
Published as a conference paper at ICLR 2024

SEA: SPARSE LINEAR ATTENTION WITH
ESTIMATED ATTENTION MASK

Heejun Lee1, Jina Kim1, Jeffrey Willette2, Sung Ju Hwang2,3
School of Computing1, Graduate School of AI2

Korea Advanced Institute of Science and Technology1,2, DeepAuto.ai3
Daejeon, South Korea
{ainl,jinakim,jwillette,sjhwang}@kaist.ac.kr

ABSTRACT

The transformer architecture has driven breakthroughs in recent years on tasks
which require modeling pairwise relationships between sequential elements, as
is the case in natural language understanding. However, long seqeuences pose a
problem due to the quadratic complexity of the attention operation. Previous re-
search has aimed to lower the complexity by sparsifying or linearly approximating
the attention matrix. Yet, these approaches cannot straightforwardly distill knowl-
edge from a teacher’s attention matrix, and often require complete retraining from
scratch. Furthermore, previous sparse and linear approaches lose interpretability
if they cannot produce full attention matrices. To address these challenges, we
propose SEA: Sparse linear attention with an Estimated Attention mask. SEA
estimates the attention matrix with linear complexity via kernel-based linear at-
tention, then subsequently creates a sparse attention matrix with a top-k̂ selection
to perform a sparse attention operation. For language modeling tasks (Wikitext2),
previous linear and sparse attention methods show roughly two-fold worse per-
plexity scores over the quadratic OPT-1.3B baseline, while SEA achieves better
perplexity than OPT-1.3B, using roughly half the memory of OPT-1.3B. More-
over, SEA maintains an interpretable attention matrix and can utilize knowledge
distillation to lower the complexity of existing pretrained transformers. We be-
lieve that our work will have a large practical impact, as it opens the possibility of
running large transformers on resource-limited devices with less memory.

1 INTRODUCTION

The transformer (Vaswani et al., 2017) architecture has revolutionized various fields of artificial in-
telligence, such as natural language understanding (Touvron et al., 2023; Wang et al., 2022) and
computer vision (Dosovitskiy et al., 2021) due to its ability to learn pairwise relationships between
all T tokens in a given sequence (O(T 2)). This has ushered in the era of large transformer-based
foundation models with impressive generalization abilities (Brown et al., 2020; Chiang et al., 2023).
However, since the transformer’s attention mechanism comes with a quadratic space and time com-
plexity, it becomes untenable for handling long sequences which are essential for tasks such as di-
alogue generation (Chen et al., 2023). To overcome this limitation, previous works have suggested
approaches with linear complexity by using static or dynamic sparse attention patterns (Beltagy
et al., 2020; Zaheer et al., 2020; Tay et al., 2020a; Kitaev et al., 2020; Tay et al., 2020b; Liu et al.,
2021), or by replacing quadratic attention with kernel or low-rank approximations (Choromanski
et al., 2021; Chen et al., 2021; Qin et al., 2022).

However, despite their promising aspects, previous linear attention methods have yet to be widely
used in research and production for several reasons. Firstly, these attention mechanisms cannot
be easily swapped into existing finetuned models. After radically replacing the quadratic attention
mechanism, they require training new attention relations to attempt to recover the performance of
the quadratic attention module and cannot directly learn the full range of attention relations during
knowledge distillation. Therefore, they suffer from unpredictable accuracy degradation on down-
stream tasks. For example, as shown in Table A.8, Reformer (Kitaev et al., 2020) outperforms many

1



Published as a conference paper at ICLR 2024

Vanilla
Attention

(Teacher)

Hard to Knowledge Transfer

Attention Relationship Knowledge Transfer

No Transfer

Sparse Attention  SEA attention (Ours)  

Previous
Works Performer

Context
Knowledge

Transfer

Interpolate for KD Training

Convert to the Sparse Mask

Interpolate the Sparse Mask
and Perform Sparse Attention

Context Knowledge Transfer

Kernel-based 

Figure 1: Concept. We estimate the attention matrix in a compressed size (Â), then perform a grouped top-
k̂ selection, and subsequently perform sparse attention with our novel FlatCSR operation using an estimated
attention mask on the full attention matrix. SEA has linear complexity in all steps at test-time, and requires
direct attention matrix distillation from the quadratic teacher at train-time.

other baselines on MNLI (Williams et al., 2018); however, it shows the worst performance in Ta-
ble 2 on Wikitext2 (Merity et al., 2017). Secondly, previous linear attention methods may hinder
the ability to interpret the attention matrix or merge/prune tokens (Kim et al., 2022; Lee et al., 2023;
Bolya et al., 2023) of the transformer model, as they do not produce the full attention matrix which
is usually required for analyzing the importance of a given token.

In contrast to previous works, our proposed linear attention method, SEA: Sparse linear attention
with Estimated Attention mask, focuses on estimating the attention matrix from a pretrained teacher
transformer model with O(T ) complexity at inference rather than O(T 2). In order to do so, our
novel estimator, distills knowledge (Hinton et al., 2015) from the teacher and estimates the attention
matrix with O(T ) complexity by fixing the second dimension to a constant value K where K ≪ T .
This results in a compressed attention matrix which can be decompressed via interpolation into an
approximation of the full attention matrix when performing the distillation step as opposed to previ-
ous works which prescribe retraining attention relationships during distillation due to incompatible
changes in the attention operation (Choromanski et al., 2021; Qin et al., 2022). By distilling from the
full attention matrix into our compressed matrix, SEA can use the complex and dynamic attention
information from the pretrained model and preserve task performance.

Furthermore, as SEA distills knowledge from a full attention matrix, the resulting compressed at-
tention matrix and sparse attention matrix can still provide interpretable attention by allowing for
interpreting the relationships and importance of tokens (e.g. analysis of attention patterns in im-
ages (Dosovitskiy et al., 2021) and token pruning (Kim et al., 2022; Lee et al., 2023; Bolya et al.,
2023)). Lastly, SEA reduces the space and time complexity of attention from O(T 2) into O(T )
at test-time, with significantly reduced memory and computational cost while maintaining similar
performance to the original pretrained transformer model, as shown in Fig. 5 and Tables 2 and A.8.

In Fig. 1, we provide a overview of our proposed method’s inference stage. The main idea is to first
estimate a compressed attention matrix Â with O(T ) complexity, and subsequently perform sparse
attention after choosing only O(T ) important relationships inferred from Â. Specifically, we decode
the output features of the kernel-based linear attention method Performer (Choromanski et al., 2021)
to form Â. Next, we perform a top-k̂ selection on Â to form a compressed attention mask which can
be used to generate a sparse attention mask for the final sparse attention operation. By utilizing both
kernel-based and sparse attention, we can take advantage of their diverse token embedding spaces,
as shown in previous work (Chen et al., 2021). The compressed estimated attention matrix Â is
trained via knowledge distillation (Hinton et al., 2015; Jiao et al., 2020) from a pretrained quadratic
teacher model to distill complex and dynamic attention patterns. We achieve linear complexity in
this process by controlling sparsity and compression ratio in the compressed attention mask.

We validate SEA by applying it to BERT for text classification (Devlin et al., 2019; Wang et al.,
2019) and to OPT for causal language modeling (Zhang et al., 2022; Merity et al., 2017). Our em-
pirical findings demonstrate that SEA adequately retains the performance of the quadratic teacher
model in both tasks (Tables 2 and A.8), while previous methods do not. SEA significantly out-
performs the best linear attention baselines, such as Performer, in language modeling with 47.7%
lower (better) perplexity while consuming 54.2% less memory than quadratic attention (Table 2).
This opens up the possibility of running long context language models on lower-grade computing
devices that have smaller VRAMs because SEA can run on a smaller memory budget as shown in
Section 5 and Fig. 8. To summarize:

2



Published as a conference paper at ICLR 2024

• We propose a novel, test-time linear attention mechanism (SEA) that distills knowledge
from a pretrained quadratic transformer into a compressed estimated attention matrix which
is then used to create a sparse attention mask for the final attention operation. As demon-
strated in Fig. 8, SEA is O(T ) at test time, where there is no distillation step.

• We demonstrate the efficiency and effectiveness of our method through empirical eval-
uations on natural language processing tasks such as text classification on GLUE and
language modeling on Wikitext-2, where we maintain competitive performance with the
vanilla transformer baseline, as shown in Figs. 5a and 7a.

• We propose and provide code for a novel CSR tensor operation, called FlatCSR, which is
capable of handling non-contiguous flatten tasks within a GPU kernel.

• We showcase the interpretability of our method by visualizing the estimated sparse atten-
tion matrix and comparing it to the teacher’s attention matrix. Our estimator can estimate
both self-attention and causal attention.

2 RELATED WORK

Sparse Attention for Efficient Transformers. Sparse attention can be categorized into methods
using static and dynamic attention masks. For static attention masks, Longformer (Beltagy et al.,
2020) and BigBird (Zaheer et al., 2020) introduce heuristic patterns, but since token relationships
may not fit to those heuristics, it can be challenging to achieve state-of-the-art performance for every
task. Hence, some recent methods focus on learning to sort or cluster the tokens to better fit static
masks (Tay et al., 2020a; Kitaev et al., 2020; Tay et al., 2020b). However, as these works still operate
based on static patterns, a more flexible and learnable setting is necessary since patterns in attention
are unavoidably dynamic and data-dependent, as shown in TDSA (Liu et al., 2021), which learns
to estimate an attention mask. However, TDSA still performs quadratic attention when generating
dynamic sparse attention masks.

