
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TC-MOE: AUGMENTING MIXTURE OF EXPERTS WITH
TERNARY EXPERT CHOICE

Anonymous authors
Paper under double-blind review

ABSTRACT

The Mixture of Experts (MoE) architecture has emerged as a promising solution
for reducing computational overhead by selectively activating subsets of model
parameters. The effectiveness of MoE models is primarily dependent on their
routing mechanisms, with the widely adopted Top-K routing scheme used to ac-
tivate experts. However, the Top-K scheme has notable limitations, including un-
necessary activations and underutilization of existing experts. In this work, rather
than modifying the routing mechanism as in previous studies, we propose Ternary
Choice MoE (TC-MoE), a novel approach that expands the expert space by mul-
tiplying each expert with the ternary set {−1, 0, 1}. This expansion allows for
more efficient and effective expert activations without incurring significant com-
putational cost. Additionally, given the unique characteristics of the expanded
expert space, we introduce a new load balancing loss and reward loss to ensure
workload balance and achieve a flexible trade-off between effectiveness and ef-
ficiency. Extensive experiments demonstrate that TC-MoE achieves an average
improvement of more than 1.1% over the traditional approaches, while reducing
the average number of activated experts by up to 9%. These results confirm that
TC-MoE effectively address the inefficiencies of classical routing schemes, offer-
ing a more efficient and scalable solution for MoE-based large language models.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Achiam
et al., 2023) have demonstrated impressive performance across a wide range of domains. However,
modern LLMs still face inefficiencies, as they typically utilize all their parameters for every input
token during both training and inference. This leads to a substantial increase in computing resource
requirements as the models scale. To address these challenges, researchers have introduced the
Mixture of Experts (MoE) architecture (Shazeer et al., 2017). The MoE architecture facilitates
parameter scaling while maintaining reasonable computational expenses. Unlike traditional dense
models, MoE models incorporate a routing mechanism that selectively activates specific subsets of
parameters for particular input tokens. Recent advancements in MoE models (Jiang et al., 2024; Dai
et al., 2024; Wu et al., 2024) have paved the way for scaling language models to unprecedented sizes
and achieving remarkable performance enhancements.

Within the MoE architecture, the routing mechanism plays a critical role as it significantly influ-
ences both the efficiency and effectiveness of model training. Traditional MoE frameworks, such as
GShard (Lepikhin et al., 2020), Switch Transformers (Fedus et al., 2022), and ST-MoE (Zoph et al.,
2022) employ the Top-K routing scheme. This method calculates the routing probability for each
expert with respect to every input token. The Top-K experts, selected based on the highest routing
probabilities, are then activated for each input token. The output is the weighted sum of the outputs
from the activated experts.

However, recent work (Zhou et al., 2022; Huang et al., 2024), along with our experiments, demon-
strates that the Top-K routing scheme is suboptimal. We identify the following limitations:

• Unnecessary Activations: The Top-K scheme activates a fixed number of experts for each
token, neglecting the possibility of adaptively choosing the number of activated experts. As

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

C
o

nt
rib

ut
io

n

Negative contribution

Positive contribution

Gate Values

Unnecessary activation

(a) Distribution of contributions from activated ex-
perts. The experts are categorized based on their gate
values. This shows that some activations contribute
negatively to the performance, indicating unnecessary
activations.

� � � � � � � � � � � � � � � � � 0 0 . 0 0 5
0

5 0

1 0 0

1 5 0

2 0 0

�

�

De
ns

ity

C o n t r i b u t i o n

�P o s i t i v e c o n t r i b u t i o n
�N e g a t i v e c o n t r i b u t i o n

� � � �� � � �

(b) Distribution of contributions from experts with
low gate values after flipping the sign of their out-
puts. The results demonstrate that some experts
can positively impact performance when their out-
put signs are flipped.

Figure 1: Analysis of the limitations in the conventional Top-K routing scheme in a model with 2
activated experts out of 8. We compute the contribution of each activated expert by measuring the
difference in the model output quality when the activation is masked. More details of this figure are
provided in Appendix A.1.

shown in Figure 1a, not all activated experts in the Top-K scheme contribute positively to
the model’s performance, indicating the presence of unnecessary activations.

• Underutilization of Existing Experts: The Top-K scheme restricts experts to having only
non-negative weights, disregarding the potential benefits of employing negative weights.
As demonstrated in Figure 1b, approximately 40% of the experts with low gate values have
positive contributions when their output signs are flipped.

In this work, we introduce Ternary Choice Mixture of Experts (TC-MoE) to address these lim-
itations. Unlike previous studies (Zhou et al., 2022; Yang et al., 2024; Huang et al., 2024) that
focus on modifying the routing scheme, we explore an alternative direction by expanding the expert
space. Inspired by the concept of ternary quantization, where weights are projected to {−1, 0, 1},
we propose creating an expanded expert space by multiplying each expert in the original space with
{−1, 0, 1}. As demonstrated in Figure 2b, by applying the ternary choice to each expert, we obtain
an expanded expert space without increasing the parameter count of the experts. This expanded
expert space enables the router to learn more complex routing strategies during the training process,
thereby addressing the aforementioned limitations without modifying the routing scheme.

