
Published as a conference paper at ICLR 2023

A TIME SERIES IS WORTH 64 WORDS:
LONG-TERM FORECASTING WITH TRANSFORMERS

Yuqi Nie1∗, Nam H. Nguyen2 ∗, Phanwadee Sinthong2, Jayant Kalagnanam2

1Princeton University 2IBM Research
ynie@princeton.edu, nnguyen@us.ibm.com, Gift.Sinthong@ibm.com,
jayant@us.ibm.com

ABSTRACT

We propose an efficient design of Transformer-based models for multivariate
time series forecasting and self-supervised representation learning. It is based on
two key components: (i) segmentation of time series into subseries-level patches
which are served as input tokens to Transformer; (ii) channel-independence where
each channel contains a single univariate time series that shares the same embed-
ding and Transformer weights across all the series. Patching design naturally
has three-fold benefit: local semantic information is retained in the embedding;
computation and memory usage of the attention maps are quadratically reduced
given the same look-back window; and the model can attend longer history. Our
channel-independent patch time series Transformer (PatchTST) can improve the
long-term forecasting accuracy significantly when compared with that of SOTA
Transformer-based models. We also apply our model to self-supervised pre-
training tasks and attain excellent fine-tuning performance, which outperforms
supervised training on large datasets. Transferring of masked pre-trained repre-
sentation on one dataset to others also produces SOTA forecasting accuracy.

1 INTRODUCTION

Forecasting is one of the most important tasks in time series analysis. With the rapid growth of deep
learning models, the number of research works has increased significantly on this topic (Bryan &
Stefan, 2021; Torres et al., 2021; Lara-Benı́tez et al., 2021). Deep models have shown excellent
performance not only on forecasting tasks, but also on representation learning where abstract rep-
resentation can be extracted and transferred to various downstream tasks such as classification and
anomaly detection to attain state-of-the-art performance.

Among deep learning models, Transformer has achieved great success on various application fields
such as natural language processing (NLP) (Kalyan et al., 2021), computer vision (CV) (Khan et al.,
2021), speech (Karita et al., 2019), and more recently time series (Wen et al., 2022), benefiting from
its attention mechanism which can automatically learn the connections between elements in a se-
quence, thus becomes ideal for sequential modeling tasks. Informer (Zhou et al., 2021), Autoformer
(Wu et al., 2021), and FEDformer (Zhou et al., 2022) are among the best variants of the Transformer
model successfully applying to time series data. Unfortunately, regardless of the complicated design
of Transformer-based models, it is shown in the recent paper (Zeng et al., 2022) that a very simple
linear model can outperform all of the previous models on a variety of common benchmarks and it
challenges the usefulness of Transformer for time series forecasting. In this paper, we attempt to an-
swer this question by proposing a channel-independence patch time series Transformer (PatchTST)
model that contains two key designs:

• Patching. Time series forecasting aims to understand the correlation between data in each dif-
ferent time steps. However, a single time step does not have semantic meaning like a word in a
sentence, thus extracting local semantic information is essential in analyzing their connections.
Most of the previous works only use point-wise input tokens, or just a handcrafted information

∗Equal contribution.

1



Published as a conference paper at ICLR 2023

Models L N patch method MSE

Channel-independent
PatchTST

96 96 0.518
380 96 down-sampled 0.447
336 336 0.397
336 42 ✓ 0.367
336 42 ✓ self-supervised 0.349

Channel-mixing FEDFormer 336 336 0.597
DLinear 336 336 0.410

Running time (s) with L = 336
Dataset w. patch w.o. patch Gain

Traffic 464 10040 x 22
Electricity 300 5730 x 19
Weather 156 680 x 4

Table 1: A case study of multivariate time series forecasting on Traffic dataset. The prediction hori-
zon is 96. Results with different look-back window L and number of input tokens N are reported.
The best result is in bold and the second best is underlined. Down-sampled means sampling every
4 step and adding the last value. All the results are from supervised training except the best result
which uses self-supervised learning.

from series. In contrast, we enhance the locality and capture comprehensive semantic informa-
tion that is not available in point-level by aggregating time steps into subseries-level patches.

• Channel-independence. A multivariate time series is a multi-channel signal, and each Trans-
former input token can be represented by data from either a single channel or multiple channels.
Depending on the design of input tokens, different variants of the Transformer architecture have
been proposed. Channel-mixing refers to the latter case where the input token takes the vec-
tor of all time series features and projects it to the embedding space to mix information. On
the other hand, channel-independence means that each input token only contains information
from a single channel. This was proven to work well with CNN (Zheng et al., 2014) and linear
models (Zeng et al., 2022), but hasn’t been applied to Transformer-based models yet.

We offer a snapshot of our key results in Table 1 by doing a case study on Traffic dataset, which
consists of 862 time series. Our model has several advantages:

1. Reduction on time and space complexity: The original Transformer has O(N2) complexity
on both time and space, where N is the number of input tokens. Without pre-processing, N
will have the same value as input sequence length L, which becomes a primary bottleneck
of computation time and memory in practice. By applying patching, we can reduce N by a
factor of the stride: N ≈ L/S, thus reducing the complexity quadratically. Table 1 illustrates
the usefulness of patching. By setting patch length P = 16 and stride S = 8 with L = 336,
the training time is significantly reduced as much as 22 time on large datasets.

2. Capability of learning from longer look-back window: Table 1 shows that by increasing look-
back window L from 96 to 336, MSE can be reduced from 0.518 to 0.397. However, simply
extending L comes at the cost of larger memory and computational usage. Since time series
often carries heavily temporal redundant information, some previous work tried to ignore parts
of data points by using downsampling or a carefully designed sparse connection of attention
(Li et al., 2019) and the model still yields sufficient information to forecast well. We study the
case when L = 380 and the time series is sampled every 4 steps with the last point added to
sequence, resulting in the number of input tokens being N = 96. The model achieves better
MSE score (0.447) than using the data sequence containing the most recent 96 time steps
(0.518), indicating that longer look-back window conveys more important information even
with the same number of input tokens. This leads us to think of a question: is there a way
to avoid throwing values while maintaining a long look-back window? Patching is a good
answer to it. It can group local time steps that may contain similar values while at the same
time enables the model to reduce the input token length for computational benefit. As evident
in Table 1, MSE score is further reduced from 0.397 to 0.367 with patching when L = 336.

3. Capability of representation learning: With the emergence of powerful self-supervised learn-
ing techniques, sophisticated models with multiple non-linear layers of abstraction are re-
quired to capture abstract representation of the data. Simple models like linear ones (Zeng
et al., 2022) may not be preferred for that task due to its limited expressibility. With our
PatchTST model, we not only confirm that Transformer is actually effective for time series
forecasting, but also demonstrate the representation capability that can further enhance the
forecasting performance. Our PatchTST has achieved the best MSE (0.349) in Table 1.

2



Published as a conference paper at ICLR 2023

We introduce our approach in more detail and conduct extensive experiments in the following sec-
tions to conclusively prove our claims. We not only demonstrate the model effectiveness with super-
vised forecasting results and ablation studies, but also achieves SOTA self-supervised representation
learning and transfer learning performance.

2 RELATED WORK

Patch in Transformer-based Models. Transformer (Vaswani et al., 2017) has demonstrated a sig-
nificant potential on different data modalities. Among all applications, patching is an essential
part when local semantic information is important. In NLP, BERT (Devlin et al., 2018) considers
subword-based tokenization (Schuster & Nakajima, 2012) instead of performing character-based
tokenization. In CV, Vision Transformer (ViT) (Dosovitskiy et al., 2021) is a milestone work that
splits an image into 16×16 patches before feeding into the Transformer model. The following influ-
ential works such as BEiT (Bao et al., 2022) and masked autoencoders (He et al., 2021) are all using
patches as input. Similarly, in speech researchers are using convolutions to extract information in
sub-sequence levels from raw audio input (Baevski et al., 2020; Hsu et al., 2021).

Transformer-based Long-term Time Series Forecasting. There is a large body of work that tries
to apply Transformer models to forecast long-term time series in recent years. We here summarize
some of them. LogTrans (Li et al., 2019) uses convolutional self-attention layers with LogSparse
design to capture local information and reduce the space complexity. Informer (Zhou et al., 2021)
proposes a ProbSparse self-attention with distilling techniques to extract the most important keys
efficiently. Autoformer (Wu et al., 2021) borrows the ideas of decomposition and auto-correlation
from traditional time series analysis methods. FEDformer (Zhou et al., 2022) uses Fourier enhanced
structure to get a linear complexity. Pyraformer (Liu et al., 2022) applies pyramidal attention module
with inter-scale and intra-scale connections which also get a linear complexity.

Most of these models focus on designing novel mechanisms to reduce the complexity of original
attention mechanism, thus achieving better performance on forecasting, especially when the pre-
diction length is long. However, most of the models use point-wise attention, which ignores the
importance of patches. LogTrans (Li et al., 2019) avoids a point-wise dot product between the key
and query, but its value is still based on a single time step. Autoformer (Wu et al., 2021) uses auto-
correlation to get patch level connections, but it is a handcrafted design which doesn’t include all
the semantic information within a patch. Triformer (Cirstea et al., 2022) proposes patch attention,
but the purpose is to reduce complexity by using a pseudo timestamp as the query within a patch,
thus it neither treats a patch as a input unit, nor reveals the semantic importance behind it.

Time Series Representation Learning. Besides supervised learning, self-supervised learning is
also an important research topic since it has shown the potential to learn useful representations for
downstream tasks. There are many non-Transformer-based models proposed in recent years to learn
representations in time series (Franceschi et al., 2019; Tonekaboni et al., 2021; Yang & Hong, 2022;
Yue et al., 2022). Meanwhile, Transformer is known to be an ideal candidate towards foundation
models (Bommasani et al., 2021) and learning universal representations. However, although people
have made attempts on Transformer-based models like time series Transformer (TST) (Zerveas et al.,
2021) and TS-TCC (Eldele et al., 2021), the potential is still not fully realized yet.

3 PROPOSED METHOD

3.1 MODEL STRUCTURE

We consider the following problem: given a collection of multivariate time series samples with look-
back window L : (x1, ...,xL) where each xt at time step t is a vector of dimension M , we would
like to forecast T future values (xL+1, ...,xL+T ). Our PatchTST is illustrated in Figure 1 where the
model makes use of the vanilla Transformer encoder as its core architecture.