Kernel and Low-rank Methods for Efficient Transformers. Recent works either focus on using
kernel-based methods (Choromanski et al., 2021; Qin et al., 2022) or combining kernel and sparse
methods (Chen et al., 2021). For example, Performer (Choromanski et al., 2021) uses a positive-
definite kernel approximation to approximate the softmax attention mechanism but comes with non-
negligible approximation errors and therefore is not generalizable on every task. To handle this
problem, Cosformer (Qin et al., 2022) replaces the non-linear approximate softmax operation of
Performer with a linear operation that contains a non-linear cosine-based re-weighting mechanism.
But again, the cosine weighting scheme is a heuristic which limits it to approximating attention
with a specific pattern, which may be a downside for attention matrices which do not follow the
fixed heuristic pattern, as shown in Fig. 9 (subfigure a, bottom-left). Another work, Scatterbrain
(Chen et al., 2021) proposes combining sparse and low-rank methods to approximate attention, by
separately applying both and then summing the result together. While this is a promising approach,
it still cannot straightforwardly benefit from direct attention matrix distillation.

3 SEA: SPARSE LINEAR ATTENTION WITH ESTIMATED ATTENTION MASK

Preliminaries. We first define notations used for the attention mechanisms. We define the following
real matrices: Q,K,V ∈ RT×d. The attention matrix A is defined as A = softmax(QK⊤) ∈
RT×T . Let C = AV ∈ RT×d be the context feature of the attention lookup, and T be the length
of the input sequence, and d be the size of the head embedding dimension. We use ⊙ to denote
elementwise multiplication which may be applied between similar sizes matrices or on the last
dimension and repeated over prior dimensions as is the case when applied to a matrix and vector.
We define K as the width of the compressed matrix, k as a value which controls the sparsity of an
attention matrix. The matrix superscript ∗ (e.g. A∗) indicates a sparse matrix, and a superscriptˆ
(e.g. Â) refers to the compressed T × K space. Let KL(p, q) and MSE(x, y) be the standard KL
divergence and mean-squared error, respectively. All matrices may also contain a batch (B) and
head (H) dimension, but we omit this for simplicity unless otherwise specified.

Performer (FAVOR+). We define the simplified notation of FAVOR+ (Choromanski et al., 2021).
We omit details, such as the kernel projection matrix, for the convenience of reading. The output
of FAVOR+ is defined as FAVOR+(Q,K,V ) = ϕ(Q) × (ϕ(K)⊤ϕ(V )) ∈ RT×d. As there is no
need to construct the full T × T attention matrix, the FAVOR+ mechanism scales linearly.

3.1 SEA ATTENTION

SEA consists of two main phases that are depicted in Fig. 2: (1) Attention Estimation (kernel-
based), and (2) Sparse Attention Mask Generation and Subsequent Sparse Attention. In step

3



Published as a conference paper at ICLR 2024

Transformer
Block

Performer
(Encode
Context)

Decoder

Interpolate Estimation for KD

CNN

MLP

MLP

Teacher Distill Teacher Knowledge to SEA Deploy SEA

SEA
(Replacing
Attention)

Mask

Transformer
Block

MLP

MHA
(Pretrained)

Teacher Attention for Knowledge Distillation (KD)

(teacher)

(1) Attention Estimation

(2) Sparse Attention Mask Generation and
Sparse Attention

Figure 2: Model diagram of our proposed linear attention method, SEA. SEA replaces the multi-head attention
(MHA) mechanism from the teacher transformer model while preserving the attention matrix using knowledge
distillation with only a small finetuning dataset. The deployed SEA model shows linear complexity at test time.

(1), we estimate a compressed attention matrix Â by fixing the size of one dimension to be K,
where K ≪ T using the kernel-based method Performer and a simple decoder. In step (2), we build
an attention mask from the values in Â using one of our novel grouped top-k̂ selection methods
depicted in Fig. 4. We then interpolate the mask to form a sparse mask on the full attention matrix
A, resulting in a sparse attention matrix A∗. Then, we perform the sparse A∗V multiplication to
complete the procedure. By using a kernel-based estimator, as well as a sparse attention matrix, we
take advantage of the complementary aspects of their representation spaces, as shown in previous
work (Chen et al., 2021). Detailed model structure is shown in Fig. A.6.

Attention Matrix Estimation. The intuition for Â is to compress one dimension of the matrix
in a way analogous to compressing one dimension of an image. We ultimately want the values
within the compressed attention matrix to be similar to the full attention matrix in the same way that
compressing one dimension of an image creates a distorted image which is semantically similar to
the full image. For this task, we use the Performer (Choromanski et al., 2021) and a decoder, and
treat the output as our estimated attention matrix. Once this attention matrix ‘image’ is obtained, it
can be interpolated to decompress it into an approximation of the full attention matrix for distillation
during training, or likewise, we may also perform top-k̂ selection on the compressed matrix in
order to construct a mask for sparse attention. Our attention matrix estimation starts by passing Q,
K, Vcat to the kernel-based linear attention method, Performer (Choromanski et al., 2021), where
Vcat = [VI ;V ] ∈ RT×2d and VI is obtained by performing nearest neighbor interpolation on the
identity matrix I ∈ Rd×d to modify the first dimension resulting in a matrix VI ∈ RT×d. We include
VI in Vcat because the output of Performer can be considered as the attention matrix when V = I ∈
RT×T , (e.g. Q(K⊤I) = QK⊤), as shown by Choromanski et al. (2021). Therefore, passing
VI together with V may enable a more accurate estimation of the attention matrix by the decoder
described in the next section. This results in the context encoding Cperf = FAVOR+(Q,K,Vcat) ∈
RT×2d.

CNN

Performer
Output

CNN
Output

Figure 3: Visualization of Input
and Output of CNN Decoder

CNN Decoder. We further transform Performer’s estimated out-
put Cperf with an MLP and CNN. We found the CNN to be a nec-
essary part of SEA due to the fact that convolutions provide fine-
grained detail among local features, which is crucial for dynam-
ically representing complex patterns present in the attention ma-
trix as shown in Figs. 3 and 9. As we may consider the atten-
tion matrix as a kind of compressed ‘image,’ a CNN is a natural
choice for the decoder. For the decoder, we begin by concatenating
the local Performer encoding Cperf and the previous context V as
V ′

cat = [Cperf;V ] ∈ RT×3d. We then apply an MLP µ : R3d 7→ Rd′
to obtain an intermediate

representation Z = µ(V ′
cat) ∈ RT×d′

, where d′ is a hyperparameter which decides the shared hid-
den state size. The resulting Z is used for estimating the attention matrix and also for the scalers
(Smix and Sprob) described in Section 3.1.1. Then, before applying the CNN on Z, we apply MLP
ν : Rd′ 7→ RKch/cs , where cs and ch are respective width reduction and channel expansion factors.
We transpose and reshape to make the output Ẑ = ν(Z) into RHch×T×K/cs . Finally, we apply
a 2D CNN fdec which treats the extra head dimension H as a channel dimension, resulting in the
compressed attention matrix Â = fdec(Ẑ) ∈ RT×K (for further details, see Appendix A.5.1). As
the decoder fdec results in a fixed width Â, we can successfully generate dynamic patterns with
linear time and space complexity. The CNN fdec plays a significant role due to its ability to capture

4



Published as a conference paper at ICLR 2024

local patterns of the estimated compressed attention matrix. The depth of the CNN can be adjusted
depending on the task, but we use a fixed 3-layer CNN in our experiments.

Grouped Top-k̂ Selection. Once we have the compressed attention matrix Â, we must select k crit-
ical values which will be used in the final T ×T sparse attention. However, since our top-k̂ selection
is held in the compressed Â, we transform k to k̂, which refers to the number of selected values in
the compressed T × K attention space. For this, we propose four novel methods for top-k̂ selec-
tion: per-query, per-head, per-batch, and causal-per-batch, where each method performs the top-k̂
selection along different dimensions, as shown in Fig. 4. As noted in Section 3.1 (preliminaries),
we have previously omitted the head dimension H from all matrices. However in this paragraph,
for clarity, we include the head dimension H so that Â ∈ RH×T×K . For per-query, per-head, and
per-batch, we gradually extend the dimension of the group, starting from the last dimension of Â, so
that top-k̂ selection is held in RK , RT×K , and RH×T×K space for each grouping method, respec-
tively. Consequently, k̂ is also adjusted to k̂per-query = k̂, k̂per-head = T × k̂, and k̂per-batch = H × T × k̂.
Finally, we propose causal-per-batch for causal attention, which performs top-k̂ in RH×K space,
with k̂causal-per-batch = H× k̂. For this, we transpose Â to RT×H×K and group the last two dimensions
without the T dimension, to avoid temporal information exchange across the time dimension. In
our experiments, we use causal-per-batch which shows strong performance in our ablation study on
GLUE-MNLI (K = 128, 5 epochs), as shown in Table 1.

