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Abstract

Diffusion models are well known for their ability to generate a high-fidelity image for an input
prompt through an iterative denoising process. Unfortunately, the high fidelity also comes at
a high computational cost due to the inherently sequential generative process. In this work,
we seek to optimally balance quality and computational cost, and propose a framework to
allow the amount of computation to vary for each prompt, depending on its complexity. Each
prompt is automatically routed to the most appropriate text-to-image generation function,
which may correspond to a distinct number of denoising steps of a diffusion model, or a
disparate, independent text-to-image model. Unlike uniform cost reduction techniques (e.g.,
distillation, model quantization), our approach achieves the optimal trade-off by learning to
reserve expensive choices (e.g., 100+ denoising steps) only for a few complex prompts, and
employ more economical choices (e.g., small distilled model) for less sophisticated prompts.
We empirically demonstrate on COCO and DiffusionDB that by learning to route to nine
already-trained text-to-image models, our approach is able to deliver an average quality that
is higher than that achievable by any of these models alone.

1 Introduction

While diffusion models have set a new standard for photorealism in generative art (Ho et al., 2020), their
operational costs remain a major challenge. The generation of a single image can involve many denoising
steps, each utilizes a learned denoiser model with potentially over a billion parameters (Rombach et al.,
2022). This makes in-the-wild adoption (i.e., on-device) challenging and raises valid concerns about their
environmental sustainability (Sarah Wells, 2023; Kate Crawford, 2024; Kaack et al., 2022). To address this, a
significant body of research has explored optimization strategies such as network simplification (Li et al.,
2024; 2023a) and model distillation (Sauer et al., 2024; Salimans & Ho, 2022; Meng et al., 2023; Liu et al.,
2023).

However, these existing methods typically apply the same degree of optimization irrespective of the task’s
intrinsic difficulty. This results in a single model with a fixed computational cost, which is inherently
suboptimal as the generative effort required to synthesize an image varies with the complexity of the input
prompt. For example, a simple prompt like a white and empty wall requires fewer denoising steps to generate
a high-quality image than a complex one like a colorful park with a crowd, as shown in Figure 1.

With the motivation to adaptively allocate computational budget, we present CATImage, a framework that
allows the amount of computation for text-to-image generation to vary for each prompt. Our framework
operates with a pre-defined set of choices that can be chosen adaptively for each input prompt. Each choice
represents a text-to-image generation function and has a distinct profile of computational cost and the
expected image quality. Concretely, these choices may correspond to different numbers of denoising steps
of the same diffusion model (i.e., homogeneous choices), disparate, independent text-to-image generative
models (i.e., heterogeneous choices), or a combination of both. The proposed CATImage aims to adaptively
select the right choice (i.e., “routing”) for each input prompt, in such a way that expensive choices (e.g., 100+
denoising steps) are reserved only for complex prompts. Our approach enables a joint deployment of diverse
text-to-image models and has a potential to deliver higher average image quality compared to using any
individual model in the pool, while allowing the average computational cost to be adapted at deployment
time.
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Figure 1:  Two input prompts that require different denoising steps to ensure quality.  As shown in

Figure 1c, prompt Figure la only requires a small number of denoising steps to reach a high CLIPScore.
By contrast, the more complex prompt Figure 1b requires over 100 steps to reach a similar quality. Key to
our proposed CATImage is to allocate an appropriate amount of computation for each prompt, so that the
overall computational cost is reduced while the quality remains the same.

In summary, our contributions are as follows.

1. We precisely formulate a constrained optimization problem for the above routing problem (Section 3.1).
The formulation aims to maximize average image quality subject to a budget constraint on the generation
cost.

2. We study the theoretically optimal routing rule that optimally trades off the average quality and cost
(Section 3.2). Based on the optimal rule, we construct a plug-in estimator that can be trained from data.

3. We perform a series of objective analyses on the COCO (Lin et al., 2014) and DiffusionDB datasets (Wang
et al., 2022b). Our findings show that, through adaptive routing, our proposal matches the quality of
the largest model in the serving pool (namely, Stable Diffusion XL from Radford et al. (2021) with 100
denoising steps) with only a fraction of its computational cost (Table 3).!

2 Background: Text-To-lmage Generative Models

Let x € X denote an input text prompt, and i € J = [0, 1]"*#*3 denote an image described by the prompt,
where W, H € N denote the width and the height of the image (in pixels), and the last dimension denotes
the number of color channels. A text-to-image generative model is a stochastic map h: X — J that takes a
prompt x as input and generates an image h(x) € J that fits the description in the prompt x. There are
many model classes one may use to construct such a model h, including conditional Generative Adversarial
Networks (GANs) (Zhang et al., 2017; Goodfellow et al., 2014), Variational Auto-Encoder (VAE) (Kingma &
Welling, 2022), and diffusion models (Ho et al., 2020), among others.

Diffusion models A specific class of text-to-image generative models that has recently been shown to
produce high-fidelity images is given by diffusion-based models (Saharia et al., 2022; Ho et al., 2020; 2022). A
diffusion generative model relies on a function g: X x N x RP — J that takes as input a prompt x, the number
of denoising steps T € N, a noise vector z € RP with D = 3- W H, and generates an image i = g(x, T, z).
Image generation is done by iteratively refining the initial noise vector z for 7" iterations to produce the final
image. The noise vector z ~ N (0, 1) is typically sampled from the standard multivariate normal distribution
and the T refinement steps correspond to the reverse diffusion process, which reconstructs an image from a
random initial state (Ho et al., 2020). With z ~ N(0,I) understood to be an implicit source of randomness,
we define hr(x) = g(x,T,z) to be an image sampled from the diffusion model using 7" diffusion steps. With T'

We will release the code and data upon paper publication.
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chosen, hp: X — Jis thus an instance of text-to-image generative models as described earlier. The importance
of this view will be apparent when we describe our proposed method in Section 3, which enables an automatic
selection of the number of denoising steps, separately for each prompt. Typically, the number of denoising
steps is pre-chosen according to the computational budget available at inference time, with a low value of T,
giving a lower computational cost at the expense of image quality.

3 Cost-Aware Text-To-lmage Generation

We now describe our main proposal termed CATImage (Cost-Aware Text-based Image Generation), which
seeks to minimize inference cost by adaptively adjusting the cost per prompt, depending on its complexity.
As illustrated in Figure 1, in the case of a diffusion model, our key observation is that not all prompts
require a large number of denoising steps to ensure quality. Thus, inference efficiency can be achieved by
spending a small amount of computation for easy prompts. Our proposed framework is general and allows
cost adjustment in a per-prompt manner via selecting an appropriate amount of resources from homogeneous
choices (i.e., adaptively varying the number of denoising steps of a single diffusion model), or heterogeneous
choices (i.e., adaptively route prompts to disparate, independent generative models).

We start by formalizing the cost-aware text-to-image generation task as a learning-to-route problem in
Section 3.1. The formulation can be theoretically shown (Section 3.2) to have a simple Bayes optimal
routing rule, involving subtracting off the expected quality metrics with the costs of candidate numbers of
denoising steps. We show that the optimal rule can be estimated from data, and propose two estimators: a
Transformer-based estimator (Vaswani et al., 2017), and a K-nearest neighbors (KNN) model.