Forward Process. We denote a i-th univariate series of length L starting at time index 1 as
x
(i)
1:L = (x

(i)
1 , ..., x

(i)
L ) where i = 1, ...,M . The input (x1, ...,xL) is split to M univariate series

x(i) ∈ R1×L, where each of them is fed independently into the Transformer backbone according to

3



Published as a conference paper at ICLR 2023

Input Univariate Series

Instance Norm + Patching

𝑥 ∈ ℝ!×#

Channel-
independence

Transform
er Backbone

Concatenate

𝑥(%) ∈ ℝ'×#, 𝑖 = 1, … ,𝑀 +𝑥(%) ∈ ℝ'×(, 𝑖 = 1, … ,𝑀

+𝑥 ∈ ℝ!×(

𝑥(") ∈ ℝ$×&

Projection + Position Embedding

Transformer Encoder

Flatten + Linear Head

Output Univariate Series$𝑥(") ∈ ℝ$×'

Input Univariate Series

Instance Norm + Patching

Projection + Position Embedding

Transformer Encoder

Linear Layer

(a) PatchTST Model Overview

(b) Transformer Backbone (Supervised) (c) Transformer Backbone (Self-supervised)

Reconstructed 
Masked Patches

Multi-Head 
Attention

Add & Norm

Feed 
Forward

Add & Norm
n×

𝑥(
(") ∈ ℝ)×*

𝑧(") ∈ ℝ)×*

𝑥+
(") ∈ ℝ,×*

Figure 1: PatchTST architecture. (a) Multivariate time series data is divided into different chan-
nels. They share the same Transformer backbone, but the forward processes are independent. (b)
Each channel univariate series is passed through instance normalization operator and segmented into
patches. These patches are used as Transformer input tokens. (c) Masked self-supervised represen-
tation learning with PatchTST where patches are randomly selected and set to zero. The model will
reconstruct the masked patches.

our channel-independence setting. Then the Transformer backbone will provide prediction results
x̂(i) = (x̂

(i)
L+1, ..., x̂

(i)
L+T ) ∈ R1×T accordingly .

Patching. Each input univariate time series x(i) is first divided into patches which can be either
overlapped or non-overlapped. Denote the patch length as P and the stride - the non overlapping
region between two consecutive patches as S, then the patching process will generate the a sequence
of patches x(i)

p ∈ RP×N where N is the number of patches, N = ⌊ (L−P )
S ⌋ + 2. Here, we pad S

repeated numbers of the last value x
(i)
L ∈ R to the end of the original sequence before patching.

With the use of patches, the number of input tokens can reduce from L to approximately L/S.
This implies the memory usage and computational complexity of the attention map are quadrati-
cally decreased by a factor of S. Thus constrained on the training time and GPU memory, patch
design can allow the model to see the longer historical sequence, which can significantly improve
the forecasting performance, as demonstrated in Table 1.

Transformer Encoder. We use a vanilla Transformer encoder that maps the observed signals to the
latent representations. The patches are mapped to the Transformer latent space of dimension D via a
trainable linear projection Wp ∈ RD×P , and a learnable additive position encoding Wpos ∈ RD×N

is applied to monitor the temporal order of patches: x(i)
d = Wpx

(i)
p +Wpos, where x

(i)
d ∈ RD×N

denote the input that will be fed into Transformer encoder in Figure 1. Then each head h = 1, ...,H

in multi-head attention will transform them into query matrices Q(i)
h = (x

(i)
d )TWQ

h , key matrices
K

(i)
h = (x

(i)
d )TWK

h and value matrices V
(i)
h = (x

(i)
d )TWV

h , where WQ
h ,W

K
h ∈ RD×dk and

4



Published as a conference paper at ICLR 2023

WV
h ∈ RD×D. After that a scaled production is used for getting attention output O(i)

h ∈ RD×N :

(O
(i)
h )T = Attention(Q(i)

h ,K
(i)
h , V

(i)
h ) = Softmax(

Q
(i)
h K

(i)
h

T

√
dk

)V
(i)
h

The multi-head attention block also includes BatchNorm 1 layers and a feed forward network with
residual connections as shown in Figure 1. Afterwards it generates the representation denoted as
z(i) ∈ RD×N . Finally a flatten layer with linear head is used to obtain the prediction result x̂(i) =

(x̂
(i)
L+1, ..., x̂

(i)
L+T ) ∈ R1×T .

Loss Function. We choose to use the MSE loss to measure the discrepancy between the prediction
and the ground truth. The loss in each channel is gathered and averaged over M time series to get
the overall objective loss: L = Ex

1
M

∑M
i=1 ∥x̂

(i)
L+1:L+T − x

(i)
L+1:L+T ∥22.

Instance Normalization. This technique has recently been proposed to help mitigating the distri-
bution shift effect between the training and testing data (Ulyanov et al., 2016; Kim et al., 2022).
It simply normalizes each time series instance x(i) with zero mean and unit standard deviation. In
essence, we normalize each x(i) before patching and the mean and deviation are added back to the
output prediction.

3.2 REPRESENTATION LEARNING

Self-supervised representation learning has become a popular approach to extract high level abstract
representation from unlabelled data. In this section, we apply PatchTST to obtain useful represen-
tation of the multivariate time series. We will show that the learnt representation can be effectively
transferred to forecasting tasks. Among popular methods to learn representation via self-supervise
pre-training, masked autoencoder has been applied successfully to NLP (Devlin et al., 2018) and
CV (He et al., 2021) domains. This technique is conceptually simple: a portion of input sequence is
intentionally removed at random and the model is trained to recover the missing contents.

Masked encoder has been recently employed in time series and delivered notable performance on
classification and regression tasks (Zerveas et al., 2021). The authors proposed to apply the multi-
variate time series to Transformer, where each input token is a vector xi consisting of time series
values at time step i-th. Masking is placed randomly within each time series and across different
series. However, there are two potential issues with this setting: First, masking is applied at the level
of single time steps. The masked values at the current time step can be easily inferred by interpo-
lating with the immediate proceeding or succeeding time values without high level understanding
of the entire sequence, which deviates from our goal of learning important abstract representation
of the whole signal. Zerveas et al. (2021) proposed complex randomization strategies to resolve the
problem in which groups of time series with different sizes are randomly masked.

Second, the design of the output layer for forecasting task can be troublesome. Given the repre-
sentation vectors zt ∈ RD corresponding to all L time steps, mapping these vectors to the output
containing M variables each with prediction horizon T via a linear map requires a parameter matrix
W of dimension (L · D) × (M · T ). This matrix can be particularly oversized if either one or all
of these four values are large. This may cause overfitting when the number of downstream training
samples is scarce.

Our proposed PatchTST can naturally overcome the aforementioned issues. As shown in Figure 1,
we use the same Transformer encoder as the supervised settings. The prediction head is removed and
a D×P linear layer is attached. As opposed to supervised model where patches can be overlapped,
we divide each input sequence into regular non-overlapping patches. It is for convenience to ensure
observed patches do not contain information of the masked ones. We then select a subset of the
patch indices uniformly at random and mask the patches according to these selected indices with
zero values. The model is trained with MSE loss to reconstruct the masked patches.

We emphasize that each time series will have its own latent representation that are cross-learned via
a shared weight mechanism. This design can allow the pre-training data to contain different number
of time series than the downstream data, which may not be feasible by other approaches.

1Zerveas et al. (2021) has shown that BatchNorm outperforms LayerNorm in time series Transformer.

5



Published as a conference paper at ICLR 2023

4 EXPERIMENTS

4.1 LONG-TERM TIME SERIES FORECASTING

Datasets. We evaluate the performance of our proposed PatchTST on 8 popular datasets, including
Weather, Traffic, Electricity, ILI and 4 ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2). These
datasets have been extensively utilized for benchmarking and publicly available on (Wu et al., 2021).
The statistics of those datasets are summarized in Table 2. We would like to highlight several large
datasets: Weather, Traffic, and Electricity. They have many more number of time series, thus the
results would be more stable and less susceptible to overfitting than other smaller datasets.

Datasets Weather Traffic Electricity ILI ETTh1 ETTh2 ETTm1 ETTm2

Features 21 862 321 7 7 7 7 7
Timesteps 52696 17544 26304 966 17420 17420 69680 69680

Table 2: Statistics of popular datasets for benchmark.

Baselines and Experimental Settings. We choose the SOTA Transformer-based models, includ-
ing FEDformer (Zhou et al., 2022), Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021),
Pyraformer (Liu et al., 2022), LogTrans (Li et al., 2019), and a recent non-Transformer-based model
DLinear (Zeng et al., 2022) as our baselines. All of the models are following the same experimental
setup with prediction length T ∈ {24, 36, 48, 60} for ILI dataset and T ∈ {96, 192, 336, 720} for
other datasets as in the original papers. We collect baseline results from Zeng et al. (2022) with the
default look-back window L = 96 for Transformer-based models, and L = 336 for DLinear. But in
order to avoid under-estimating the baselines, we also run FEDformer, Autoformer and Informer for
six different look-back window L ∈ {24, 48, 96, 192, 336, 720}, and always choose the best results
to create strong baselines. More details about the baselines could be found in Appendix A.1.2. We
calculate the MSE and MAE of multivariate time series forecasting as metrics.

Model Variants. We propose two versions of PatchTST in Table 3. PatchTST/64 implies the
number of input patches is 64, which uses the look-back window L = 512. PatchTST/42 means the
number of input patches is 42, which has the default look-back window L = 336. Both of them
use patch length P = 16 and stride S = 8. Thus, we could use PatchTST/42 as a fair comparison
to DLinear and other Transformer-based models, and PatchTST/64 to explore even better results on
larger datasets. More experimental details are provided in Appendix A.1.

Results. Table 3 shows the multivariate long-term forecasting results. Overall, our model outper-
form all baseline methods. Quantitatively, compared with the best results that Transformer-based
models can offer, PatchTST/64 achieves an overall 21.0% reduction on MSE and 16.7% reduction
on MAE, while PatchTST/42 attains an overall 20.2% reduction on MSE and 16.4% reduction on
MAE. Compared with the DLinear model, PatchTST can still outperform it in general, especially
on large datasets (Weather, Traffic, Electricity) and ILI dataset. We also experiment with univariate
datasets where the results are provided in Appendix A.3.

4.2 REPRESENTATION LEARNING

In this section, we conduct experiments with masked self-supervised learning where we set the
patches to be non-overlapped. Otherwise stated, across all representation learning experiments the
input sequence length is chosen to be 512 and patch size is set to 12, which results in 42 patches.
We consider high masking ratio where 40% of the patches are masked with zero values. We first
apply self-supervised pre-training on the datasets mentioned in Section 4.1 for 100 epochs. Once
the pre-trained model on each dataset is available, we perform supervised training to evaluate the
learned representation with two options: (a) linear probing and (b) end-to-end fine-tuning. With (a),
we only train the model head for 20 epochs while freezing the rest of the network; With (b), we
apply linear probing for 10 epochs to update the model head and then end-to-end fine-tuning the
entire network for 20 epochs. It was proven that a two-step strategy with linear probing followed
by fine-tuning can outperform only doing fine-tuning directly (Kumar et al., 2022). We select a few
representative results on below, and a full benchmark can be found in Appendix A.5.