Table 1: Ablation study on
grouped top-k̂ modes

Grouping Method k = 7 k = 13 k = 25

per-query 77.68 81.45 83.55
per-head 79.03 82.71 83.71
per-batch 80.03 82.94 84.14
causal per-batch 80.55 83.49 84.19

Figure 4: Visualization of the
Group of each top-k̂ method.

Linear Sparse Attention Mask Generation. With the obtained
Â, we generate a sparse formatted binary mask M∗ ∈ {0, 1}T×T .
For this, we take the following two steps: 1) Performing our pro-
posed grouped top-k̂ selection from the compressed Â to gener-
ate a binary mask M̂ ∈ {0, 1}T×K , and 2) interpolating M̂ to
the sparse formatted M∗ ∈ {0, 1}T×T . For the grouped top-
k̂ selection, we set k as a hyperparameter, which will determine
the number of selected indices in each block of the binary mask
M∗ depending on the top-k̂ strategy and the attention matrix size.
Note that each selection strategy has a different block (group) shape
as depicted in Fig. 4. However, since we perform top-k̂ on the
smaller Â ∈ RT×K , we must convert k to a compressed k̂ with
k̂ = max(1, round(k ∗ K/T )). Once we obtain the compressed
mask M̂ ∈ {0, 1}T×K , we interpolate it into the sparse formatted
M∗ ∈ {0, 1}T×T . In the case of a very long sequence, it is possible
that max(1, round(k∗K/T )) evaluates to 1, and the subsequent in-
terpolation (pixel duplications) to create M∗ will become a function of T and no longer have linear
complexity, as this results in a block larger than k being computed for M∗. Therefore, in order to
avoid this, we enforce the number of pixel duplications in the block of M∗ to be min(k, ⌈T/K⌉),
and uniformly space the resulting pixels within the larger block. Since we only need to check the
indices where the values are 1 in the compressed M̂ and put 1 in the corresponding indices in M∗,
the interpolation has linear complexity. For further details, please refer to Appendix A.5.3.

3.1.1 SPARSE ATTENTION AND FINAL OUTPUT CALCULATION WITHIN LINEAR COST

Sparse Attention Mechanism. We calculate a re-weighted sparse attention probability A∗ by first
applying a sparse masked matrix multiplication ρ, where ρ(Q,K⊤,M∗) = QK⊤⊙M∗ followed
by a softmax operation σ. Note than the Q and K matrices which are inputs to ρ are the same Q
and K which were inputs to the Performer. We then re-scale the weights using sprob ∈ RT (defined
later in this paragraph), so that A∗ = sprob ⊙ σ(ρ(Q,K⊤,M∗)) ∈ RT×T . Note that ρ is a sparse
operation and M∗ ∈ {0, 1}T×T is the previously obtained sparse binary mask using FlatCSR. The
output of ρ only needs to store the non-zero values and indices, which are the indices where M∗

has value 1. The softmax σ(ρ(Q,K⊤,M∗)) calculates the softmax probability of non-zero values
in the sparse input. After applying σ, each row of the sparse attention matrix A∗ will sum to 1,
therefore, due to the high sparsity of M∗, the resulting non-zero values after σ will be higher than
the ground truth attention matrix from the teacher. To account for this effect, we scale the attention
probability using a learned weight sprob ∈ RT , where sprob = fprob(Z) (Z was previously defined

5



Published as a conference paper at ICLR 2024

0 500 1000 1500
MB

30

40

50

60

70

PP
L.

Memory

5 10 15 20
ms

30

40

50

60

70

PP
L.

Latency
Ours (k=32)
Ours (k=64)
Ours (k=128)
Ours (K=64)
Ours (K=128)
Ours (K=256)
Ours (K=384)
Vanilla
Reformer
Performer

(a) Computational costs vs. perplexity ↓ on Wikitext2 with OPT-125m.

0 2000 4000 6000 8000 10000
Optimizer Steps

0

25

50

75

100

125

150

PP
L.

 

Validation Curve
Ours
Performer
Reformer

(b) OPT-125M validation curves

Figure 5: Fig. 5a shows how 9 variants of our model perform when comparing perplexity vs. computation.
Baseline model marker sizes correspond to increasing numbers of buckets (Reformer) or random projections
(Performer). In all cases, SEA produces the best perplexity score. Fig. 5b Validation curves for SEA and
baseline efficient attention methods. SEA converges much faster compared to Performer and Reformer.

Table 2: Comparison of perplexity score on Wikitext2 with various scales of OPT
model. We trained the same number of steps (10k) for each method. We used
k = 64;K = 64 for SEA on OPT-125M, 350M and 1.3B.

OPT-125M OPT-350M OPT-1.3B
Method PPL. ↓ Mem. ↓ Lat. ↓ PPL. ↓ Mem. ↓ Lat. ↓ PPL. ↓ Mem. ↓ Lat. ↓
Vanilla 29.2 408 4.88 19.3 536 6.71 13.9 1120 16.49

Reformer 63.9 (+34.7) 902 10.90 58.2 (+38.9) 1195 14.76 49.02 (+35.12) 2406 31.37
Performer 49.8 (+20.6) 51 1.21 36.6 (+17.3) 60.5 1.82 30.6 (+16.7) 137 5.71

SEA (Ours) 26.0 (-3.2) 187 6.76 19.5 (+0.2) 241 9.43 13.5 (-0.4) 499 21.57

0 50 100 150 200 250
k

22

24

26

28

30

32

PP
L.

 k=32

k=64

k=128

Perplexity After Adjusting k

Adjusted From k=32
Adjusted From k=64
Adjusted From k=128

Figure 6: Dynamically ad-
justing k after training.

in Section 3.1 CNN Decoder) and fprob is a linear projection from Rd′ 7→ R followed by a sigmoid
activation function. Since the sparse calculation of ρ is only performed in the indices where M∗ has
1, the complexity follows that of M∗, which is O(T ). The resulting A∗ matrix remains in a sparse
matrix format. Afterward, we calculate the context feature as C = A∗V ∈ RT×d which has linear
complexity due to the linear complexity of A∗ and V . The output C is now stored in a dense matrix
format.

FlatCSR: A Modified Compressed Sparse Row (CSR) Format. We introduce our novel sparse
operation, FlatCSR, which is an efficient implementation of the previously described sparse attention
mask generation and attention operations utilizing grouped top-k̂ selection. Our initial attempt for
the sparse operations in our model utilized the Coordinate List (COO) sparse format. However,
COO is not ideal because it stores every coordinate of each non-zero point and it does not take
advantage of the structure provided by our grouped top-k̂ selection, as shown in Table 3. Therefore,
we eventually adopted the CSR sparse format instead of COO, as it uses less memory and schedules
the per-row computations wisely using pre-constructed rows from our grouped top-k̂ selection. We
present a detailed explanation of FlatCSR and further discussions in Appendix A.5.2.

Table 3: Comparison of different sparse
matrix formats on random inputs

Method Latency (ms) Memory (MB)

COO 75.66 (100%) 1194 (100%)
FlatCSR (Ours) 11.4 (15.06%) 817.5 (68.46%)

Output Calculation. For the final output, instead of re-
lying solely on the sparse attention operation previously
described, we combine the output of the Performer, and
the sparse attention operation to improve the ability of the
highly sparse attention matrix to look up global information.
The final output Csea is computed as a summation of two terms C and Cavg, each obtained from
A∗ and Â respectively. First, we calculate the importance score of each token by averaging every
row of Â, resulting in î = 1

T

∑T
t=0 Ât,: ∈ RK . We then interpolate î to i ∈ RT and subse-

quently perform weighted average pooling of Cavg = i⊤V ∈ Rd. In causal attention, this global
pooled context feature Cavg is replaced with an accumulated average of the tokens in V such that
Vj = 1

j

∑j
i=1 Vi. We mix Cavg and C using learned weight smix = fpool(Z) ∈ RT , with fpool

composed of a linear transformation and sigmoid activation fpool : Rd′ 7→ R. Csea is calculated as
Csea = smix ⊙C + (1− smix)⊙C⊤

avg.

3.2 TRAINING SEA ATTENTION

For training SEA, we first replace the attention mechanism of a pretrained teacher transformer model
with our SEA attention mechanism. Then, we use knowledge distillation (KD) (Hinton et al., 2015)
to train the newly added SEA attention parameters while adapting the original weights to SEA
attention. Our training scheme is similar to previous transformer KD work (Jiao et al., 2020) since
we approximate the context features and attention matrices. However, we further add an objective

6



Published as a conference paper at ICLR 2024

20 40 60 80
MB

65

70

75

80

Av
er

ag
e 

M
et

ric

Memory (Avg.)

20 40 60 80
MB

80

85

F1

Memory (MRPC)

20 40 60 80
MB

30

40

50

60

M
at

th
ew

's 
Co

rr.

Memory (CoLA)

20 40 60 80
MB

65

70

75

80

85

Ac
c.

Memory (MNLI)

0.2 0.4 0.6 0.8
ms

65

70

75

80
Av

er
ag

e 
M

et
ric

Latency (Avg.)

