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ABSTRACT

3D Gaussian Splatting (3DGS) has witnessed its rapid development in novel view
synthesis, which attains high quality reconstruction and real-time rendering. At
the same time, there is still a gap before implicit neural representation (INR) can
become a practical compressor due to the lack of stream decoding and real-time
frame reconstruction on consumer-grade hardware. It remains a question whether
the fast rendering and partial parameter decoding characteristics of 3DGS are ap-
plicable to video compression. To address these challenges, we propose a Toast-
like Sliding Window (TSW) orthographic projection for converting any 3D Gaus-
sian model into a video representation model. This method efficiently represents
video by leveraging temporal redundancy through a sliding window approach.
Additionally, the converted model is inherently stream-decodable and offers a
higher rendering frame rate compared to INR methods. Building on TSW, we
introduce an end-to-end trainable video compression method, GSVC, which em-
ploys deformable Gaussian representations and optical flow guidance to capture
dynamic content in videos. Experimental results demonstrate that our method
effectively transforms a 3D Gaussian model into a practical video compressor.
GSVC further achieves better rate-distortion performance than NeRV on the UVG
dataset, while achieving higher frame reconstruction speed (+30% fps) and stream
decoding. Code is available at Github.

1 INTRODUCTION

Video compression is a classical issue in the domain of signal processing. With the growing amount
of video data on the Internet, numerous video compression algorithms have emerged. Classic video
compressors employ hand-crafted rules to reduce redundant information in the data (Le Gall, 1991;
Wiegand et al., 2003; Sullivan et al., 2012). Learning-based approaches, on the other hand, learn the
characteristics of video from a large quantity of video data through a data-driven manner and achieve
highly efficient compression (Lu et al., 2019; Shi et al., 2022; Li et al., 2024). Besides, methods
based on implicit neural representation (INR) have also started to be applied in video compression,
which represent signals by directly mapping coordinates or timestamps to the corresponding RGB
values, offering new insights for the field (Chen et al., 2021; Lee et al., 2023).

Similar to the success of deep learning in other fields (Huang et al., 2023; Qin et al., 2024; Xia
et al., 2024; Gao et al., 2024), current learning-based neural video compression approaches have
achieved considerable progress in rate-distortion (RD) performance. However, these methods do
have certain issues. Firstly, many methods have a high decoding computational complexity, limiting
their practicality in real-world scenarios. INR-based method have to some extent alleviated this
problem (Chen et al., 2021), but for those with superior RD performance, their rendering frame
rates cannot reach the speed for practical usage (Kwan et al., 2023). Secondly, fully decoding the
representation network is necessary before rendering any frame for INR-based method, making
it challenging to achieve stream decoding. Given that neural representation is more suitable for
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Figure 1: Comparison between proposed GSVC and NeRV (Chen et al., 2021). Our method achieves
effective video compression while surpassing NeRV in some aspects such as background texture.

encoding longer videos (Chen et al., 2021), this characteristic significantly limits its applications,
especially in popular streaming media.

Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has gained increasing attention for its
impressive capability of reconstructing 3D scene from multiple photos, which outperforms NeRF
(Mildenhall et al., 2020) in training and rendering speed. Although 3D Gaussian representation is a
method specifically designed for 3D scenes, it shares similarities with neural representation in that
they are both a new type of signal representation and have the potential to be a general-purpose
representation method applied to other domains (Dupont et al., 2021; 2022; Zhang et al., 2024).
These fields will also benefit from the exclusive features of 3DGS, such as explicit representation,
fast rendering, and partial parameter rendering.

In this paper, focusing on the weakness of INR video compressors and advantages of 3DGS men-
tioned before, we explore the feasibility of 3DGS in video compression. We propose a novel regional
orthographic projection called Toast-like sliding window (TSW) orthographic projection. TSW or-
thographic projection utilizes the redundancy between adjacent frames without requiring any explicit
or implicit 3D structure in the signal. Using the method, any model sharing same rendering process
with 3DGS can be easily extended to a 2D video representation model. Based on TSW, we propose
an end-to-end trainable Gaussian Splatting Video Compressor (GSVC) by extending the framework
of HAC (Chen et al., 2024). Furthermore, we introduce time-aware Gaussians generation, which
offers increased parameter efficiency. This design, cooperated with proposed optical flow (Horn &
Schunck, 1981) guided deformable Guassians (Yang et al., 2024c), significantly improve the capa-
bility of GSVC to efficiently model dynamic objects in video. Fig. 1 demonstrates a qualitative
results of GSVC.

The proposed TSW has been tested with vanilla 3DGS(Kerbl et al., 2023), Scaffold-GS (Lu et al.,
2024) and HAC (Chen et al., 2024) to validate its universality, demonstrating that our method ef-
fectively transforms a 3D Gaussian model into a practical video compressor. Thorough experiments
over UVG dataset (Mercat et al., 2020) were performed, in which proposed GSVC demonstrates
better RD performance than NeRV (Chen et al., 2021) and superior rendering efficiency. Besides,
our method achieves stream decoding by natural.

The primary contributions of this work are summarized below:

• We propose a novel TSW orthographic projection, which bridging the gap between 3D
Gasussian Splatting and 2D video representation.

• We build an end-to-end trainable video codec GSVC based on TSW by extending an exist-
ing 3DGS compressor.

