matching model to predict the mel-
spectrogram. The final waveform w̄ is recovered using a pretrained Vocos (Siuzdak, 2023) vocoder.
Formally, the reconstruction workflow in Gogo is given by:

x̄i = Cat(q̄i,Placeholders),

x̄ = Cat(x̄1, x̄2, · · · , x̄ng ),

w̄ = Vocoder(Flow(x̄)).

(2)

2.1.2 TRAINING OBJECTIVES

Gogo leverages conditional flow matching (CFM) (Lipman et al., 2023), which extends the frame-
work of continuous normalizing flows (Chen et al., 2018) to learn a time-dependent vector field
that transports a simple prior distribution, e.g., the standard normal distribution, to the distribu-
tion of the mel-spectrograms conditioned on the features x̄. Given a mel-spectrogram x1 and a
Gaussian noise x0 ∼ N (0, I), we first interpolate between them and produce a noisy spectrogram
xt = (1 − t)x0 + tx1 using a flow time t ∼ U(0, 1). The conditional vector field for this linear
interpolation is v(x0, x1, t) = ∂xt/∂t = x1 − x0. The flow-matching model, parameterized by θ,
takes (xt, x̄, t) as input and predicts a velocity vector vθ(xt, x̄, t). Formally, the CFM objective is
defined as a simple vector field regression loss:

LCFM = Et,p(x0),q(x1)

[
∥vθ(xt, x̄, t)− v(x0, x1, t)∥22

]
. (3)

We further introduce two auxiliary modules, AR prior and ASR module, to encourage the speech
queries to capture temporal dependencies and linguistic information within each group, respectively.
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The corresponding training objectives, LAR and LASR, are formally defined in Appendix B. Finally,
the objective for training Gogo can be written as:

LGogo = λCFMLCFM + λARLAR + λASRLASR, (4)

where λCFM, λAR, and λASR are coefficients employed to balance different loss components.

2.1.3 GRANULARITY ORDERING

To enforce a coarse-to-fine ordering in the learned speech queries qi and tokens si, we introduce
three techniques: asymmetric masking, nested dropout (Rippel et al., 2014), and loss balancer.

Asymmetric masking is introduced to control the information flow within the encoder. Specifically,
the mel features xi are allowed to attend to each other but not to the speech queries qi, while each
speech query can attend to all mel features. Moreover, the j-th speech query is permitted to attend
to the k-th speech query only if j ≥ k. This design ensures that each speech query is generated by
progressively incorporating finer-grained information conditioned on all preceding query.

Nested dropout randomly drops tokens in a nested fashion during training. Specifically, we uni-
formly sample the number of tokens to retain, nk ∈ {1, . . . , nq}, and replace the last (nq − nk)
tokens with masking tokens m. This mechanism drives Gogo to prioritize encoding high-level ab-
stractions and essential structural attributes into the earlier coarse tokens to minimize LGogo to the
greatest extent, while deferring the challenging and fluctuating details to the later fine tokens. Since
later tokens are rarely preserved and receive fewer gradient updates, we further introduce a re-
weighting mechanism for compensation. Concretely, the gradient of the j-th speech token is scaled
by wj = 0.5/(1−(j−1)/nq), assigning larger weights to tokens with fewer updates and vice versa.
Details of the re-weighting implementation are provided in Appendix A.

Loss balancer is utilized to adjust the loss coefficients λCFM and λASR, further ensuring that the
learned speech tokens are organized in a coarse-to-fine manner. Specifically, when nk is small, the
model should emphasize LASR so that coarse tokens encode richer linguistic content. Conversely,
when nk is large, LCFM should dominate to ensure that fine tokens capture more acoustic details.
Let λmax and λmin denote the maximum and minimum weighting coefficients, respectively. The loss
balancer adaptively adjusts λCFM and λASR as follows:

λCFM = λmin +
(nk − 1)(λmax − λmin)

nq − 1
, λASR = λmax −

(nk − 1)(λmax − λmin)

nq − 1
. (5)

2.2 GOGOSPEECH

Text Input
[ You did it! ]

GogoSpeech Stage I
Speech Backbone Construction

GogoSpeech Stage II
Speech Details Enrichment

Speech Prompt

Gogo Gogo

Speech Output
Granularity

Groups Speech Tokens

Figure 3: Architecture of GogoSpeech. Gogo encodes the speech prompt into speech tokens, which
serve as input to GogoSpeech for generating the target speech tokens. The target speech tokens are
transformed into waveform by Gogo. For visualization, the number of speech queries nq in each
group is set to 10 and the speech backbone is defined as the first 3 speech tokens of each group.
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2.2.1 STAGE I: SPEECH BACKBONE CONSTRUCTION

Stacking all si yields the speech token matrix S ∈ Rng×nq . The speech backbone is defined as the
first b tokens of each group, i.e., S:,1:b ∈ Rng×b, which contains the high-level cues of the speech
signal. As shown in Figure 3, given the input text y = (y1, . . . , yL) and the input backbone S:,1:b,
the autoregressive model in Stage I generates the backbone of target speech S̃:,1:b ∈ Rñg×b, where
ñg denotes the number of groups in the target speech. Let Γ(·) denote the flatten operation. The
objective of Stage I is to minimize the negative log-likelihood over the target speech backbone:

Lstage1 = −
ñg∑
i=1

b∑
t=1

logP (S̃i,t | y,Γ(S:,1:b),Γ(S̃1:i−1,1:b), S̃i,1:t−1) (6)

2.2.2 STAGE II: SPEECH DETAILS ENRICHMENT

In Stage II, GogoSpeech enriches the speech backbone predicted by Stage I via adding fine-grained
acoustic details. For the i-th group of the target speech, the autoregressive model in Stage II gen-
erates the fine tokens S̃i,b+1:nq

conditioned on all tokens of the input speech S, all tokens of the
previously generated groups S̃1:i−1,:, and the speech backbone of the current group S̃i,1:b. The
training objective for Stage II is given by:

Lstage2 = −
ñg∑
i=1

nq∑
t=b+1

logP (S̃i,t | Γ(S),Γ(S̃1:i−1,:), S̃i,1:t−1) (7)

2.3 TOKEN ALLOCATOR
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Figure 4: GRPO-trained token allocator. Throughout the GRPO training, the Gogo is kept frozen.