0.2 0.4 0.6 0.8
ms

80

85

F1

Latency (MRPC)

0.2 0.4 0.6 0.8
ms

30

40

50

60

M
at

th
ew

's 
Co

rr.

Latency (CoLA)

0.2 0.4 0.6 0.8
ms

65

70

75

80

85

Ac
c.

Latency (MNLI)

Ours (k=7)
Ours (k=13)
Ours (k=25)
Ours (K=32)
Ours (K=64)
Ours (K=128)
Reformer
Performer
Cosformer
Sinkhorn
Synthesizer

(a) Comparison of the trade-off on GLUE.

10 20 30 40 50 60
k

80

81

82

83

84

85

Ac
c.

 

k=7

k=13

k=25

Accuracy After Adjusting k

Adjusted From k=7
Adjusted From k=13
Adjusted From k=25

(b) Dynamically adjusting k
after training.

Figure 7: Fig. 7a shows the comparison of the trade-off between computational cost (latency and memory
usage) and accuracy on each GLUE subset with BERT-base. 7a (column 1): Overall performance trade-off
over three subsets. We average metrics weighted with dataset size. 7a (column 2-4): Performance trade-off
per each GLUE subset. Baseline model marker sizes correspond to increasing numbers of buckets or random
projections. Fig. 7b shows the accuracy trade-off of dynamically adjusting k after training.

for the compressed estimated attention matrix Â to match the teacher attention matrix. With L(i)

signifying a loss for layer i, our overall training loss Lsea is given as the following, with each term
described in the following paragraph:

Lsea =
1

L

(
L∑

i=1

L(i)
approx + L(i)

prob + L(i)
context + L(i)

kd

)
+ Lkd task + Ltask (1)

To calculate Lapprox, we perform nearest neighbor interpolation to the estimated attention matrix
Âi, and get A′

i ∈ RT×T in order to match the shape of the teacher attention matrix Ãi ∈ RT×T .
Then we apply both KL divergence and an MSE loss between A′

i and Ãi, L(i)
approx = KL(A′

i, Ãi) +

MSE(A′
i, Ãi). Next, we calculate L(i)

prob = KL(Ai, Ãi)+MSE(Ai, Ãi) which minimizes the error

between the student’s Ai and teacher’s Ãi attention matrices. For L(i)
prob, we calculate the dense

student attention Ai = σ(QiK
⊤
i ) during training. We then add L(i)

context = MSE(C(i)
sea , C̃(i)) to

minimize the error between the attention context feature C
(i)
sea and teacher context feature C̃(i) ∈

RT×d. Next, to minimize the error of each transformer layer (after the attention layer and MLP), we
gather the outputs of each layer O(i)

sea , Õ(i) ∈ RN×T×H∗d for SEA and the teacher, respectively, and
calculate L(i)

kd = MSE(O(i)
sea , Õ(i)). The loss for training the i-th layer is L(i)

sea and is a weighted sum
of each layerwise loss such that L(i)

sea = L(i)
approx + L(i)

prob + L(i)
context + L(i)

kd . We omit the weight term
on each sub-task loss for simplicity; details are in Appendix A.4.1. We then calculate knowledge
distillation loss from the model output logits Lkd task = KL(P , P̃ ), where P ∈ Rz is model output
logit. Finally, we sum together the average layer-wise loss and the downstream task loss Ltask into
the SEA training loss given in Eq. (1).

4 EXPERIMENTS

4.1 CAUSAL LANGUAGE MODELING

We further evaluated SEA on the language modeling task on Wikitext2 (Merity et al., 2017) with
various OPT (Zhang et al., 2022) variants, which involves causal attention. We selected two repre-
sentative baselines, Reformer (Kitaev et al., 2020) and Performer (Choromanski et al., 2021), which
represent the sparse attention and kernel-based linear attention methods, respectively. In Tables 2
and A.8, Reformer shows unpredictable performance between the tasks, exhibiting strong perfor-
mance in text classification (Table A.8), and the worst result in causal language modeling (Table 2).
In contrast, our proposed method, SEA attention, performs the best in both cases with the closest
perplexity score to the vanilla OPT and even surpasses the quadratic attention model on OPT-125M
in Table 2. In Fig. 5a, we show a trade-off between computational cost and perplexity. Our method
exhibits more latency, since we utilize both kernel-based and sparse attention within our model (de-
tailed latency breakdown in Fig. 8). Therefore, we discuss the latency and memory trade-off of our
method in Section 5. We note, however, that even though SEA uses both Performer and sparse at-
tention modules, the convergence rate is much faster than both solo baselines, as depicted in Fig. 5b
due to the direct attention distillation from the quadratic teacher.

4.2 TEXT CLASSIFICATION

We perform text classification evaluation of SEA on the GLUE (Wang et al., 2019) benchmark
with BERT (Devlin et al., 2019). We train SEA attention by adapting to the fine-tuned model, as

7



Published as a conference paper at ICLR 2024

212 213 214 215 216 217

Sequence Length

24

27

210

213

216

M
B 

Peak VRAM Usage

212 213 214 215 216 217

Sequence Length

2¤1

21

23

25

27

29

211

m
s 

Latency

None (Trend)
None
FlashAttention
Cosformer
Performer
Reformer
Sinkhorn
Synthesizer
Ours (k=32)
Ours (k=64)
Ours (k=128)

Performer
(10.06%)

Predictor (27.93%)
Interp (9.26%) Sparse Attention (37.02%)

top-k setup compute mbmm sdbmmsoftmax elmul

Mask (9.46%)

scatter

SEQ=8192, k=64, K=256, 24.62ms

Dense Operator

FlatCSR Operator

Figure 8: (top) Space and time complexity comparison between our SEA attention and baselines. Lower values
are better in both figures. SEA exhibits complexity in line with other linear attention models. We show a trend-
line for the quadratic attention because it runs out of memory on sequence lengths larger than 213. (bottom)
Latency (ms) breakdown of our SEA attention (T = 213, causal-per-batch). Each orange and green box
shows that the operation is computed in our novel FlatCSR format and in dense tensor format, respectively.

described in Section 3.2. In Fig. 7a, we show a trade-off between computational costs and various
performance scores. We test the following baseline methods: Reformer, Sinkhorn (Tay et al., 2020b),
Performer, Cosformer (Qin et al., 2022), and Synthesizer (Tay et al., 2020a) (see Appendix A.4.2 for
further experiment details). In all tested subsets, SEA achieves the top performance and maintains
competitive latency and memory costs. In Table A.8, we show results of the tested baselines within
the same constraints by limiting all the baselines and our method to have the same bucket size in
sparse attentions and the same number of random projection feature sizes in kernel-based attentions.
To summarize, our method achieves higher accuracy than all linear baselines while maintaining
competitive performance in terms of latency and memory usage. SEA comes within 0.1% accuracy
of quadratic attention on MNLI in Table A.8, and in Section 4.3 and Figs. 6 and 7b we show we can
dynamically adjust k after training to outperform quadratic attention.

4.3 DYNAMICALLY ADJUSTING k

In Figs. 6 and 7b, we experiment with dynamically adjusting k after training with a fixed value of k
on the Wikitext2 and MNLI dataset. We find that increasing k also increases the accuracy without the
need for any further training. This means even after fine-tuning the SEA, our model still preserves
pretrained knowledge and increases accuracy when the constraint on k is relaxed. Therefore, this
characteristic helps users to design flexible and dynamic models that can adapt to real-time service
demands and cost constraints by dynamically adjusting k. For example, considering that lower k
leads to a lower computational cost as shown in Fig. 5a and Fig. 7a, if a given situation calls for
lower computational cost, k can be minimized, while if accuracy is more important, k can be set to
a higher in real-time. In addition, surprisingly, increasing k after training makes the model perform
better than the vanilla quadratic model. In Fig. 6, the vanilla baseline shows a perplexity score of
29.2, however, all SEA models (k = 32, 64, 128) surpass this when we increase k after training.

5 EFFICIENCY OF SEA ATTENTION COMPUTATION

In this section, we provide the memory usage and latency experiment results of our method with
different sequence lengths T . In Fig. 8, we show that our resource usage tendency is O(T ). We test
SEA attention with the causal per-batch top-k̂ grouping mode with our FlatCSR implementation.

Peak Memory Usage. In Table A.1 and Fig. 8 (top-left), we compare peak memory usage in
mega-bytes for each attention method. Compared to baselines, SEA attention shows competitive
peak memory usage. Our method shows an 81.05% reduction in peak memory usage compared
to quadratic attention at sequence length 213. Our method consumes memory only about 78.81%
compared to Reformer, while consistently maintaining higher accuracy as shown in Figs. 5a and 7a
and Tables 2 and A.8. Moreover, our methods successfully operate with a competitive memory
budget with other linear attention methods on all sequence lengths (shown in Table A.1 and Fig. 8),
while quadratic attention exceeds memory capacity above 213. In summary, our method reduces
memory complexity to O(T ), and exhibits less memory usage than Reformer.