However, the expanded expert space exhibits unique characteristics that differ from the original ex-
pert space. As illustrated in Figure 2b, certain pairs of experts share the same parameters, while
some experts have no parameter and incur no computational cost. Due to these differences, the
traditional load balancing loss becomes unsuitable. To address this, we propose a new load balanc-
ing loss to ensure an equitable distribution of workload. Furthermore, based on our analysis, we
introduce a novel reward loss to facilitate a flexible trade-off between efficiency and effectiveness.

We thoroughly evaluate our method using multiple common benchmarks. The results demon-
strate that our TC-MoE outperforms all competitors. Compared to the baseline model, our method
achieves an average improvement of 1.1%, while reducing the average number of activated experts
by up to 9%. When compared with other dynamic routing methods, our approach consistently
achieves superior performance under different activation budgets. These results strongly confirm
that TC-MoE effectively addresses the limitations of the classical routing scheme.

Our contributions can be summarized as follows:

1. We propose TC-MoE, a novel method to address the limitations of the classical routing
scheme in MoE models. Unlike previous studies that focus on enhancing the routing

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Router

Token A

Expert 𝐸3Expert 𝐸2Expert 𝐸1

(a) Conventional MoE.

Router

Expert

𝐸1

Token A

× {−1, 0, 1}

Expert

𝐸2

Expert

𝐸3

Sharing parameters Sharing parameters
No parameters

Expert

𝐸1
−1

Expert

𝐸1
1

Expert

𝐸2
−1

Expert

𝐸2
1

Expert

𝐸3
−1

Expert

𝐸3
1

Expert

𝐸1
0

Expert

𝐸2
0

Sharing parameters

(b) Our proposed TC-MoE.

Figure 2: Comparison of conventional MoE and our TC-MoE. In this example, the original expert
space comprises 3 experts, with a router activating 2 of them. By multiplying the original expert
space with {−1, 0, 1}, TC-MoE obtains an expanded expert space with a total of 8 experts. Two
experts have no parameter and incur no computational cost. The remaining experts are divided into
three groups, with each group of experts sharing parameters.

scheme, TC-MoE leverages the concept of ternary quantization to expand the expert space
without incurring significant costs. This expansion promotes more effective activations by
the router.

2. Given the unique load balance requirements in our expanded expert space, we redesign the
load balancing loss. Additionally, we introduce a novel reward loss to achieve a flexible
trade-off between effectiveness and efficiency.

3. Our experimental results demonstrate that TC-MoE achieves superior performance with
fewer activated parameters, confirming significant improvements in both effectiveness and
efficiency over the baseline.

2 RELATED WORK

Mixture of Experts Models. MoE models (Jacobs et al., 1991; Jordan & Jacobs, 1994) have been
extensively studied in artificial intelligence. The concept of using a trainable gating network to
determine a sparse combination of experts is pioneered by the Sparsely-Gated MoE (Shazeer et al.,
2017). Since then, numerous studies (Lepikhin et al., 2020; Fedus et al., 2022; Zoph et al., 2022;
Jiang et al., 2024; Dai et al., 2024; Wei et al., 2024) have built upon this framework, demonstrating
compelling empirical results by scaling MoE models to unprecedented sizes.

Routing Schemes. The MoE architecture relies on a routing module to determine the activation
of experts, making the routing scheme a critical factor for MoE model performance. Early works
(Shazeer et al., 2017; Fedus et al., 2022) employ the Top-K routing scheme, which calculates the
routing probabilities for each experts and activates the Top-K experts with the highest probabilities.
Recent studies have focused on improving routing schemes. Zhou et al. (2022) introduce the expert
choice routing mechanism, which assigns equal capacity to every expert and allows tokens to com-
pete for expert selection. Yang et al. (2024) propose a threshold-based router that uses a manually
set threshold to control the number of activated experts for each token. Huang et al. (2024) also
propose a threshold-based router but take it a step further by incorporating a dynamic loss to prevent
from activating too many experts.

Heterogeneous Experts Design. Unlike classical MoE frameworks that utilize feed-forward net-
works with the same configuration for all experts, recent works have explored the design of hetero-
geneous experts. Ainslie et al. (2023b) propose a heavy branch alongside a light branch, using a
router to select important tokens for processing through the heavy branch. Raposo et al. (2024) fur-
ther refine this concept in the decoder-only setting by defining the light branch as a skip connection.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Additionally, Zeng et al. (2024) introduce a set of null experts alongside ordinary experts, while
Wang et al. (2024) explore more diverse strategies for integrating heterogeneous experts.

In this paper, we propose TC-MoE, a novel method that complements existing research on routing
mechanisms in MoE models. Our framework provides a comprehensive design for expert spaces
by leveraging heterogeneous experts, thereby improving the overall performance and scalability of
MoE architectures.

3 METHOD

In this section, we begin with an overview of the widely-used Top-K routing mechanism in MoE
models. We then introduce our Ternary Choice MoE, a method that expands the expert space with
minimal computational overhead. Following this, we propose a new load balance loss function to
ensure effective load balance across the expanded expert space. Finally, we present a reward loss
technique that achieves a flexible trade-off between efficiency and performance in our approach.