6



Published as a conference paper at ICLR 2023

Models PatchTST/64 PatchTST/42 DLinear FEDformer Autoformer Informer Pyraformer LogTrans
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.149 0.198 0.152 0.199 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405 0.896 0.556 0.458 0.490
192 0.194 0.241 0.197 0.243 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434 0.622 0.624 0.658 0.589
336 0.245 0.282 0.249 0.283 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543 0.739 0.753 0.797 0.652
720 0.314 0.334 0.320 0.335 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705 1.004 0.934 0.869 0.675

Tr
af

fic

96 0.360 0.249 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410 2.085 0.468 0.684 0.384
192 0.379 0.256 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435 0.867 0.467 0.685 0.390
336 0.392 0.264 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434 0.869 0.469 0.734 0.408
720 0.432 0.286 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466 0.881 0.473 0.717 0.396

E
le

ct
ri

ci
ty 96 0.129 0.222 0.130 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393 0.386 0.449 0.258 0.357

192 0.147 0.240 0.148 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417 0.386 0.443 0.266 0.368
336 0.163 0.259 0.167 0.261 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422 0.378 0.443 0.280 0.380
720 0.197 0.290 0.202 0.291 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427 0.376 0.445 0.283 0.376

IL
I

24 1.319 0.754 1.522 0.814 2.215 1.081 2.624 1.095 2.906 1.182 4.657 1.449 1.420 2.012 4.480 1.444
36 1.579 0.870 1.430 0.834 1.963 0.963 2.516 1.021 2.585 1.038 4.650 1.463 7.394 2.031 4.799 1.467
48 1.553 0.815 1.673 0.854 2.130 1.024 2.505 1.041 3.024 1.145 5.004 1.542 7.551 2.057 4.800 1.468
60 1.470 0.788 1.529 0.862 2.368 1.096 2.742 1.122 2.761 1.114 5.071 1.543 7.662 2.100 5.278 1.560

E
T

T
h1

96 0.370 0.400 0.375 0.399 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769 0.664 0.612 0.878 0.740
192 0.413 0.429 0.414 0.421 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786 0.790 0.681 1.037 0.824
336 0.422 0.440 0.431 0.436 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784 0.891 0.738 1.238 0.932
720 0.447 0.468 0.449 0.466 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857 0.963 0.782 1.135 0.852

E
T

T
h2

96 0.274 0.337 0.274 0.336 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952 0.645 0.597 2.116 1.197
192 0.341 0.382 0.339 0.379 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542 0.788 0.683 4.315 1.635
336 0.329 0.384 0.331 0.380 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642 0.907 0.747 1.124 1.604
720 0.379 0.422 0.379 0.422 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619 0.963 0.783 3.188 1.540

E
T

T
m

1 96 0.293 0.346 0.290 0.342 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560 0.543 0.510 0.600 0.546
192 0.333 0.370 0.332 0.369 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619 0.557 0.537 0.837 0.700
336 0.369 0.392 0.366 0.392 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741 0.754 0.655 1.124 0.832
720 0.416 0.420 0.420 0.424 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845 0.908 0.724 1.153 0.820

E
T

T
m

2 96 0.166 0.256 0.165 0.255 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462 0.435 0.507 0.768 0.642
192 0.223 0.296 0.220 0.292 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586 0.730 0.673 0.989 0.757
336 0.274 0.329 0.278 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871 1.201 0.845 1.334 0.872
720 0.362 0.385 0.367 0.385 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267 3.625 1.451 3.048 1.328

Table 3: Multivariate long-term forecasting results with supervised PatchTST. We use prediction
lengths T ∈ {24, 36, 48, 60} for ILI dataset and T ∈ {96, 192, 336, 720} for the others. The best
results are in bold and the second best are underlined.

Models PatchTST DLinear FEDformer Autoformer InformerFine-tuning Lin. Prob. Sup.
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.193 0.158 0.209 0.152 0.199 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405

192 0.190 0.236 0.203 0.249 0.197 0.243 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434
336 0.244 0.280 0.251 0.285 0.249 0.283 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543
720 0.320 0.335 0.321 0.336 0.320 0.335 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.352 0.244 0.399 0.294 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410
192 0.371 0.253 0.412 0.298 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435
336 0.381 0.257 0.425 0.306 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434
720 0.425 0.282 0.460 0.323 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466

E
le

ct
ri

ci
ty 96 0.126 0.221 0.138 0.237 0.130 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393

192 0.145 0.238 0.156 0.252 0.148 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417
336 0.164 0.256 0.170 0.265 0.167 0.261 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422
720 0.193 0.291 0.208 0.297 0.202 0.291 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427

Table 4: Multivariate long-term forecasting results with self-supervised PatchTST. We use prediction
lengths T ∈ {96, 192, 336, 720}. The best results are in bold and the second best are underlined.

Comparison with Supervised Methods. Table 4 compares the performance of PatchTST (with
fine-tuning, linear probing, and supervising from scratch) with other supervised method. As shown
in the table, on large datasets our pre-training procedure contributes a clear improvement compared
to supervised training from scratch. By just fine-tuning the model head (linear probing), the fore-
casting performance is already comparable with training the entire network from scratch and better
than DLinear. The best results are observed with end-to-end fine-tuning. Self-supervised PatchTST
significantly outperforms other Transformer-based models on all the datasets.

Transfer Learning. We test the capability of transfering the pre-trained model to downstream
tasks. In particular, we pre-train the model on Electricity dataset and fine-tune on other datasets. We
observe from Table 5 that overall the fine-tuning MSE is lightly worse than pre-training and fine-
tuning on the same dataset, which is reasonable. The fine-tuning performance is also worse than
supervised training in some cases. However, the forecasting performance is still better than other

7



Published as a conference paper at ICLR 2023

Models PatchTST DLinear FEDformer Autoformer InformerFine-tuning Lin. Prob. Sup.
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.145 0.195 0.163 0.216 0.152 0.199 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405

192 0.193 0.243 0.205 0.252 0.197 0.243 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434
336 0.244 0.280 0.253 0.289 0.249 0.283 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543
720 0.321 0.337 0.320 0.336 0.320 0.335 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.388 0.273 0.400 0.288 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410
192 0.400 0.277 0.412 0.293 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435
336 0.408 0.280 0.425 0.307 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434
720 0.447 0.310 0.457 0.317 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466

Table 5: Transfer learning task: PatchTST is pre-trained on Electricity dataset and the model is
transferred to other datasets. The best results are in bold and the second best are underlined.

Models IMP.
PatchTST

BTSF TS2Vec TNC TS-TCC
Transferred Self-supervised

Metrics MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 42.3% 0.312 0.362 0.322 0.369 0.541 0.519 0.599 0.534 0.632 0.596 0.653 0.610
48 44.7% 0.339 0.378 0.354 0.385 0.613 0.524 0.629 0.555 0.705 0.688 0.720 0.693

168 34.5% 0.424 0.437 0.419 0.424 0.640 0.532 0.755 0.636 1.097 0.993 1.129 1.044
336 48.5% 0.472 0.472 0.445 0.446 0.864 0.689 0.907 0.717 1.454 0.919 1.492 1.076
720 48.8% 0.508 0.507 0.487 0.478 0.993 0.712 1.048 0.790 1.604 1.118 1.603 1.206

Table 6: Representation learning methods comparison. Column name transferred implies pre-
training PatchTST on Traffic dataset and transferring the representation to ETTh1, while self-
supervised implies both pre-training and linear probing on ETTh1. The best and second best results
are in bold and underlined. IMP. denotes the improvement on best results of PatchTST compared to
that of baselines, which is in the range of 34.5% to 48.8% on various prediction lengths.

models. Note that as opposed to supervised PatchTST where the entire model is trained for each
prediction horizon, here we only retrain the linear head or the entire model for much fewer epochs,
which results in significant computational time reduction.

Comparison with Other Self-supervised Methods. We compare our self-supervised model with
BTSF (Yang & Hong, 2022), TS2Vec (Yue et al., 2022), TNC (Tonekaboni et al., 2021), and TS-
TCC (Eldele et al., 2021) which are among the state-of-the-art contrastive learning representation
methods for time series 2. We test the forecasting performance on ETTh1 dataset, where we only
apply linear probing after the learned representation is obtained (only fine-tune the last linear layer)
to make the comparison fair. Results from Table 6 strongly indicates the superior performance of
PatchTST, both from pre-training on its own ETTh1 data (self-supervised columns) or pre-training
on Traffic (transferred columns).

4.3 ABLATION STUDY

Patching and Channel-independence. We study the effects of patching and channel-independence
in Table 7. We include FEDformer as the SOTA benchmark for Transformer-based model. By com-
paring results with and without the design of patching / channel-independence accordingly, one can
observe that both of them are important factors in improving the forecasting performance. The moti-
vation of patching is natural; furthermore this technique improves the running time and memory con-
sumption as shown in Table 1 due to shorter Transformer sequence input. Channel-independence, on
the other hand, may not be as intuitive as patching is in terms of the technical advantages. Therefore,
we provide an in-depth analysis on the key factors that make channel-independence more preferable
in Appendix A.7. More ablation study results are available in Appendix A.4.

Varying Look-back Window. In principle, a longer look-back window increases the receptive field,
which will potentially improves the forecasting performance. However, as argued in (Zeng et al.,
2022), this phenomenon hasn’t been observed in most of the Transformer-based models. We also
demonstrate in Figure 2 that in most cases, these Transformer-based baselines have not benefited
from longer look-back window L, which indicates their ineffectiveness in capturing temporal in-
formation. In contrast, our PatchTST consistently reduces the MSE scores as the receptive field
increases, which confirms our model’s capability to learn from longer look-back window.

2We cite results of TS2Vec from (Yue et al., 2022) and {BTSF,TNC,TS-TCC} from (Yang & Hong, 2022).

8



Published as a conference paper at ICLR 2023

Models
PatchTST

FEDformer
P+CI CI P Original

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.152 0.199 0.164 0.213 0.168 0.223 0.177 0.236 0.238 0.314

192 0.197 0.243 0.205 0.250 0.213 0.262 0.221 0.270 0.275 0.329
336 0.249 0.283 0.255 0.289 0.266 0.300 0.271 0.306 0.339 0.377
720 0.320 0.335 0.327 0.343 0.351 0.359 0.340 0.353 0.389 0.409

Tr
af

fic

96 0.367 0.251 0.397 0.271 0.595 0.376 - - 0.576 0.359
192 0.385 0.259 0.411 0.276 0.612 0.387 - - 0.610 0.380
336 0.398 0.265 0.423 0.282 0.651 0.391 - - 0.608 0.375
720 0.434 0.287 0.457 0.309 - - - - 0.621 0.375

E
le

ct
ri

ci
ty 96 0.130 0.222 0.136 0.231 0.196 0.307 0.205 0.318 0.186 0.302

192 0.148 0.240 0.164 0.263 0.215 0.323 - - 0.197 0.311
336 0.167 0.261 0.168 0.262 0.228 0.338 - - 0.213 0.328
720 0.202 0.291 0.219 0.312 0.244 0.345 - - 0.233 0.344

Table 7: Ablation study of patching and channel-independence in PatchTST. 4 cases are included:
(a) both patching and channel-independence are included in model (P+CI); (b) only channel-
independence (CI); (c) only patching (P); (d) neither of them is included (Original TST model).
PatchTST means supervised PatchTST/42. ’-’ in table means the model runs out of GPU memory
(NVIDIA A40 48GB) even with batch size 1. The best results are in bold.