Latency. In Fig. 8 (top-right), we compare the latency between SEA and our linear attention
baselines, showing that SEA scales linearly. Our model only incurs 32.72% of the latency cost
of quadratic attention in Fig. 8 for a sequence length of 213 where quadratic attention runs out of

8



Published as a conference paper at ICLR 2024

Figure 9: (left) Intermediate attention examples. (right) The first row is the attention probability of the teacher
model, and the second row is the compressed attention interpolated to full size. Interpolation to the full size
attention matrix is for visualizing our estimated attention Â and is not part of the regular linear inference
procedure. (a) MNLI with BERT-base (K = 128) (b) Wikitext2 with OPT-125m (K = 256).

memory. SEA also shows better performance with a similar latency to Reformer, as shown in Fig. 7a
(bottom-left). However, our method also shows a latency-accuracy trade-off in Fig. 7a, where some
baselines such as Sinkhorn, Cosformer, and Performer show better latency but worse accuracy than
our SEA. We break down the latency of each component of our proposed method in Fig. 8 (bottom).
The dense operations use 47.45%, FlatCSR sparse operations use 46.28%, and the other operations,
mainly permute and reshape, comprise 6.27% of latency. However, in the COO sparse format, the
dense operations use 13.31%, and COO sparse operations comprise 86.68% of the latency cost. As
a result, the COO format is 6.63× slower than our novel FlatCSR format as shown in Table 3.

6 VISUALIZATION OF ESTIMATED ATTENTION FROM SEA ATTENTION

Sparse AttentionSparse MaskEstimated
Mask

Estimated
Attention

Figure 10: Visualization of intermediate buffers
during masking and sparse attention.

In Fig. 9 (right-a), using BERT and the MNLI
dataset, we visualize the interpolated estimated at-
tention matrix Â from SEA and compare it with the
attention matrix of the teacher model Ã. The learned
estimator of SEA attention shows the ability to pre-
dict various attention shapes from the original fine-
tuned BERT model. As can be seen, our estimator
learns well-known fixed patterns, such as the diag-
onal but also dynamic patterns that require contextual interpretation. In Fig. 9 (right-b), we show
the visualization of causal attention commonly used in generative models. In the causal-attention
setting, we observe a diagonal attention probability with wavy or chunked diagonal lines, patterns
that cannot be handled by previous heuristic linear attention mask patterns. However, our estimator
still shows great predictions on such highly variant patterns. In addition, in Fig. 10, we show our
compressed attention Â, top-k compressed mask M̂ , sparse mask M∗, and sparse attention A∗.

Moreover, our model can perform well even if the estimated attention is slightly different from the
teacher’s, thanks to grouped top-k, which drops all values that are not selected in the top-k pro-
cedure. For example, in Fig. 9 (left-bottom), we show a sparse attention matrix after masking the
estimated matrix with our grouped top-k selection masks. Although the estimated attention matrix
seems somewhat different from the teacher’s Fig. 9 (left-middle), the resulting sparse attention pat-
tern Fig. 9 (bottom-left) seems quite similar to the teacher’s after applying the top-k mask. Further
visualization results can be found in Appendix A.2.

7 CONCLUSION AND DISCUSSION

Our proposed method, SEA attention, shows state-of-the-art performance for integrating linear at-
tention with pretrained transformers, as we show empirically in Section 4. The critical change over
existing works is that we estimate the attention matrix in a compressed size using kernel-based lin-
ear attention to form a compressed sparse attention mask which can be decompressed into a full
sparse attention mask to overcome the quadratic cost. By doing so, we can preserve the dynamic
and complex attention patterns of the pretrained teacher transformer model through direct attention
matrix distillation. Furthermore, SEA also provides interpretable attention patterns. SEA performs
similarly to vanilla attention while existing works could not. We look forward to seeing future re-
search that; may apply a learnable masking method instead of a top-k̂ selection, such as concrete
masking (Lee et al., 2023), or improve our uniform interpolation by some non-uniform or learnable
interpolation which may provide further performance increases.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We extend our heartfelt appreciation to Seanie Lee and Minki Kang for their insightful reviews,
which greatly enriched the quality of our work. This work was supported by the National Re-
search Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. RS-2023-
00256259).

REPRODUCIBILITY STATEMENT

We will introduce code construction and data collection in this section for reproducibility.

SEA Attention Module Implementation First of all, we use perlin as our code name of
SEA attention on supplementary source code. We implement SEA attention modules, including
self-attention and causal attention for the transformer encoder and decoder. Users can import
src.models.perlin attention module to construct a custom transformer model. We imple-
mented sample transformer models for experiment SEA attention in this paper: BERT and OPT.
Users can check SEA-BERT implementation in src.models.perlin bert, and SEA-OPT im-
plementation in src.models.perlin opt.

FlatCSR Triton Implementations We implemented our customized FlatCSR datatype operations
in src.models.perlin attention.ops. Each kernel definition file has its own benchmark logic
and verification logic.

Training Please check README.md in the root directory of the supplementary source code
archive. We provide detailed guides and Python and Anaconda environment files to repro-
duce our results. Users can easily test various configurations of SEA attention on OPT with
srcipts/opt.py script. Users can easily test various configurations of SEA attention on BERT
with src.trainer.perlin trainer program entry. To train a custom SEA attention mod-
ule, users must supply teacher attention scores and the context layer of attention layers to cal-
culate the SEA attention loss. We implemented examples of those pipeline in src.trainer.*,
src.models.hf opt, and src.models.hf bert.

Testing Please check README.md and src.main.tests.*. We implement several test codes to
validate our implementation. For example, verifying the causality of causal attention.

REFERENCES

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020. URL https://arxiv.org/abs/2004.05150. 1, 3

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023.
URL https://openreview.net/pdf?id=JroZRaRw7Eu. 2

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html. 1

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatter-
brain: Unifying sparse and low-rank attention. In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances

10

https://arxiv.org/abs/2004.05150
https://openreview.net/pdf?id=JroZRaRw7Eu
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html


Published as a conference paper at ICLR 2024

in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp. 17413–
17426, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
9185f3ec501c674c7c788464a36e7fb3-Abstract.html. 1, 2, 3, 4

Ruijun Chen, Jin Wang, Liang-Chih Yu, and Xuejie Zhang. Learning to memorize entailment and
discourse relations for persona-consistent dialogues. In Brian Williams, Yiling Chen, and Jennifer
Neville (eds.), Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Sympo-
sium on Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA,
February 7-14, 2023, pp. 12653–12661. AAAI Press, 2023. doi: 10.1609/aaai.v37i11.26489.
URL https://doi.org/10.1609/aaai.v37i11.26489. 1

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/. 1

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller. Rethinking attention with per-
formers. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=Ua6zuk0WRH. 1, 2, 3, 4, 7, 14

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022. 14, 20, 22

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL
https://doi.org/10.18653/v1/n19-1423. 2, 7, 14, 15

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?
id=YicbFdNTTy. 1, 2, 20

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019. URL
http://Skylion007.github.io/OpenWebTextCorpus. 21

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531. 2, 6

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling BERT for natural language understanding. In Trevor Cohn, Yulan He,
and Yang Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP 2020,
Online Event, 16-20 November 2020, volume EMNLP 2020 of Findings of ACL, pp. 4163–4174.
Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.findings-emnlp.372.
URL https://doi.org/10.18653/v1/2020.findings-emnlp.372. 2, 6

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Aidong Zhang and Huzefa Rangwala
(eds.), KDD ’22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, August 14 - 18, 2022, pp. 784–794. ACM, 2022. doi: 10.1145/3534678.
3539260. URL https://doi.org/10.1145/3534678.3539260. 2

11

https://proceedings.neurips.cc/paper/2021/hash/9185f3ec501c674c7c788464a36e7fb3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/9185f3ec501c674c7c788464a36e7fb3-Abstract.html
https://doi.org/10.1609/aaai.v37i11.26489
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.1145/3534678.3539260


Published as a conference paper at ICLR 2024

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
rkgNKkHtvB. 1, 3, 7, 14

Heejun Lee, Minki Kang, Youngwan Lee, and Sung Ju Hwang. Sparse token transformer with
attention back tracking. In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=VV0hSE8AxCw. 2, 9

Liu Liu, Zheng Qu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Transformer acceleration with
dynamic sparse attention. CoRR, abs/2110.11299, 2021. URL https://arxiv.org/abs/
2110.11299. 1, 3

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe. 2, 7, 16

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yunshen Wei, Baohong Lv, Junjie Yan, Lingpeng
Kong, and Yiran Zhong. cosformer: Rethinking softmax in attention. In The Tenth International
Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/forum?id=Bl8CQrx2Up4. 1, 2, 3, 8,
14

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models. CoRR, abs/2005.00743, 2020a. URL https:
//arxiv.org/abs/2005.00743. 1, 3, 8, 14

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 9438–9447.
PMLR, 2020b. URL http://proceedings.mlr.press/v119/tay20a.html. 1, 3, 8,
14

Philippe Tillet, Hsiang-Tsung Kung, and David D. Cox. Triton: an intermediate language and
compiler for tiled neural network computations. In Tim Mattson, Abdullah Muzahid, and Ar-
mando Solar-Lezama (eds.), Proceedings of the 3rd ACM SIGPLAN International Workshop
on Machine Learning and Programming Languages, MAPL@PLDI 2019, Phoenix, AZ, USA,
June 22, 2019, pp. 10–19. ACM, 2019. doi: 10.1145/3315508.3329973. URL https:
//doi.org/10.1145/3315508.3329973. 18