• We refine GSVC by time-aware Gaussian generation and optical flow guided deformable
3D Gaussian to improve parameter efficiency and capture dynamic contents in videos.
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2 RELATED WORK

2.1 LEARNED VIDEO COMPRESSION

Traditional video codecs utilize a variety of hand-crafted rules to eliminate spatial and temporal re-
dundancies such as different intra-prediction and inter-prediction patterns in order to achieve high-
efficiency encoding (Le Gall, 1991; Wiegand et al., 2003; Sullivan et al., 2012). In video com-
pression methods using deep learning, one approach is to improve existing traditional methods by
replacing certain components, such as entropy coding (Song et al., 2017) and post-processing (Lu
et al., 2018; Song et al., 2018) with neural network. Tian et al. (2024) propose a machine-friendly
video compressor with traditional-neural mixed coding framework.

Another approach is to build an end-to-end deep learning video codec which jointly optimizes all the
components in video compression pipeline (Lu et al., 2019; Hu et al., 2021). Such methods typically
take advantage of representation ability of neural networks to achieve functions such as feature
transformation and motion compensation (Lin et al., 2020). Liu et al. (2020) utilize the conditional
entropy between frames. Li et al. (2021) propose using feature domain context as condition.

Besides typical end-to-end models, INR-based compression methods, which general require lower
computational resources, provide a different view of compression task. These representation meth-
ods encode the signal itself implicitly in the weights of a neural network, The neural representation
has attracted attention for its performance in synthesizing new views in 3D scenes (Mildenhall et al.,
2020), and it has gradually been applied to the representation and compression of images and videos
(Dupont et al., 2021; 2022; Ladune et al., 2023). Chen et al. (2021) first propose to use timestamps
as the input of the representation network, outputting corresponding video frames. Combining with
network pruning and quantization, this representation method can more effectively capture intra-
frame and inter-frame relationships than NeRF (Mildenhall et al., 2020) in video compression. Sub-
sequent work built on this foundation, with more detailed design of the network structure, achieving
better rate-distortion performance (Chen et al., 2021; 2023; Lee et al., 2023; Kwan et al., 2023).

In comparison to end-to-end video compression models, INR-based methods can achieve lower
computational overhead while not requiring pre-trained models to be deployed at the encoding and
decoding ends. However, neural representation-based video compression methods still have diffi-
culty meeting the real-time characteristics in rendering rate, especially for some models with better
RD performance. In addition, these methods need to fully decompress the entire model for frame
reconstruction, making it impractical to apply to scenarios where streaming transmission is required.

2.2 3D GAUSSIAN SPLATTING

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) is a method for 3D scene reconstruction that
has emerged in recent years, which has attracted the attention of many researchers with its fast re-
construction speed and real-time rendering characteristics. Different from implicit representation
of NeRF, 3DGS uses a series of Gaussian points in space to represent the 3D information of the
scene. This representation method also provides a new perspective for many tasks. For example,
4D dynamic videos can be represented through moving and deforming Gaussian points in a defor-
mation field (Lin et al., 2024; Yang et al., 2024c). Shi et al. (2024) embed semantics in 3DGS for
open-vocabulary scene understanding (Yang et al., 2024a). There have also been many works on
improving 3D Gaussian itself, such as Yu et al. (2024) improving the reconstruction quality through
Mip filter, and Liu et al. (2024) enabling 3D Gaussian to represent super-large scenes through level-
of-detail strategy. In terms of practical applications, some work has explored reducing the storage
overhead of 3D Gaussian through pruning (Yang et al., 2024b) and entropy coding (Chen et al.,
2024).

Although 3D Gaussian is specifically designed for 3D scenes, it has the potential to be a general sig-
nal representation method that can be applied to more fields. Zhang et al. (2024) transform the 3D
splatting rendering process into a 2D splatting rendering process, building an image representation
and compression pipeline based on Gaussian representation. Shin et al. (2024) represent video by
foreground Gaussian and background Gaussian, and further achieve video editing. Despite its strong
expressive capabilities and fast rendering speed, the exploration of Gaussian in non-3D representa-
tion fields is insufficient. How to design better representations to apply 3D Gaussian to different
signal like video remains a question.
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3 METHOD

The implicit assumption of 3DGS for effective scene representation and novel view synthesis is that
the dataset describes a 3D scene that can be observed from multiple viewpoints. The assumption
may be violated when extend 3DGS to general-purpose representation model (Zhang et al., 2024).
To address the issue, we transform the original camera model of 3DGS to TSW orthographic pro-
jection (abbreviated as TSW in following sections). TSW is based on the assumption of similarity
between neighboring frames, which is inherent characteristics of videos. With TSW, we can easily
transform any 3D Gaussian model to video representation model. In section 3.1 we briefly review
the background of 3DGS and entropy constrained 3DGS, HAC(Chen et al., 2024). Section 3.2 in-
troduces TSW in details. To enhance the clarity of our method, we illustrate the overall framework
of GSVC in Fig. 3. Section 3.3 and section 3.3 explain then time-aware Gaussian generation and
optical flow guidance respectively. Section 3.5 summarizes the pipeline of GSVC and introduce the
post-compression process.