Figure 2: Forecasting performance (MSE) with varying look-back windows on 3 large
datasets: Electricity, Traffic, and Weather. The look-back windows are selected to be L =
24, 48, 96, 192, 336, 720, and the prediction horizons are T = 96, 720. We use supervised
PatchTST/42 and other open-source Transformer-based baselines for this experiment.

5 CONCLUSION AND FUTURE WORK

This paper proposes an effective design of Transformer-based models for time series forecasting
tasks by introducing two key components: patching and channel-independent structure. Compared
to the previous works, it could capture local semantic information and benefit from longer look-back
windows. We not only show that our model outperforms other baselines in supervised learning, but
also prove its promising capability in self-supervised representation learning and transfer learning.

Our model exhibits the potential to be the based model for future work of Transformer-based fore-
casting and be a building block for time series foundation models. Patching is simple but proven to
be an effective operator that can be transferred easily to other models. Channel-independence, on
the other hand, can be further exploited to incorporate the correlation between different channels. It
would be an important future step to model the cross-channel dependencies properly.

9



Published as a conference paper at ICLR 2023

REFERENCES

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33:12449–12460, 2020.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. BEiT: BERT pre-training of image trans-
formers. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=p-BhZSz59o4.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

G. E. P. Box and Gwilym M. Jenkins. Time series analysis, forecasting and control. 1970.

Lim Bryan and Zohren Stefan. Time-series forecasting with deep learning: a survey. Phil. Trans. R.
Soc. A, 2021. doi: 10.1098/rsta.2020.0209.

Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, et al. Spectral temporal graph neural network for multivariate time-
series forecasting. Advances in neural information processing systems, 33:17766–17778, 2020.

Weiqi Chen, Wenwei Wang, Bingqing Peng, Qingsong Wen, Tian Zhou, and Liang Sun. Learning to
rotate: Quaternion transformer for complicated periodical time series forecasting. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 146–156,
2022.

Yuzhou Chen, Ignacio Segovia, and Yulia R Gel. Z-gcnets: time zigzags at graph convolutional
networks for time series forecasting. In International Conference on Machine Learning, pp.
1684–1694. PMLR, 2021.

Razvan-Gabriel Cirstea, Chenjuan Guo, Bin Yang, Tung Kieu, Xuanyi Dong, and Shirui Pan.
Triformer: Triangular, variable-specific attentions for long sequence multivariate time series
forecasting. In Proceedings of the Thirty-First International Joint Conference on Artificial In-
telligence, IJCAI-22, pp. 1994–2001, 7 2022. doi: 10.24963/ijcai.2022/277. URL https:
//doi.org/10.24963/ijcai.2022/277.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong Kwoh, Xiaoli Li, and
Cuntai Guan. Time-series representation learning via temporal and contextual contrasting. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
pp. 2352–2359, 2021.

Eugene F Fama. Efficient capital markets: A review of theory and empirical work. The journal of
Finance, 25(2):383–417, 1970.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. In Advances in Neural Information Processing Systems,
volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
53c6de78244e9f528eb3e1cda69699bb-Paper.pdf.

10

https://openreview.net/forum?id=p-BhZSz59o4
https://openreview.net/forum?id=p-BhZSz59o4
https://doi.org/10.24963/ijcai.2022/277
https://doi.org/10.24963/ijcai.2022/277
http://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/53c6de78244e9f528eb3e1cda69699bb-Paper.pdf


Published as a conference paper at ICLR 2023

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked au-
toencoders are scalable vision learners. CoRR, abs/2111.06377, 2021. URL https://arxiv.
org/abs/2111.06377.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 1997.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
29:3451–3460, 2021.

Katikapalli Subramanyam Kalyan, Ajit Rajasekharan, and Sivanesan Sangeetha. Ammus: A sur-
vey of transformer-based pretrained models in natural language processing. arXiv preprint
arXiv:2108.05542, 2021.

Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma, Ziyan Jiang,
Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto, Xiaofei Wang, et al. A compar-
ative study on transformer vs rnn in speech applications. In IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 449–456. IEEE, 2019.

Salman Khan, Muzammal Naseer, Munawar Hayat, Syed Waqas Zamir, Fahad Shahbaz Khan, and
Mubarak Shah. Transformers in vision: A survey. ACM Computing Surveys (CSUR), 2021.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=UYneFzXSJWh.

Pedro Lara-Benı́tez, Manuel Carranza-Garcı́a, and José C Riquelme. An experimental review on
deep learning architectures for time series forecasting. International Journal of Neural Systems,
31(03):2130001, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and
Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer
on time series forecasting. In Advances in Neural Information Processing Systems, vol-
ume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/file/
6775a0635c302542da2c32aa19d86be0-Paper.pdf.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
casting. In International Conference on Learning Representations, 2022.

Barbara Rossi. Exchange rate predictability. Journal of Economic Literature, 51(4):1063–1119, De-
cember 2013. doi: 10.1257/jel.51.4.1063. URL https://www.aeaweb.org/articles?
id=10.1257/jel.51.4.1063.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020.

Mike Schuster and Kaisuke Nakajima. Japanese and korean voice search. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152, 2012. doi:
10.1109/ICASSP.2012.6289079.

11

https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://proceedings.neurips.cc/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://www.aeaweb.org/articles?id=10.1257/jel.51.4.1063
https://www.aeaweb.org/articles?id=10.1257/jel.51.4.1063


Published as a conference paper at ICLR 2023

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. In International Conference on Learning Repre-
sentations, 2021. URL https://openreview.net/forum?id=8qDwejCuCN.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martı́nez-Álvarez, and Alicia Troncoso.
Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21, 2021.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017. URL https://proceedings.neurips.
cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transform-
ers with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilin-
ear temporal-spectral fusion. In ICML, 2022.

Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
Bixiong Xu. Ts2vec: Towards universal representation of time series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8980–8987, 2022.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? arXiv preprint arXiv:2205.13504, 2022.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Eick-
hoff. A transformer-based framework for multivariate time series representation learning. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2114–2124, 2021.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J Leon Zhao. Time series classification using multi-
channels deep convolutional neural networks. In International conference on web-age information
management, pp. 298–310. Springer, 2014.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, volume 35, pp. 11106–11115, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning, 2022.

12

https://openreview.net/forum?id=8qDwejCuCN
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Published as a conference paper at ICLR 2023

A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

We use 8 popular multivariate datasets provided in (Wu et al., 2021) for forecasting and representa-
tion learning. Weather3 dataset collects 21 meteorological indicators in Germany, such as humidity
and air temperature. Traffic4 dataset records the road occupancy rates from different sensors on San
Francisco freeways. Electricity5 is a dataset that describes 321 customers’ hourly electricity con-
sumption. ILI6 dataset collects the number of patients and influenza-like illness ratio in a weekly
frequency. ETT7 (Electricity Transformer Temperature) datasets are collected from two different
electric transformers labeled with 1 and 2, and each of them contains 2 different resolutions (15
minutes and 1 hour) denoted with m and h. Thus, in total we have 4 ETT datasets: ETTm1, ETTm2,
ETTh1, and ETTh2.

There is an additional Exchange-rate8 dataset mentioned in the original paper, which is the daily
exchange-rate of eight different countries. However, financial datasets generally have different prop-
erties compared to time series datasets in other fields, for example the predictability. It is well known
that if a market is efficient, the best prediction for xt will be just xt−1 (Fama, 1970). Rossi (2013)
argues that the toughest benchmark for exchange-rate forecasting is a random walk without drift.
Also, Zeng et al. (2022) shows that by simply repeating the last value in the look-back window, the
MSE loss on exchange-rate dataset can outperform or be comparable to the best results. Therefore,
we are prudent in containing it into our benchmark.

A.1.2 DETAILS OF BASELINE SETTINGS

The default look-back windows for different baseline models could be different. For Transformer-
based models, the default look-back window is L = 96; and for DLinear, the default look-back win-
dow is L = 336. The reason of this difference is that Transformer-based baselines are easy to overfit
when look-back window is long while DLinear tend to underfit. However, this can possibly lead to
an under-estimation of the baselines. To address this issue, we re-run FEDformer, Autoformer and
Informer by ourselves for six different look-back window L ∈ {24, 48, 96, 192, 336, 720}. And for
each forecasting task (aka each different prediction length on each dataset), we choose the best one
from those six results. Thus it could be a strong baseline.

The ILI dataset is much smaller than the other datasets, so a different set of parameters is applied
(the default look-back windows of Transformer-based models and DLinear are L = 36 and L =
104 respectively; we run FEDformer, Autoformer and Informer for six different look-back window
L ∈ {24, 36, 48, 60, 104, 144} and choose the best results).

A.1.3 BASELINES FROM TRADITIONAL MODELS

Time series has been an ancient field of study, with many traditional models developed, for exam-
ple the famous ARIMA model (Box & Jenkins, 1970). With the bloom of deep learning commu-
nity, many new models were proposed for sequence modeling and time series forecasting before
Transformer appears, such as LSTM (Hochreiter & Schmidhuber, 1997), TCN (Bai et al., 2018) and
DeepAR (Salinas et al., 2020). However, they are demonstrated to be not as effective as Transformer-
based models in long-term forecasting tasks (Zhou et al., 2021; Wu et al., 2021), thus we don’t
include them in our baselines.

3https://www.bgc-jena.mpg.de/wetter/
4https://pems.dot.ca.gov/
5https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
7https://github.com/zhouhaoyi/ETDataset
8https://github.com/laiguokun/multivariate-time-series-data

13



Published as a conference paper at ICLR 2023

A.1.4 MODEL PARAMETERS

By default, PatchTST contains 3 encoder layers with head number H = 16 and dimension of latent
space D = 128. The feed forward network in Transformer encoder block consists of 2 linear
layers with GELU (Hendrycks & Gimpel, 2016) activation function: one projecting the hidden
representation D = 128 to a new dimension F = 256, and another layer that project it back to
D = 128. For very small datasets (ILI, ETTh1, ETTh2), a reduced size of parameters is used
(H = 4, D = 16 and F = 128) to mitigate the possible overfitting. Dropout with probability 0.2 is
applied in the encoders for all experiments. The code will be publicly available.