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/arXiv.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288. 1

Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. Wavenet: A generative model
for raw audio. In The 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA, 13-15 Septem-
ber 2016, pp. 125. ISCA, 2016. URL http://www.isca-speech.org/archive/SSW_
2016/abstracts/ssw9_DS-4_van_den_Oord.html. 18

12

https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=rkgNKkHtvB
https://openreview.net/forum?id=VV0hSE8AxCw
https://arxiv.org/abs/2110.11299
https://arxiv.org/abs/2110.11299
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Bl8CQrx2Up4
https://arxiv.org/abs/2005.00743
https://arxiv.org/abs/2005.00743
http://proceedings.mlr.press/v119/tay20a.html
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.1145/3315508.3329973
https://doi.org/10.48550/arXiv.2307.09288
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html
http://www.isca-speech.org/archive/SSW_2016/abstracts/ssw9_DS-4_van_den_Oord.html


Published as a conference paper at ICLR 2024

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html. 1

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=
rJ4km2R5t7. 2, 7, 22

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Gary Lai, Ishan Purohit, Ishani Mondal, Jacob Ander-
son, Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh
Puri, Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A,
Sumanta Patro, Tanay Dixit, and Xudong Shen. Super-naturalinstructions: Generalization via
declarative instructions on 1600+ NLP tasks. In Yoav Goldberg, Zornitsa Kozareva, and Yue
Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 5085–
5109. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.emnlp-main.340.
URL https://doi.org/10.18653/v1/2022.emnlp-main.340. 1

Adina Williams, Nikita Nangia, and Samuel R. Bowman. A broad-coverage challenge corpus
for sentence understanding through inference. In Marilyn A. Walker, Heng Ji, and Amanda
Stent (eds.), Proceedings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018,
New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pp. 1112–1122. As-
sociation for Computational Linguistics, 2018. doi: 10.18653/v1/n18-1101. URL https:
//doi.org/10.18653/v1/n18-1101. 2, 15

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontañón, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird: Trans-
formers for longer sequences. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html. 1, 3

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama, Sep 2023. URL https:
//github.com/jzhang38/TinyLlama. 21

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022. doi:
10.48550/arXiv.2205.01068. URL https://doi.org/10.48550/arXiv.2205.01068.
2, 7, 14, 16, 18

13

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://github.com/jzhang38/TinyLlama
https://github.com/jzhang38/TinyLlama
https://doi.org/10.48550/arXiv.2205.01068


Published as a conference paper at ICLR 2024

A APPENDIX

A.1 EFFICIENCY MEASURES OF SEA ATTENTION

Table A.1: VRAM usage comparison between baseline and SEA attention. The unit is MB, lower is better.
Each column represents a different token length setting on random inputs.

4,096 8,192 16,384 32,768 65,536 131,072 Avg.

Vanilla 134.00 524.00 2072.00 OOM OOM OOM OOM

FlashAttention 6.00 12.00 24.00 48.00 96.00 192.00 63.00
Performer 11.66 23.29 46.54 93.04 186.04 372.04 122.10
Sinkhorn 20.03 40.09 80.32 161.15 324.26 656.50 213.73
Cosformer 28.14 56.16 112.19 224.25 448.47 897.12 294.39
Reformer 218.65 469.26 1066.72 2645.03 7338.06 OOM OOM
Synthesizer 134.02 524.04 2072.08 OOM OOM OOM OOM

Ours (k=32) 48.64 97.35 195.00 391.19 786.86 1684.79 533.97
Ours (k=64) 49.75 99.39 198.76 397.55 795.14 1684.79 537.56
Ours (k=128) 54.84 109.47 218.77 437.55 875.08 1751.71 574.57

Table A.2: Latency comparison between baseline and SEA attention. The unit is milliseconds per iteration,
lower is better. Each column represents a different token length setting on random inputs.

4,096 8,192 16,384 32,768 65,536 131,072 Avg.

Vanilla 1.66 8.61 35.66 OOM OOM OOM OOM

Performer 0.25 0.49 0.90 2.00 4.25 10.94 3.14
Cosformer 0.36 0.73 1.49 2.94 6.28 12.82 4.10
Sinkhorn 0.21 0.44 1.00 2.41 6.42 18.68 4.86
FlashAttention 1.30 5.17 20.57 81.73 330.19 1348.04 297.83
Reformer 2.33 5.26 12.24 29.94 83.41 OOM OOM
Synthesizer 1.53 8.04 32.42 OOM OOM OOM OOM

Ours (k=32) 1.45 3.07 6.21 12.00 25.74 50.89 16.56
Ours (k=64) 1.77 3.69 7.40 13.46 28.74 56.46 18.59
Ours (k=128) 2.39 4.89 9.81 16.49 37.94 72.59 24.02

In this section, we show detailed results of efficiency measurements from SEA attention. We tested
various sequence lengths with various attention methods: none (Vanilla), Sinkhorn (Tay et al.,
2020b), Cosformer (Qin et al., 2022), Performer (Choromanski et al., 2021), Reformer(Kitaev et al.,
2020), FlashAttention (Dao et al., 2022) and Synthesizer (Tay et al., 2020a). The test is performed
in the bidirectional self-attention setting. We use K = 128 for SEA attention. We show memory
usages in Table A.1, and we show latencies in Table A.2. We execute all benchmarks on the same
machine with the same resources. Our test environment is built with Ryzen 3950x, RTX 2080ti on
8x PCIe 3.0, DDR4-2400 64GB, and Ubuntu 22.04. The versions of third-party libraries including
PyTorch and Triton are described in the supplementary file, requirements.txt. Also, we pro-
vide the docker environment of our experiment environment for reproducing results, done with the
supplementary file, DockerFile.

A.2 ESTIMATED ATTENTION VISUALIZATION OF SEA ATTENTION

We show a more detailed attention estimation visualization in Figs. A.1 and A.2. We visualize
teacher ground truth attention, estimated attention, student attention before masking, and student
sparse attention after masking for each layer and head of BERT-base (Devlin et al., 2019) and OPT-
125m (Zhang et al., 2022).

14



Published as a conference paper at ICLR 2024

(a) Attention matrices of the first 6 layers (b) Attention matrices of the last 6 layers

Figure A.1: Visualization of intermediate attention matrix buffers in SEA attention of BERT-base (Devlin
et al., 2019) on MNLI (Williams et al., 2018). We visualize teacher ground truth attention, estimated attention,
student attention before masking, and sparse student attention for each layer and head, with k=13. Each group
of rows shows attention matrices from one layer. We stack the visualization layer by layer vertically, from top
to bottom, while showing all heads in each particular layer horizontally, from left to right. We show the first 6
layers in Fig. A.1a and last 6 layers in Fig. A.1b. Best viewed with high zoom.

15



Published as a conference paper at ICLR 2024

(a) Attention matrices of the first 6 layers (b) Attention matrices of the last 6 layers

Figure A.2: Visualization of intermediate attention matrix buffers in SEA attention of OPT-125 (Zhang et al.,
2022) on Wikitext2 (Merity et al., 2017). We visualize intermediate buffer samples from attention matrices
here, the same way as Fig. A.1. We show the first 6 layers in Fig. A.2a and last 6 layers in Fig. A.2b. Best
viewed with high zoom.

16



Published as a conference paper at ICLR 2024

A.3 VISUALIZATION OF THE MASKING PROCESS

Top-k Selection

Sparse
Interpolation

Sparse Attention using the Mask

Sparse AttentionSparse MaskEstimated
Mask

Estimated
Attention

Figure A.3: Visualization of masking process intermediate buffers during attention estimation in compressed
size and sparse interpolation for performing sparse attention.

In Fig. A.3, we visualize the intermediate buffers for masking sparse attention using M∗ for better
understanding. The example is sampled from OPT-125M, which uses causal attention. We show the
process to perform sparse attention using the mask M∗ estimated with compressed attention matrix
estimation Â. In the visualization, we differentiate binary masks and real buffers by using black-
and-white and red-and-black color schemes. For note, the sparse matrices M∗ and A∗ are converted
into dense matrices format in order to render the image. Black represents zero-valued pixels, which
are not stored in memory. Since the visualized attention mechanism is causal attention, each row of
the compressed estimation Â and M̂ is resized with different target widths according to the token
index in M∗ and A∗.

A.4 EXPERIMENT DETAILS

A.4.1 TRAINING HYPERPARAMTERS

Dataset MNLI COLA MRPC Wikitext2

Batch Size 16 64 32 32

Table A.3: Batch sizes for various datasets in our experiments shown in Section 4

Loss Name KL of Lapprox MSE of Lapprox KL of Lprob MSE of Lprob Lcontext Lkd L(i)
sea Lkd task Ltask

Weight 0.1 1.0 0.1 1.0 1.0 5.0 1.0 0.2 0.1

Table A.4: Loss weights for different loss terms defined in Section 3.2

Batch sizes for our experiments outlined in Section 4, can be seen in Table A.3, We define different
learning rate values for original parameters and SEA attention parameters. We use learning rate
10−5 for original parameter, and 10−4 for SEA attention parameters. For OPT models, we use a
learning rate 2 ∗ 10−6 for the original parameter and 10−4 for SEA attention parameters. Weights
for loss scaling outlined in Section 3.2 can be seen in Table A.4.