To improve the efficiency of speech generation, we want to allocate more tokens to acoustically
complex groups while assigning fewer tokens to simpler ones, such as silence. To enable such adap-
tive allocation, we design a token allocator that receives the backbone of each group, S̃i,1:b, as input
and outputs a budget ξi ∈ {0, 1, . . . , nq−b}, indicating the number of fine tokens to be generated for
that group in GogoSpeech Stage II. The skipped unnecessary fine tokens are replaced with masking
tokens m. The cooperation between the token allocator πω and GogoSpeech is formulated as:

ξi = πω(S̃i,1:b) ∈ {0, 1, . . . , nq − b}, (8)

S̃i,b+1:b+ξi = argmax
u

b+ξi∏
j=b+1

p
(
uj | y,Γ(S),Γ(S̃1:i−1,:), S̃i,1:j−1

)
, S̃i,b+ξi+1:nq

= m. (9)

As shown in Figure 4, the token allocator is trained from scratch using a slightly modified GRPO
technique (Shao et al., 2024). Given that the output space of the allocator is relatively small, compris-
ing (nq−b+1) discrete allocation choices, we enumerate all possible outputs (o1, o2, · · · , oG), cor-
responding to using from b to nq tokens for reconstructing the input speech. The resulting (nq−b+1)
reconstructed samples are employed to compute the group scores.

We adopt two reward metrics, including Rn which penalizes the number of tokens utilized for re-
construction, andRd which penalizes the distance between the input and reconstructed speech. This
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joint reward encourage the allocator to learn allocation strategies that achieve high reconstruction
fidelity while minimizing the number of tokens consumed. The rewards Rn and Rd, and the entire
rewardR are defined as follows:

Rn = −Num(x̄), Rd = −E
[
∥Mel(w)−Mel(w̄)∥22

]
, (10)

R = λnRn + λdRd, (11)

where Num(x̄) denotes the number of speech tokens used to generate w̄, λn and λd are coefficients
used to balance the two reward terms. After obtaining the reward for each allocation choice, the
advantage is calculated using group relative advantage estimation (Shao et al., 2024):

Aj =
Rj −mean(R)

std(R)
. (12)

Since the token allocator is initialized from scratch, we omit the KL penalty term used in the original
GRPO framework. The allocator πω is then optimized by maximizing the following objective:

JGRPO = Eoj∼πω(o|S̃i,1:b)

 1

G

G∑
j=1

πω(oj |S̃i,1:b)Aj

 . (13)

3 EXPERIMENTAL SETUP

3.1 IMPLEMENTATION DETAILS

We extract 100-dimensional log mel-filterbank features from audio resampled to 24 kHz, using a
hop length of 256 and a window size of 1024, resulting in a feature rate of approximately 94 Hz. We
set the group size to g = 20, and allocate nq = 10 speech queries per group. Therefore, the token
rate of Gogo is computed as nq×(94/g) = 47 Hz. The speech backbone is defined as the first b = 3
tokens of each group. Thus the token rate of backbone is about 14 Hz. Both Stage I and Stage II of
GogoSpeech are initialized from the LLaMA (Grattafiori et al., 2024), with the vocabulary expanded
to include speech tokens. A pretrained Vocos (Siuzdak, 2023) is employed to convert the generated
spectrograms into waveforms. Please refer to Appendix C for more detailed model configuration.

During training, we empirically set the weight of loss LAR to λAR = 0.06 and amplify the gradient
of the AR prior by a factor of 50 to ensure effective updates. The coefficients for the losses LASR
and LCFM are dynamically adjusted using the loss balancer defined in Eq. 5, with λmin = 0.2 and
λmax = 1.8. For training the token allocator via GRPO, we set the reward coefficients λn = 0.2 and
λd = 1.0 to balance the trade-off between token efficiency and reconstruction quality. Additional
hyperparameters, training schedules, and inference configurations are provided in Appendix D.

3.2 DATASETS

We train both Gogo, GogoSpeech, and the token allocator on the Emilia dataset (He et al., 2024),
a large-scale and diverse in-the-wild speech corpus designed for multilingual speech generation.
In this work, we use its English subset, which contains approximately 50K hours of transcribed
speech covering a diverse set of speakers, acoustic characteristics, and background conditions. For
evaluating the reconstruction quality of Gogo, we adopt the LibriTTS test-clean set (Zen et al., 2019)
with 4,837 samples in total. To assess the zero-shot speech generation capability of GogoSpeech,
we use the Seed-TTS test-en set (Anastassiou et al., 2024), which consists of 1,000 samples drawn
from Common Voice dataset (Ardila et al., 2019). All speech samples are resampled to 24 kHz.

3.3 BASELINES AND EVALUATION METRICS

We compare Gogo against multiple codec baselines, including EnCodec (Défossez et al., 2022),
DAC (Kumar et al., 2023), SpeechTokenizer (Zhang et al., 2024), Mimi (Défossez et al., 2024),
SNAC (Siuzdak et al., 2024), WavTokenizer (Ji et al., 2025), MagiCodec (Song et al., 2025), X-
codec2 (Ye et al., 2025b), TAAE (Parker et al., 2025), and DualCodec (Li et al., 2025). All baseline
results are obtained using their official checkpoints. Details of compared codecs see Appendix E.
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Table 1: Comparison between different codec models on the LibriTTS test-clean set. Bold values
indicate the best for each token rate. TPS and FPS denote the number of tokens and frames per
second, respectively. #CB denotes the number of codebook employed in each model.

Model TPS FPS #CB UT
MOS

DNS
MOS STOI PESQ

WB
PESQ

NB SIM WER

Ground Truth - - - 4.13 3.83 1.00 4.64 4.55 1.00 5.86
DAC 600 75 8 3.78 3.75 0.99 3.52 3.85 0.98 6.10
EnCodec 600 75 8 3.13 3.56 0.94 2.74 3.36 0.97 6.24
DAC 150 75 2 1.94 3.27 0.85 1.53 1.95 0.90 10.81
EnCodec 150 75 2 1.57 3.20 0.85 1.54 1.92 0.91 8.98
SpeechTokenizer 150 50 3 3.10 3.56 0.85 1.47 1.86 0.90 7.23
Mimi 150 12.5 12 3.88 3.77 0.94 2.67 3.22 0.95 6.54
SNAC 82 47 3 3.80 3.84 0.91 2.23 2.75 0.91 7.47
DAC 75 75 1 1.33 2.97 0.76 1.18 1.45 0.81 30.06
EnCodec 75 75 1 1.24 2.69 0.78 1.21 1.45 0.77 33.15
WavTokenizer 75 75 1 4.11 3.65 0.92 2.43 2.96 0.90 8.34
Mimi 75 12.5 6 3.54 3.69 0.90 2.01 2.53 0.90 7.65
SpeechTokenizer 50 50 1 1.31 3.09 0.68 1.11 1.28 0.67 9.18
MagiCodec 50 50 1 4.21 3.96 0.93 2.55 3.18 0.86 7.45
X-codec2 50 50 1 4.17 3.90 0.92 2.45 3.07 0.83 6.40
TAAE 50 25 2 4.27 3.89 0.91 2.14 2.82 0.87 8.18
DualCodec 50 25 2 4.05 3.80 0.89 2.02 2.58 0.89 6.54
Mimi 50 12.5 4 3.16 3.62 0.86 1.64 2.10 0.87 9.24
Gogo 47 47 1 4.19 3.99 0.92 2.59 3.26 0.91 6.35

We compare GogoSpeech with TTS baselines, including FireRedTTS-1S (Guo et al., 2025a), F5-
TTS Chen et al. (2025), XTTS-v2 (Casanova et al., 2024), Llasa (Ye et al., 2025b), CosyVoice 2 (Du
et al., 2024b), and VoiceCraft (Peng et al., 2024). More details can be found in Appendix F.