3.1 PRELIMINARIES

3D Gaussian Splatting is designed to synthesis high-quality novel view of a 3D scene efficiently
from photos, which is known as inverse rendering. 3DGS models a 3D scene as a large amount of
3D Gaussian points represented by

G(x) = exp(−1

2
(x− µ)⊤Σ−1(x− µ)) (1)

where µ and Σ are the mean position and covariance matrix of a 3D Gaussian particle. In rendering
process, Gaussian particle are projected to pixel space to obtain 2D Gaussian parameterized by Σ′

Σ′ = JWΣW⊤J⊤, (2)

where W is view transformation and J is is the Jacobian of the affine approximation of the perspec-
tive transformation. Each pixel color C is calculated following α-blending

C =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj). (3)

where α is derived from Σ′. To maintain the positive semi-definiteness, covariance matrix is further
decomposed as rotation R and scaling S, i.e. Σ = RSS⊤R⊤.

In Scaffold-GS (Lu et al., 2024), all previous parameters are generated from anchor with location
xa and attributes A = {fa ∈ RDa

, l ∈ R6,o ∈ R3K}, where each component represents anchor
feature, scaling and offsets, respectively. HAC (Chen et al., 2024) further exploits mutual relation
between A and fh := Interp(xa,H), to achieve efficient compression, where H is binary hash
grid.

3.2 BRIDGING 3D GAUSSIAN SPLATTING AND 2D VIDEO

Few of previous work investigates the method of representing video by 3DGS. Shin et al. (2024)
decompose video to foreground Gaussians and background Gaussians. This method requires explicit
foreground and background content in the video, but this assumption is not always valid in many
videos, such as screen recordings and hand-drawn animations, which are non-natural scene videos.
Our core idea is to view 2D videos as a 3D manifold and represent the video using 3D Gaussians
directly in the manifold space. This means that every Gaussian point not only affects different pixels
at the same time but also affects the same pixel at different times.

Specifically, we view 2D axis xy and time axis t in video as 3D axis xyz in 3D space, and represent
the 3D space by Gaussian particles. In render stage, we introduce Toast-like sliding window (TSW)
orthographic projection, as shown in Fig. 2c. When rendering frame with time stamp t1, we select
all Gaussians with coordinate z falling into [t1 − h, t1 + h], which is similar to near clip and far
clip in normal orthographic projection. We note space [t1 − h, t1] and [t1, t1 + h] as Vf and Vb

respectively. After culling stage, we use plane z = t1 as camera plane and perform 3D Gaussian
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Figure 2: Comparison of different camera models.

Splatting rendering process in Vf and Vb. Since affine approximation is unnecessary for orthographic
projection, the Jacobian matrix J is identity matrix. Eq. 2 can be simplified as

Σ′ = WΣW⊤. (4)

To utilizes the bi-directional similarity along time axis, we obtain final reconstructed frame from the
average of rendering results of Vf and Vb. We show more details and visualization in Appendix A.3.

When using a 3D manifold to represent a 2D video, the redundancy in the t/z axis is often greater
than that of the xy axis, which is one of the most important differences from the usual 3D co-
ordinates. The sliding window mechanism improves the representation efficiency by reusing and
effectively reduces the redundant information on the time axis. At the same time, this representa-
tion method only assumes the similarity in the time axis of the video, and does not require explicit
3D structures, which is more suitable for general video representation scenarios. Moreover, when
reconstructing frames, only Gaussian points within the sliding window participate in the rendering
process, naturally achieving the goal of stream decoding and random decoding.

3.3 TIME-AWARE GAUSSIAN GENERATION

In Scaffold-GS, the generation process of Gaussian points is performed by taking the viewpoint
coordinates and anchor point features as inputs, achieving perspective-aware Gaussian Splatting
rendering. However, previous studies have shown that directly using coordinates as inputs prevents
the network from learning high-frequency features, deteriorates reconstruction quality. Therefore,
we use time stamp t of frame and anchor location relative to the camera plane δza as input after
positional encoding (Mildenhall et al., 2020; Tancik et al., 2020)

pe(p) = (sin(2kπp), cos(2kπp))L−1
k=0 . (5)

We set L = 16 for both t and δza.

In terms of network architecture, we add feature-wise linear modulation (FiLM) layers (Perez et al.,
2018) to MLP. The FiLM layers apply affine transformations to features based on condition inputs.
Compared with the original MLP, incorporating FiLM layers increase the network capacity and
improve parameter efficiency, which is important to compression task. In our method, the transfor-
mation parameters of the FiLM layers are computed from input positional encoding

γi,c = gc(pe(t),pe(δz
a)), βi,c = hc(pe(t),pe(δz

a)) (6)

where i denotes the index of anchor, c denotes the different FiLM layer of different attributes such
as color c. The final attribute value are computed from anchor features and FiLM transformation

fi = MLPc(f
a
i ), (7)

f̂i = FiLMc(fi|γi,c, βi,c) = γi,cfi + βi,c (8)

c = MLP′
c(f̂i), (9)

Here we use color as an example, and the calculation for other attributes are similar.
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In addition to the attribute network, we also added a deformation network (Yang et al., 2024c) to
enhance the capability of modeling dynamic content. The deformation network takes the positional
encoding and anchor feature as input and calculates the dynamic offset delta δo of the spawned
Gaussians at time t.