3.1 TOP-K ROUTING MECHANISM

In a typical MoE architecture for transformer language models, Feed-Forward Network (FFN) layers
are replaced with MoE layers. Each MoE layers consists of N independent FFNs, referred to as
experts, {E1, E2, · · · , EN}, along with a trainable router. Given a hidden representation h ∈ Rd of
the input token, the router computes the probability distribution over the experts as follows:

p(h) = Softmax(Wg · h+ bg), (1)

where Wg ∈ RN×d is a trainable weight matrix, and bg ∈ RN is the bias term. Then the Top-K
router selects the top K experts with the highest probabilities for each input token. The gate values
for the selected experts are set to the normalized probabilities, while those for the other experts are
set to 0:

gi(h) =

pi(h)/
∑
j∈E

pj(h), i ∈ E

0, i /∈ E
(2)

where E denotes the set of the top K experts with the highest probabilities. The final output O of
the MoE layer is computed as the weighted sum of the outputs from the activated experts:

O =
∑
i∈E

gi(h) · Ei(h). (3)

3.2 TERNARY CHOICE MOE

Although the Top-K routing scheme is widely used in MoE models, we argue that this method still
has notable limitations. As illustrated in Figure 1, the Top-K scheme suffers from unnecessary ac-
tivations, where some activated experts negatively impact model performance. It also underutilizes
existing experts, overlooking the potential benefits of contrasting expert outputs. While most previ-
ous studies focus on modifying the routing scheme to address these issues, we propose an alternative
approach, Ternary Choice MoE, which expands the expert space and provides the router a more di-
verse set of activation options. Specifically, as illustrated in Figure 2b, we augment the original
expert space by multiplying it with the ternary set {−1, 0, 1}. This allows us to project each expert
Ei into three distinct experts {E−1

i , E0
i , E

1
i }, formulated as follows:

E1
i (h) := Ei(h), E0

i (h) := 0, E−1
i (h) := −Ei(h), ∀h ∈ Rd. (4)

In this design, both E1
i and E−1

i share the same parameters as Ei. While E0
i has no parameter

and is the same across all experts. We further simplify by maintaining only E0
1 , · · · , E0

K , as this
is sufficient for the Top-K router to activate any number from 0 to K of these experts. Therefore,
TC-MoE has totally 2N +K experts.

Our method only requires maintaining the parameters of Ei, consistent with the original model. The
only additional parameters and costs arise in the router. With the number of experts increased to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2N +K, we introduce (N +K)d+N +K extra parameters and O((N +K)d) additional compu-
tational costs in the router. However, this cost is negligible compared to the overall computational
cost of the MoE block.

For simplicity, we define the sets of each type of expert as follows:
E−1 := {E−1

i |i ∈ [N]}, E0 := {E0
i |i ∈ [K]}, E1 := {E1

i |i ∈ [N]} (5)
Our method provides an alternative perspective for addressing the aforementioned limitations of
the Top-K routing scheme. Without altering the classical Top-K routing scheme, incorporating E0

allows the router to avoid unnecessary activations by activating experts from E0, which contribute
zero to the output and incur no computational cost. Additionally, the inclusion of E−1 enables the
router to explore the potential benefits of flipping the signs of expert outputs.

Furthermore, we find that making a small improvement to the Top-K routing scheme by always
activating experts from E0 is beneficial. A detailed description of this improvement is provided in
Appendix A.3.

3.3 LOAD BALANCING LOSS

In common MoE models (Fedus et al., 2022; Zoph et al., 2022), an auxiliary loss is typically in-
troduced to encourage a balanced workload among experts. In our approach, however, experts are
categorized into two types: E1 ∪E−1, which incur computational costs, and E0, which does not in-
cur any computational cost. Therefore, reasonable workload balance considerations in our scenario
are as follows: (1) experts from E0 do not need to be balanced with other experts since they do not
contribute to computational costs, and (2) the sum of the workloads of expert E1

i and expert E−1
i

should be balanced, as E1
i and E−1

i are distributed on the same device in scenarios involving expert
parallelism (Lepikhin et al., 2020). Based on these considerations, we propose a new formulation
for the load balancing loss:

fi =
1

KT

T∑
j=1

1(Token j selects expert E1
i or E−1

i), (6)

f =
1

N

N∑
i=1

fi, (7)

pi =
1

T

T∑
j=1

[
pE1

i
(hj) + pE−1

i
(hj)

]
, (8)

Laux =

N∑
i=1

(fi − f) · pi, (9)

where T is the sequence length, fi represents the sum of the activation frequencies of experts E1
i

and E−1
i , and pi denotes the sum of the average probabilities assigned to experts E1

i and E−1
i .

3.4 FLEXIBLE TRADE-OFF BETWEEN EFFICIENCY AND EFFECTIVENESS

Since E0 represents a special class of experts that incurs no computational cost, it is crucial to
understand how the router learns to allocate gate values to these experts. Based on our analysis,
we propose a novel auxiliary loss, termed the reward loss, to achieve a flexible trade-off between
efficiency and effectiveness by tuning the activated ratio of experts from E0.