For evaluation, we employ both objective and subjective metrics. For objective assessment, we adopt
UT-MOS (Saeki et al., 2022), DNS-MOS (Reddy et al., 2022), and Perceptual Evaluation of Speech
Quality (PESQ) (Rix et al., 2001) to quantify perceptual quality and speech distortion. Speech
intelligibility is measured using Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) and
Word Error Rate (WER). In addition, speaker similarity (SIM) is calculated to evaluate the accuracy
of speaker identity preservation. For subjective evaluation, we employ the Similarity Mean Opinion
Score (SMOS) and Comparative MOS (CMOS) to assess speaker similarity and relative naturalness,
respectively. Detailed definitions for each metric are provided in Appendix G.

4 EXPERIMENTAL RESULTS

4.1 CODEC COMPARISON

We compare our Gogo with a range of existing codecs, and the results are summarized in Table 1.
Despite operating at a relatively low token rate of 47 tokens per second, Gogo achieves superior
performance across multiple metrics compared to codecs operating at 50 tokens per second. DAC
and EnCodec achieve the best overall performance when operating at a high token rate of 600, with
the exception of UT-MOS and DNS-MOS. However, their performance degrades significantly as
the token rate is reduced. Notably, Gogo attains UT-MOS and DNS-MOS scores that even surpass
the ground-truth recordings, which we attribute to the generative nature of Gogo’s flow-matching
decoder, enabling enhanced perceptual quality and improved noise robustness.

4.2 EFFECTIVENESS OF GROUP-WISE QUANTIZATION FOR AUTOREGRESSIVE MODELING

To evaluate whether group-wise quantization better supports downstream AR modeling, we train a
naive autoregressive model to perform AR prediction over speech token sequences, which are con-
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Table 2: Perplexity of autoregressive modeling on speech tokens produced by different quantization
schemes. Column headers specify the source of speech tokens, denoting their positions within each
group for group-wise quantization or their corresponding RVQ layer for frame-wise quantization.
The boldface denotes the best result. † indicates frame-wise quantization with single-layer VQ.

Scheme 1 2 3 4 5 6 7 8 9 10
Frame-wise † 247.8 - - - - - - - - -
Frame-wise 2.3 25.9 84.4 114.9 189.2 261.2 441.8 442.0 727.8 691.4
Group-wise 0.9 8.5 42.0 96.9 169.5 201.6 204.1 221.9 229.6 228.3

structed by collecting the j-th token from each group in Gogo, where j ∈ [1, nq]. For the frame-wise
baseline, we remove the grouping operation in Gogo and replace FSQ with a 10-level RVQ, follow-
ing the standard frame-wise quantization scheme. Each RVQ layer generates a frame-level token
sequence that encodes the residual information left by all preceding layers. Each sequence is mod-
eled autoregressively, and perplexity is reported as an indicator of modeling difficulty. Additional
experimental details and perplexity computation are provided in Appendix I.

The perplexity results are summarized in Table 2. Group-wise quantization consistently yields lower
perplexity across all granularities than frame-wise quantization, suggesting that the group-wise to-
kens produced by Gogo are more autoregressive-friendly and capture temporal dependencies more
effectively. We can also see that coarse tokens yield substantially lower perplexity than fine tokens
in both quantization schemes, confirming that fine-grained acoustic details are more challenging for
AR models to predict. These findings further motivate the two-stage design of GogoSpeech, where
a high-level speech backbone is generated first, followed by fine-grained detail enrichment.

4.3 WHAT DO GRANULARITY-ORDERED TOKENS ENCODE?

To gain deeper insight into the behavior of group-wise granularity-ordered quantization, we conduct
probing experiments on Gogo’s tokens at different granularities to examine the type of information
each token encodes. We probe these tokens using a diverse set of acoustic, prosodic, and linguistic
features. The probing task is formulated as a regression problem, where the mean squared error
reported by the probing model is used as an indicator of each token’s representational capacity.
More details of the probing setup are provided in Appendix H.

1 2 3 4 5 6 7 8 9 10

100

80

60

20

0

40

Duration
Voice to Unvoiced Ratio
Unique Word Count
Total Adjectives
Total Adverbs
Total Nouns

80

60

20

0

40

1 2 3 4 5 6 7 8 9 10

Energy Entropy
Pitch
Spectral Centroid

1 2 3 4 5 6 7 8 9 10

35

25

20

5

0

10

30

15

Jitter
Shimmer
Zero Crossing Rate
Speaking Rate
Tense

Total Verbs
Total Pronouns
Total Conjunction

Figure 5: Performance of granularity-ordered tokens across multiple feature prediction tasks. Re-
sults are visualized as stacked area charts, where the x-axis denotes token positions within each
group and the y-axis indicates the normalized prediction loss relative to the maximum loss for each
feature. A higher value corresponds to greater loss and thus lower predictive performance.

The probing results, presented in Figure 5, reveal a clear progression of information across token
granularities. Specifically, the first three tokens primarily capture global and high-level information,
such as total duration, voiced-to-unvoiced ratio, word count, and linguistic content. Tokens in the
middle range predominantly encode prosodic attributes, including speaking rate, jitter, and shimmer.
Finally, the last three tokens are responsible for capturing detailed acoustic information, such as
pitch, energy, and spectral centroid. These findings confirm that Gogo’s group-wise quantization
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Table 3: Comparison between different TTS models on the Seed-TTS test-en set. The boldface
denotes the best result, the underline denotes the second best.

Model Objective Subjective
SIM WER SIM† WER† SMOS CMOS

Ground Truth 0.734 2.143 0.809 2.037 4.752 0.000
F5-TTS (Chen et al., 2025) 0.647 1.830 0.716 1.812 4.173 +1.730
XTTS-v2 (Casanova et al., 2024) 0.463 3.248 0.490 2.292 2.426 −0.961
Llasa-8B-250k (Ye et al., 2025b) 0.574 2.970 0.629 5.947 3.297 +0.882
CosyVoice 2 (Du et al., 2024b) 0.654 2.380 0.701 2.324 4.331 +1.638
FireRedTTS-1S (Guo et al., 2025a) 0.660 2.170 0.705 2.129 4.247 +1.634
VoiceCraft (Peng et al., 2024) 0.470 7.556 0.360 10.25 2.965 −0.751
GogoSpeech (47 Hz) 0.667 2.394 0.725 1.788 4.381 +1.832

w/ Token Allocator (47 Hz→ 36 Hz) 0.662 2.469 0.717 1.845 4.253 +1.587
† All target speeches corresponding to the same prompt speech are concatenated, and only constructed

samples longer than 10s are retained to evaluate the stability of systems in long speech generation.

organizes tokens in a coarse-to-fine manner, allowing high-level linguistic and prosodic cues to be
modeled with fewer tokens while reserving fine tokens for detailed acoustic reconstruction.