δo = MLPo(f
a,pe(t),pe(δza)). (10)

Given the anchor xa, final position of spawned Gaussians are

{µ0, µ1, . . . , µK−1} = xa + (δo+ {o0, o1, . . . , oK−1})la (11)

where {o0, o1, . . . , oK−1} ∈ RK×3are the learnable offsets and la is the scaling factor associated
with that anchor.

3.4 OPTICAL FLOW GUIDED DEFORMATION

High dynamic objects often appear in real-world videos. Currently, research on using 3D Gaussian
representation for dynamic content mainly focuses on 4D video (Yang et al., 2024c). Studies on
high dynamic content are still insufficient Some work uses optical flow information as auxiliary
supervisory signals to guide the training process (Tang et al., 2023). However, such methods usually
require an additional network to estimate the optical flow information between reconstructed frames.
The performance is affected by the auxiliary network. The explicit representation of 3D Gaussian
provides another way to utilize optical flow information.

During the training, we render adjacent two frames simultaneously. For Gaussian points that appear
in both frames, we directly supervise their displacement in deformation field using the optical flow
information corresponding to the pixel coordinate where the Gaussian point is projected according
to

Loptical,t1 =

N∑
i=1

|µ̂i,t2 − µ̂i,t1 − uµ̂t1 ,t1
|1, (12)

where µ̂i,t1 µ̂i,t2 are the coordinates of the i-th Gaussian shared between {Vf , Vb}t1 and {Vf , Vb}t2
at t1 and t2 in pixel space respectively. uµ̂t1 ,t1

is the estimated optical flow of corresponding image
pixel. The explicit supervision is more effective than implicit information from original image.
Another benefit is that the optical flow is estimated independent from training process and can be
reused for same video with different model settings.

3.5 TRAINING PIPELINE, POST TRAINING COMPRESSION AND ENTROPY CODER

Fig. 3 illustrates the full pipeline of GSVC. We integrated all of the above modules to achieve joint
training of reconstruction quality, bit rate, and optical flow constraints.

L = Lrec + λ
1

N(Da + 6 + 3K)
(Lentropy + Lhash) + λoLoptical + λsLscaffold (13)

where Lrec is fusion loss of L1 loss and SSIM loss between ground truth and average render results
of Vf and Vb. Loptical is the optical loss. Lscaffold, Lentropy and Lhash are similar to previous work.
λ, λo and λs are trade-off hyper-parameters among each component.

Despite HAC-based architecture can estimate the end-to-end entropy of most parameters, the anchor
coordinates are only quantized during training and not included in the entropy estimation pipeline.
The network parameters are also saved in full precision 32-bit. In 3D scene compression, the bit
rate of anchor coordinates and network parameters is not high, so saving them in this way will not
significantly affect performance. However, in video tasks, we found that the proportion of these two
parts has a significant increase. Therefore, we further encoded these parameters to improve the final
RD performance.

For the anchor points, we use a geometry-based point cloud compression tool, G-PCC1 (Schwarz
et al., 2018), to ensure the accuracy of the reconstruction. We compress the quantized anchor point
coordinates in a lossless manner. Since G-PCC compression reorders the anchor point sequence, we
also adjust the order of related attributes before entropy coding them. For all network parameters,

1https://github.com/MPEGGroup/mpeg-pcc-tmc13
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Figure 3: The framework of GSVC. t is the timestamp of frame to be rendered. q,µ and σ are
estimated quantization step, mean and scale used in entropy coding. N denotes we encode anchor
attributes A = {fa ∈ RDa

, l ∈ R6,o ∈ R3K} by Normal distribution. Similarly, B represent
Bernoulli, used to encode binary hash grid H. AE/AD represent ANS (Duda et al., 2015) encoder
and decoder. Note the offsets mask is also decoded from bitstream.

following previous work (Chen et al., 2021), we directly quantize them to 8 bits. After this post-
processing, the compression ratio can be further improved.

Furthermore, we implemented a GPU-based entropy codec according to ANS theory (Duda et al.,
2015; Bamler, 2022). Most of entropy coders utilize the powerful serial computation ability of
CPU cores but misalign with the requirements of emerging compressor building on neural network,
which conduct most of the computation on GPU. Frequent communication between CPU and GPU
will deteriorate the coding speed, let alone the bottleneck of pure serial processing. In proposed
entropy codec, we take advantage of parallelization by probing decoding. Appendix A.1 explains
the detail designs.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Dataset All experiments are performed on popular UVG dataset (Mercat et al., 2020). We select
first 7 videos as dataset, consisting videos with resolution of 1920×1080 and 600×6+300 = 3900
frames in total, following previous works (Chen et al., 2021; Lee et al., 2023). In GSVC, we use
optical flow estimated by pre-trained model of VideoFlow (Shi et al., 2023).

Metrics We use the peak signal-to-noise ratio (PSNR) in RGB 4:4:4 and MS-SSIM (Wang et al.,
2003) as distortion quality metric, which are the most widely used metric in compression. We
also report LPIPS (Zhang et al., 2018) in main experiment, which is a popular perceptual metric to
measure realism. Bit-per-pixel (BPP) is used as coding efficiency metric.