During the backward pass, the gradient of the gate value for each expert is computed as follows:

∂L
∂gi(h)

=


〈
∂L
∂O

, Ei(h)

〉
, i ∈ E

0. i /∈ E
(10)

For each activated expert Ei, the term − ∂L
∂gi(h)

indicates the impact of increasing the expert’s gate
value on reducing the loss function. Since the sum of the gate values is constrained to 1, a compet-
itive dynamic arises among the activated experts. Experts that significantly contribute to reducing
the loss function are assigned higher gate values, as verified in Figure 1a.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of performance across evaluation benchmarks. “Avg. K” denotes the average
number of activated experts that incurs computational costs during inference. “#FLOPs ↓” denotes
the reduction ratio of FLOPs compared to the Top-K baseline. The bold number indicates the highest
value for each benchmark.

Pre-trained Dataset Method Avg. K #FLOPs ↓ ARC-Easy BoolQ MMLU LAMBADA HellaSwag OpenBookQA PIQA SIQA WinoGrande Avg
Base model

RedPajama

Top-K 2.00 - 57.03 58.75 25.24 50.40 42.76 39.40 68.17 43.91 52.72 48.71
Random drop 1.85 5.4% 56.48 58.62 25.35 50.13 42.83 39.00 69.53 44.68 51.30 48.66
Top-P 1.99 0.3% 55.26 59.54 25.74 50.30 42.22 41.00 68.66 43.55 53.20 48.83
TC-MoE 1.82 6.5% 57.03 59.20 25.58 50.16 43.51 42.00 68.66 44.88 54.85 49.54
Fine-grained base model
Top-K 4.00 - 56.69 55.35 25.16 50.16 42.72 39.6 68.93 44.11 52.49 48.36
TC-MoE 3.87 2.3% 57.58 58.56 26.80 50.46 43.16 41.80 68.28 45.19 52.09 49.32

FineWeb

Tiny model
Top-K 2.00 - 55.13 56.76 26.02 48.32 46.46 37.60 71.33 44.68 52.41 48.75
TC-MoE 1.83 5.8% 55.93 58.53 26.2 48.85 46.65 41.20 71.71 46.32 53.99 49.93
Base model
Top-K 2.00 - 60.19 50.76 26.46 53.95 53.23 43.00 74.48 45.60 55.33 51.44
TC-MoE 1.86 5.1% 60.56 57.4 26.67 54.01 54.05 44.00 73.45 47.24 56.12 52.61

Following Equation 10, for activated expert E0
i , we have

∂L
∂gE0

i
(h)

=

〈
∂L
∂O

, E0
i (h)

〉
=

〈
∂L
∂O

,0

〉
= 0. (11)

This indicates that expert E0
i have no impact on reducing the loss function. Therefore, when com-

peting with other activated experts, expert E0
i will tend to receive higher gate values than experts

with negative impacts but lower than those with positive impacts. This effectively helps in avoiding
unnecessary activations.

Based on the above analysis, we propose extending our method to achieve a flexible trade-off be-
tween efficiency and effectiveness. Specifically, we manually assign a negative value to ∂L

∂g
E0

i
(h)

instead of 0, thereby giving expert E0
i a positive contribution in reducing the loss function. Conse-

quently, the router will learn to promote the activation of these experts, while selectively deactivating
other types of experts with minimal positive contributions. To achieve this, we introduce a new aux-
iliary loss, termed the reward loss, defined as follows:

Lrwd = − 1

T

K∑
i=1

T∑
j=1

gE0
i
(hj), (12)

where T is the sequence length, and gE0
i
(hj) represents the gate values of expert E0

i on token hj .

Linearly combining the language modeling loss (Llm), the load balance loss, and the reward loss,
we yield the total loss, formulated as follows:

L = Llm + α1Laux + α2Lrwd, (13)

where α1 is a hyper-parameter known as the load balance factor, and α2 is a hyper-parameter known
as the reward factor.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Pre-trained Datasets. We train our models using the RedPajama dataset (Computer, 2023) and
the FineWeb dataset (Penedo et al., 2024). The RedPajama dataset includes diverse sources such
as Common Crawl (CC), C4, Wikipedia, Github, books, arxiv, and Stackexchange. The FineWeb
dataset is an open-source, high-quality training dataset consisting of cleaned and deduplicated en-
glish web data from CC. In our experiments, all models are trained on 100B tokens.

Architecture. We employ a decoder-only transformer model, primarily based on the LLaMA ar-
chitecture (Touvron et al., 2023). Each transformer layer includes both an attention layer and an
MoE layer. RMSNorm (Zhang & Sennrich, 2019) is applied to the inputs of both attention layers
and MoE layers. Within the attention layer, we adopt the Group-Query Attention (GQA) (Ainslie
et al., 2023a). Additionally, RMSNorm is used to normalize each key vector. Each FFN expert em-
ploys the SwiGLU activation function (Shazeer, 2020). In our experiments, We employ three types

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Configurations of our MoE models.