4.4 ZERO-SHOT TTS COMPARISON

We compare GogoSpeech with several state-of-the-art TTS baselines, and the results are summarized
in Table 3. In objective evaluations, GogoSpeech achieves the highest SIM and competitive WER
compared to the leading systems. For long-form speech generation, it further attains the best SIM
and WER, demonstrating the effectiveness of the two-stage design in enhancing generation stability.
In subjective evaluations, GogoSpeech achieves the best SMOS and CMOS scores, confirming its
ability to preserve speaker identity while maintaining strong intelligibility and overall quality.

4.5 EFFECTIVENESS OF TOKEN ALLOCATOR

We further evaluate the effectiveness of the proposed token allocator by comparing GogoSpeech
with and without adaptive token allocation. The results are presented in the last two rows of Table 3.
With the token allocator, GogoSpeech generates on average only 36 tokens per second of speech,
compared to 47 tokens without adaptive allocation. The token allocator significantly reduces the
computational cost of speech generation and incurs only a marginal performance degradation in
both objective and subjective scores. These results demonstrate that the token allocator achieves a
favorable trade-off between generation efficiency and speech quality. Please refer to Appendix K
for visualization of adaptive allocation.

5 RELATED WORK

Our related work is put in Appendix L.

6 CONCLUSION

In this paper, we present Gogo, a group-wise granularity-ordered codec, and GogoSpeech, a two-
stage speech language model. Specifically, Gogo produces autoregressive-friendly tokens for each
speech group, arranged in order from coarse to fine. Built upon Gogo, GogoSpeech performs speech
generation by first constructing a high-level speech backbone, then enriching it with fine-grained
details. Furthermore, we proposed a GRPO-trained token allocator that adaptively allocates token
budgets based on group-wise complexity, significantly reducing the number of tokens required for
synthesis without sacrificing perceptual quality. Extensive experiments on speech reconstruction and
zero-shot text-to-speech demonstrate that Gogo achieves superior performance compared to state-
of-the-art codecs, and GogoSpeech delivers high-quality, stable, and efficient speech generation.
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A NESTED DROUPUOT

Due to the nature of nested dropout, coarse tokens are more likely to be retained during training,
whereas fine tokens are more likely to be dropped, leading to fewer effective gradient updates for
the latter. To compensate for this imbalance, we rescale the gradient of each token according to its
retention probability p. Specifically, the coarsest token, i.e., the first learnable token in each group,
is always retained, while the finest token, i.e., the last learnable token, is retained with probability
1/nq , since we uniformly sample the number of tokens to retain. More generally, the retention
probability of the j-th token is defined as:

pj = 1− j − 1

nq
, where j ∈ [1, nq]. (14)

We fix the compensation weight for the first token to 0.5, and accordingly define the weight for each
token as:

wj =
0.5

pj
, where j ∈ [1, nq]. (15)
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Let the quantized features of the i-th group be q̄i ∈ Rnq×dh . During the forward pass, we apply the
reparameterization trick to scale the token representations as:

q̄i[j]← 0.5

pj
q̄i[j] +

(
q̄i[j]− 0.5

pj
q̄i[j]

)
.detach, (16)

where q̄i[j] denotes the j-th token in group i, and the detach operator indicates that the gradient flow
is stopped for the detached variable. By applying Equation 16, the value of each embedding q̄i[j]
remains unchanged during the forward pass. However, in the backward pass, its gradient is scaled by
the inverse of pj to offset the imbalance in pj . As a result, q̄i[j] that receive fewer gradient updates
are compensated with a larger gradient scale.

B AUXILIARY MODULES

The AR prior takes the quantized representations q̄i as input and predicts the feature representation
of the next speech token at every position. To enhance training stability, the AR prior is optimized
with a mean squared error loss in the feature space. Let f denotes the AR prior with parameters η.
The AR loss is defined as:

LAR = Ei

 1

nq − 1

nq−1∑
j=1

∥∥fη (q̄i[1 : j]
)
− q̄i[j + 1]

∥∥2
2

 . (17)

Furthermore, we incorporate an ASR module into the Gogo training pipeline to facilitate the linguis-
tic representation learning. The group-wise quantized representations q̄i ∈ Rnq×dh are concatenated
along the temporal dimension to form x̄s ∈ Rnq(nf/g)×dh . The ASR module, denoted as hϕ, takes
x̄s as input and outputs a predicted token sequence ŷ = (ŷ1, . . . , ŷL) corresponding to the ground-
truth transcription y = (y1, . . . , yL). The ASR loss is formulated as the cross entropy loss:

LASR = E(x̄s,y)

[
− 1

L

L∑
t=1

log hϕ(yt | y<t, x̄s)

]
. (18)

C MODEL CONFIGURATION DETAILS

For Gogo, the Transformer encoder, ASR module, and AR prior are implemented with 12, 8, and 4
layers of standard Transformer blocks (Vaswani et al., 2017), respectively, following the architecture
of LLaMA (Grattafiori et al., 2024). Each layer uses a hidden dimension of 512, 8 attention heads,
a feed-forward dimension of 1536, Rotary Position Embeddings (RoPE), RMSNorm, and SwiGLU
activation. We set the group size to g = 20, and allocate nq = 10 speech queries per group. The
feature quantization adopts FSQ with levels [8, 8, 8, 5, 5], yielding an effective codebook size of
12,800. The flow-matching model in Gogo is implemented as a latent Diffusion Transformer (DiT)
(Peebles & Xie, 2023), following the configuration of Chen et al. (2025). The only modification
is that we set the number of layers to 12. Additionally, the input mel-spectrograms of Gogo are
first processed by four ConvNeXt V2 (Woo et al., 2023) layers, followed by a two-layer MLP that
projects the features to match the hidden dimension of Gogo.

For GogoSpeech, both Stage I and Stage II are built on top of Llama-3.2-1B-Instruct, with the
vocabulary extended to include Gogo’s codebook tokens, enabling the model to directly perform
speech token generation. GogoSpeech is trained under the next-token prediction paradigm to jointly
model text and speech tokens. The maximum sequence length is set to 256 and 1024 tokens for
Stage I and Stage II, respectively. The speech backbone is defined as the first b = 3 tokens of each
group, which are generated in Stage I. The remaining 7 tokens per group are recovered in Stage II.

For the token allocator, we adopt a lightweight Transformer with 2 layers and the same architectural
configuration used in Gogo, followed by a linear classifier to predict the token budget for each group.

D TRAINING AND INFERENCE DETAILS

Gogo, GogoSpeech, and the token allocator are optimized separately using the AdamW optimizer
(Loshchilov & Hutter, 2017a) on 8 NVIDIA H100 NVL 94G GPUs. The learning rate is decayed
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based on a cosine annealing schedule (Loshchilov & Hutter, 2017b). Speech samples longer than
20 seconds or shorter than 1 seconds are discarded during training. More detailed training hyperpa-
rameters are shown in Table 4.