A.1.5 IMPLEMENTATION DETAILS

Although PatchTST processes channels in parallel which has to make multiple copies of the Trans-
former’s weights, the computation can be implemented efficiently and does not require any special
operator. The batch of samples of x ∈ RM×L with size B ×M × L is passed through the patching
operator to generate a 4D tensor of size B×M ×P ×N which represents a batch of x(i)

p ∈ RP×N

in M series. By reshaping the tensor to form a 3D one of size (B ·M)× P ×N , this batch can be
consumed by any standard Transformer implementation.

We further argue that our proposed PatchTST contains additional benefits: The components in Trans-
former backbone module shown in Figure 1 can differ across different input series, for instance the
embedding layers and head layers. Note that if the embedding layers are designed differently for
each group of time series, the reshaping step will be applied after embedding. Besides, the number
of variables in the multivariate time series during the training may not need to match the number of
series for testing. This is especially beneficial for self-supervised pre-training where the pre-training
data can have different number of variables from the fine-tuning data.

A.2 VISUALIZATION

We visualize the long-term forecasting results of supervised PatchTST/42 and other baselines in
Figure 3. Here, we predict 192 steps ahead on Weather and Eletricity datasets and 60 steps ahead on
ILI dataset. PatchTST provides the best forecasting both in terms of scale and bias.

Figure 3: Visualization of 192-step forecasting on {Weather, Traffic} datasets with the look-back
window L = 336 and 60-step forecasting on ILI dataset with L = 104. PatchTST (in red) can
capture the trend and closest to the ground truth (in blue).

A.3 UNIVARIATE FORECASTING

Table 8 summaries the results of univariate forecasting on ETT datasets. There is a target feature
”oil temperature” within those datasets, which is the univariate series that we are trying to forecast.
We cite the baseline results from (Zeng et al., 2022).

A.4 MORE RESULTS ON ABLATION STUDY

A.4.1 VARYING PATCH LENGTH

This experiment studies the effect of patch lengths to the forecasting performance. We fix the look-
back window to be 336 and vary the patch lengths P = [4, 8, 16, 24, 32, 40]. The stride length is set

14



Published as a conference paper at ICLR 2023

Models PatchTST/64 PatchTST/42 DLinear FEDformer Autoformer Informer LogTrans
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.059 0.189 0.055 0.179 0.056 0.180 0.079 0.215 0.071 0.206 0.193 0.377 0.283 0.468
192 0.074 0.215 0.071 0.205 0.071 0.204 0.104 0.245 0.114 0.262 0.217 0.395 0.234 0.409
336 0.076 0.220 0.081 0.225 0.098 0.244 0.119 0.270 0.107 0.258 0.202 0.381 0.386 0.546
720 0.087 0.236 0.087 0.232 0.189 0.359 0.142 0.299 0.126 0.283 0.183 0.355 0.475 0.629

E
T

T
h2

96 0.131 0.284 0.129 0.282 0.131 0.279 0.128 0.271 0.153 0.306 0.213 0.373 0.217 0.379
192 0.171 0.329 0.168 0.328 0.176 0.329 0.185 0.330 0.204 0.351 0.227 0.387 0.281 0.429
336 0.171 0.336 0.185 0.351 0.209 0.367 0.231 0.378 0.246 0.389 0.242 0.401 0.293 0.437
720 0.223 0.380 0.224 0.383 0.276 0.426 0.278 0.420 0.268 0.409 0.291 0.439 0.218 0.387

E
T

T
m

1 96 0.026 0.123 0.026 0.121 0.028 0.123 0.033 0.140 0.056 0.183 0.109 0.277 0.049 0.171
192 0.040 0.151 0.039 0.150 0.045 0.156 0.058 0.186 0.081 0.216 0.151 0.310 0.157 0.317
336 0.053 0.174 0.053 0.173 0.061 0.182 0.084 0.231 0.076 0.218 0.427 0.591 0.289 0.459
720 0.073 0.206 0.074 0.207 0.080 0.210 0.102 0.250 0.110 0.267 0.438 0.586 0.430 0.579

E
T

T
m

2 96 0.065 0.187 0.065 0.186 0.063 0.183 0.067 0.198 0.065 0.189 0.088 0.225 0.075 0.208
192 0.093 0.231 0.094 0.231 0.092 0.227 0.102 0.245 0.118 0.256 0.132 0.283 0.129 0.275
336 0.121 0.266 0.120 0.265 0.119 0.261 0.130 0.279 0.154 0.305 0.180 0.336 0.154 0.302
720 0.172 0.322 0.171 0.322 0.175 0.320 0.178 0.325 0.182 0.335 0.300 0.435 0.160 0.321

Table 8: Univariate long-term forecasting results with supervised PatchTST. ETT datasets are used
with prediction lengths T ∈ {96, 192, 336, 720}. The best results are in bold.

the same as patch length, meaning no overlapping between patches. The model is trained to predict
96 steps. One observation from Figure 4 is that MSE scores don’t vary significantly with different
choices of P , which indicate the robustness of our model against the patch length hyperparameter.
Overall, PatchTST benefits from increased patch length, not only in forecasting performance but also
in the computational reduction. The ideal patch length may depend on the dataset, but P between
{8, 16} seems to be general good numbers.

Figure 4: MSE scores with varying patch lengths P = [2, 4, 8, 12, 16, 24, 32, 40] where the look-
back window is 336 and the prediction length is 96.

A.4.2 VARYING LOOK-BACK WINDOW

Here we provide a full benchmark of quantitative results in Table 9 for varying look-back window in
supervised PatchTST/42 regarding Figure 2 in the main text. Generally speaking, our model gains
performance improvement with increasing look-back window, which show the effectiveness of our
model in learning information from longer receptive field.

A.4.3 PATCHING AND CHANNEL-INDEPENDENCE

Implementation Details. For ablation study on patching and channel independence in section 4.3,
we run different variants of PatchTST:

• Both patching and channel-independence are included in model (P+CI): this is the full
PatchTST model that we have proposed in paper.

• Only channel-independence (CI): we simply set both patch length P and stride S to be 1 to
avoid patching and only keep channel-independence.

• Only patching (P): referring to the implementation in A.1.5, instead of reshaping the 4D tensor
from B×M×P×N to (B ·M)×P×N , we reshape it to B×(M ·P )×N for channel-mixing
with patching.

15



Published as a conference paper at ICLR 2023

L 24(24) 48(36) 96(48) 192(60) 336(104) 720(144)
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.222 0.246 0.212 0.243 0.178 0.219 0.160 0.204 0.152 0.199 0.147 0.198

192 0.265 0.279 0.254 0.277 0.224 0.259 0.204 0.245 0.197 0.243 0.190 0.240
336 0.325 0.322 0.310 0.316 0.278 0.298 0.257 0.285 0.249 0.283 0.242 0.282
720 0.404 0.374 0.385 0.365 0.350 0.346 0.329 0.338 0.320 0.335 0.304 0.328

Tr
af

fic

96 0.766 0.419 0.671 0.381 0.477 0.305 0.401 0.267 0.367 0.251 0.365 0.251
192 0.725 0.398 0.616 0.356 0.471 0.299 0.406 0.268 0.385 0.259 0.382 0.258
336 0.752 0.410 0.635 0.364 0.485 0.305 0.421 0.277 0.398 0.265 0.398 0.267
720 0.786 0.427 0.673 0.383 0.518 0.325 0.452 0.297 0.434 0.287 0.436 0.289

E
le

ct
ri

ci
ty 96 0.268 0.316 0.225 0.293 0.174 0.259 0.138 0.230 0.130 0.222 0.130 0.224

192 0.259 0.316 0.217 0.291 0.178 0.265 0.149 0.243 0.148 0.240 0.147 0.241
336 0.283 0.335 0.238 0.309 0.196 0.282 0.169 0.262 0.167 0.261 0.163 0.259
720 0.321 0.365 0.278 0.342 0.237 0.316 0.211 0.299 0.202 0.291 0.197 0.290

IL
I

24 3.062 1.118 1.610 0.803 1.281 0.704 1.300 0.700 1.522 0.814 1.470 0.793
36 2.732 1.071 1.262 0.731 1.251 0.752 1.367 0.776 1.430 0.834 1.518 0.856
48 3.059 1.117 1.991 0.845 1.901 0.879 1.690 0.812 1.673 0.854 1.834 0.921
60 2.610 1.057 1.702 0.829 1.611 0.844 1.526 0.795 1.529 0.862 1.656 0.885

E
T

T
h1

96 0.464 0.445 0.410 0.417 0.393 0.408 0.382 0.401 0.375 0.399 0.376 0.408
192 0.521 0.474 0.469 0.448 0.445 0.434 0.428 0.425 0.414 0.421 0.413 0.431
336 0.570 0.498 0.516 0.469 0.484 0.451 0.451 0.436 0.431 0.436 0.445 0.454
720 0.575 0.522 0.509 0.487 0.480 0.471 0.452 0.459 0.449 0.466 0.458 0.477

E
T

T
h2

96 0.333 0.362 0.307 0.348 0.294 0.343 0.285 0.340 0.274 0.336 0.279 0.341
192 0.422 0.409 0.397 0.399 0.377 0.393 0.356 0.386 0.339 0.379 0.349 0.386
336 0.442 0.432 0.412 0.420 0.381 0.409 0.350 0.395 0.331 0.380 0.375 0.409
720 0.462 0.453 0.434 0.441 0.412 0.433 0.395 0.427 0.379 0.422 0.394 0.434

E
T

T
m

1 96 0.624 0.481 0.424 0.403 0.321 0.360 0.291 0.340 0.290 0.342 0.295 0.348
192 0.671 0.507 0.468 0.429 0.362 0.384 0.328 0.365 0.332 0.369 0.334 0.373
336 0.714 0.533 0.501 0.453 0.392 0.402 0.365 0.389 0.366 0.392 0.361 0.393
720 0.744 0.554 0.553 0.484 0.450 0.435 0.422 0.423 0.420 0.424 0.416 0.419

E
T

T
m

2 96 0.212 0.290 0.189 0.272 0.178 0.260 0.169 0.254 0.165 0.255 0.162 0.254
192 0.282 0.334 0.260 0.317 0.249 0.307 0.230 0.294 0.220 0.292 0.216 0.293
336 0.354 0.376 0.328 0.359 0.313 0.346 0.280 0.329 0.278 0.329 0.269 0.329
720 0.458 0.433 0.429 0.415 0.400 0.398 0.378 0.386 0.367 0.385 0.350 0.380

Table 9: Multivariate long-term forecasting results with varying look-back window L in supervised
PatchTST/42.

• Neither patching nor channel-independence is included (Original), which is just the original
TST model Zerveas et al. (2021).

Note that the default number of maximum epochs for Electricity and Traffic datasets are reduced
from 100 to 20 for ablation experiments due to the huge space and time complexity of the original
time series Transformer and channel independent model (no patching).

Full Benchmark of Ablation Study. The full benchmark is shown in Table 10, which is a com-
pleted version of Table 7 in the main text. We can observe that patching together with channel-
independence achieves the best results from the table, especially on larger datasets (Weather, Traf-
fic, and Electricity) where the models are less susceptible to overfitting and thus the results would
be more convincing. As one can see the improvement is robust on both patching and channel-
independence. It is interesting to see that the improvement on ILI dataset is significant as well.