3.1 Problem Formulation

Let [n] = {1,2,...,n} denote the set of counting numbers up to n. Suppose that we are given a fixed set
of M choices H = {h(l), ceey h(M)} where each choice h(Y: X — J represents a trained generative model
(see Section 2 for a precise definition). Our goal is to derive a routing rule that optimally (in the sense of
quality-cost trade-offs) chooses the best model to invoke for each input prompt. These M base models may be
homogeneous, being derived from a single diffusion model with varying numbers of diffusion steps, a mix of
heterogeneous generative model classes, or a combination of both. For example, if we want to decide whether
to use 20 or 50 number of denoising steps in the Stable Diffusion XL (SDXL) model (Podell et al., 2023),
then M =2, and H = {h(V) h(?} where the two models are both SDXL with the number of denoising steps
fixed to 20 and 50, respectively. We will abstract away the details of the underlying M base models and
propose a general framework that supports both the homogeneous and heterogeneous cases (as shown in our
experiments in Section 5).
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Suppose we are given a quality metric of interest ¢: X x J — R (see Quality Metrics under Section 5.1),
which takes as input a prompt-image tuple, and estimates a quality score. We seek a router r: XX — [M] that
predicts the index of the M choices from a given prompt. We posit two desirable properties that the router
ought to possess:

1. The router must respect a specified budget constraint on the inference cost.

2. Routing prompts to candidates in H must maximize average quality metric.

Following similar formulations considered in Jitkrittum et al. (2023; 2025); Mao et al. (2023); Tailor et al.
(2024), the above desiderata may be realized as a constrained optimization problem:

max Q(r) subject to C(r) < B, where (1)
Qr)=E | > 1[r(x)=m] g0 A"™ ()|, and C(r)=E | > 1[r(x)=m]- ™|, (2)
me[M] me[M]

where for m € [M], ¢(™) > 0 denotes the cost for the model h{™) to produce one image for a given prompt,
E denotes the expectation with respect to the population joint distribution on all random variables (i.e.,
prompt x, and the sampled output of h(™)), B > 0 is a hyperparameter specifying an upper bound on the
average cost. The optimization problem (1) thus seeks a router r that maximizes the average quality Q(r)
subject to the constraint that the average cost (over all prompts) is bounded above by B.

Remark. The optimization problem is general and allows the per-model costs to be in any unit suitable for
the application (e.g., latency in seconds, FLOP counts). Further, no practical constraint is imposed on the
quality metric function g. For instance, g could be the CLIP score (Radford et al., 2021). Intuitively, if the
budget B is large, the cost constraint C(r) < B would have little effect, and the optimal router is expected to
route each prompt to the base model that can produce the highest quality metric score, disregarding the cost
of the model. In practice, such a model is often the largest one in the pool H, or the diffusion model with the
largest number of denoising steps. On the contrary, if B is small, the router would prioritize cost over quality,
preferring to choose a small base model (or a small number of denoising steps) over a larger candidate. This
proposal offers a framework to allow trading off average quality with cost in a unified way by varying B.

3.2 Theoretically Optimal Routing Rule

Having formulated the constrained problem in (1), we now investigate its theoretically optimal solution.
We will use the optimal solution to guide us on how to design a practical router. Based on the results in
Jitkrittum et al. (2023; 2025), the optimal solution to (1) is shown in Proposition 1.

Proposition 1. For a cost budget B > 0, the optimal router v*: X — {1,...,M} to the constrained
optimization problem (1) is

* - (m) ). cm
r*(x) argﬂ?ﬁ]E[q(x,h (X))|X} A

where the conditional expectation is over the sampled output from the model h™), and X > 0 is a Lagrange
multiplier inversely proportional to B.

The result follows from Proposition 1 in Jitkrittum et al. (2025). The result states that the choice/model
we choose to route a prompt x to is the one that maximizes the average quality, adjusted additively by the
cost of the model. The hyperparameter A controls the trade-off between quality and cost, and is inversely
proportional to the budget B. For instance, if A = 0 (corresponding to B = o0), then the model with the
highest expected quality for x will be chosen, regardless of its cost. Increasing A\ enforces the routing rule to
account more for model costs, in addition to the expected quality.
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Estimating the Optimal Rule The optimal rule r* in Proposition 1 depends on the population conditional
expectation v(™)(x) = E lq(x, R (%)) | x|, which is unknown. Following a similar reasoning as in Jitkrittum
et al. (2025), we propose plugging in an empirical estimator 4(m) . X — R in place of 4("™), resulting in the
empirical rule 7y:

r(x) = arg max 4™ (x) — X - ™). (3)

me[M]

For each m € [M], the idea is to train an estimator 4(™) to estimate the true expected quality. That is,
suppose we are given a collection of N training prompts {x;}X ;. For each prompt x;, we may sample S

times from A" to produce output images i%) cee igjg). These output images allow one to estimate the

empirical expectation of the quality §; = + 25521 q(x, 157?)) With the labeled training set {(x;, 9;)}Y , we
may then proceed to train a predictive model 4(x) = (ﬁ(l)(x), . ,’Ay(M)(X)) , which has M output heads for

predicting the expected qualities of the M models. There are several standard machine learning models one
can use as the model class for 4.

We emphasize that we do not advocate a specific model class as part of our proposal since different model
classes offer distinct properties on training and inference costs, which may be best tailored to the application.
What we propose is an application of the generic routing rule in (3) to text-to-image model routing. The rule
is guaranteed to give a good quality-cost trade-off provided that the estimator 4("™) well estimates v("). In
experiments (Section 5), we demonstrate estimating 7™ with two model classes: 1) K-nearest neighbors,
and 2) Multi-Layer Perceptron (MLP) with a Transformer backbone (Vaswani et al., 2017). Likewise, we
do not propose or advocate a specific value of \. The parameter is left to the user as a knob to control the
desired degree of quality-cost trade-off. In experiments, we evaluate our proposed routing rule by considering
a wide range of A and show the trade-off as a deferral curve (see Section 3.3). An illustration summarizing
our pipeline is displayed in Figure 2.

3.3 Deferral Curve

In general, any methods that offer the ability to trade off quality and cost may be evaluated via a deferral curve
(Bolukbasi et al., 2017; Cortes et al., 2016; Gupta et al., 2024; Narasimhan et al., 2022). A deferral curve is a
curve showing the average quality against the average cost, in a quality-cost two-dimensional plane. Specifically,
for our proposed routing rule 7 in (3), the curve is precisely given by € = {(C(7x), Q(7x)) | A € [0,00)}
where @ and C denote the average quality and cost, and are defined in Eq. (2). In practice, the population
expectation in @ and C is replaced with an empirical expectation over examples in a test set. We generate
the deferral curve of our routing decision by sweeping A from 0 to a sufficiently large value. This allows the
router to transition from maximizing quality at A = 0 to selecting the cheaper candidates as A increases.
More generally, one evaluates the deferral curve of a method by computing its average quality and cost as we
vary parameters that control the trade-off. For instance, for the SDXL diffusion model, we may produce a
deferral curve by varying the number of denoising steps.