Table 4: Hyperparameters for training Gogo, GogoSpeech, and the token allocator.

Hyperparameters Gogo GogoSpeech
Stage I / Stage II Token Allocator

Training Epochs - 10 / 5 1
Update Steps 400k - -

Warmup Steps 10k 5k / 10k 1k
Batch Size 1440 Seconds 1152 / 288 Samples 128 Samples

Learning Rate 2e-4 5e-4 1e-4
Optimizer AdamW AdamW AdamW

Momentum β1, β2 = 0.9, 0.999 β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.999
Weight Decay 0.01 0.01 0.01

Learning Rate Schedule Cosine Annealing Cosine Annealing Cosine Annealing

For Gogo inference, we begin from sampled Gaussian noise x0 and integrate it toward the target
distribution x1 conditioned on the speech tokens si. Following Eq. 1 and Eq. 2, the tokens si are first
converted into aligned representations x̄. We then employ an Euler ordinary differential equation
(ODE) solver to iteratively integrate ∂xt/∂t = vθ(xt, x̄, t) from x0 to x1, where the flow step t is
sampled using the Sway Sampling strategy (Chen et al., 2025) to improve generation performance
and efficiency. The resulting mel-spectrogram x1 is converted into waveform using a pretrained
Vocos vocoder (Siuzdak, 2023). To balance fidelity and diversity, we apply Classifier-Free Guidance
(CFG) (Ho & Salimans, 2022) with a guidance scale of 2. For further stability, Exponential Moving
Averaged (EMA) weights (Karras et al., 2024) of the model parameters are used during inference.

For GogoSpeech inference, we employ the standard autoregressive decoding strategy widely used
in large language models. To balance generation diversity and fidelity, we set the temperature to
0.8, apply a repetition penalty of 1.2 to mitigate degenerate loops, and use nucleus sampling with
p = 1.0. In Stage II of GogoSpeech, decoding for each group employs early stopping, terminating
as soon as the maximum token budget assigned by the token allocator is consumed.

For token allocator inference, the first b tokens of each group (three tokens in our case) produced
by Stage I of GogoSpeech are used as input. The allocator then predicts a budget for the group,
specifying how many fine tokens should be generated in Stage II.

E CODEC BASELINES

EnCodec (Défossez et al., 2022) builds upon the residual vector quantization (RVQ) framework and
employs a single multi-scale STFT-based discriminator to effectively suppress artifacts and enhance
perceptual quality. It supports variable bandwidths by selecting different numbers of codebooks
during training, providing a flexible solution for speech compression and discretization in speech
language models. For evaluation, we adopt the official implementation and pretrained checkpoint1.

DAC (Kumar et al., 2023) adapts advances from the Improved VQGAN (Yu et al., 2022) image
model to address the codebook collapse problem. It performs codebook lookup in a low-dimensional
space and replaces Euclidean distance with cosine similarity, improving both stability and quality.
DAC further employs a multi-period discriminator in the waveform domain and a multi-band, multi-
scale STFT discriminator in the frequency domain, enabling high-fidelity audio generation. For
evaluation, we use the official implementation and pretrained checkpoint2.

SpeechTokenizer (Zhang et al., 2024) is specifically designed for speech language modeling, where
different aspects of speech are disentangled hierarchically across RVQ layers. Specifically, it em-

1https://github.com/facebookresearch/encodec
2https://github.com/descriptinc/descript-audio-codec
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ploys HuBERT as a semantic teacher to distill content information into the first layer of RVQ. For
evaluation, we use the official implementation and pretrained checkpoint3.

Mimi (Défossez et al., 2024) takes inspiration from previous work on SpeechTokenizer and uses
distillation to transfer high-level semantic information in WavLM into the quantized tokens. Unlike
SpeechTokenizer, it distills semantic information into a plain VQ and apply an RVQ with 7 levels in
parallel, thereby removing the constraint that acoustic information must reside in the residual of the
semantic quantizer. For evaluation, we use the official implementation and pretrained checkpoint4.

SNAC (Siuzdak et al., 2024) extends RVQ by allowing quantizers to operate at different temporal
resolutions. Through a hierarchy of quantizers running at variable frame rates, it adapts to audio
structure across multiple timescales, thereby capturing both coarse and fine details more effectively.
Each quantizer applies average pooling for downsampling and nearest-neighbor interpolation for
upsampling, enabling efficient compression. For evaluation, we adopt the official implementation
and pretrained checkpoint5.

WavTokenizer (Ji et al., 2025) improves subjective quality using a single quantizer with an ex-
panded codebook to reduce information loss. It further enhances semantic modeling by introducing
attention modules with extended contextual windows in the decoder. Finally, the inverse Fourier
transform is employed to reconstruct the final audio directly. For evaluation, we adopt the official
implementation and pretrained checkpoint6.

MagiCodec (Song et al., 2025) is a single-layer, streaming Transformer-based audio codec trained
with a multistage pipeline to mitigate codebook collapse and improve token efficiency. It introduces
Gaussian noise injection and latent regularization techniques to encourage learning low-frequency
semantic representations while preventing overfitting to high-frequency noise. For evaluation, we
adopt the official implementation and pretrained checkpoint7.

X-codec2 (Ye et al., 2025b) integrates semantic and acoustic features into a unified codebook using
a single-layer FSQ quantizer. A pretrained w2v-BERT serves as the semantic encoder, while an
acoustic encoder based on residual convolutional blocks with Snake activations captures fine-grained
acoustic details. The semantic and acoustic features are concatenated and served as input to the
vector quantizer. For evaluation, we adopt the official implementation and pretrained checkpoint8.

TAAE (Parker et al., 2025) introduces a Transformer-based codec architecture that scales into the
1B parameter range, enabling state-of-the-art speech quality at extremely low bitrates. Unlike CNN-
based codecs that rely on convolutional inductive biases with high parameter efficiency, TAAE lever-
ages a more general Transformer architecture for greater scalability and better modeling capacity.
For evaluation, we adopt the official implementation and pretrained checkpoint9.

DualCodec (Li et al., 2025) is a dual-stream codec that jointly models self-supervised and waveform
representations within an end-to-end framework. The first RVQ layer directly encodes semantic-rich
features from a pretrained w2v-BERT-2 model, while the remaining RVQ layers, along with the
encoder–decoder design, follow the DAC framework. This integration enables DualCodec to better
preserve linguistic content while maintaining high-fidelity reconstruction. For evaluation, we use
the official implementation and pretrained checkpoint10.

F TTS BASELINES

FireRedTTS-1S (Guo et al., 2025a) is a high-quality streamable TTS system that achieves real-time
speech generation with low latency under 150ms through text-to-semantic decoding and semantic-
to-acoustic decoding. For evaluation, we use the pretrained checkpoint11.