A.4.4 INSTANCE NORMALIZATION

Normalization is a technology used in many time series model to improve the forecasting perfor-
mance (Kim et al., 2022; Chen et al., 2022; Zeng et al., 2022). In this experiment, we perform
analysis on the effect of the instance normalization in our model. We train two models PatchTST/64
and PatchTST/42 with and without using instance normalization and observe the evaluated scores.
As indicated in Table 11, instance normalization improves the forecasting performance slightly on
two models. However, even without instance normalization operator, PatchTST still outperforms
other Transformer methods on most of the datasets. This is to confirm that the improvement mainly
comes from patching and channel independence designs.

A.5 MORE RESULTS ON SELF-SUPERVISED REPRESENTATION LEARNING

A.5.1 FULL BENCHMARK OF MULTIVARIATE FORECASTING

In this section we provide a full benchmark of multivariate forecasting results with self-supervised
PatchTST in Table 12, which is an extended version of Table 4.

16



Published as a conference paper at ICLR 2023

Models
PatchTST

FEDformer
P+CI CI P Original

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.152 0.199 0.164 0.213 0.168 0.223 0.177 0.236 0.238 0.314

192 0.197 0.243 0.205 0.250 0.213 0.262 0.221 0.270 0.275 0.329
336 0.249 0.283 0.255 0.289 0.266 0.300 0.271 0.306 0.339 0.377
720 0.320 0.335 0.327 0.343 0.351 0.359 0.340 0.353 0.389 0.409

Tr
af

fic

96 0.367 0.251 0.397 0.271 0.595 0.376 - - 0.576 0.359
192 0.385 0.259 0.411 0.276 0.612 0.387 - - 0.610 0.380
336 0.398 0.265 0.423 0.282 0.651 0.391 - - 0.608 0.375
720 0.434 0.287 0.457 0.309 - - - - 0.621 0.375

E
le

ct
ri

ci
ty 96 0.130 0.222 0.136 0.231 0.196 0.307 0.205 0.318 0.186 0.302

192 0.148 0.240 0.164 0.263 0.215 0.323 - - 0.197 0.311
336 0.167 0.261 0.168 0.262 0.228 0.338 - - 0.213 0.328
720 0.202 0.291 0.219 0.312 0.244 0.345 - - 0.233 0.344

IL
I

24 1.522 0.814 2.111 1.048 2.157 0.964 2.737 1.081 2.624 1.095
36 1.430 0.834 2.000 1.002 2.564 1.058 2.126 0.935 2.516 1.021
48 1.673 0.854 2.167 1.029 2.348 1.022 2.178 0.971 2.505 1.041
60 1.529 0.862 2.075 1.021 2.486 1.065 2.354 1.026 2.742 1.122

E
T

T
h1

96 0.375 0.399 0.365 0.395 0.416 0.438 0.455 0.459 0.376 0.415
192 0.414 0.421 0.403 0.415 0.459 0.464 0.503 0.486 0.423 0.446
336 0.431 0.436 0.430 0.433 0.484 0.480 0.514 0.503 0.444 0.462
720 0.449 0.466 0.449 0.454 0.500 0.494 0.531 0.520 0.469 0.492

E
T

T
h2

96 0.274 0.336 0.277 0.337 0.334 0.388 0.348 0.394 0.332 0.374
192 0.339 0.379 0.343 0.384 0.381 0.418 0.395 0.424 0.407 0.446
336 0.331 0.380 0.333 0.383 0.361 0.414 0.369 0.419 0.400 0.447
720 0.379 0.422 0.379 0.420 0.423 0.448 0.433 0.458 0.412 0.469

E
T

T
m

1 96 0.290 0.342 0.300 0.354 0.326 0.368 0.324 0.370 0.326 0.390
192 0.332 0.369 0.333 0.374 0.391 0.405 0.373 0.398 0.365 0.415
336 0.366 0.392 0.369 0.397 0.427 0.425 0.415 0.421 0.392 0.425
720 0.420 0.424 0.413 0.423 0.481 0.457 0.480 0.459 0.446 0.458

E
T

T
m

2 96 0.165 0.255 0.166 0.259 0.195 0.274 0.208 0.289 0.180 0.271
192 0.220 0.292 0.223 0.295 0.259 0.314 0.265 0.328 0.252 0.318
336 0.278 0.329 0.279 0.330 0.297 0.345 0.323 0.365 0.324 0.364
720 0.367 0.385 0.370 0.387 0.400 0.404 0.469 0.444 0.410 0.420

Table 10: Ablation study of patching (P) and channel-independence (CI) in PatchTST/42. A full
benchmark regarding Table 7. The best results are in bold. ’-’ in table means the model runs out of
GPU memory (NVIDIA A40 48GB) even with batch size 1.

17



Published as a conference paper at ICLR 2023

Models PatchTST/64 (+in) PatchTST/64 (-in) PatchTST/42 (+in) PatchTST/42 (-in) FEDformer Autoformer Informer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.149 0.198 0.161 0.219 0.152 0.199 0.156 0.210 0.238 0.314 0.249 0.329 0.354 0.405
192 0.194 0.241 0.201 0.254 0.197 0.243 0.199 0.250 0.275 0.329 0.325 0.370 0.419 0.434
336 0.245 0.282 0.253 0.298 0.249 0.283 0.248 0.294 0.339 0.377 0.351 0.391 0.583 0.543
720 0.314 0.334 0.323 0.357 0.320 0.335 0.313 0.342 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.360 0.249 0.413 0.295 0.367 0.251 0.425 0.299 0.576 0.359 0.597 0.371 0.733 0.410
192 0.379 0.256 0.425 0.302 0.385 0.259 0.439 0.302 0.610 0.380 0.607 0.382 0.777 0.435
336 0.392 0.264 0.435 0.307 0.398 0.265 0.456 0.316 0.608 0.375 0.623 0.387 0.776 0.434
720 0.432 0.286 0.473 0.321 0.434 0.287 0.488 0.333 0.621 0.375 0.639 0.395 0.827 0.466

E
le

ct
ri

ci
ty 96 0.129 0.222 0.133 0.230 0.130 0.222 0.131 0.226 0.186 0.302 0.196 0.313 0.304 0.393

192 0.147 0.240 0.148 0.244 0.148 0.240 0.150 0.244 0.197 0.311 0.211 0.324 0.327 0.417
336 0.163 0.259 0.164 0.262 0.167 0.261 0.168 0.267 0.213 0.328 0.214 0.327 0.333 0.422
720 0.197 0.290 0.196 0.291 0.202 0.291 0.201 0.298 0.233 0.344 0.236 0.342 0.351 0.427

IL
I

24 1.319 0.754 3.563 1.317 1.522 0.814 3.489 1.345 2.624 1.095 2.906 1.182 4.657 1.449
36 1.579 0.870 3.426 1.205 1.430 0.834 4.629 1.550 2.516 1.021 2.585 1.038 4.650 1.463
48 1.553 0.815 4.309 1.449 1.673 0.854 3.746 1.383 2.505 1.041 3.024 1.145 5.004 1.542
60 1.470 0.788 4.065 1.402 1.529 0.862 5.174 1.622 2.742 1.122 2.761 1.114 5.071 1.543

E
T

T
h1

96 0.370 0.400 0.385 0.410 0.375 0.399 0.388 0.412 0.376 0.415 0.435 0.446 0.941 0.769
192 0.413 0.429 0.417 0.432 0.414 0.421 0.430 0.438 0.423 0.446 0.456 0.457 1.007 0.786
336 0.422 0.440 0.439 0.449 0.431 0.436 0.454 0.458 0.444 0.462 0.486 0.487 1.038 0.784
720 0.447 0.468 0.478 0.494 0.449 0.466 0.494 0.497 0.469 0.492 0.515 0.517 1.144 0.857

E
T

T
h2

96 0.274 0.337 0.299 0.359 0.274 0.336 0.313 0.374 0.332 0.374 0.332 0.368 1.549 0.952
192 0.341 0.382 0.354 0.404 0.339 0.379 0.402 0.432 0.407 0.446 0.426 0.434 3.792 1.542
336 0.329 0.384 0.374 0.420 0.331 0.380 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642
720 0.379 0.422 0.479 0.492 0.379 0.422 0.688 0.588 0.412 0.469 0.453 0.490 3.656 1.619

E
T

T
m

1 96 0.293 0.346 0.308 0.358 0.290 0.342 0.308 0.358 0.326 0.390 0.510 0.492 0.626 0.560
192 0.333 0.370 0.335 0.375 0.332 0.369 0.356 0.390 0.365 0.415 0.514 0.495 0.725 0.619
336 0.369 0.392 0.362 0.392 0.366 0.392 0.389 0.411 0.392 0.425 0.510 0.492 1.005 0.741
720 0.416 0.420 0.432 0.429 0.420 0.424 0.430 0.439 0.446 0.458 0.527 0.493 1.133 0.845

E
T

T
m

2 96 0.166 0.256 0.172 0.258 0.165 0.255 0.167 0.257 0.180 0.271 0.205 0.293 0.355 0.462
192 0.223 0.296 0.245 0.306 0.220 0.292 0.226 0.303 0.252 0.318 0.278 0.336 0.595 0.586
336 0.274 0.329 0.306 0.346 0.278 0.329 0.301 0.348 0.324 0.364 0.343 0.379 1.270 0.871
720 0.362 0.385 0.391 0.404 0.367 0.385 0.392 0.407 0.410 0.420 0.414 0.419 3.001 1.267

Table 11: Multivariate long-term forecasting results of supervised PatchTST with instance normal-
ization (+in) or without instance normalization (-in). The best results are in bold and the second best
are underlined. Although the models perform slightly better with instance normalization, compared
to other Transformer models, the proposed approach achieve significantly better forecasting on most
of the datasets even without instance normalization.

A.5.2 FULL BENCHMARK OF TRANSFER LEARNING

In this section we provide Table 13 which contains the results of pre-training on Electricity dataset
then transferred to other 6 datasets. Except Traffic data, the number of time series employed in the
pre-training is much larger than the number of series during fine-tuning. It is a full version with
respect to Table 5 in the main text and more cogently proves the capability to do transfer learning
using our PatchTST model.

A.6 ROBUSTNESS ANALYSIS

A.6.1 RESULTS WITH DIFFERENT RANDOM SEEDS

The results reported in the main text and appendix above are run with the fixed random seed 2021.
To examine the robustness of our results, we train the supervised PatchTST model with 5 different
random seeds: 2019, 2020, 2021, 2022, 2023 and calculate the MSE and MAE scores with each
selected seed. The mean and standard derivation of the results are reported in Table 14. It is clear
that the variances are considerably small which indicates the robustness against choice of random
seeds of our model.