4 Related Work

Uniform Optimization Strategies for Diffusion Models Diffusion models have recently exploded in
popularity due to their high performance on tasks such as image and video generation, audio generation,
and 3D shape generation (Ho et al., 2020; Ramesh et al., 2021). Latent diffusion models (Rombach et al.,
2022) have significantly improved training and inference efficiency, but still require a large number of forward
denoising neural network evaluations to produce high-quality results. To address this, an extensive body
of literature has been proposed to optimize and accelerate diffusion models, which are typically applied
uniformly across all prompts. For example, optimizing the sampling strategy may enable more efficient
denoising computation (Li et al., 2024; Chen et al., 2023b; Li et al., 2023a), such as timestep integration
(Nichol & Dhariwal, 2021) or conditioning on the denoising (Preechakul et al., 2022). Optimizing solvers
for the denoising step can also efficiently reduce the computation to avoid re-training or fine-tuning (Song
et al., 2020; Lu et al., 2022; Liu et al., 2022; Karras et al., 2022). Alternatively, reducing the redundant
computations by caching the internal results within the denoising network is also explored in (Ma et al.,
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2024a;b). Another common approach includes model-based optimizations, such as distilling a fully trained
model into a smaller student model that achieves comparable results with fewer denoising steps (Sauer et al.,
2024; Salimans & Ho, 2022; Meng et al., 2023; Liu et al., 2023) or combining multiple denoising models with
different sizes to accelerate the denoising process (Yang et al., 2023; Li et al., 2023b; Pan et al., 2024). An
alternative strategy is to approximate the direct mapping from initial noise to generated images, further
reducing the number of denoising steps (Luo et al., 2023; Song et al., 2023).

Adaptive Optimization Strategies for Diffusion Models Instead of a fixed reduction in computational
resources, AdaDiff (Tang et al., 2023) explores a more dynamic approach where the number of denoising
steps is decided based on the uncertainty estimation of the intermediate results during denoising. Our
work shares a similar motivation for flexible resource allocation. However, we adaptively allocate resources
according to prompt complexity and thus can select the most suitable number of steps or model before any
denoising process. Concurrently, AdaDiff (Zhang et al., 2023) tackles optimal number of steps selection using
a prompt-specific policy, with a lightweight network trained on a reward function that balances image quality
and computational resources. In contrast, we decouple the quality estimation from the routing decision,
which allows our framework to adapt to different resource constraints without any retraining.

Learning-To-Defer, and Modeling Routing The idea of adaptively invoking a different expert on each
input is a widely studied area in machine learning under the topic of learning to defer. Here, each expert
may be a human expert (Mozannar & Sontag, 2020; Mozannar et al., 2023; Sangalli et al., 2023), or a larger
model (Narasimhan et al., 2022; Jitkrittum et al., 2023; Mao et al., 2023; Gupta et al., 2024). In the latter,
depending on the topology or order the models are invoked, a learning-to-defer method may yield a cascade if
models are arranged in a chain (Wang et al., 2022a; Jitkrittum et al., 2023; Kolawole et al., 2024); or yield
a routed model if there is a central routing logic (i.e., the router) which selectively sends input traffic to
appropriate models (Jiang et al., 2023; Mao et al., 2023; Gupta et al., 2024; Jitkrittum et al., 2025). The
latter setup is also known as model routing and receives much attention of late, especially in the natural
language processing literature. Model routing has been successfully applied to route between many Large
Language Model (LLMs) of various sizes and specialties (see Chen et al. (2023a); Hu et al. (2024); Zhuang
et al. (2025); Ong et al. (2025); Jitkrittum et al. (2025) and references therein). To our knowledge, our work
is one of the first that connects the model routing problem to efficient text-to-image generation.

5 Experiments

In this section, we show how our proposed routing method (Section 3) can be realized in practice by evaluating
its effectiveness on real data. We experiment with both homogeneous (i.e., all routing candidates are derived
from the same diffusion model with different candidate numbers of denoising steps), and heterogeneous
settings (i.e., the routing candidates also include different generative models). Our goal is to optimally select
the best model (or number of denoising steps) for each input prompt given a specified cost constraint.

5.1 Experimental Setup

Text-To-Image Generative Models As defined in Section 3.1, our method selects from a set of generative
models H for each input prompt. We consider a diverse range of models with varying configurations, each
offering a different trade-off between image quality and computational cost:

1. SDXL: a widely-used SD architecture (Rombach et al., 2022). To see the full extent of the achievable
trade-off, we consider representative numbers of denoising steps in a wide range between 1 and 100.

2. TURBO (Sauer et al., 2024) and LIGHTNING (Lin et al., 2024): distilled versions of SDXL for faster
generation. We use the SDXL variant with 1 step for Turbo, and 4 steps for Lighting.

3. DDIM (Song et al., 2020): a non-Markovian diffusion process allowing faster sampling. We use this
sampling strategy on the SDXL variant at 50 steps.
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4. DEEPCACHE (Ma et al., 2024b): a caching method that reduces redundant computation in SDXL. We use
the official implementation released from Ma et al. (2024b), and set the cache interval parameter to 3.

5. INFINITY (Han et al., 2024): a non-diffusion, auto-regressive text-to-image model based on the Transformer
encoder-decoder. We use the pre-trained Infinity-2B variant with a visual vocabulary size of 232.

Quality Metrics The effectiveness of generative models largely depends on the criteria used to evaluate
their output. Our proposed method can adaptively identify the optimal allocation of generative model
for any instance-level image quality metric. As there is no consensus on the optimal metric for evaluating
image quality, we explore several widely-used metrics: CLIPScore (Radford et al., 2021) for text-image
semantic alignment, ImageReward (Xu et al., 2023) with a reward model tuned to human preferences, and
Aesthetic Score (Beaumont & Schuhmann, 2022) trained on human aesthetic ratings from LAION (Schuhmann
et al., 2022). Additionally, we also introduce Sharpness metric adapted from Paris et al. (2011), defined

>, - [1@G);)?

2

as, ¢sharp(X,1) = T = , where ® denotes the convolution operator, i; ; is the pixel intensity at
ij i

location (i, ), and G is a Gaussian kernel with standard deviation of 1. Intuitively, this metric measures the
relative distance between the given image i and itself after a Gaussian blur filter is applied.

Quality Estimator 4 One of the key components of our routing method is the quality estimator which
estimates the expected quality of the m-th model given an input prompt (see 4™ in Eq. (3)). We explore
two model classes: a K-NEAREST NEIGHBORS (K-NN) model and a TRANSFORMER-based model. Both
of these models incur a negligible inference cost: less than 0.001 TFLOPs compared to 1.5 TFLOPs of the
smallest base model in the pool (Infinity).

The K-NN approach provides a non-parametric way to estimate quality by averaging the quality scores of K
nearest training prompts in the space of CLIP embeddings (Radford et al., 2021). This method is simple,
and can generalize well with sufficient data. The Transformer model takes as input the per-token embeddings
produced by the frozen CLIP text encoder. A two-layer MLP with M output heads is added to each output
token embedding. Pooling across all tokens gives M output scores 4V (x),...,4™M)(x) (see Eq. (3)), each
estimating the expected quality of the m-th model on prompt x (see Appendix Section D for details).

All base models except Infinity already use CLIP embeddings, making router overhead negligible. Infinity
uses Flan-T5 embeddings (=~ 13 GFLOPs overhead), but this cost is minimal compared to one SDXL call
(= 200 TFLOPs for 17 steps).

We train a separate model for each of the quality metrics considered. In each case, the quality scores are
linearly scaled across all training examples to be in [0, 1]. These scaled metrics are treated as ground-truth
probabilities, and the model is trained by minimizing the sum of the sigmoid cross-entropy losses across all
heads.