3https://github.com/ZhangXInFD/SpeechTokenizer
4https://huggingface.co/kyutai/mimi
5https://github.com/hubertsiuzdak/snac
6https://github.com/jishengpeng/WavTokenizer
7https://github.com/Ereboas/MagiCodec
8https://huggingface.co/HKUSTAudio/xcodec2
9https://github.com/Stability-AI/stable-codec

10https://github.com/jiaqili3/DualCodec
11https://github.com/FireRedTeam/FireRedTTS
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F5-TTS Chen et al. (2025) is a non-autoregressive TTS model built on flow matching. Instead of
relying on complex alignment mechanisms, F5-TTS pads the text input with filler tokens to match
the length of the target speech and directly performs denoising to generate speech. For evaluation,
we use the pretrained checkpoint12.

XTTS-v2 (Casanova et al., 2024) is a multilingual zero-shot multi-speaker TTS model built upon
the Tortoise model (Betker, 2023). XTTS-v2 supports 16 languages and achieves state-of-the-art
results in most of them. For evaluation, we use the pretrained checkpoint13.

Llasa (Ye et al., 2025b) is a large-scale speech synthesis system that employs a single-layer vector
quantizer codec and a unified Transformer architecture to fully align with standard LLMs such as
Llama. For evaluation, we use the pretrained checkpoint14.

CosyVoice 2 (Du et al., 2024b) is a multilingual speech synthesis framework that integrates a pre-
trained language model for discrete speech token prediction with a chunk-aware flow-matching
model for speech feature generation. For evaluation, we use the pretrained checkpoint15.

VoiceCraft (Peng et al., 2024) is a token infilling neural codec language mode. It employs a token
rearrangement strategy with causal masking and delayed stacking, enabling seamless speech editing
and zero-shot text-to-speech generation. For evaluation, we use the pretrained checkpoint16.

G EVALUATION METRICS

We employ a comprehensive set of evaluation metrics to assess speech quality across multiple di-
mensions, including intelligibility, perceptual quality, content preservation, and speaker similarity.

Short-Time Objective Intelligibility (STOI) (Taal et al., 2010) is a widely adopted metric for eval-
uating speech intelligibility. It computes the correlation between temporal envelopes of reference
and reconstructed signals in short-time segments. The score ranges from 0 to 1, with higher values
indicating better intelligibility.

Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) measures perceptual speech
quality by comparing the reconstructed audio with the clean reference signal using a perceptual
auditory model. We report results under both narrow-band (NB, 8 kHz) and wide-band (WB, 16
kHz) conditions.

UTokyo-SaruLab MOS (UT-MOS) (Saeki et al., 2022) is an automatic MOS predictor trained
to approximate human judgments of overall speech naturalness and quality. It provides a scalable
alternative to subjective MOS tests.

Deep Noise Suppression MOS (DNS-MOS) (Reddy et al., 2022) is a non-intrusive quality metric
designed for real-world audio evaluation. It estimates perceptual quality directly from the signal
without requiring reference audio and has been shown to correlate strongly with human ratings.

Word Error Rate (WER) is used to quantify content preservation and intelligibility at the linguistic
level. By default, we adopt HuBERT as the ASR model17 to transcribe the reconstructed speech,
and compute WER by comparing against the ground-truth transcripts. For zero-shot TTS evaluation
on the Seed-TTS test-en set, the WER metric is computed using the provided script18.

Speaker Similarity (SIM) measures the degree to which the synthesized speech retains the identity
of the original speaker. By default, we follow Wang et al. (2023) and employ a WavLM-Large-based
speaker verification model19 to extract speaker embeddings from both reconstructed and reference

12https://github.com/SWivid/F5-TTS
13https://huggingface.co/coqui/XTTS-v2
14https://huggingface.co/HKUSTAudio/Llasa-8B
15https://huggingface.co/FunAudioLLM/CosyVoice2-0.5B
16https://huggingface.co/pyp1/VoiceCraft/blob/main/830M_TTSEnhanced.pth
17https://huggingface.co/facebook/hubert-large-ls960-ft
18https://github.com/BytedanceSpeech/seed-tts-eval
19https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
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speech, and compute cosine similarity as the final metric. For zero-shot TTS evaluation on the
Seed-TTS test-en set, the SIM metric is computed using the provided script18.

Similarity Mean Opinion Score (SMOS) evaluates the speaker similarity between the prompt and
the generated speech. Human raters judge the degree of resemblance by considering speaker char-
acteristics, style, acoustic properties, and potential background artifacts. SMOS is scored on a
five-point scale, with higher values indicating stronger similarity.

Comparative Mean Opinion Score (CMOS) measures the relative perceptual quality of a synthe-
sized sample compared to a reference. Raters assign scores on a scale from -3 to 3, where negative
values indicate the synthesized speech is worse than the reference, positive values indicate it is better,
and 0 denotes parity.

H PROBING EXPERIMENTS

The probing model consists of three fully connected layers with ReLU activations and dropout in
between. The hidden dimensions of each layer are 512, 128, and 1, respectively. As illustrated
in Figure 6, the probing procedure is formulated as a regression task: the input is the average of
tokens at a specific position across all groups, and the output is the predicted value of the target
feature. The mean squared error (MSE) loss of the probing model is reported as an indicator of the
representational capacity of tokens at each position, with lower loss implying that the token more
readily encodes the probed feature.

Speech Input

Gogo

Granularity

Groups Speech Tokens

1 2 3 4 5 6 7 8 9 10

Probing Model

Extracted Features

Averaging

𝑀𝑆𝐸

Figure 6: Procedure for probing the information encoded in tokens of different granularities.
Throughout the probing model training, the Gogo codec is kept frozen. Here we probe the tokens at
position 8 for demonstration.

We conduct probing experiments on Gogo’s granularity-ordered tokens using a broad set of features
spanning acoustic, prosodic, and linguistic dimensions. Acoustic features include zero-crossing
rate, mean pitch, energy entropy, and spectral centroid, which characterize low-level signal proper-
ties. Prosodic features include jitter, shimmer, duration, voiced–unvoiced ratio, and speaking rate,
capturing rhythm, intonation, and phonation stability. Linguistic features include lexical statistics
such as unique word count and counts of adjectives, adverbs, nouns, verbs, pronouns, and conjunc-
tions, reflecting higher-level syntactic content. The probing models are trained on the LibriTTS
train-clean-100 subset for 20k steps using the AdamW optimizer and evaluated on the LibriTTS
test-clean set. The detailed MSE losses for each feature are reported in Table 5.