We also validate the self-supervised PatchTST model on different runs. We pre-train the model once
and fine-tune the model 5 times with different random batch selections. The mean and standard
derivation across different runs are also provided in Table 14. We also observe that the variance is
insignificant especially on large datasets while higher variance can be seen on smaller datasets.

18



Published as a conference paper at ICLR 2023

Models PatchTST DLinear FEDformer Autoformer InformerFine-tuning Lin. Prob. Sup.
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.144 0.193 0.158 0.209 0.152 0.199 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405

192 0.190 0.236 0.203 0.249 0.197 0.243 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434
336 0.244 0.280 0.251 0.285 0.249 0.283 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543
720 0.320 0.335 0.321 0.336 0.320 0.335 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.352 0.244 0.399 0.294 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410
192 0.371 0.253 0.412 0.298 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435
336 0.381 0.257 0.425 0.306 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434
720 0.425 0.282 0.460 0.323 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466

E
le

ct
ri

ci
ty 96 0.126 0.221 0.138 0.237 0.130 0.222 0.140 0.237 0.186 0.302 0.196 0.313 0.304 0.393

192 0.145 0.238 0.156 0.252 0.148 0.240 0.153 0.249 0.197 0.311 0.211 0.324 0.327 0.417
336 0.164 0.256 0.170 0.265 0.167 0.261 0.169 0.267 0.213 0.328 0.214 0.327 0.333 0.422
720 0.193 0.291 0.208 0.297 0.202 0.291 0.203 0.301 0.233 0.344 0.236 0.342 0.351 0.427

E
T

T
h1

96 0.366 0.397 0.371 0.400 0.375 0.399 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769
192 0.431 0.443 0.411 0.428 0.414 0.421 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786
336 0.450 0.456 0.445 0.446 0.431 0.436 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784
720 0.472 0.484 0.487 0.478 0.449 0.466 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857

E
T

T
h2

96 0.284 0.343 0.285 0.344 0.274 0.336 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952
192 0.355 0.387 0.356 0.387 0.339 0.379 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542
336 0.379 0.411 0.377 0.410 0.331 0.380 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642
720 0.400 0.435 0.395 0.434 0.379 0.422 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619

E
T

T
m

1 96 0.289 0.344 0.292 0.348 0.290 0.342 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560
192 0.323 0.368 0.329 0.369 0.332 0.369 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619
336 0.353 0.387 0.364 0.391 0.366 0.392 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741
720 0.398 0.416 0.415 0.419 0.420 0.424 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845

E
T

T
m

2 96 0.166 0.256 0.167 0.257 0.165 0.255 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462
192 0.221 0.295 0.229 0.300 0.220 0.292 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586
336 0.278 0.333 0.289 0.343 0.278 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871
720 0.365 0.388 0.363 0.386 0.367 0.385 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267

Table 12: Multivariate long-term forecasting results with self-supervised PatchTST. An full bench-
mark regarding Table 4. The best results are in bold.

Models PatchTST DLinear FEDformer Autoformer InformerFine-tuning Lin. Prob. Sup.
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er 96 0.145 0.195 0.163 0.216 0.152 0.199 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405

192 0.193 0.243 0.205 0.252 0.197 0.243 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434
336 0.244 0.280 0.253 0.289 0.249 0.283 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543
720 0.321 0.337 0.320 0.336 0.320 0.335 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705

Tr
af

fic

96 0.388 0.273 0.400 0.288 0.367 0.251 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410
192 0.400 0.277 0.412 0.293 0.385 0.259 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435
336 0.408 0.280 0.425 0.307 0.398 0.265 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434
720 0.447 0.310 0.457 0.317 0.434 0.287 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466

E
T

T
h1

96 0.368 0.398 0.372 0.402 0.375 0.399 0.375 0.399 0.376 0.415 0.435 0.446 0.941 0.769
192 0.425 0.439 0.411 0.428 0.414 0.421 0.405 0.416 0.423 0.446 0.456 0.457 1.007 0.786
336 0.470 0.471 0.442 0.454 0.431 0.436 0.439 0.443 0.444 0.462 0.486 0.487 1.038 0.784
720 0.472 0.484 0.497 0.501 0.449 0.466 0.472 0.490 0.469 0.492 0.515 0.517 1.144 0.857

E
T

T
h2

96 0.285 0.345 0.280 0.341 0.274 0.334 0.289 0.353 0.332 0.374 0.332 0.368 1.549 0.952
192 0.350 0.388 0.350 0.387 0.339 0.379 0.383 0.418 0.407 0.446 0.426 0.434 3.792 1.542
336 0.378 0.410 0.373 0.410 0.331 0.380 0.448 0.465 0.400 0.447 0.477 0.479 4.215 1.642
720 0.401 0.438 0.398 0.436 0.379 0.422 0.605 0.551 0.412 0.469 0.453 0.490 3.656 1.619

E
T

T
m

1 96 0.288 0.345 0.291 0.346 0.290 0.342 0.299 0.343 0.326 0.390 0.510 0.492 0.626 0.560
192 0.330 0.372 0.335 0.373 0.332 0.369 0.335 0.365 0.365 0.415 0.514 0.495 0.725 0.619
336 0.359 0.392 0.365 0.391 0.366 0.392 0.369 0.386 0.392 0.425 0.510 0.492 1.005 0.741
720 0.406 0.421 0.423 0.424 0.420 0.424 0.425 0.421 0.446 0.458 0.527 0.493 1.133 0.845

E
T

T
m

2 96 0.164 0.256 0.166 0.257 0.165 0.255 0.167 0.260 0.180 0.271 0.205 0.293 0.355 0.462
192 0.223 0.296 0.221 0.295 0.220 0.292 0.224 0.303 0.252 0.318 0.278 0.336 0.595 0.586
336 0.277 0.332 0.277 0.332 0.278 0.329 0.281 0.342 0.324 0.364 0.343 0.379 1.270 0.871
720 0.365 0.387 0.368 0.389 0.367 0.385 0.397 0.421 0.410 0.420 0.414 0.419 3.001 1.267

Table 13: Transfer learning task: PatchTST is pre-trained on Electricity dataset and the model is
transferred to other datasets. A full benchmark regarding Table 13. The best results are in bold.

A.6.2 RESULTS WITH DIFFERENT MODEL PARAMETERS

To see whether PatchTST is sensitive to the choice of Transformer settings, we perform another ex-
periments with varying model parameters. We vary the number of Transformer layers L = {3, 4, 5}
and select the model dimension D = {128, 256} while the inner-layer of the feed forward network
is F = 2D. In total, there are 6 different sets of model hyper-parameters to examine. Figure 5
shows the MSE scores of these combinations on different datasets. Except ILI dataset reveals high
variance with different hyper-parameter settings, other datasets are robust to the choice of model
hyper-parameters.

19



Published as a conference paper at ICLR 2023

L PatchTST/42 supervised PatchTST/42 self-supervised
Metric MSE MAE MSE MAE

W
ea

th
er 96 0.1525±0.0024 0.2002±0.0023 0.1450±0.0008 0.1937±0.0010

192 0.1975±0.0015 0.2434±0.0010 0.1893±0.0003 0.2364±0.0006
336 0.2494±0.0012 0.2841±0.0014 0.2413±0.0003 0.2774±0.0005
720 0.3194±0.0002 0.3352±0.0003 0.3156±0.0020 0.3316±0.0016

Tr
af

fic

96 0.3669±0.0006 0.2504±0.0007 0.3528±0.0022 0.2443±0.0016
192 0.3858±0.0004 0.2586±0.0004 0.3729±0.0013 0.2531±0.0009
336 0.3994±0.0010 0.2672±0.0016 0.3846±0.0020 0.2588±0.0011
720 0.4383±0.0097 0.2913±0.0104 0.4241±0.0007 0.2816±0.0010

E
le

ct
ri

ci
ty 96 0.1304±0.0006 0.2234±0.0006 0.1256±0.0002 0.2210±0.0003

192 0.1482±0.0002 0.2403±0.0002 0.1451±0.0002 0.2397±0.0010
336 0.1659±0.0006 0.2596±0.0006 0.1624±0.0010 0.2576±0.0009
720 0.2019±0.0006 0.2917±0.0006 0.1990±0.0002 0.2916±0.0002

E
T

T
h1

96 0.3752±0.0008 0.3999±0.0004 0.3700±0.0035 0.4001±0.0023
192 0.4127±0.0012 0.4207±0.0006 0.4146±0.0012 0.4287±0.0013
336 0.4278±0.0033 0.4334±0.0028 0.4285±0.0018 0.4402±0.0017
720 0.4462±0.0035 0.4637±0.0027 0.4670±0.0052 0.4768±0.0033

E
T

T
h2

96 0.2749±0.0005 0.3363±0.0006 0.2869±0.0039 0.3439±0.0016
192 0.3385±0.0010 0.3789±0.0014 0.3523±0.0048 0.3855±0.0027
336 0.3288±0.0010 0.3823±0.0027 0.3779±0.0057 0.4112±0.0030
720 0.3784±0.0010 0.4212±0.0009 0.3993±0.0054 0.4385±0.0038

E
T

T
m

1 96 0.2893±0.0009 0.3415±0.0007 0.2876±0.0012 0.3427±0.0011
192 0.3316±0.0008 0.3695±0.0007 0.3296±0.0026 0.3688±0.0016
336 0.3661±0.0022 0.3914±0.0012 0.3583±0.0015 0.3879±0.0016
720 0.4200±0.0056 0.4243±0.0033 0.4094±0.0044 0.4193±0.0013

E
T

T
m

2 96 0.1647±0.0011 0.2538±0.0010 0.1637±0.0020 0.2537±0.0024
192 0.2223±0.0018 0.2936±0.0014 0.2175±0.0011 0.2908±0.0013
336 0.2775±0.0020 0.3297±0.0010 0.2706±0.0016 0.3260±0.0016
720 0.3648±0.0024 0.3833±0.0010 0.3539±0.0023 0.3799±0.0024

Table 14: Multivariate long-term forecasting results with different random seeds in supervised and
self-supervised PatchTST/42. The best results are in bold.

1 2 3 4 5 6
Parameter Combination

0.354
0.362

0.37
0.378
0.386

M
SE

etth1

1 2 3 4 5 6
Parameter Combination

0.27

0.28

0.29

0.3
etth2

1 2 3 4 5 6
Parameter Combination

0.135
0.14

0.145
0.15

weather

1 2 3 4 5 6
Parameter Combination

2.0
2.1
2.2
2.3

illness

1 2 3 4 5 6
Parameter Combination

0.27

0.28

0.29

M
SE

ettm1

1 2 3 4 5 6
Parameter Combination

0.15
0.155

0.16
0.165

0.17
ettm2

1 2 3 4 5 6
Parameter Combination

0.37

0.38

traffic

1 2 3 4 5 6
Parameter Combination

0.115
0.12

0.125
0.13

electricity

Figure 5: MSE scores with varying model parameters. Each bar indicates the MSE score of a
parameter combination. The combinations (L,D) = (3, 128), (3, 256), (4, 128), (4, 256), (5, 128),
(5, 256) are orderly labeled from 1 to 6 in the figure. The model is run with supervised PatchTST/42
to forecast 96 steps. For Traffic and Electricity datasets, we reduce the maximum number of epochs
to 50 to save computational time.