5.2 Dataset Details

We utilize two datasets: 1) the COCO captioning dataset (Lin et al., 2014), which contains high-quality and
detailed image captioning, and 2) the DiffusionDB dataset (Wang et al., 2022b), which contains a larger
collection of realistic, user-generated text prompts for text-to-image generation. From both datasets, we
sub-sample prompts by retaining only those with pairwise CLIP similarity below 0.75, resulting in a diverse
set of 18,384 prompts in COCO dataset, and 97,841 prompts on the DiffusionDB dataset. We split each
dataset independently into 80% for training, 10% for validation, and 10% for testing. We then generate
images from those prompts using all the base text-to-image models as described earlier. For SDXL, we
generate images with various numbers of denoising steps ranging from 1 to 100. The costs in terms of FLOPs
from these candidates cover the full range of costs of all other baselines.

For each model, we generate four images per prompt (i.e., S = 4 in Section 3.2) using different random
seeds, with a fixed seed across different numbers of steps for SDXL. The generated images for each prompt x;
allow us to compute the average quality metric, which is then used as the training label g; (as described in
Section 3.2). Unless otherwise specified, we use the widely used Euler Scheduler (Karras et al., 2022) for
diffusion-based image generation.
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Figure 3: Deferral curves of our proposed methods and baselines on the COCO dataset. Each data point
represents the average quality and cost across the entire test set (1839 prompts). Quality is measured by
CLIPScore in (a) and pixel sharpness in (b), as defined in Section 5.1. Our Proposed Transformer (SDXL+),
which selects from all available SDXL denoising steps and baseline models, offers the best quality-cost
trade-off (TFLOPs). Baselines that are not visible are shown at the bottom-right corner in the format of
(cost, CLIPScore).

5.3 Experiments on COCO dataset

We present experimental results on a subset of COCO’s test set (Lin et al., 2014) consisting of 1.8k image-
caption pairs in Figure 3. We evaluate the deferral curves (see Section 3.3) of our proposed method and all
the baselines. The results are shown in Figures 3a and 3b for the two different quality metrics: CLIPScore
and image sharpness (Section 5.1), respectively. The deferral curves plot average quality against average cost
measured in TFLOPs (Tera Floating Point Operations). Baselines that do not support dynamic quality-cost
trade-off are shown as isolated dots in the same quality-cost plane; these baselines use the same compute cost
for image generation for each input prompt. For instance, each point % of SDXL represents the performance
of the SDXL model with the number of denoising steps fixed. For our proposed methods, Proposed (SDXL)
refers to the homogeneous configuration in which the model candidate set H consists solely of the SDXL
model at multiple numbers of denoising steps settings. Proposed (SDXL+) extends this configuration by
incorporating other text-to-image models considered, namely, TUrRBO, DDIM, DEEPCACHE, and INFINITY.
Each of these has two variants based on Transformer or K-NN as the model class for estimating the expected
quality metric.

Homogeneous vs. Heterogeneous setting In both settings, our methods outperform baselines with static
inference costs per prompt. The heterogeneous setting further benefits from models with strong quality-to-
cost trade-offs (e.g., INFINITY, TURBO), improving our dynamic routing’s effectiveness and cost-efficiency.
Moreover, our strategy remains adaptive, seamlessly allocating prompts to higher-performance models when
additional computational resources are available, improving performance beyond what is attainable using
each model alone (see Appendix Section G for details on model selection rates).

Transformer vs. KNN Between the two proposed variants, the Transformer-based variant generally
outperforms the K-NN variant, suggesting that directly learning to predict the quality metric can be more
effective than estimating it from neighboring prompts.

5.4 Effect of Sample Size S

As the estimation error depends on the randomness in image generation, we aggregate signals from multiple
generated images by averaging their quality metric values across multiple random seeds. To further quantify
variability across trials, we vary the number of generated images for each prompt and train a separate model
for each case. In Table 1, we report the mean performance of CLIPScores on the COCO dataset, as well as
the Win Rate, defined as the fraction of trials that our router has higher average quality across the test set
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Table 1: We train the k-NN quality estimator over 7" = 100 trials on COCO. In each trial, we generate S
images for each training prompt with 1) S = 1 and 2) S = 3. Each of these two cases results in 7' k-NN
models, and hence T' (random) deferral curves evaluated on the same test set as used in Fig 3. We report the
mean performance (CLIPScore) across the T trials for our approach.

CLIPScore 1

Infinity Turbo Lighting SDXL-9 DeepCache SDXL-22 DDIM SDXL-65

Ours (S=1) 0.2816 0.2814 0.2828  0.2828 0.2828 0.2828  0.2824  0.2819
Ours (S=3) 0.2816 0.2816 0.2831  0.2832  0.2832  0.2832  0.2828  0.2819
Fixed 0.2816 0.2794 02798  0.2773 0.2749 0.2805  0.2820  0.2819
Win Rate (S=1) - 1 1 1 1 1 0.98 -
Win Rate (S=3) - 1 1 1 1 1 1 -
TFLOPs 1.5 154 2392  107.73 210 263.34 5985  778.05

Table 2: Quality-cost trade-off of our proposed approach on DiffusionDB (Section 5.5). We report the average
quality achieved by our routing approach when operating at the cost (TFLOPS) of each model in the pool.
For each metric, the highest score achieved between our approach and the fixed baseline is highlighted in
bold. The Oracle performance is provided in gray for context.

CLIPScore (Radford et al., 2021) 1

Oracle 02591 6eq 03094 404 03234 4eq 03341404 03374404 0337104 03361404 03364404 0.318 4 4es
Ours 0~259i6e-4 0~304i4e—4 0‘308i4e-4 0~314i4e-4 0~316j:4e—4 0~317i4e-4 0~318i4e-4 0.318i49_4 0.318i49_4
Fixed 0.259 +6e-4a 03044404 03004404 03084464 03164404 03154464 031741464 03154404 0.318 4404
Sharpness (Section 5.1) 1
Oracle 01314 4eq 0.140 4 304 0.144 4304 01451304  0.146 4 304 0.146 4 304 0.145 4 4eq 0.145 4 4eq 0.126 4 304
Ours 04131i4e»4 0-135139,-4 0-135i35»/1 0.136i39_4 0'137i3e-4 0-137i3e»4 0~137i3e-4 0-137i3e—4 0.126i39,4
Fixed 0.131 4 geq 0.1224304 0.110 4304 0.103 4064 0.10140es4 01144004 01234304 0.107 1304 0.126 4 304
Aesthetic Score (Beaumont & Schuhmann, 2022) 7
Oracle 6.824 1503 71324803 73851803 74261703 7421 sy 74161803 72841803 72841803 6.707 4803
Ours 6.824 + 8e-3 6.913 + 9e-3 7.042 + 9e-3 7.032 + 9e-3 7.012 + 9e-3 7.012 + 9e-3 6.935 + 9e-3 6.935 + 9e-3 6.707 + 8e-3
Fixed 6.824 4 ge.3 6.78049e3  7.0104 963 6.2854ge3  6.62549e3 6.5884g5c3  6.6904+ge3 6.60049e3 6.707 4 ge3
ImageReward (Xu et al., 2023) 1
Oracle 1.029 4 03 13034 ge3 14164 563 1446 4 5e3 1446 1 5e3 1444 1 503 1.376 1503 1.376 15e3  0.891 1703
Ours 1.029 4+ 9e-3 1.083 + 8e-3 1.086 + 8e-3 1.086 + 8e-3 1.079 + 8e-3 1.076 + 8e-3 1.037 + 8e-3 1.037 + 8e-3 0.891 4+ 7e-3
Fixed 1.029 £ 9e.3 0.960 £ 8.3 09321863 0497 1ge3 0.80949e3 0.769 1863 0.866 1803 0.86149e3 0.891 1703
INFI TURB LIGH SDXL DEEP SDXL SDXL DDIM SDXL
TFLOPs 1.50 1.54 23.92 119.70 210.00 239.40 598.50 598.50 1197.00

than the baseline. The maximum standard deviation across trials of both above variants is less than 2 x 10~4
throughout the cost range.