We further investigate how reconstruction quality varies when only a subset of the granularity-
ordered tokens is used. Specifically, we progressively retain the first n tokens in each group and
reconstruct the input speech, where n ∈ [1, nq]. The results are shown in Figure 7. We observe
that the word error rate drops sharply when the first few tokens are included, indicating that most
linguistic content is captured by the coarsest tokens in Gogo. However, when more than six tokens
per group are retained, the improvement of WER becomes marginal, suggesting that the remaining
fine-grained tokens primarily contribute to perceptual quality and acoustic details rather than lin-
guistic content. In particular, both NB PESQ and WB PESQ scores show a marked improvement
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Table 5: MSE losses for various probed features using Gogo’s granularity-ordered tokens on the
LibriTTS test-clean set. In our setting, each frame group is discretized into 10 tokens. Token
position 1 corresponds to the coarsest token, whereas position 10 corresponds to the finest; ZRC:
zero crossing rate, EE: energy entropy, SC: spectral centroid, J: jitter, S: Shimmer, Ratio: voiced
to unvoiced ratio, SR: speaking rate, Count: unique word count, Tadj: total adjectives, Tadv: total
adverbs, Tn: total nouns, Tv: total verbs, Tpron: total pronouns, Tconj: total conjunction.

Features 1 2 3 4 5 6 7 8 9 10
Duration 14.44 14.95 15.87 16.28 16.81 16.45 16.59 16.65 17.23 17.45

ZRC (e-3) 1.113 1.058 1.051 1.060 1.076 1.071 1.101 1.047 1.036 1.038
EE (e-3) 8.409 8.290 8.189 8.257 8.142 8.212 8.101 8.066 7.839 7.771
SC (e-3) 1.150 1.053 1.054 1.031 0.988 0.879 0.866 0.830 0.872 0.933

Pitch 1455 1478 1424 1371 1304 1295 1230 1166 1074 1012
J (e-5) 4.000 3.969 3.696 3.603 3.415 3.584 3.445 3.887 3.751 3.563
S (e-4) 3.463 3.497 3.435 3.382 3.321 3.345 3.290 3.377 3.350 3.312
Ratio 0.298 0.297 0.313 0.318 0.332 0.319 0.332 0.323 0.338 0.343
SR 0.414 0.415 0.413 0.406 0.403 0.406 0.411 0.411 0.409 0.409

Count 35.81 36.90 39.01 40.00 41.18 40.34 40.63 40.70 41.96 42.47
Tense 0.240 0.239 0.238 0.237 0.236 0.237 0.237 0.239 0.239 0.238
Tadj 2.229 2.250 2.299 2.329 2.352 2.334 2.337 2.338 2.359 2.370
Tadv 1.474 1.486 1.507 1.521 1.532 1.523 1.521 1.526 1.537 1.538
Tn 9.716 9.907 10.32 10.55 10.81 10.67 10.71 10.66 10.88 10.99
Tv 4.708 4.804 4.969 5.023 5.128 5.057 5.097 5.116 5.240 5.282

Tpron 2.766 2.797 2.838 2.847 2.868 2.847 2.853 2.866 2.897 2.906
Tconj 0.967 0.977 0.998 1.005 1.015 1.003 1.006 1.010 1.024 1.027

once more than four tokens per group are retained. The other objective metrics exhibit a generally
monotonic improvement as the number of retained tokens increases.

0.8

0.6

0.2

0.0

0.4

1.0

1 2 3 4 5 6 7 8 9 10

NB PESQ
WB PESQ
STOI
UT-MOS
DNS-MOS
SPK SIM
WER

Figure 7: Normalized performance on the LibriTTS test-clean set with varying numbers of retained
tokens per group.

I PERPLEXITY EXPERIMENTS

Perplexity (PPL) is a standard evaluation metric for language models that quantifies their uncer-
tainty in predicting the next token in a sequence. Lower PPL indicates higher model confidence and
prediction accuracy, whereas higher PPL reflects greater uncertainty and poorer predictive perfor-
mance. Formally, perplexity is defined as the exponentiated average negative log-likelihood of the
sequence. In our setting, given a speech token sequence Γ(S:,j), where S ∈ Rng×nq is the token
matrix produced by Gogo and j ∈ [1, nq] denotes the position of the speech token within each group,
we compute PPL to assess the autoregressive modeling difficulty at different token granularities as
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follow:

PPL (Γ(S:,j)) = exp

{
− 1

ng

ng∑
i

logP (Si,j |S<i,j)

}
. (19)

1 2 3 4 5 6 7 8 9 10

[start]

Granularity

Groups Speech Tokens

Group-wise Quantization

RVQ Layers

Frames Speech Tokens

Frame-wise Quantization

Autoregressive Modeling

[end]

Speech Input

Perplexity

Figure 8: Procedure for evaluating the perplexity of autoregressive model on speech tokens gener-
ated by different quantization schemes. Here we show the evaluation using the 8th token of each
group or tokens from the 8th RVQ layer for demonstration.

As illustrated in Figure 8, the autoregressive model used in the perplexity experiments is a 6-layer
LLaMA-style Transformer with hidden dimension of 256. It is trained on the combined LibriTTS
train-clean-100, train-clean-360, and train-other-500 subsets for 200k steps using the AdamW opti-
mizer. Evaluation is conducted on the LibriTTS test-clean set.

J ABLATION EXPERIMENTS

Table 6: Ablation study on the auxiliary modules and granularity ordering. Gogo is evaluated on the
LibriTTS test-clean set. GogoSpeech is evaluated on the Seed-TTS test-en set.

Model
Gogo GogoSpeech

UT
MOS

DNS
MOS STOI PESQ

WB
PESQ

NB SIM WER SIM WER

Auxiliary Module
Proposed Model 4.19 3.99 0.92 2.59 3.26 0.91 6.35 0.667 2.394

w/o ASR Module 3.97 3.91 0.87 2.63 3.29 0.92 8.66 0.640 4.372
w/o AR Prior 4.14 3.96 0.86 2.61 3.24 0.91 6.42 0.661 2.625

Granularity Ordering
Proposed Model 4.19 3.99 0.92 2.59 3.26 0.91 6.35 0.667 2.394

w/o Asym. Masking 4.18 3.97 0.94 2.56 3.20 0.91 6.37 0.664 2.406
w/o Nested Dropout 4.10 3.89 0.89 2.39 3.16 0.89 6.41 0.657 3.969
w/o Loss Balancer 3.89 3.74 0.82 2.29 3.07 0.85 7.50 0.614 4.608

We perform an ablation study on all auxiliary modules and design choices in Gogo and further eval-
uate their impact on GogoSpeech. The results are summarized in Table 6. We can see that removing
the ASR module leads to a slight improvement in PESQ and SIM for Gogo’s reconstruction. How-
ever, the absence of ASR guidance significantly degrades the performance of GogoSpeech across
all metrics. Eliminating the AR prior has little effect on Gogo’s reconstruction metrics but results
in a noticeable performance drop for GogoSpeech. This suggests that the AR prior primarily ben-
efits the autoregressive modeling of GogoSpeech rather than signal reconstruction. Furthermore,
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we ablate the granularity ordering mechanism. We can observe that removing asymmetric masking
decreases all metrics except STOI and SIM for Gogo, and leads to a slight performance degradation
for GogoSpeech. However, removing either nested dropout or the loss balancer causes a substantial
decline in performance for both Gogo and GogoSpeech, highlighting their importance in learning
informative coarse-to-fine token representations.