A.4.2 GLUE

We test SEA attention with settings k ∈ {7, 13, 25} and K ∈ {32, 64, 128}. We changed the bucket
size to match the sparsity constraint in Reformer and Sinkhorn and the number of base projection
feature sizes in Performer. We test attention methods within the fixed sequence length (256) to

17



Published as a conference paper at ICLR 2024

measure latency and memory usage. We train all methods, 20 epochs in MNLI and 50 epochs in
COLA and MRPC.

A.5 IMPLEMENTATION DETAILS

A.5.1 ATTENTION ESTIMATOR CNN

Before arriving at the attention estimator CNN, there are two MLP’s µ : R3d 7→ Rd′
and ν : Rd′ 7→

Rd′ 7→ RKch/cs which projects the kernel-based attention output such that Ẑ = ν(µ(V ′
cat)) ∈

RH×T×Kch/cs . This is then transposed and resized to be ∈ RHch×T×K/cs as explained in Sec-
tion 3.1. ν expands the channel dimension to and reduces the width hidden state Empirically, we
found that the channel expansion helps the CNN learn a better encoding, and the size reduction
reduces the overall computation cost of the CNN. In our experiments, we set cs = 2 and ch = 4.
After obtaining Ẑ, we decode it using the 3-layer CNN. The first convolution layer reduces height
by cs using kernel size 3; f (1)

dec : RH∗ch×T×K/cs 7→ RH∗ch×T/cs×K/cs . The second layer performs
another convolution using a kernel size of 3; f (2)

dec : RH∗ch×T/cs×K/cs 7→ RH∗ch×T/cs×K/cs Then
we resize the hidden state using the nearest neighbor interpolation to make the output RH∗ch×T×K .
The last layer changes the channel into the number of heads; f (3)

dec : RH∗ch×T×K 7→ RH×T×K .
Lastly, we perform a softmax operation, finally obtaining Â. In causal attention, we do not re-
duce the height. We only reduce the width to reduce computation. If one needs a deeper CNN,
then the second layer can be duplicated multiple times. Additionally, when applying SEA on large
scale pretrained language models such as OPT (Zhang et al., 2022), µ accepts a token embedding
RH∗3d instead of the single head embedding R3d so that it may learn information across the large
group of attention heads. For causal attention, we change VI into a learnable positional embedding
and use a causal CNN (van den Oord et al., 2016) to satisfy to the causality condition, see Ap-
pendix A.5.1 for details. The implementation of the CNN can be found in the supplementary file at:
src.models.perlin attention.attention.PerlinAttention.

A.5.2 FLATCSR: MODIFIED CSR FORMAT TO HANDLE GROUPED MASK

Here, we provide a detailed explanation of our novel sparse operation, FlatCSR. Our initial attempt
for the sparse operations in our model utilized the Coordinate List (COO) sparse format. However,
COO is not ideal, as storing full coordinates for every point in a sparse matrix makes the per-row
computations difficult since each row must be identified and constructed from raw coordinates, as
shown in Table 3. Therefore, we eventually adopted the CSR sparse format instead of COO, as it uses
less memory and schedules the per-row computations wisely using pre-constructed rows. However,
when it comes to causal-per-batch, which is our recommended setting in most cases, there exists a
challenge with the non-contiguous top-k grouping in the attention matrix since it requires flattening
the head and query dimensions. Therefore, we propose a specialized CSR tensor operation, called
FlatCSR, utilizing the Triton compiler which compiles Python code into low-level CUDA kernel
binary (Tillet et al., 2019). FlatCSR is capable of handling non-contiguous flattened tasks within the
GPU kernel. In this paper, we implement FlatCSR only for causal per-batch. We note, however,
that we expect the same number of non-zero entries in each of the top-k strategies depicted in Fig. 4,
and therefore all strategies should show the same memory usage and latency.

We implement the interpolation and attention operations for the causal-per-batch grouping described
in Section 3.1 in a sparse CSR tensor by transposing the head and query dimensions and flattening
the interpolated attention matrix’s last two dimensions (the head and key dimension). Ideally, we
can store our attention mask with the CSR tensor because we have a similar number of non-zero
entries per row (query) and the same number of non-zero entries per batch. We name this CSR
tensor of transposed and flattened attention mask the FlatCSR tensor in this paper. However, to use
this FlatCSR tensor in linear algebra operations, we must reshape and transpose the CSR tensor.
Therefore, we implement a new GPU kernel that internally performs reshape and transposes from
the FlatCSR using Triton (Tillet et al., 2019). We heavily utilize the property that every row (query)
has a similar number of non-zero entries (approximated as k) during memory allocation and thread
scheduling. Therefore, we can be more efficient in terms of memory and computation than the COO
tensor type, which is generally used in sparse tensor computation.

18



Published as a conference paper at ICLR 2024

A.5.3 SPARSE INTERPOLATION

In this section, we describe the details of sparse interpolation from M̂ to M∗. We interpolate M̂ ∈
{0, 1}T×K into M∗ ∈ {0, 1}T×T as described in Section 3.1. We claimed that the complexity of
this interpolation is O(T ). However, if we perform the interpolation of the M̂ in a dense matrix for-
mat, the complexity should be O(T 2). Since we perform the interpolation in a sparse matrix format,
we only need to calculate the interpolation of non-zero entries in M̂ . This is possible because we
interpolate binary masks using nearest-neighbor as there is no requirement for linear or non-linear
interpolation between pixels. The nearest neighbor interpolation is independent of other nearby
pixel values and only depends on pixel indices, which are stored in the sparse matrix format. This
allows us to perform interpolation within O(number of non-zero entries after interpolation to M∗)

complexity. We adjust the sparsity of M̂ (which is determined by k̂) to make M∗ have a constant
number of non-zero entries (T ∗ k). As a result, we always know how many pixels are in M∗ and
that the number of pixels is O(T ). In summary, the only thing we need to do interpolation is iterate
every non-zero pixel in M̂ and duplicate or reduce the number of pixels which are output to M∗

depending on the pixel location in M̂ and the ratio between T,K.

However, to keep the linear complexity of sparse interpolation we need to deal with the case that
kK < T or in other words kK/T < 1. This case is important because if this occurs, then k̂ =
max(1, round(k ∗K/T )) will be evaluated to 1 since we always must select at least one pixel from
Â. If we interpolate the M̂ in that case, then each pixel replication of the non-zero entries in M̂

should be limited to k. The reason is that we set the lower bound of k̂ into 1 to avoid an empty
attention mask when k̂ is zero after rounding because T is much larger than K. However, in that
case, a single pixel in M̂ will be ⌈T/K⌉ after replication, and the total number of non-zero entries
in M∗ will be quadratic. We can solve the problem by limiting the upper bound of pixel replications
to k∗ = min(k, ⌈T/K⌉) because the k̂ is always 1. However in this case we will encounter how
we select k∗ pixels among ⌈T/K⌉ pixels because the originally selected pixel in M̂ covers ⌈T/K⌉
pixels in M∗. In this paper, we decided to sample uniformly.

However, we think uniformly sampling the attention relations among block regions is not ideal be-
cause there is a high chance of not selecting higher probability attention relations because a uniform
sample does not consider the distribution of attention probability. We would be interested in see-
ing future research that deals with this case, which is what we expect to happen more often in the
future as LLMs keep increasing their context length (OPT (2022)’s context length: 2048, LLaMA2
(2023)’s context length: 4096).

A.6 FLOPS COMPARISON

0 2000 4000 6000 8000 10000 12000 14000 16000
Sequence Length

0

50

100

150

200

250

300

350

GF
LO

Ps

FLOPs Comparision Between SEA (Ours) And Quadratic Attention
Quadratic
Ours(k=32, K=64)
Ours(k=64, K=64)
Ours(k=128, K=64)

Figure A.4: FLOPs comparison with SEA and quadratic attention.

We compute the FLOPs of our SEA attention and quadratic attention with different hyperparame-
ters (k = 32, 64, 128,K = 128) in Fig. A.4. SEA shows clear linear computational complexity.
However, the original attention mechanism shows a drastic increase in computational cost on longer
context length due to quadratic complexity. The figure shows only FLOPs and arithmetic operations.

19



Published as a conference paper at ICLR 2024

Therefore, this tendency is the ideal latency complexity of our method and means that there is plenty
of room for improvement in implementation.

A.7 DISCUSSION ABOUT DIFFERENCE BETWEEN SEA AND FLASHATTENTION

In Fig. 8, we show two quadratic attention baselines, vanilla, and FlashAttention (Dao et al., 2022).
While FlashAttention consumes memory linearly, it scales quadratically in terms of computation
complexity. FlashAttention is an efficient implementation of original quadratic attention that elim-
inates most of the memory space and bandwidth requirement of the attention mechanism by fusing
attention probability calculation and context vector calculation. FlashAttention has linear memory
complexity and quadratic time complexity because it does not require space for storing attention
score matrix to compute softmax probability. The lack of attention probability storage is an advan-
tage in terms of memory bandwidth consumption. However, this characteristic may be a downside
when attention probability is required in usage scenarios where we are concerned, such as token
importance analysis for token compression. Therefore, FlashAttention has some of the same limita-
tions as previous linear attention methods. However, our SEA attention does not have such limita-
tions by providing an estimated attention matrix, while showing linear complexity in both memory
and computation.