The results show that using S=3 improves the test performance compared to S=1. Additionally, the win rate
of “Ours (S=1)” compared to the baseline is 100% in almost all cost ranges. This win rate implies that our
approaches are statistically significantly better than the baseline according to the sign test at significance
level a < 1075, This means using one image per prompt is already sufficient to improve the baseline of using
fixed compute costs. Deviation across trials is minimal relative to the mean metric, suggesting that S=3 is
sufficient. In all other experiments in the paper, we used S=4.
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Table 4: Average quality achieved by our routing approach when operating at the cost (TFLOPs) of each
model in the pool. In this experiment, we include FLUX.1-dev at 1, 15, and 30 denoising steps, for the total
of 12 models in the candidate pool.

Aesthetic Score 1
Infinity Turbo Lighting FLUX-1 SDXL-10 DeepCache SDXL-20 DDIM SDXL-50 FLUX-15 SDXL100 FLUX-30

Ours 6.824 6.913 7.045 7.055 7.068 7.082 7.087 7.109 7.109 7.108 7.090 6.983
Fixed 6.824 6.780 7.010 3.160 6.285 6.625 6.588  6.600  6.690 6.952 6.707 6.983
TFLOPs 1.50 1.54  23.92 59.52 119.70 210 239.4 5985  598.5 892.8 1197.00  1785.60

Fraction of TFLOPs 0.1% 0.1% 1.3% 3.3% 6.7% 11.8% 13.4% 335% 33.5% 50.0% 67.0% 100.0%

5.5 Experiments on DiffusionDB dataset

In this section, we present results on a subset of prompts from the DiffusionDB dataset (Wang et al.,
2022b), which aligns more closely with real-world prompts used in text-to-image generation. We evaluate the
performance across four metrics: CLIPScore, ImageReward, Aesthetic Score, and Sharpness.

Quantitative results comparing our dynamic routing method to the fixed-model baselines are summarized in
Table 2. This table effectively captures the trade-offs shown in the deferral curves at a specific cost equal
to each baseline. We use KNN as a quality estimator to efficiently evaluate multiple metrics at scale. For
reference, we also provide the Oracle performance, which selects the optimal candidate for each prompt based
on ground-truth quality scores rather than predicted estimates. This is an absolute upper bound on the best
quality-cost trade-off attainable by any routing methods. In practice, it is extremely challenging to realize
a quality-cost operating point that is close to that of the Oracle (see Hu et al. (2024)). The results show
that our method consistently matches or exceeds fixed-model baseline performance across all four quality
metrics. Additionally, the highest value of each score (highlighted in Table 2 in bold) is attainable only
with our routing strategy. In other words, even under an unconstrainedand computational budget, none of
the individual baselines can attain the quality that our adaptive routing achieves through prompt-based
allocation across the model pool.

Table 3 quantifies the computational cost reduction achieved by our routing
method compared to the baseline at equivalent quality levels (on Sharpness Table 3: Cost ratio (%) of our
metric). For inherently efficient models (e.g. Infinity(Han et al., 2024), method compared to baselines to
Turbo (Sauer et al., 2024)), the savings appear marginal. However, com- match the quality score (Sharp-
pared to Lighting (Lin et al., 2024), a distilled SDXL variant, our method ness)

achieves the same performance at only 6% of its computational cost. For

higher-performance models, such as SDXL at 100 denoising steps, the Model Our cost
savings are even more significant. Infinity 100%
Turbo 97.40%
) Lighting 6.27%
5.6 Incorporating FLUX.1-dev model DeepCache 0.71%
DDIM 0.25%
The quality-cost trade-off of our router improves as we add better models SDXL100 0.13%

to the pool. With the same experimental setup on DiffusionDB as in
Section 5.5, we now add a high-performing model FLUX.1-dev? at three
different denoising steps (1, 15, and 30), resulting in a total of 12 models
in the routing pool. The addition of a new model results in an improved
performance across all cost ranges compared to using any individual model alone, as shown in Table 4.
Specifically, at an average cost of less than 600 TFLOPs, our router achieves an aesthetic score of 7.109,
surpassing the best single model (FLUX-30) which scores 6.98 at a fixed cost of 1785.6 TFLOPs. The router
learns that the most powerful model (e.g., FLUX-30) is not necessarily the best for every input; a cheaper
model can sometimes yield superior results on prompts for which it is better suited.

2https://huggingface.co/black-forest-labs/FLUX.1-dev
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5.7 Qualitative Comparison

To better illustrate the effects of routing, we further present qualitative comparisons between our routing
results and the FLUX model (with 30 denoising steps) in Figure 4. We perform routing using Aesthetic
Score, which has been shown to correlate well with human preference (Section A). Note that in this case,
our routing framework can be used to select the number of denoising steps (i.e. the same FLUX model with
15 denoising steps) or to select an entirely different model (Infinity, Turbo, etc.). Interestingly, we observe
that the router tends to select Infinity for scenic prompts and Turbo for stylized (cartoon/painting) images,
whereas for general/human related prompts it typically reduces the number of denoising steps from 30 to 15.

Prompt: an epic painting of a futuristic
solitary astronaut walking along the icy

surface of Titan, Saturn is visible through
the haze, unreal 5, DAZ, detailed, soft
focus, brilliant, 4k, 8k, HD, trending on
artstation, art by Rick Guidice painting by
Robert McCall by John Harris, abstract

Prompt: Looking towards The
Ettenmoors from The Mountains of
Angmar. The ruin of Weathertop can be
seen in the far distance on the horizon,
Eriador, Middle Earth, Tolkien, by Albert
Bierstadt and Henri Mauperch

Prompt: awe inspiring bruce pennington
landscape, orange sky, red cyan forest
digital art painting of 1960 s, japan at
night, 4k, 8k, hyperdetailed, minimalist

Router's Choice Fixed Cost
(Infinity) (FLUX-30))
Save 99%

Router's Choice Fixed Cost
(Infinity) (FLUX-30))
Save 99%

Router's Choice Fixed Cost
(Infinity) (FLUX-30))
Save 99%

Prompt: excited brown and tan domino
finnish lapphund, studio ghibli art style

Router's Choice Fixed Cost
(Turbo) (FLUX-30))
Save 99%

Prompt: A tabby cat wearing clothes
designed by Issey Miyake painted by
Alex Katz

Router's Choice Fixed Cost
(Turbo) (FLUX-30))
Save 99%

Prompt: portrait of elton john lennon
thoughtful in 1970 by ilya repin

Router's Choice Fixed Cost
(Turbo) (FLUX-30))
Save 99%

Prompt: photograph of Kim Kardashian
cutting a banana, with a pen, in a tent

N

Router's Choice Fixed Cost
(FLUX-15) (FLUX-30))
Save 50%

Prompt: 1930's photo of cat on a rooftop
in japan

Router's Choice Fixed Cost
(FLUX-15) (FLUX-30))
Save 50%

Prompt: cinematic scene with mckenna
grace as eowyn from lord of the rings,
live action film, battle armor chain mail,
dramatic, small details, volumetric
lighting, still frame