Table 7: Ablation study on the number of coarse tokens b used as the speech backbone on the
Seed-TTS test-en set. Using all 10 tokens as the backbone degenerates into a single-stage model.

b 1 2 3 4 5 6 7 8 9 10
SIM 0.647 0.654 0.667 0.663 0.662 0.652 0.657 0.656 0.654 0.642
WER 2.754 2.531 2.394 2.391 2.397 2.441 2.346 2.451 2.460 3.121

We further perform an ablation study on the number of coarse tokens b used as the speech backbone,
with results summarized in Table 7. We observe that increasing b from 1 to 3 yields substantial
improvements in both SIM and WER, indicating that a slightly richer backbone provides more ef-
fective guidance for Stage II refinement. When b lies between 3 and 5, the performance of both
metrics becomes relatively stable, with SIM reaching its peak at b = 3 and WER achieving its best
value at b = 4. As b increases further from 6 to 9, all evaluation metrics exhibit a general downward
trend, suggesting that overly detailed backbones may limit the capacity of Stage II to contribute
fine-grained refinements. When b = 10, meaning that all tokens are generated entirely within Stage
I of GogoSpeech, the performance drops to its lowest level across all metrics. These results provide
strong empirical evidence for the effectiveness of our two-stage design, where a compact backbone
combined with detail refinement yields the best overall performance.

K VISUALIZATION OF TOKEN ALLOCATION

To better illustrate the behavior of the token allocator, we visualize the token allocation results in
Figure 9 and Figure 10. Specifically, we present three aligned plots: (1) the original mel-spectrogram
of the input speech, where vertical dashed lines indicate group boundaries; (2) the token budget
assigned to each group by the allocator; and (3) the reconstructed mel-spectrogram obtained by
Gogo using only the allocated tokens. The visualization clearly demonstrates that the allocator
adaptively assigns more tokens to acoustically rich regions while reducing the allocation in silent or
low-information segments, thereby achieving efficient yet high-quality reconstruction.

L RELATED WORK

L.1 NEURAL AUDIO CODECS

Modern neural audio codecs are predominantly based on the VQ-GAN framework (Esser et al.,
2021), which integrates an encoder, a vector quantizer, and a decoder into an end-to-end system
trained with generative adversarial networks (GANs) (Goodfellow et al., 2020). Pioneering works
such as SoundStream (Zeghidour et al., 2021) and EnCodec (Défossez et al., 2022) employ residual
vector quantization (RVQ) together with carefully designed discriminators to improve perceptual fi-
delity. DAC (Kumar et al., 2023) further enhances codebook utilization by performing code lookup
in a low-dimensional space using cosine similarity rather than Euclidean distance. To improve com-
patibility with SLMs, recent studies have explored injecting linguistic or semantic information into
the quantization process. One line of work leverages self-supervised speech representations from
models such as HuBERT (Hsu et al., 2021), WavLM (Chen et al., 2022), and w2v-BERT (Chung
et al., 2021). For example, SpeechTokenizer (Zhang et al., 2024) distills semantic teacher represen-
tations into the first stage of RVQ, while Mimi (Défossez et al., 2024) transfers semantic information
into a single-stage quantizer to decouple acoustic reconstruction from semantic coding. Another line
of research integrates ASR-supervised features into codec training. Notably, S3 tokenizer (Du et al.,
2024a) partitions the encoder of a pretrained SenseVoice ASR model (An et al., 2024) and inserts
a quantization layer between its two halves. Despite recent advancements, the frame-wise quan-
tization paradigm remains unchanged. Its inherent locality bias limits the codec’s ability to learn
high-level abstractions, which are essential for stable autoregressive modeling in SLMs.
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Figure 9: Visualization of sample 1580 141084 000085 000000 from the LibrtTTS test-clean set.
The token allocator reduces the token rate from 47 Hz to 34.28 Hz.
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Figure 10: Visualization of sample 7176 88083 000011 000005 from the LibrtTTS test-clean set.
The token allocator reduces the token rate from 47 Hz to 38.73 Hz.

L.2 SPEECH LANGUAGE MODELS

Generative speech language modeling extends the LLM paradigm to the speech modality by mod-
eling discrete speech tokens produced by neural audio codecs or clustering methods such as k-
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means. Early works such as GSLM (Lakhotia et al., 2021) and SpeechGPT (Zhang et al., 2023) di-
rectly train language models on speech tokens, enabling the generation of natural-sounding speech.
VALL-E (Wang et al., 2023) adopts an autoregressive model to generate the first token and a non-
autoregressive model to predict residual tokens from EnCodec, conditioned on the linguistic content
of text. To address the trade-off between high-fidelity reconstruction and effective autoregressive
modeling, AudioLM (Borsos et al., 2023) introduces a hierarchical modeling framework that first
generates semantic tokens and then refines them with acoustic tokens. In general, acoustic tokens
are designed to encode speech at a low bitrate while preserving as much information as possible,
whereas semantic tokens are learned from self-supervised speech models to capture phonetic or se-
mantic representations that facilitate speech comprehension (Guo et al., 2025b). This hierarchical
paradigm has inspired numerous follow-up works, including SPEAR-TTS (Kharitonov et al., 2023),
AudioPaLM (Rubenstein et al., 2023), Moshi (Défossez et al., 2024), and TTS-Llama (Shen et al.,
2025). While the hierarchical approach improves stability and controllability, the semantic modeling
stage in existing methods typically operates at the same token rate as the acoustic modeling stage,
which is substantially higher than the token rate used in the text modality.

L.3 ADAPTIVE BITRATE IN NEURAL CODECS

The non-uniform information density of speech signals makes constant-bitrate codecs inherently in-
efficient. SNAC (Siuzdak et al., 2024) extends RVQ to operate at multiple temporal resolutions, yet
the bitrate remains fixed across different speech regions. Acoustic BPE (Shen et al., 2024) applies
the byte-pair encoding (BPE) algorithm (Devlin et al., 2019) to speech tokens, reducing sequence
length and increasing token correlation. More recently, VRVQ (Chae et al., 2025) introduces a
variable-bitrate strategy into RVQ, allowing the number of quantizers per frame to be adaptively
determined from a predicted importance map. Similarly, TFC (Zhang et al., 2025) dynamically allo-
cates frame rates to different regions according to temporal entropy. However, these variable-bitrate
codecs do not explicitly couple bitrate variation with reconstruction quality for joint optimization,
and their effectiveness in generative tasks within the SLM framework remains underexplored.

M THE USE OF LARGE LANGUAGE MODELS

Large language models were employed exclusively as auxiliary tools to edit and polish text written
by the authors. Their usage was limited to improving clarity, grammar, and style of expression. No
part of the research ideation, methodology, analysis, or results relied on LLMs.
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