A.7 CHANNEL-INDEPENDENCE ANALYSIS

Intuitively, channel-mixing models should outperform the channel-independent ones since they have
more flexibility to explore the cross-channel information, while with channel-independence the cor-
relation is indirectly learnt via weight sharing. However, this is contrast to what we have observed.
In Section A.7.1 we will provide an in-depth analysis on why channel-independence has better fore-
casting performance than channel mixing, and in Section A.7.2 we show that channel-independence
is a general technique that can be used not only for PatchTST but also for the other models.

20



Published as a conference paper at ICLR 2023

A.7.1 CHANNEL-INDEPENDENCE VS CHANNEL-MIXING

We find 3 key factors that makes channel-independent models more preferable:

• Adaptability: Since each time series is passed through the Transformer separately, it generates
its own attention maps. That means different series can learn different attention patterns for
their prediction, as shown in Figure 6. In contrast, with the channel mixing approach, all the
series share the same attention patterns, which may be harmful if the underlying multivariate
time series carries series of different behaviors. Figure 6 reveals an interesting observation that
the prediction of unrelated time series relies on different attention patterns while similar series
can produce similar maps (e.g. series 11, 25, and 81 contain similar patterns while they are
different from others). We suspect this adaptability is one of the main reasons why PatchTST
performs much better forecasting than Informer and other channel-mixing models.

• Channel-mixing models may need more training data to match the performance of the channel-
independent ones. The flexibility of learning cross-channel correlations could be a double-
edged sword, because it may need much more data to learn the information from different
channels and different time steps jointly and appropriately, while channel-independent models
only focus on learning information along the time axis. We examine this assumption by exper-
iments where we train the models with varying training data size and and the result is shown
on left panel of Figure 7. It is clear that channel-independent models converges faster against
the size of training data. As what we have observed in the figure and Table 2, the size of those
widely used time series datasets may not be large enough for channel-mixing models to obtain
similar performances in supervised learning.

• Channel-independent models are less likely to overfit data during training. We record the MSE
loss on test data and plot on the right panel of Figure 7. Channel-mixing models show over-
fitting after a few initial epochs, while channel-independent models continue optimizing the
loss with more training epochs. The best trained models are determined by validation data,
which are approximately the lowest points in the test loss curves. It is clear that the forecasting
performance of channel-independent models are better.

Furthermore, we would like to comment on a few additional technical advantages of channel-
independence: (1) Possibility of learning spatial correlations across series: Although we haven’t
focused on this research in our paper, the channel-independence design can be naturally extended
to learn cross-channel relationships by using methods like graph neural networks (Cao et al., 2020;
Chen et al., 2021). (2) Multi-task learning where different loss types can be imposed on different
time series where the same underlying Transformer model is shared. (3) More robust to noise: If
noise is dominant in one or several series, this noise will be projected to other series in the embed-
ding space if we mix channels. Channel independence can mitigate this problem by only retaining
the noise in these noisy channels. We can further alleviate the noise by introducing smaller weights
to the objective losses that associate with noisy channels.

A.7.2 PERFORMANCE OF CHANNEL-INDEPENDENCE ON OTHER MODELS

To show that channel-independence is a general technique that can be applied to the other models,
we apply it to Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), and FEDformer (Zhou
et al., 2022). The results are shown in Table 15. The channel-independent technique can improve the
forecasting performance of those models generally. Although they are still not able to outperform
PatchTST which is based on vanilla attention mechanism, we believe that more performance boost
and computational reduction can be obtained with more advanced attention designs incorporating
the channel-independence architecture.

21



Published as a conference paper at ICLR 2023

Models PatchTST/42 Informer Informer-CI Autoformer Autoformer-CI FEDformer FEDformer-CI
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.152 0.199 0.300 0.384 0.174 0.232 0.266 0.336 0.227 0.289 0.217 0.296 0.214 0.278
192 0.197 0.243 0.598 0.544 0.214 0.270 0.307 0.367 0.269 0.318 0.276 0.336 0.258 0.322
336 0.249 0.283 0.578 0.523 0.266 0.310 0.359 0.395 0.315 0.344 0.339 0.380 0.302 0.336
720 0.320 0.335 1.059 0.741 0.327 0.356 0.419 0.428 0.384 0.389 0.403 0.428 0.374 0.369

Tr
af

fic

96 0.367 0.251 0.719 0.391 0.705 0.402 0.613 0.388 - - 0.587 0.366 - -
192 0.385 0.259 0.696 0.379 0.720 0.407 0.616 0.382 - - 0.604 0.373 - -
336 0.398 0.265 0.777 0.420 0.750 0.421 0.622 0.337 - - 0.621 0.383 - -
720 0.434 0.287 0.864 0.472 - - 0.660 0.408 - - 0.626 0.382 - -

E
le

ct
ri

ci
ty 96 0.130 0.222 0.274 0.368 0.203 0.299 0.201 0.317 - - 0.193 0.308 - -

192 0.148 0.240 0.296 0.386 0.221 0.316 0.222 0.334 - - 0.201 0.315 - -
336 0.167 0.261 0.300 0.394 0.241 0.337 0.231 0.338 - - 0.214 0.329 - -
720 0.202 0.291 0.373 0.439 0.314 0.391 0.254 0.361 - - 0.246 0.355 - -

IL
I

24 1.522 0.814 5.764 1.677 5.514 1.629 3.483 1.287 4.210 1.500 3.228 1.260 3.280 1.264
36 1.430 0.834 4.755 1.467 5.515 1.628 3.103 1.148 2.809 1.162 2.679 1.080 2.862 1.126
48 1.673 0.854 4.763 1.469 5.263 1.574 2.669 1.085 3.218 1.267 2.622 1.078 2.834 1.150
60 1.529 0.862 5.264 1.564 5.330 1.602 2.770 1.125 3.627 1.396 2.857 1.157 3.115 1.240

E
T

T
h1

96 0.375 0.399 0.865 0.713 0.590 0.517 0.449 0.459 0.414 0.421 0.376 0.419 0.387 0.407
192 0.414 0.421 1.008 0.792 0.677 0.566 0.500 0.482 0.453 0.448 0.420 0.448 0.439 0.438
336 0.431 0.436 1.107 0.809 0.710 0.600 0.521 0.496 0.496 0.468 0.459 0.465 0.479 0.455
720 0.449 0.466 1.181 0.865 0.777 0.660 0.514 0.512 0.662 0.568 0.506 0.507 0.485 0.478

E
T

T
h2

96 0.274 0.336 3.755 1.525 0.390 0.410 0.358 0.397 0.337 0.373 0.346 0.388 0.297 0.348
192 0.339 0.379 5.602 1.931 0.456 0.463 0.456 0.452 0.409 0.419 0.429 0.439 0.382 0.399
336 0.331 0.380 4.721 1.835 0.523 0.503 0.482 0.486 0.432 0.443 0.496 0.487 0.410 0.428
720 0.379 0.422 3.647 1.625 0.843 0.661 0.515 0.511 0.443 0.463 0.463 0.474 0.422 0.444

E
T

T
m

1 96 0.290 0.342 0.672 0.571 0.383 0.414 0.505 0.475 0.455 0.441 0.379 0.419 0.408 0.413
192 0.332 0.369 0.795 0.669 0.420 0.434 0.553 0.496 0.598 0.512 0.426 0.441 0.445 0.432
336 0.366 0.392 1.212 0.871 0.465 0.467 0.621 0.537 0.566 0.504 0.445 0.459 0.476 0.452
720 0.420 0.424 1.166 0.823 0.529 0.502 0.671 0.561 0.680 0.557 0.543 0.490 0.533 0.481

E
T

T
m

2 96 0.165 0.255 0.365 0.453 0.208 0.298 0.255 0.339 0.218 0.308 0.203 0.287 0.198 0.284
192 0.220 0.292 0.533 0.563 0.274 0.345 0.281 0.340 0.281 0.339 0.269 0.328 0.259 0.320
336 0.278 0.329 1.363 0.887 0.351 0.394 0.339 0.372 0.336 0.370 0.325 0.366 0.315 0.353
720 0.367 0.385 3.379 1.338 0.482 0.474 0.433 0.432 0.428 0.418 0.421 0.415 0.412 0.406

Table 15: Channel-independence for other models. CI denote channel-independence. Baselines
without CI are cited from Zeng et al. (2022). The better results between CI and non-CI versions are
in bold. PatchTST/42 is placed on the left for easy reference to other CI-based models. ’-’ denotes
running out of GPU memory even with batch size 1, or exceeding the maximum running time (12
hours).

22



Published as a conference paper at ICLR 2023

Figure 6: Attention maps and the forecasting of a few time series from Electricity dataset run with
supervised PatchTST/64. Attention map is calculated by averaging the attention matrices over all the
heads and across all the layers. For each time series, we show the attention map and the prediction
in orange. The blue curves are the actual data. The curves before the back lines are the actual input
data. Channel-independence design allow each series to learn its own attention map for forecasting
in which the pattern can be more similar for more correlated series and different otherwise.

23



Published as a conference paper at ICLR 2023

Figure 7: Channel-independence vs channel-mixing on Weather dataset. The base model is
PatchTST/42, and the prediction length is 96. We plot the mean values and error bars with 5 differ-
ent random seeds: {2019, 2020, 2021, 2022, 2023}. Left Panel: Test loss vs train size. Here, train
size denotes the fraction of the training data that is used to learn the model from scratch. Channel-
independence contributes to a quicker convergence as more training data is available. Right Panel:
Test loss vs epochs. Here, we use full train data and plot the first 20 epochs. Channel-mixing model
quickly overfits the data.

24


	Introduction
	Related Work
	Proposed Method
	Model Structure
	Representation Learning

	Experiments
	Long-term Time series forecasting
	Representation learning
	Ablation study

	Conclusion and Future Work
	Appendix
	Experimental Details
	Datasets
	Details of Baseline Settings
	Baselines from Traditional Models
	Model Parameters
	Implementation Details

	Visualization
	Univariate Forecasting
	More Results on Ablation Study
	Varying Patch Length
	Varying Look-back Window
	Patching and Channel-independence
	Instance Normalization

	More Results on Self-supervised Representation Learning
	Full Benchmark of Multivariate Forecasting
	Full Benchmark of Transfer Learning

	Robustness Analysis
	Results with Different Random Seeds
	Results with Different Model Parameters

	Channel-independence Analysis
	Channel-independence vs Channel-mixing
	Performance of Channel-independence on Other Models