A.8 EVALUATION OF SEA ON LONGER CONTEXT MODEL

Table A.5: Evaluation result of context length extension from 2048 to 4096 on WikiText2. The reformer was
not included in this experiment due to the already poor performance seen in Table 2

OPT-125M
Method PPL. (after interp.) ↓ PPL. (trained) ↓ Memory (MB) ↓ Latency (ms) ↓
Vanilla 52.96 18.96 1584 17.86
Performer 68.29 (+15.33) 62.40 (+43.44) 102.75 (6.48%) 2.38 (13.32%)
SEA (Ours) 43.96 (-9.00) 23.43 (+4.47) 448 (28.28%) 14.31 (80.12%)

We evaluate our method with a longer context on Wikitext2. However, OPT only supports context
lengths up to 2048, therefore we used positional embedding interpolation that was introduced in
previous work (Dosovitskiy et al., 2021), using bilinear interpolation. After interpolating the posi-
tional embedding, we perform a few optimization steps (750 steps, 1.5M tokens) on the model with
the causal language modeling task loss. In longer context length, 4096, our method outperforms
quadratic attention in both latency and memory cost. Also, the experiment result shows our model is
much stronger than baselines after positional embedding interpolation. This result is interesting, as
we think this shows that sparse attention masking helps to preserve the important attention relations
by masking out non-important attention relations. We picked the SEA-OPT result from Table A.5,
and details are following.

Table A.6: The trade off on long context (T = 4096) experiment on Wikitext2 using post training compression
techniques: Query skipping and dynamic k control. Each entry of table shows PPL(ms/MB). Each values are
colored with green and red. Better values are more green, and worse values are more red.

Query Skips

Dynamic-k 96 104 112 120 128

16 23.43 (14.31 / 448.37) 23.00 (14.70 / 455.65) 22.63 (15.40 / 463.06) 22.34 (16.06 / 470.28) 22.11 (16.65 / 477.59)

8 23.26 (14.61 / 448.37) 22.82 (15.28 / 455.65) 22.48 (15.74 / 463.06) 22.20 (16.35 / 470.28) 21.98 (16.97 / 477.59)

4 23.02 (15.33 / 448.37) 22.60 (15.85 / 455.65) 22.29 (16.46 / 463.06) 22.02 (17.03 / 470.28) 21.83 (17.59 / 477.59)

2 22.73 (16.35 / 448.37) 22.33 (16.86 / 455.65) 22.02 (17.50 / 463.06) 21.78 (18.08 / 470.28) 21.58 (18.64 / 477.58)

1 22.38 (18.12 / 448.35) 22.04 (18.68 / 455.65) 21.76 (19.31 / 462.98) 21.55 (19.92 / 470.19) 21.38 (20.47 / 477.54)

In Table A.5, we show the performance trade of the longer context model using our post-training
compression techniques: query skipping and dynamic k control. We newly introduce the query
skipping in this section. Query skipping is skipping rows before CNN inputs, and replicating rows
after CNN, reducing the cost of the CNN decoder. We trained the OPT-125m with self distillation
setting because we do not have a properly trained 4k OPT model, therefore we use itself as a KD

20



Published as a conference paper at ICLR 2024

teacher. Also in this experiment we use k = 128,K = 96 to train efficiently on longer sequence
length. On each transformer layer, we use input Q,K as a source of the teacher attention matrix.
For computing self teacher attention matrix, we cut the gradient of each Q,K to prevent training
from oscillating and exploding due to self feedback loop of the gradient. In Table A.5, the model
shows better latency and less memory consumption toward to top-left, and gets closer to original
model performance toward to bottom-right.

A.9 EVALUATION OF SEA ON LARGER DATASET

Table A.7: Evaluation result on OpenWebText.

OPT-125M
Method PPL. ↓ Mem. ↓ Lat. ↓
Vanilla 19.82 408 4.88
Performer 61.20 (+41.38) 51 1.21
SEA (Ours) 22.64 (+2.82) 187 6.76

0 2000 4000 6000 8000 10000
Optimizer Steps

0

25

50

75

100

125

150

PP
L.

 

Validation Curve
Ours
Performer

Figure A.5: Validation curves for SEA and Performer, when trained with OpenWebtext dataset. SEA converges
much faster compared to Performer.

In Table A.7, we evaluate our method with the larger OpenWebText (Gokaslan et al., 2019) dataset.
With a given training budget our method still outperforms the baseline, Performer. In this large-
scale dataset, Performer shows much poorer approximation performance than our method. We train
the models only 10k optimizer step, which is equivalent to 640M tokens. Considering the fact
that LLMs are often trained with over 1T tokens (Zhang et al., 2023), we preserve most of the
teacher performance with only 0.064% training cost of the teacher’s pretraining, while also reducing
computational complexity from quadratic to linear. Moreover, as shown in Fig. A.5, SEA converges
much faster compared to Performer, and the difference is even larger than Fig. 5b, where Wikitext2
dataset was used for training.

A.10 DETAILED DIAGRAM OF MODEL STRUCTURE

=

Self Attn

Sparse

, ,

Performer

(a) Top-  Selection (b) Sparse Interp. and Masked Matmul

Decoder

CNN

MLP

Selection
Groups

Causal Attn

Dense

(c) Final Output Calculation

mix

mix 

Sparse Visualization

Visualization

Visualization

(1) Attention Estimation (2) Sparse Attention Mask Generation and Subsequent Sparse Attention

Figure A.6: Model diagram of our proposed linear attention method, SEA, during inference.

In Fig. 2, we provide high-level overview of our method structure. And in this section, we provide a
much more detailed model diagram with more notations in Fig. A.6. In the figure, (1) SEA estimates

21



Published as a conference paper at ICLR 2024

the attention matrix in a compressed size (Â ∈ RT×K). (2a) We then perform a top-k selection
procedure from the compressed attention matrix resulting in a compressed attention mask, and (2b)
interpolate the compressed attention mask to a sparse formatted mask for the full attention matrix.
(2c) Finally, we perform sparse attention.

A.11 DETAILED RESULT OF SEA ON MNLI

Table A.8: Comparison with MNLI dataset of GLUE benchmark (Wang et al., 2019) among linear attention
methods. Vanilla quadratic attention is included for reference. SEA (Ours) is trained with K = 32 and k = 25.

Metric Vanilla SEA (Ours) Cosformer Reformer Sinkhorn Synthesizer Performer

Accuracy 84.1 84.0 82.7 82.5 81.9 75.5 74.7
Memory (MB) 9.00 17.17 10.88 88.36 9.39 8.25 14.76
Latency (µs) 238 701 242 900 152 181 320

In Table A.8, we provide the detailed result of SEA on MNLI which is the subset of the GLUE
benchmark.

A.12 DISCUSSION ABOUT THE LATENCY OF OUR FLATCSR IMPLEMENTATION

We think there is room for further optimization of FlatCSR in order to further reduce latencies. The-
oretically, dense operations cost 43.96 GMACs, and sparse FlatCSR operation costs 1.25 GMACs,
as shown in Fig. A.4; this means our kernel implementation does not fully utilize MACs and is
therefore bottle-necked on memory computation and thread scheduling. Furthermore, we need to
utilize block aligns in the sparse interpolation of the mask from M̂ to M∗. Since we are using
the nearest neighborhood interpolation and we mostly interpolate the attention estimation from a
relatively smaller size, K, to a larger size T , a single non-zero pixel in the compressed mask will
be multiple pixels in resized one. We may utilize this fact to schedule threads with blocks like other
famous block-sparse attention implementations including FlashAttention Dao et al. (2022). There-
fore, further research could look to investigating and optimizing thread scheduling and cache hit
ratios of the proposed FlatCSR. However, we think the implementation with Triton is sufficient to
show the efficiency of the proposed SEA attention.

22


	Introduction
	Related Work
	SEA: Sparse linear attention with Estimated Attention mask
	SEA Attention
	Sparse Attention and Final Output Calculation within Linear Cost

	Training SEA Attention

	Experiments
	Causal Language Modeling
	Text Classification
	Dynamically Adjusting k

	Efficiency of SEA Attention Computation
	Visualization of Estimated Attention from SEA Attention
	Conclusion and Discussion
	Appendix
	Efficiency Measures of SEA Attention
	Estimated Attention Visualization of SEA attention
	Visualization of the Masking Process
	Experiment Details
	Training Hyperparamters
	GLUE

	Implementation Details
	Attention Estimator CNN
	FlatCSR: Modified CSR Format To Handle Grouped Mask
	Sparse Interpolation

	FLOPs Comparison
	Discussion About Difference Between SEA and FlashAttention
	Evaluation of SEA on Longer Context Model
	Evaluation of SEA on Larger Dataset
	Detailed Diagram of Model Structure
	Detailed Result of SEA on MNLI
	Discussion About The Latency of Our FlatCSR Implementation