Router's Choice Fixed Cost
(FLUX-15) (FLUX-30))
Save 50%

Figure 4: Example results from our routing framework compared to a fixed FLUX model (30 denoising
steps). Examples are grouped by the three most frequently selected models: Infinity, Turbo, and FLUX-15.
We observe a tendency for the router to select Infinity for scenic prompts, while Turbo is often preferred
for cartoon and painting styles. FLUX-15 (FLUX at 15 steps) appears to be favored for general prompts,
especially those involving humans.
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6 Conclusion, Limitation, and Future Work

In this paper, we present CATImage, a cost-aware routing approach that dynamically selects optimal models
and numbers of denoising steps based on prompt complexity. We show that incorporating multiple base models,
such as distilled versions of diffusion models and alternative architectures, improves the quality—cost trade-off.
Extensive experiments on COCO and DiffusionDB datasets across multiple quality metrics validate our
method’s effectiveness and generalization capability. Nevertheless, several limitations are worth highlighting.
To determine optimal routing decisions, CATImage relies on estimating the expected quality per prompt,
which excludes metrics such as Fréchet Inception Distance (FID) (Heusel et al., 2017) that measure statistical
similarity across the entire image distribution. Additionally, the routing problem we consider assumes a static
pool setup where the set of text-to-image models is considered fixed. In practice, the model pool can change
which can add additional maintenance cost of retraining the router. Addressing these limitations remains a
direction for future research.
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Cost-Aware Routing for Efficient Text-To-Image Generation

Appendix

A Human Preference Score

To quantitatively evaluate how our routing decisions from each metric align with human perception, we adopt
the Human Preference Score v2 (HPSv2) benchmark (Wu et al., 2023). We trained four separate routers, one
for each metric (CLIPScore, Sharpness, Aesthetic Score, and ImageReward), and then report the average
HPSv2 quality score achieved by our routing approach when operating at the cost (TFLOPS) of each model
in the pool. For this analysis, we also expand our candidate pool to include the recent, state-of-the-art FLUX
model (FLUX.1-dev with 30 denoising steps)®. The results are shown below.

HPSv2 score |

Infinity Turbo Lighting SDXL-10 DeepCache SDXL-20 DDIM SDXL-50 SDXL100 FLUX

Fixed Baseline 0.293  0.288 0.304 0.251 0.277 0.275 0.284 0.284 0.286 0.298
Ours (CLIPScore) 0.293  0.288 0.287 0.282 0.277 0.278 0.284 0.284 0.286 0.298
Ours (Sharpness) 0.293  0.293 0.293 0.293 0.293 0.293 0.295 0.295 0.296 0.298
Ours (ImageReward) 0.293  0.293 0.293 0.293 0.293 0.293 0.295 0.295 0.296 0.298
Ours (Aesthetic) 0.293  0.293 0.304 0.304 0.303 0.303 0.302 0.302 0.300 0.298
TFLOPs 1.50 1.54 23.92 119.70 210.00 239.40  598.50 598.50 1197.00  1785.60

Notably, the results indicate that routing with the Aesthetic Score produces outcomes that correlate most
closely with human preferences as evaluated by HPSv2. This is likely because the Aesthetic Score model
itself is trained on human ratings of aesthetic value. Note that when the cost constraint is set to match the
cheapest (Infinity) or most expensive (FLUX) model, the router must select that model for all prompts,
resulting in identical performance.

B Additional Qualitative Analysis

In Figure 5, we analyze scenarios showing both successes and failures of our adaptive routing method (Proposed
Transformer (SDXL+) on CLIPScore metric). Specifically, we focus on cases where our method uses the same
overall computational cost as the baseline (SDXL with a fixed 22 denoising steps). Within these scenarios,
we consider cases where our method allocates more than 22 denoising steps, indicating that the prompts are
particularly complex and require additional refinement.

For the prompt A young kid stands before a birthday cake decorated with Captain America, our method
correctly recommends more denoising steps, as fewer would not generate accurate images. In contrast, the
prompt There are two traffic signals on a metal pole, each with three light signals on them includes an exact
number of objects, a concept which both diffusion models and CLIP often struggle with (Binyamin et al.,
2024; Paiss et al., 2023). Our approach accounts for this difficulty by recommending more steps than average.
However, in this case, more denoising steps actually degrade image quality which is uncommon and ends up
hurting the router performance.

We also perform a user study to compare the subset of these routing decisions with the fixed cost baseline (see
Appendix Section H). All participants rate Figure 5b (ours) as the better image, while 14 of 19 participants
select Figure 5¢ (baseline) as the better image.

C Cross Dataset Generalization

To evaluate cross-dataset generalization, we conducted an experiment where our quality estimator (KNN)
was trained on DiffusionDB prompts and evaluated on the prompts from COCO captioning dataset. This is a

Shttps://huggingface.co/black-forest-labs/FLUX.1-dev
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Success case. A young kid stands before a birthday | Failure case. There are two traffic signals on a
cake decorated with Captain America

metal pole, each with three light signals on them.

(a) 22 steps (fixed) (b) 27 steps (routed) (c) 22 steps (fixed) (d) 27 steps (routed)

Figure 5: Success and failure cases of the baseline SDXL with static 22 denoising steps, and our approach
Proposed Transformer (SDXL+) in Figure 3a operating at the same average cost as the baseline. (a), (b):
Our approach is able to recognize the need for a larger number of denoising steps to generate an image that
matches the prompt. (c), (d): Prompts that specify an exact number of objects are difficult for diffusion
models in general. The number of objects may fluctuate during the denoising process, making it difficult to
predict the right number of steps.

challenging test due to the significant stylistic differences between the datasets. In Section C, we report the
average quality (Sharpness score) achieved by our routing approach when operating at the cost (TFLOPs)
of each model in the pool. Our framework still achieves a good quality-cost trade-off even without being
trained on this new prompt distribution. This suggests the estimator learns a robust understanding of prompt
complexity beyond simple keyword correlation.

Sharpness 1
Turbo Lighting DeepCache DDIM SDXL-100

Ours 0.1152 0.1150 0.1134 0.1100 0.1048
Fixed 0.1152 0.1069 0.0979 0.1049 0.1048

D Model Architecture

In this section, we provide more details on the architecture of the models we used for the quality estimator
A™ in Eq. (3).

K-NN The K-NN approach provides a non-parametric way to estimate quality by retrieving and averaging
the quality scores of K nearest training prompts, in an appropriate embedding space. This method is simple,
and can generalize well with sufficient data. As no iterative training is required for K-NN (besides producing
a search index), it can be a suitable model when the underlying pool H of base models changes frequently.
We use the CLIP text encoder Radford et al. (2021) to produce prompt embeddings The text encoder is used
directly without fine-tuning.