Implementation details We implement differentiable rasterizer with orthographic projection based
the repository of HAC. The sliding window mechanism and GSVC are implemented with PyTorch.
In experiments of 3DGS family methods, we build Structure-from-Motion (SfM) cloud directly from
UVG dataset by COLMAP (Schönberger & Frahm, 2016; Schönberger et al., 2016). For video fails
to converge or generates multiple SfM clouds, we skip the video in experiments. For TSW variant of
3DGS family methods and GSVC, there is no trivial method to obtain a meaningful initialization like
SfM. We simply start training from random initialized point cloud. We assign camera position of
each frame as (0, 0, tn), where tn is normalized timestamp of corresponding frame. We set h = 0.4
for HoneyBee, h = 0.2 for ShakeNDry and h = 0.05 for other videos. We reproduce the results of
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Table 1: Numerical results of all methods. For vanilla 3DGS (Kerbl et al., 2023), Scaffold-GS
(abbreviated as S-GS) (Lu et al., 2024) and HAC (Chen et al., 2024), COLMAP fails to reconstruct
valid scene on HoneyBee, Jockey and ShakeNDry so we skip these videos. Subscript TSW denotes
the TSW variants of these methods. The best and second best results are highlighted in red and
yellow cells. The size is measured in MB.

Data Metrics 3DGS S-GS HAC 3DGSTSW S-GSTSW HACTSW GSVC

Beauty

PSNR ↑ 25.87 28.52 26.27 28.54 29.21 29.77 30.25
SSIM ↑ 0.8102 0.8367 0.8116 0.8414 0.8426 0.8549 0.8532
LPIPS ↓ 0.6033 0.6034 0.6191 0.6022 0.6126 0.5925 0.5745
SIZE ↓ 28.10 4.930 1.493 25.18 5.995 2.316 1.107
FPS ↑ 126.3 125.3 154.6 93.05 84.32 89.04 83.37

Bospho.

PSNR ↑ 23.47 26.59 25.42 29.03 29.04 32.00 33.19
SSIM ↑ 0.7461 0.8815 0.8542 0.8726 0.8753 0.9260 0.9517
LPIPS ↓ 0.4427 0.2601 0.2985 0.3503 0.3551 0.2660 0.1780
SIZE ↓ 121.0 7.990 2.105 24.80 5.903 5.091 2.050
FPS ↑ 53.24 92.61 137.0 77.63 60.81 50.82 67.03

Honey.

PSNR ↑ - - - 35.23 31.00 36.50 37.90
SSIM ↑ - - - 0.9755 0.9525 0.9801 0.9830
LPIPS ↓ - - - 0.1844 0.2520 0.1728 0.1571
SIZE ↓ - - - 23.87 5.903 3.169 2.313
FPS ↑ - - - 81.33 98.48 76.73 39.63

Jockey

PSNR ↑ - - - 21.71 22.93 22.76 29.38
SSIM ↑ - - - 0.7399 0.7673 0.7760 0.8956
LPIPS ↓ - - - 0.5342 0.5298 0.4975 0.3777
SIZE ↓ - - - 22.48 6.741 3.062 2.429
FPS ↑ - - - 83.96 49.17 41.42 61.70

Ready.

PSNR ↑ 21.30 23.51 22.43 18.27 18.88 19.75 26.96
SSIM ↑ 0.8044 0.8655 0.8354 0.6143 0.6349 0.6943 0.9263
LPIPS ↓ 0.3120 0.2718 0.2890 0.6213 0.6432 0.5381 0.2326
SIZE ↓ 631.4 85.3900 21.63 26.45 7.047 6.433 6.350
FPS ↑ 76.21 98.82 119.3 71.38 76.62 51.45 51.90

Shake.

PSNR ↑ - - - 29.75 30.41 31.75 34.22
SSIM ↑ - - - 0.9068 0.9113 0.9272 0.9470
LPIPS ↓ - - - 0.3279 0.3218 0.2719 0.2239
SIZE ↓ - - - 24.16 9.824 3.729 3.153
FPS ↑ - - - 73.39 83.22 77.81 42.93

Yacht.

PSNR ↑ 20.31 23.37 20.59 23.84 23.94 25.69 28.61
SSIM ↑ 0.6511 0.7705 0.6904 0.7779 0.7851 0.8491 0.9201
LPIPS ↓ 0.5379 0.4239 0.4855 0.4610 0.4703 0.3684 0.2469
SIZE ↓ 50.77 38.60 5.485 24.34 5.902 5.502 3.7015
FPS ↑ 47.35 83.72 123.2 68.13 66.4746 50.3142 64.00

NeRV (Chen et al., 2021) according to original hyper-parameters setting but in per video way. We
conduct all experiments on a single RTX 3090. More details can be found in Appendix A.2.

4.2 QUANTITY AND QUALITY RESULTS

Table 1 demonstrates the result among 3DGS family methods and proposed method. Not surpris-
ingly, vanilla 3DGS, Scaffold-GS and HAC cannot be considered a valid video representation model,
failing to reconstruct all videos in dataset. It is obvious that not all videos contain a 3D scene, which
is a key modeling assumption of 3DGS. For TSW variants of these methods, we only require ad-
jacent similarity among frames, which effectively transform these methods to video representation
models. HACTSW achieves second best results in many metrics.