Model #Layers #Hidden Size #Heads #KV Heads #Intermediate Size #Activated Experts/
#Total Experts

#Activated Params/
#Total Params

Tiny 24 768 12 2 2048 2/8 298M/978M
Base 32 1024 16 2 2816 2/8 681M/2.3B
Fine-grained base 32 1024 16 2 1280 4/16 631M/2.1B

Table 3: Ablation study on the contribution of different types of experts. “Multiplication Set” de-
notes the set used to multiply the original expert space, “Average K” denotes the average number of
activated experts. Specifically, {1} represents the Top-K baseline.

Multiplication
Set Average K #FLOPs ↓ Average

Performance

{1} 2.00 - 48.71
{−1, 1} 2.00 0.0% 49.00 (+0.29)
{0, 1} 1.81 6.9% 49.23 (+0.52)

{−1, 0, 1} 1.82 6.4% 49.54 (+0.83)

of models: tiny, base, and fine-grained base. Table 2 summarizes their respective configurations.
We use the same tokenizer as GPT-NeoX-20B (Black et al., 2022), which has a vocabulary size of
50257.

Competitors. We pre-train three baseline methods alongside our proposed TC-MoE using the afore-
mentioned architecture:

1. Top-K: A standard Top-K routing scheme that activates the top K experts for each token.
We select K = 2 or K = 4 as these are the most common configurations in modern MoE
architectures (Zoph et al., 2022; Jiang et al., 2024; Wei et al., 2024; Wu et al., 2024).

2. Random drop: A variant of the Top-K routing scheme that, with probability p, does not
activate the expert with the second highest probability.

3. Top-P: The Top-P routing scheme (Huang et al., 2024), which activates the smallest set of
experts whose cumulative probabilities surpass a threshold P for each token.

4. TC-MoE: Our proposed method, which expands the expert space and adopts the standard
Top-K routing scheme to activate the top K experts within this expanded expert space for
each token.

The Top-K baseline adopts a fixed number of activated experts, whereas Random drop, Top-P, and
TC-MoE allow for a flexible trade-off between effectiveness and efficiency by tuning specific hyper-
parameters. Details of these hyper-parameters are provided in Appendix A.2.

Evaluation. We evaluate these models on seven different benchmarks: ARC (Clark et al., 2018),
BoolQ (Clark et al., 2019), MMLU (Hendrycks et al., 2021), LAMBADA (Paperno et al., 2016),
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020),
SIQA (Sap et al., 2019), and WinoGrande (Sakaguchi et al., 2021). These tasks examine mod-
els’ logical reasoning, language understanding, commonsense reasoning, and knowledge utilization.
Additionally, we measure the average number of activated experts that incur computational costs to
demonstrate the efficiency of each model. Note that in our TC-MoE, only the activations of E−1

and E1 are counted since E0 incurs no computational cost. For simplicity, we refer to the average
number of activated experts as the average number of activated experts that incur computational
costs in the following sections.

4.2 MAIN RESULTS

Table 1 summarizes the performance of various models across different evaluation benchmarks.
The results highlight the superior performance of our proposed TC-MoE compared to competing
methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 1.2 1.4 1.6 1.8 2
2.47

2.48

2.49

2.5

2.51

2.52

L
os

s

Average K

 TC-MoE
 Top-P
 Random drop

(a)

1 1.2 1.4 1.6 1.8 2
41

42

43

44

H
el

la
S

w
ag

 A
cc

. (
%

)

Average K

 TC-MoE
 Top-P
 Random drop

(b)

Figure 3: Comparison of (a) the language modeling loss and (b) the HellaSwag accuracy under
different budgets for the average number of activated experts. The results demonstrate TC-MoE
outperforms other competitors under all settings.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

C
o

nt
rib

ut
io

n

Negative contribution

Positive contribution

Gate Values

Figure 4: Distribution of contri-
butions from activated experts
in TC-MoE on pre-trained data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

nt
rib

u
tio

n

Negative contribution

Positive contribution

Gate Values

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

nt
rib

u
tio

n
Negative contribution

Positive contribution

Gate Values

(b)

Figure 5: Distribution of contributions from activated experts in
(a) baseline and (b) TC-MoE on ARC-Easy. The results show a
significant alleviation of unnecessary activations by TC-MoE.

Specifically, when pre-trained the base model on the RedPajama dataset, TC-MoE outperforms com-
petitors on ARC-Easy, HellaSwag, OpenBookQA, SIQA, and WinoGrande, while achieving com-
parable results on BoolQ, MMLU, LAMBADA and PIQA. Notably, TC-MoE achieves an average
accuracy of 49.54%, surpassing the Top-K baseline by 0.83%, Random drop by 0.88% and Top-P
by 0.71%. For the fine-grained base model pre-trained on the RedPajama dataset, TC-MoE also
outperforms the Top-K baseline, improving the average accuracy by 0.96%.

When pre-training on the FineWeb dataset, TC-MoE demonstrates even greater accuracy improve-
ments. For the tiny model, TC-MoE surpasses the Top-K baseline by 1.18%. Similarly, for the base
model, TC-MoE outperforms the Top-K baseline by 1.17%.