Transformer Our Transformer-based estimator is built on top of the text embeddings produced by the
CLIP text encoder. Specifically, for each prompt, CLIP considers the first 77 tokens and produces 77 per-token
embeddings, each of 768 dimensions. To construct our quality estimation model, we first add two self-attention
layers with position embeddings, resulting in an output sequence of 77 per-token embeddings, each of 512
dimensions. We then add a small output head with a 2-layer linear MLP with a Sigmoid activation function
on top of each of these token embeddings. Averaging across the tokens produces M scores 41 (x),... ,'Ay(x)(M )
(see Eq. (3)), each estimating the expected quality of the m~-th model on prompt x.

We train a separate model for each of the quality metrics considered. In each case, the quality scores
are linearly normalized across all training examples to be in [0, 1]. These normalized metrics are treated
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as ground-truth probabilities, and the model is trained by minimizing the cross-entropy losses. Only the
attention layers and the MLP are trained with the frozen CLIP text encoder.

Note that all the base models except Infinity consume the CLIP text embedding as input. Thus, the cost of
invoking our router is only from the extra layers added in the case of Transformer, or neighbor lookup in the
case of K-NN. The overhead in terms of FLOPs is negligible compared to invoking SDXL. Since the Infinity
baseline uses Flan-T5 instead of CLIP, this incurs an additional ~ 13.087 GFLOPs if Infinity is selected. To
put it in perspective, calling SDXL for one prompt with 17 denoising steps would incur roughly 200 TFLOPs.

E Computational Resources

To generate our training set (quality score per prompt), we used 50 A100/H100 80G GPU with approximately
~4 days per model to generate 391,364 images for the filtered DiffusionDB prompt set (97,841 prompts)
and less than 1 day per model for the filtered COCO prompt set (18,384 prompts). For each quality metric,
we trained our Transformer with one A100 40G GPU in ~2 hours for the COCO prompt set and ~7 hours
for the DiffusionDB prompt set. The trained transformer (33.88M parameters, 15.61 GFLOPS) represents
just 1.7% of the size and 1.04% of the computational cost relative to the smallest candidate, Infinity (2B
parameters, 1.5 TFLOPs). For our kNN-based router, the overhead is even more marginal, as it only requires
a single-pass search over a small set of 103-10* reference samples. The trained Transformer model only takes
~0.05 seconds to predict the scores for a single prompt in one A100 40G GPU. We trained KNN on the CPU
in less than 1 minute with negligible inference time(<0.01 second per prompt).

F Quality-Neutral Costs

We provide quantitative metrics to complement the deferral curves shown in Figure 3a (COCO dataset,
evaluated with CLIPScore). We consider the quality-neutral cost (QNC) Ong et al. (2025); Jitkrittum et al.
(2025) defined as the fraction of cost required to reach the performance of a reference model. The lower the
QNC, the better because this means that our method can achieve the same performance as a reference model
using a lower cost. The QNCs of the two proposed methods are shown in the following table, where the
reference is set to each of the individual model in the pool (described in Section 5.1).

Method \ QNC (%) InrFiNniTY DDIM DEEPCACHE LIGHTING TurBo SDXL100

Transformer (SDXL+) 100 2.5 11.1 6.4 99.7 2.1
K-NN (SDXL+) 100 2.5 12.3 6.4 1002 24

For example, a QNC of 100% to INFINITY indicates that our approaches would need the full cost of INFINITY
to reach its average performance. In other words, visually, the deferral curves of the two proposed methods
would pass through the quality-cost operating point of INFINITY. As another example, the QNC of the
Proposed Transformer (SDXL+) relative to the baseline DEEPCACHE is 11.1%, indicating that Proposed
Transformer (SDXL+) only needs 11.1% of the cost of DEEPCACHE to have the same performance.

Overall, our proposed approaches are able to match the quality of all the baselines with either a significantly
lower cost, or almost the same cost.

G Model Selection Rates

Figure 6 shows the rate at which each choice in H is selected by Proposed Transformer (SDXL+) in Figure 3a.
All the 12 candidate diffusion steps offered by the base SDXL model are collapsed into one curve for clarity.
We observe that, when the cost budget is large, the router increasingly allocates resources to the full SDXL
model. On the other hand, in the lower cost range, TURBO is the prominent choice, as it provides a good
balance between cost and quality. This analysis shows that our router is able to adaptively mix and match
different choices throughout the cost range to achieve a good quality-cost trade-off.
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Figure 6: The rate at which each choice in the candidate routing pool is selected by Proposed Transformer
(SDXL+) in Figure 3a. Our approach is able to adaptively mix and match different model choices throughout
the cost range.
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H User Study

Here we provide details on the user study to evaluate our routing decision. For this qualitative analysis,
we consider the same trained router shown in Figure 3a as Proposed Transformer (SDXL+). Our reference
baseline is the SDXL model with the number of denoising steps set to 22; this setting results in a per-prompt
cost of 263.3 TFLOPs. For a fair comparison, we accordingly consider the operating point of our method
that has the same average cost as this baseline by adjusting A in Eq. (3). Of all the prompts in the test set
used in Figure 3a, we consider a random subset of 100 prompts where our method does not select SDXL
with 22 denoising steps as the routed decision; this filtering is done to facilitate a contrast between the two
approaches. We proceeded to recruit 19 participants through the Prolific platform for a human preference
analysis (https://www.prolific.com). We run a two-alternative forced-choice (2AFC) study to measure
participants’ preference for images produced by both approaches. During each trial, each participant is
presented with a text prompt, and two test images produced by the two approaches. The participant is
instructed to select the image that better matches the prompt.

Protocol For each trial, a prompt is shown first to each participant. Two randomized-order images are then
presented on participants’ screens: 1) image from our Proposed Transformer (SDXL+) (in Figure 3a), and 2)
image produced by the baseline SDXL at fixed 22 denoising steps. Note that the produced image may be
from a non-SDXL model (e.g., Turbo) since our approach may route to other baseline models described in
Section 5.1.

Participants were instructed to select the image that matches the input text prompt better. Each participant
will be assigned 100 trials (100 prompts) in total, with prompts randomly sampled from the COCO dataset
described in Section 5.2. Our crowdsourcing user study protocol is visualized in Figure 7 as a sequence of
web pages that will be shown to participants with example stimuli.

Figure 7: User study protocol Ours vs. SDXL with static 22 denoising steps. In each user study trial, the
participant will see two images: Image A and Image B. The task is to select the image that match better
with the text prompt provided. The participant needs to click on the button below or press the keyboard to
choose A/B.

Additional Results Figure 8 shows the rate, in percentage, at which each participant selects our Proposed
Transformer (SDXL+). Here, we define percentage selection as the proportion of trials in which ours
is selected. We note that for Stable Diffusion XL, many images generated from 22 denoising steps already
show reasonable results with hard-to-notice artifacts, which can limit the perceivable differences. In the main
paper, we highlight that the majority of participants only agreed on those most notable cases. On average,
the participants prefer ours 52.37% of the time.

I K-NN Parameter Selection

Figure 9 shows the deferral curve when using K-NN as a quality estimator at various values of K. As shown
in the figure, the routing performance (on a validation set of 828 prompts drawn from the COCO dataset) is
similar across a wide range of K values. We set K = 100 for our final model.
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Figure 8: The rate at which each participant prefers our suggested image over the image produced by the
baseline SDXL with 22 denoising steps.
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Figure 9: Performance of the proposed K-NN-based routing model on a validation subset drawn from COCO.