But we also notice that for ReadySetGo, TSW variants fail to surpass vanilla methods. The result
indicates the insufficiency of representing video by TSW only for videos including high dynamic
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Figure 4: Comparison with other methods on UVG dataset. GSVC significantly outperforms NeRV
(Chen et al., 2021) and HNeRV (Chen et al., 2023) on MS-SSIM and LPIPS and achieves compara-
ble MS-SSIM and LPIPS performance with H.265 (veryslow) at low bit rate region.
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Figure 5: Comparison with other methods on practical metrics. GSVC outperforms all learning-
based methods on rendering speed. We omit DCVC (Li et al., 2021) here due to its slow auto-
regressive decoding (≪ 1 FPS). In stream decoding, when bit stream is completely decoded, all
frames are available for rendering in all methods.

contents. Cooperating with proposed time-aware generation and optical guided deformation, GSVC
achieves best result in majority of metrics except for FPS. Since GSVC requires rendering twice for
each frame, this result is reasonable.

Fig. 4 demonstrates the comparison of GSVC and other methods including H.264, H.265, DCVC
(Li et al., 2021), VCT (Mentzer et al., 2022), NeRV (Chen et al., 2021) and HNeRV (Chen et al.,
2023). We use λ = {0.1, 0.04, 0.001, 0.005} and averages the results over same λ. GSCV attains
comparable performance in PSNR and significantly better performance in MS-SSIM and LPIPS than
NeRV and HNeRV. This is a positive proof-of-concept of applying 3DGS in video compression. We
present more results and visualizations of all methods in Appendix A.5.

4.3 RENDERING SPEED AND STREAM DECODING

Rendering speed is important for real-world application. Note here we refer decoding as the process
of entropy decoding for GSVC and Huffman decoding for NeRV. Rendering speed only account
for reconstruction since the decoding process can be easily overlapped by multiprocessing. Fig. 5a
shows GSVC achieves 30 % to 40% higher FPS than NeRV and over 40× FPS than VCT, demon-
strating the efficiency of our method.

Stream decoding is another important feature for practical usage. Fig. 5b shows the stream decoding
result. NeRV must decoding whole network before rendering frames. But for GSVC, after receiv-
ing common information including meta, anchor position and weights of network, the remaining
bitstream can be decoded on demand. Besides, we also notice that better stream decoding perfor-
mance is achieved when using high bit rate setting (smaller λ). This is because the size of common
information is similar at different bitrates.
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Table 2: Ablation results. We report BD-rate (%) (Bjøntegaard, 2001) of all settings relative to
GSVC. Negative value denote the setting has better RD performance than GSVC. Failing to calculate
BD-rate means the highest PSNR among all λ of the setting is smaller than the lowest PSNR of
GSVC. w/o deformation means removing deformation network. w/o FiLM represents using original
MLP instead of network with FiLM layer.

Settings Beauty Bospho. Honey. Jockey Ready. Shake. Yacht.

w/o optical guidance -5.374 2.618 -5.060 81.21 78.37 -10.56 1.753
w/o post compression 72.81 42.75 68.66 40.68 32.24 58.49 39.31

w/o deformation 0.347 - 38.15 - - 41.39 -
w/o FiLM 64.82 134.1 3.039 - - 64.67 -
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Figure 6: Ablation results of h. ShakeNDry contains an almost static background while Jocky is a
highly dynamic video.

4.4 ABLATION STUDY

Table. 3 demonstrates the effectiveness of different components of GSVC. In general, all the pro-
posed modules effectively improve the final performance except optical flow guidance. For videos
with high dynamic contest, optical flow guidance is critical. For the data with negative effects, fur-
ther inspection reveals that they are mainly caused by noise in the optical flow estimation results.
This also indirectly indicates the importance of optical flow information. How to overcome these
inevitable noises is a direction worth exploring in the future.

Fig. 6 shows the impact of the h in TSW. For video that is close to static, a larger h performs better,
while for dynamic video, a smaller h performs better. Fig. 6b also indicates that large h may lead
to unstable training for dynamic video. Due to the non-uniform dynamic characteristics of videos,
manually specifying h or determine h by warm-up training for all frames is far from optimal. How
to adaptively assign h to each frame according to dynamics of adjacent frames is another valuable
question.

5 DISCUSSION

Conclusion In this paper, we propose a novel TSW orthographic projection to effectively transform
any 3D Gaussian model to a video representation model. Based on TSW we further introduce a prac-
tical video compressor GSVC. As a proof-of-concept, we explore the characteristics of 3DGS-based
video codec by extensive experiments. Our approach has demonstrated promising RD performance
with practical fast rendering and stream decoding. With the advancements of 3DGS compression
techniques (Wang et al., 2024), 3DGS-based video codec is worth exploring further in the future.

Limitation Similar to other INR-based methods, GSVC still relies on a per-video training encoding
process, which limits its application in real-time encoding tasks. Moreover, the proposed model still
has room for improvement. These limitations also suggest more directions for further exploration.
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A APPENDIX

A.1 GPU-BASED ANS CODEC

The ANS codec are often considered to have higher encoding and decoding speeds while keeping
similar coding efficiency to arithmetic coding. We implement our codec by extending the algorithm
introduced by Bamler (2022) to massively parallel environment. Algo. 1 and Algo. 2 demonstrates
the encoding and decoding process.