Beyond improved accuracy, TC-MoE consistently demonstrates greater efficiency. Specifically, it
reduces the average number of activated experts by 9.0% and the required FLOPs by 6.5% compared
to the Top-K baseline on the base model pre-trained on the RedPajama dataset.On the FineWeb
dataset, TC-MoE reduces the average number of activated experts by 7.0% and the required FLOPs
by 5.1%. These results demonstrate that our method achieves significant gains in both effectiveness
and efficiency over the Top-K baseline.

Additionally, we conduct a thorough comparison of these methods under different budgets for the
average number of activated experts. The results are shown in Figure 3. The figure demonstrates that
the TC-MoE consistently outperforms the other two competitors across all settings of the average
number of activated experts. Notably, in terms of the language modeling loss, TC-MoE reduces the
loss by approximately 0.017 compared to competitors. For HellaSwag accuracy, TC-MoE improves
accuracy by up to 0.7% compared to other methods.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 11 21 31
0

20

40

60

80

100

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Layer

(a)

1 11 21 31
0

20

40

60

80

100

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Layer

(b)

Figure 6: The activated ratio of different types of experts across layers on (a) the pre-trained data
and (b) the test data (ARC-Easy). The results show a similar activated pattern on different data.

1 2 3 4 5 6 7 8 9
0

5

10

15

20

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Expert

(a)

1 2 3 4 5 6 7 8 9
0

5

10

15

20

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Expert

(b)

Figure 7: The activated ratio of different experts in layer 16 on (a) the pre-trained data and (b) the test
data (ARC-Easy). The results show the effectiveness of our load balance loss during both training
and inference.

4.3 ABLATION STUDY

We conduct an ablation study by evaluating the performance of our method using only a subset of
{−1, 0, 1} to multiply the original expert space. As demonstrated in Table 3, expanding the expert
space with either {−1, 1} or {0, 1} improves the model performance. Specifically, expanding the
expert space with {−1, 1} results in an average performance increase of 0.29% while the average
number of activated experts remains at 2.0. When expanding the expert space with {0, 1}, the av-
erage performance increase by 0.52%, and the average activated experts reduced by 0.19. When
expanding the expert space with the complete set {−1, 0, 1}, the model achieve the best perfor-
mance, with both improved results and a reduced number of activated experts. In summary, both
type E−1 and type E0 contribute to the improvement of model performance, while type E0 also
significantly enhances model efficiency.

4.4 ANALYSIS

Unnecessary Activations. We investigate the effect of our method on addressing unnecessary ac-
tivations. Figure 4 shows the distribution of contributions from activated experts in TC-MoE on
the pre-trained data. Compared to the distribution of contributions in the baseline model, shown in
Figure 1a, our TC-MoE significantly alleviates the occurrence of unnecessary activations. Addition-
ally, when analyzing unnecessary activations on ARC-Easy, we observe many more activations that
contribute negatively. In this scenario, as shown in Figure 5, TC-MoE alleviates the occurrence of
unnecessary activations even more significantly.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 5000 10000 15000 20000 25000
0

5

10

15

A
ct

iv
at

ed
 R

at
io

 (
%

)

Step

1

5

9

13

17

21

25

29

33

La
ye

r

(a)

0 5000 10000 15000 20000 25000
0

10

20

30

40

A
ct

iv
at

ed
 R

at
io

 (
%

)

Step

1

5

9

13

17

21

25

29

33

La
ye

r

(b)

Figure 8: The changing curves of activated ratios of (a) type E−1 and (b) type E0 of different layers.

Activated Ratio of Different Types of Experts. To analyze the activated ratio of different types of
experts, we visualize the activated ratios across layers in TC-MoE. The results are shown in Figure 6.
We observe that type E1 has the highest activated ratio, indicating a major contribution to the output.
Additionally, the model spontaneously learns to allocate around 20% activated ratio to type E0 and
type E−1, highlighting the necessity of these experts for more powerful routing. The activation
ratios on ARC-Easy are similar as that on pre-trained data, demonstrating the generalization of our
method.

The distribution of activated ratios varies significantly across different layers. Figure 8 visualizes
the changing curves of the activated ratios across layers during the entire training process. We find
that the activation ratios of type E−1 and type E0 across layers exhibit a converse pattern. For type
E−1, the model tends to activate more of them in the deeper layers. In contrast, type E0 is primarily
activated in the shallow layers.

Load Balance. To explore the effectiveness of our load balancing loss, we visualize the activated
ratios of different experts in our model during the training process. Figure 7 shows the activated
ratios in layer 16. To observe the actual load balancing distribution, we stack the activated ratios
of each E−1

i and E1
i , as they are distributed on the same device when involving expert parallelism.

Additionally, we plot the sum of the activated ratio of type E0 at the position of expert 9, since
they do not contribute to computational costs. We observe that our TC-MoE achieves a near-perfect
workload balance with our designed load balancing loss on the pre-trained dataset. The sum of
the workloads of experts E1

i and experts E−1
i are balanced, each around 11.5%. Additionally, the

activated ratios of expert E1
i and expert E−1

i are not fixed but are instead learned dynamically by the
model. Furthermore, experts from E0 do not participate in the load balancing, allowing the model
to activate E0 without any constraints. On ARC-Easy, we observe a slight deviation in load balance,
with the maximum expert workload reaching approximately 15.0%, while the minimum workload
is around 8.5%.