J Comparison with DeepCache on Quality-Cost Trade-off

Figure 10 compares our adaptive routing method (Proposed Transformer (SDXL+)) on CLIPScore with
the DeepCache approach Ma et al. (2024b) (on SDXL model at 50 denoising steps). DeepCache caches
intermediate activations at predefined intervals (cache intervals) to balance image quality and computational
cost. Varying the cache interval enables different quality—cost trade-offs, which can then be compared with our
method on a deferral curve. As shown in Figure 10, our method, which adaptively utilizes multiple models,
consistently surpasses fixed-interval caching methods across all computational costs. Note that our adaptive
routing strategy can also incorporate any DeepCache configurations to even further enhance performance.

K Additional Deferral Curve

Here we show the complete deferral curves for the four quality metrics—CLIPScore, Sharpness, ImageReward,
and Aesthetic Score, on the test set of DiffusionDB dataset in Figure 11. These curves complement the
fixed-cost comparison in Table 2 by showing the changes in quality score across the entire cost spectrum. Here
we can clearly see how our adaptive routing consistently achieves a higher quality score than the fixed-model
baselines at every computational budget.
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Figure 10: CLIPScore-TFlops trade off comparison with Deepcache at various cache interval on the test set
of COCO dataset

L Statistical Significance of COCO Results

Recall that Figure 3 shows the deferral curves of our methods on COCO dataset. To give a more precise view
on the performance improvement, in Table 5, we report average quality scores attained by our Proposed K-NN
(SDXL+) at the same costs as the individual models in the pool. We observe that at the operating cost of
each individual model in the pool, our approach is able to deliver a higher average quality score (as measured
by CLIPScore and Sharpness). In most cases, the gains are statistically significantly better as warranted
by the Welch’s t-test. Note that at the two extreme ends of operating costs (i.e., calling the cheapest and
most expensive models, respectively), any routing approach necessarily reduces to trivial routing: sending all
prompts to one model. It follows that, at an extreme operating point (either at the lowest possible or highest
possible cost), the average quality achieved must be exactly the same as that of the individual model at that
end point.

Table 5: Quality—cost breakdown for Proposed K-NN (SDXL+) presented in Table 5 (on COCO dataset). An
entry in bold text indicates that, with the same cost, our approach is statistically significantly better than
the corresponding individual model (Welch’s t-test at significance level o = 0.05).

CLIPScore Radford et al. (2021) 1

Ours 0.2672 0.2801  0.2817 0.2830 0.2832 0.2832 0.2832  0.2830 0.2822
Fixed 0.2672  0.2798 0.2749 0.2773 0.2820 0.2805 0.2810  0.2816 0.2822
Sharpness |

Ours 0.1061 0.1161 0.1166 0.1163 0.1160 0.1158 0.1132 0.1121 0.1048
Fixed 0.1061 0.1152 0.1070 0.0997 0.0979 0.0858 0.0995  0.1049 0.1048

Model Infinity Turbo Lighting SDXL-9 DeepCache SDXL-22 SDXL-42 DDIM SDXL100
Cost 1.50 1.54 23.92 107.73 210.00 263.34 502.74  598.50 1197.00
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Figure 11: Deferral Curves of our Proposed Transformer (SDXL+) on DiffusionDB dataset. Our approach
exceeds the quality of fix-step text-to-image models in all quality metrics (ImageReward, Aesthetic, Sharpness,

and CLIPScore).
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M Estimation Errors and Quality-Cost Trade-offs
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Figure 12: The deferral curves as presented in Figure 3a, supplemented with baselines derived from the oracle
routing rule with noise added to simulate routing errors. See Section M for details.

Table 6: Average quality scores of the routing approaches presented in Figure 12.

CLIPScore 1

Infinity Turbo Lighting SDXL-9 DeepCache SDXIL-22 DDIM SDXL-65

Ours 2672 .2800 .2820 .2836 2837 .2840 .2838 2837
Fixed .2672 2798 2749 2773 .2820 .2805 .2816 .2819
Oracle .2672 .2855 .2928 2973 .2984 .2986 .2969 .2944
Oracle (Noise = 1 STD) 2672 .2806 .2829 .2854 .2862 .2864 .2860 .2851
Oracle (Noise = 2 STD) .2672 .2780 2782 .2806 .2819 2823 .2832 .2832
Oracle (Noise = 3 STD) .2672 2768 2763 2784 .2800 .2806 .2822 .2825
Random (Noise = o0) 2672 2727 2711 2733 .2756 2763 .2799 2811
TFLOPs 1.5 1.54 23.92 107.73 210 263.34 598.5 778.05

In this section, we discuss the relationship between estimation errors of a quality metric, and the resulted
quality-cost trade-off. Specifically, the goal is to quantify the degradation of the routing performance from
the oracle routing rule, as estimation errors increase. To demonstrate this, we consider the same experimental
setup as used in Figure 3a i.e., with COCO as the dataset, and with CLIPScore as the image quality metric.

Plug-in estimate of the oracle rule We start with a plug-in empirical estimator #* of the optimal
(oracle) routing rule in Theorem 1. Recall that the optimal routing rule in Theorem 1 is given by

r*(x) = arg max] E [q(x, A™ (x)) | x] — XM,

me[M

Recall from Section 3.2 that §; ,, denotes the empirical estimate of E [q(xi, (™) (x)) | Xl]) Define y; =
(9i1s---,9im) For alabeled example (x;,9;), the optimal routing rule can thus be estimated as

Ak ) = Aim_)" (m). 4
(%) arg max g c (4)

This data-based oracle rule is directly applicable to test examples in the test set without require any estimation.
The resulting deferral curve is denoted by “Oracle (Noise = 0)” in Figure 12. Evidently, this routing rule
exhibits an excellent quality-cost trade-off compared to other routing approaches. Indeed, it makes use of the
ground-truth quality label y to make a routing decision. By construction, no other routing methods can give
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a better trade-off curve than this deferral curve (on this specific dataset). We emphasize that in practice it is
extremely challenging to realize a quality-cost operating point that is close to this oracle routing rule. See,
for instance, Figure 3 and Figure 4 in Hu et al. (2024) for the performance gap to the oracle in the context of
LLM routing (i.e., not routing to text-to-image models, as considered in our work). Nevertheless, the oracle
curve serves as an upper bound on the trade-off achievable by any routing methods.

Noisy oracle We now consider adding noise to the routing rule in (4) to examine how noise affects the
quality-cost trade-off:

me

5 (x;) = arg max Giom + B -STDpy - G — A - ™), (5)
where

e (3> 0 controls the strength of Gaussian noise to add;

. Nie — L Nee
* STDp = \/ﬁ Zn;1(yn,m - ym)ga and Y, = ﬁ En;1 Yn,m;
e Nie denotes the number of test examples; and

* Gim N (0,1) is an independent realization from the standard normal distribution.
Clearly, if 8 = 0, we recover the empirical oracle rule in (4). The parameter § represents the amount of
Gaussian noise added to the quality scores, in the unit of the standard deviation of the quality scores of the

respective model.

In Figure 12 and Table 6, we present the performance of the noisy routing rule with 8 € {1,2,3,00}. When
8 = oo, we simply perform random routing, which gives a poor trade-off. It can be seen that our proposed
the deferral curve of our proposed router lies between the curves of the oracle with § = 1 and the oracle
with 8 = 2. Roughly, this means that our router has a similar performance to an oracle router where the
per-model ground-truth scores are corrupted with independent Gaussian noise at a factor 5 € (1,2) of their
standard deviations.
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