Algorithm 1 Encoding process

1: procedure ENCODE SYMBOLS(s,µ,σ, N )
2: ps ← PMF(s,µ,σ)
3: cs ← CDF(s,µ,σ)
4: head← 0 ▷ head is an unsigned 32 bit integer
5: bitstream← [] ▷ Empty array to store bit stream
6: mask ← 216 − 1
7: cursor ← 0
8: for i← 0, N − 1 do
9: p← ps[i]

10: c← cs[i]
11: if (head >> 16) > p then
12: cursor ← cursor + 1
13: bitstream[cursor]← head&mask
14: head← head >> 16
15: end if
16: z ← head mod p+ c
17: head← ⌊head/p⌋;
18: head← head << 16|z
19: end for
20: while head > 0 do ▷ Transfer the reaming bits in head to bitstream
21: cursor ← cursor + 1
22: bitstream[cursor]← head&mask
23: head← head >> 16
24: end while
25: return bitstream
26: end procedure

In Algo. 1, s is symbols vector to be encoded with N elements. µ,σ are distribution parameters
associated with each symbol. On GPU, we can quickly compute probability mass function (PMF)
value and cumulative density function (CDF) value of each symbol, shown in line 1 to 2 in the algo-
rithm. The remain part of algorithm follows the common ANS encoding process in serial fashion.

Algo. 2 demonstrates the decoding process of our codec. Different from common ANS decoder, we
suppose all symbols in support set are valid symbol to be decoded. Obviously only the trial holds
the correct symbol will succeed. For massively parallel GPU, performing all attempts will not take
much longer time than completing just one. In serial decoding, it is difficult to decode the correct
symbol with just a few trials. Therefore, even if the GPU thread is slower than CPU thread, our
method can still achieve faster decoding speed, especially with larger support sets.

In Algo. 2 PMF() and CDF() compute the full PMF and CDF for whole support set of all symbols
to be decoded. Fig. 7 demonstrates the encoding and decoding speed of proposed codec and torchac
(Mentzer et al., 2019) on random generated message with 20000 symbols. Since our method does
not compute full PMF values and CDF values, the acceleration is more significant in encoding stage.
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Algorithm 2 Parallel decoding process

1: procedure DECODE SYMBOLS(bitstream,cursor,µ,σ, N )
2: Ps ← PMF(µ,σ) ▷ Ps,Cs are computed outside the function,
3: Cs ← CDF(µ,σ) ▷ we put them here for demonstration.
4: while cursor ≥ 0 and head >> 16 == 0 do
5: token← bitstream[cursor]
6: cursor ← cursor − 1
7: head← head << 16|token
8: end while
9: shared symbols← [] ▷ Empty array to store decoded symbols

10: shared s ▷ Current decoded symbol
11: shared r ▷ Residue in decoding
12: mask ← 216 − 1
13: for i← 0, N − 1 do
14: p← Ps[i, :]
15: c← Cs[i, :]
16: z ← head&mask
17: head← head >> 16
18: tid← thread ID of CUDA kernel
19: lb = c[tid]
20: ub = c[tid+ 1]
21: if z >= lb and z < ub then ▷ Only thread holds correct symbol pass the check
22: s← tid
23: r ← z − lb
24: symbols[i] = s
25: end if
26: block.sync() ▷ Sync all threads of CUDA kernel
27: head← head× p[s] + r
28: if (head >> 16) == 0 and cursor ≥ 0 then
29: token← bitstream[cursor]
30: cursor ← cursor − 1
31: head← head << 16|token
32: end if
33: end for
34: return symbols
35: end procedure
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Figure 7: Comparison results. Our method significantly faster than torchac
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A.2 MORE IMPLEMENTATION DETAILS

A.2.1 HYPER-PARAMETERS SETTINGS

For original 3DGS, Scaffold-GS and HAC, we use the default setting. Note λe is a tunable hyper-
parameter to control the rate-distortion trade-off. In order to obtain more intuitive results, we set
λe = 10−9 to Beauty, λe = 10−8 to Bosphorus and λe = 10−5 to the others.

In experiments of TSW variants, we sample coordinates used to initialize Gaussian from uniform
distribution. We set initial anchor number to 100000 for GSVC and 20000 to the others. Note GSVC
achieves lower bit rate with more initialization anchors. For HACTSW, we set λe = 0.001 for all
videos.

Besides, we set densification threshold to 0.0005, which limited the densification speed in some high
dynamic videos. We also set grid dimension to 8 to increase the capacity of hash grid. For the re-
maining hyper-parameters of GSVC shared with HAC, including learning rates and their scheduler,
we follow the original setting.

A.2.2 TRAINING SCHEDULE

In all experiments, we train GSVC 40000 iterations in total. In first 10000 iterations, we use full
precision training and adding uniform noise to simulate quantization error from iteration 10000 to
35000. After 35000 iterations, we employ a straight-through estimator (Theis et al., 2022) to align
with real quantization. The entropy constraints is added from iteration 15000. We apply anchor
densification and pruning between iteration 1500 and 25000. We also pause the operations at the
beginning of quantization training i.e. iterations between 10000 and 11000 to improve training
stability.