5 CONCLUSIONS

In this paper, we present Ternary Choice MoE (TC-MoE), a novel approach designed to address
the limitations of traditional Top-K routing in MoE architectures. By expanding the expert space
through a simple yet effective method of multiplying each expert by the ternary set {−1, 0, 1}, we
introduce greater flexibility and diversity into the expert activation process without incurring signif-
icant additional costs. Our approach enables more effective use of experts, mitigating issues such
as unnecessary activations and underutilization of existing experts that are common in conventional
MoE models. Extensive experiments across various benchmarks demonstrate consistent improve-
ments in both effectiveness and efficiency, outperforming existing methods. These results highlight
the potential of TC-MoE as a scalable, computationally efficient method for MoE models. We be-
lieve this work opens new perspectives for further development in the design and optimization of
MoE models, paving the way for more advanced and resource-efficient large-scale models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. GQA: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023a.

Joshua Ainslie, Tao Lei, Michiel de Jong, Santiago Ontañón, Siddhartha Brahma, Yury Zemlyan-
skiy, David Uthus, Mandy Guo, James Lee-Thorp, Yi Tay, et al. COLT5: Faster long-range
transformers with conditional computation. arXiv preprint arXiv:2303.09752, 2023b.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, et al. GPT-NeoX-20B: An open-source
autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In the North
American Chapter of the Association for Computational Linguistics, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Together Computer. RedPajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. DeepSeekMoE: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In The International Confer-
ence on Learning Representations, 2021.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao, Chen Zhang, Yang Jin, Kun Xu, Liwei Chen,
Songfang Huang, and Yansong Feng. Harder tasks need more experts: Dynamic routing in moe
models. arXiv preprint arXiv:2403.07652, 2024.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural Computation, 3(1):79–87, 1991.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural Computation, 6(2):181–214, 1994.

11

https://github.com/togethercomputer/RedPajama-Data

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-Depths: Dynamically allocating compute in transformer-based language
models. arXiv preprint arXiv:2404.02258, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. SocialIQa: Com-
monsense reasoning about social interactions. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

An Wang, Xingwu Sun, Ruobing Xie, Shuaipeng Li, Jiaqi Zhu, Zhen Yang, Pinxue Zhao, JN Han,
Zhanhui Kang, Di Wang, et al. Hmoe: Heterogeneous mixture of experts for language modeling.
arXiv preprint arXiv:2408.10681, 2024.

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao
Zhang, Xiaoyu Zhang, Liang Zeng, et al. Skywork-MoE: A deep dive into training techniques for
mixture-of-experts language models. arXiv preprint arXiv:2406.06563, 2024.

Shaohua Wu, Jiangang Luo, Xi Chen, Lingjun Li, Xudong Zhao, Tong Yu, Chao Wang, Yue Wang,
Fei Wang, Weixu Qiao, et al. Yuan 2.0-M32: Mixture of experts with attention router. arXiv
preprint arXiv:2405.17976, 2024.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Enhancing
efficiency in sparse models with sparser selection. arXiv preprint arXiv:2403.18926, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zihao Zeng, Yibo Miao, Hongcheng Gao, Hao Zhang, and Zhijie Deng. AdaMoE: Token-
adaptive routing with null experts for mixture-of-experts language models. arXiv preprint
arXiv:2406.13233, 2024.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 2019.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 2022.

12

https://arxiv.org/abs/2406.17557

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. ST-MoE: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

A APPENDIX

A.1 CALCULATING THE CONTRIBUTION OF EACH ACTIVATION

To evaluate the effectiveness of the routing scheme, we conduct experiments to analyze the impact of
routing decisions on model outputs. It is important to note that we are not discussing the contribution
of each expert, but rather the effect of each individual activation decision made by the router.

Specifically, we first randomly select 15 sequences from the training set of RedPajama (Computer,
2023) and the test set of ARC-Easy (Clark et al., 2018), respectively. The average sequence length
of samples in the training set is 1608, while it is 30 in the test set, We use the language modeling
loss on these sequences to measure the quality of model outputs. For a specific activation A, a
straightforward method to obtain its contribution is to forward the model on the input sequence
twice: once with this activation and once masking this activation. We then calculate the difference
in the loss function. This can be formulated as follows:

ContributionA := L(M\{A}(x))− L(M(x)), (14)

where x denotes the input sequence, L denotes the loss function, M denotes the function of the
model, and M\{A} denotes the function of the model when masking the activation A. For sequences
sampled from the pre-trained data, we compute the loss across all positions, whereas for sequences
sampled from the test data, we calculate the loss only over the tokens constructing the answer. When
masking activation A results in a higher loss, we calculate a positive contribution for activation A.
This indicates that the activation decision has a beneficial impact on model performance.

However, we observe empirically that the impact of masking a single activation is too small to
analyze effectively. Therefore, we alternatively categorize the activations into groups based on their
gate values and calculate the contribution of each group. Specifically, we divide the gate values
from 0 to 1 into 10 intervals: 0 to 0.1, 0.1 to 0.2, ..., 0.9 to 1.0. Nevertheless, the unequal size of
different groups still makes it unfair to compare the contributions across groups. To address this, we
randomly select the same number of activations to mask within each group for a fair comparison.
Specifically, we mask 20 activations in each layer of each group for sequences sampled from the
training set, and 5 activations in each layer of each group for sequences sampled from the test set.
We then calculate the loss difference as shown in Equation 14.

For the experiments involving the flipping of expert output signs, we use a similar method. For a
specific activation A, we forward the model on the input sequence twice: once with this activation
and once with the flipped sign activation, then calculate the difference in the loss function. We define
this as:

Contribution−A := L(M\{A},∪{−A}(x))− L(M(x)), (15)
where M\{A},∪{−A} denotes the function of the model when the sign of activation A is flipped. We
randomly flip the sign of 20 activations with gate values lower than 0.2 in each layer, obtaining the
distribution shown in Figure 1b.

A.2 HYPER-PARAMETERS

We use the AdamW optimizer with a first-moment decay of β1 = 0.9 and a second-moment decay
of β2 = 0.95. The weight decay is set to 0.1 in our experiments. The learning rate is gradually
increased from 0 to 3e-4 in the first 10% of training steps and then decays to 3e-5 using a cosine
decay schedule for the remaining steps. We set the sequence length to 2048 and the global batch
size to 2048.

To achieve a flexible trade-off between effectiveness and efficiency for Random Drop, Top-P, and
TC-MoE, we tune specific hyperparameters:

• Random drop: We set the drop probability p to 15%, 45%, and 70% to achieve average
activation numbers of 1.85, 1.55, and 1.30, respectively.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 0 2 5 0 0 0

1 . 4

1 . 6

1 . 8

2

Av
era

ge
 K

S t e p

 0
 1 e - 5
 2 e - 5

Figure 9: The changing curves of the average
number of activated experts when varying the re-
ward factor.

CC C4 Wikipedia Github arxiv Stackexchange
0

5

10

15

A
ct

iv
a

te
d

R
a

tio
 (

%
)

Source

Figure 10: The activated ratios across different
sources of training data.

• Top-P: We set the threshold P to 0.4 as in the original paper (Huang et al., 2024), and the
dynamic loss weight to 1e-5, 2e-5, and 5e-5 to achieve average activation numbers of 1.99,
1.56, and 1.14, respectively.

• TC-MoE: We set the load balance factor α1 to 0.01, and the reward factor α2 to 0, 1e-5,
and 2e-5 to achieve average activation numbers of 1.82, 1.61, and 1.30, respectively.

For initialization, we adopt an initializer range of 0.006. The weight matrix Wg of the router is also
initialized with a standard deviation of 0.006. The bias term bg ∈ R2N+K of the router is initialized
with 0 for experts of type E1, −1 for experts of type E−1, and −10 for experts of type E0. This
initialization is designed to make the router concentrate on type E1 at the beginning of the training
process.

A.3 IMPROVING THE TOP-K ROUTING SCHEME

In the classical Top-K routing mechanism, as demonstrated in Equation 10, only the activated ex-
perts participate in the competition for the gate values. However, since experts of type E0 require
no computational power, it is straightforward to always activate them and include them in the com-
petition. Therefore, we propose an improvement by always activating these experts. Specifically,
we modify the activation set E by taking the union with E0. The updated calculation of gate values
is formulated as follows:

gi(h) =


pi(h)/

∑
j∈E∪E0

pj(h), i ∈ E ∪ E0

0, i /∈ E ∪ E0

(16)

where E denotes the set of the top K experts with the highest probabilities.

A.4 EFFECT OF THE REWARD LOSS

We also investigate the effect of our designed reward loss. As illustrated in Figure 9, we vary the
reward factor from 0 to 2e-5, The average number of activated experts shows different changing
curves. By increasing the reward factor, we encourage the model to select experts from E0, which
incur no computational cost. Consequently, the model tends to have a lower average number of
activated experts. Specifically, the average number of activated experts converges to 1.82 when the
reward factor is 0 and to 1.30 when the reward factor is 2e-5. These results demonstrate that tuning
the reward factor enables a flexible trade-off between effectiveness and efficiency.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.5 ACTIVATED RATIO ON DIFFERENT SOURCES

We also investigate the activated ratio on different sources of training data. The results are shown
in Figure 10. We observe that the activated ratio of E0 exhibits significant variance across different
sources. Notably, The activated ratio of E0 is around 11% on data from Github and arxiv, while it
is only 4% on data from Wikipedia. Similarly, the activated ratio of E−1 also varies across different
sources. The activated ratio of E−1 is only 4% on data from Wikipedia and Stackexchange, while
it is 6% on data from CC. The variance across different sources indicates some specialization of
experts from E0 and E−1.

15

	Introduction
	Related Work
	Method
	Top-K Routing Mechanism
	Ternary Choice MoE
	Load Balancing Loss
	Flexible Trade-off between efficiency and effectiveness

	Experiments
	Experimental Settings
	Main Results
	Ablation Study
	Analysis

	Conclusions
	Appendix
	Calculating the contribution of each activation
	Hyper-parameters
	Improving the Top-K routing scheme
	Effect of the reward loss
	Activated Ratio on Different Sources