A.2.3 BUILDING SFM CLOUDS FROM VIDEO

Because SfM clouds initialization is necessary for 3DGS family methods, we generate the point
clouds using COLMAP2 (Schönberger & Frahm, 2016; Schönberger et al., 2016).

1 import pycolmap
2 import pathlib
3

4 output_path = pathlib.Path('/path/to/ouput_dir')
5 image_dir = pathlib.Path('/path/to/frames_dir')
6 database_path = output_path / 'database.db'
7 pycolmap.extract_features(database_path, image_dir)
8 pycolmap.match_exhaustive(database_path)
9 maps = pycolmap.incremental_mapping(

10 database_path, image_dir, output_path
11 )
12 maps[0].write(output_path)

Listing 1: Snippet used to build SfM clouds from video frames

We successfully build SfM for Bosphorus and YachtRide. COLMAP extract multiple SfMs from
Beauty, Jockey and ReaySetGo. Since the biggest SfM of Beauty and ReadySetGo includes more
than 500 frames of original video, we consider them as valid SfM. For HoneyBee and ShakeNDry,
COLMAP fails to converge.

A.2.4 DETAILS OF BASELINE METHODS

For H.265 and H.264 we follow the settings in DCVC(Li et al., 2021) and average the results over
same qp value. For DCVC we use the pre-trained models to evaluate the performances. Instead of

2https://github.com/colmap/colmap
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Figure 8: Example of rendering one frame in real anchors cloud.

testing only 120 frames in original paper, we test all frames in UVG dataset. The results of VCT
(Mentzer et al., 2022) is copied from original paper. Different from other methods using models
training with same specified loss function in all experiments, the results of VCT on PSNR and
MS-SSIM are from corresponding models i.e. test PSNR using models trained for PSNR and test
MS-SSIM using models trained for MS-SSIM.

A.3 MORE DETAILS ABOUT RENDERING

Fig. 8 illustrates a real example of rendering one frame. To render a frame at time t0, we use camera
plane z = t0. Based on the camera plane, we cull anchors that do not participate in the rendering
(gray points in Fig. 8). For anchors fall into Vf and Vb, we render them separately. The rendering
follows standard 3D Gaussian Splatting rendering procedure, except skipping view frustum culling
and replacing perspective projection matrix with orthographic projection matrix (Eq. 2).

Fig. 9 demonstrates progressive rendering results. In each setting, we use a subset of Gaussians
in Vf and Vb to render a frame, according to Gaussian particles’ distance to camera plane. For
example, when d = 0.03, we only select Gaussians with distance smaller than 0.03. It is obvious
that Gaussians near camera plane tend to focus on dynamic objects i.e. dog in the scene, while
distant Gaussians pay more attention to static background, which is shared by more frames.

A.4 RESULTS OF ENCODING TIME

Table 3 demonstrates the comparison of encoding time. GSVC outperforms other INR-based meth-
ods. It should be noted that smaller total rendered frames during training does not necessarily mean
faster converging. Training time depends on model size, model structure, and whether entropy con-
straint is enforced during training. For GSVC, the time of one iteration with entropy constraint is
longer than without entropy constraint due to the consumption of the entropy network. Since there
is no accepted metric like FLOPS to measure the computational complexity of 3D Gaussian Splat-
ting rendering, we use GPU utilization from nvidia-smi as a reference. A utilization below 100%
indicates that GSVC’s computational consumption is lower than other methods. However, it also
suggests that the GPU’s capability is not fully tapped. This limitation calls for further exploration
and improvement in the future.

18



Published as a conference paper at ICLR 2025

(a) d = 0.03 (b) d = 0.06 (c) d = 0.09

(d) d = 0.12 (e) d = 0.15 (f) d = 0.20

Figure 9: Progressive rendering results. d is the max distance between camera plane and Gaussian
particles participating in rendering.

Table 3: Training/Encoding time comparison. Frames represents number of total frames rendered
during training. We show the results of a typical 600 frames video in UVG dataset. Training time
of HNeRV is sensitive to model size i.e. bpp, so we demonstrate a range here. GPU Util. is from
nvidia-smi.

Method Frames Time GPU Util.

NeRV 240k 22ks (6h6m) 100%
HNeRV 180k 13.8ks∼28.2ks (3h50m∼7h50m) 100%
GSVC 80k 12.4ks (3h26m) 85%

A.5 VISUALIZATION

We demonstrate the visualization results in following pages.
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Figure 10: Beauty
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Figure 11: Bosphorus
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Figure 12: HoneyBee

22



Published as a conference paper at ICLR 2025

0.02 0.03 0.04 0.05 0.06
BPP

30

31

32

33

34

PS
NR

 [d
B]

 

GSVC
NeRV

(a) PSNR

0.02 0.03 0.04 0.05 0.06
BPP

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

M
S-

SS
IM

 

GSVC
NeRV

(b) MS-SSIM

0.02 0.03 0.04 0.05 0.06
BPP

0.30

0.32

0.34

0.36

0.38

LP
IP

S 

GSVC
NeRV

(c) LPIPS

(d) Ground truth (e) GSVC (f) NeRV

(g) 3DGSTSW (h) Scaffold-GSTSW (i) HACTSW

Figure 13: Jockey
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Figure 14: ReadySetGo
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Figure 15: ShakeNDry
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Figure 16: YachtRide
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