
Under review as a conference paper at ICLR 2023

BALANCE IS ESSENCE: ACCELERATING SPARSE
TRAINING VIA ADAPTIVE GRADIENT CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite impressive performance on a wide variety of tasks, deep neural networks
require significant memory and computation costs, which prohibits their applica-
tion in resource-constrained scenarios. Sparse training is one of the most common
techniques to reduce these costs, however, the sparsity constraints add difficulty
to the optimization, resulting in an increase in training time and instability. In this
work, we aim to overcome this problem and achieve space-time co-efficiency. To
accelerate and stabilize the convergence of sparse training, we analyze the gra-
dient changes and develop an adaptive gradient correction method. Specifically,
we approximate the correlation between the current and previous gradients, which
is used to balance the two gradients to obtain a corrected gradient. Our method
can be used with most popular sparse training pipelines under both standard and
adversarial setups. Theoretically, we prove that our method can accelerate the
convergence rate of sparse training. Extensive experiments on multiple datasets,
model architectures, and sparsities demonstrate that our method outperforms lead-
ing sparse training methods by up to 5.0% in accuracy given the same number of
training epochs, and reduces the number of training epochs by up to 52.1% to
achieve the same accuracy.

1 INTRODUCTION

With the development of deep neural networks (DNNs), there is a trend towards larger and more
intensive computational models to enhance task performance. Despite of the good performance,
such large models consume a considerable amount of energy and produce a large amount of carbon
footprint. It is also not applicable when memory or computational resources are limited. As a result,
there are efforts in research to find more resource-efficient ways to train DNNs while maintaining
results comparable to the state of the art (Yu & Li, 2021; Rock et al., 2021; Leite & Xiao, 2021).

Sparse training (Dettmers & Zettlemoyer, 2019; Ishikawa, 1996) is one of the most popular class of
methods to improve efficiency from the spatial aspect and is receiving increasing attention. During
sparse training, certain proportions of weights are set to zero to save space. The sparse patterns
(which weights are zero) are updated iteratively with two popular training paradigms, namely prun-
ing (Guo et al., 2016; Ullrich et al., 2017; Carreira-Perpinán & Idelbayev, 2018) and dynamic sparse
training (Mocanu et al., 2018; Bellec et al., 2018; Frankle & Carbin, 2019; Mostafa & Wang, 2019;
Dettmers & Zettlemoyer, 2019; Evci et al., 2020; Jayakumar et al., 2020; Liu et al., 2021; Özdenizci
& Legenstein, 2021; Schwarz et al., 2021). Our goal is to find a sparse neural network with compa-
rable or even higher performance compared to the dense model.

However, sparse training can bring some side effects to the training process, especially in the case
of high sparsity (e.g. 99% weights are zero). First, sparsity can increase the variance of stochastic
gradients, which will guide the model in a sub-optimal direction and hence slow convergence (Al-
istarh et al., 2017; Hoefler et al., 2021; Graesser et al., 2022). Second, it can also increase training
instability (that is, a noisy trajectory of test accuracy w.r.t. iterations) (Bartoldson et al., 2020),
which requires additional time to compensate for the decrease in model accuracy and further leads
to slow convergence. In addition, the need to consider model robustness during sparse training is
highlighted (Özdenizci & Legenstein, 2021). Therefore, the key question remains to be answered
to apply sparse training widely: how to simultaneously improve convergence speed and stabilize
sparse training in both standard and adversarial setups.

1

Under review as a conference paper at ICLR 2023

In this work, we propose an adaptive gradient correction (AGENT) method to accelerate and sta-
bilize sparse training under both standard and adversarial setups, which is compatible with most
popular sparse training methods. Existing gradient correction methods, such as variance reduction,
usually assume that previous gradients and current gradients are highly correlated, and therefore
a large constant amount of previous gradients is added to correct the gradient. (Chen et al., 2019;
Chatterji et al., 2018; Dubey et al., 2016). However, this assumption does not hold in sparse training,
and we find that a balance between the current and previous gradients is critical. In our AGENT,
we adaptively change the weights of the current and previous gradient based on their correlations to
prevent adding too many low-correlation previous gradients. To more accurately approximate the
full gradient, especially during the adversarial setup where additional bias can occur (see Section
4.2), we design a scaling parameter on the weights of the two gradients, which can further control
the amount of previous gradients added and guarantee the balance and acceleration. Theoretically,
we prove that our method can accelerate the convergence rate of sparse training. In contrast to previ-
ous efforts of sparse training acceleration which mainly focus on structured sparse patterns (Hubara
et al., 2021; Chen et al., 2021), our method is compatible with both unstructured ans structured
sparse training pipelines. Overall, our contributions can be summarized as follows:

• We develop an adaptive gradient correction (AGENT) method for sparse training to achieve
time efficiency and reduce training instability from an optimization perspective, which can
be incorporated into any SGD-based sparse training pipeline.

• We analyze the gradient changes under sparsity constraints and multiply the previous gra-
dients by an adaptive weight and a scaling parameter to achieve fine-grained control over
the balance of current and previous gradients. In theory, we demonstrate that our method
can accelerate the convergence rate of sparse training.

• We perform extensive experiments on multiple benchmark datasets, model architectures,
and sparsities. In both standard and adversarial setups, our method improves the accuracy
by up to 5.0% given the same number of epochs and reduces the number of epochs up to
52.1% to achieve the same performance compared to the leading sparse training methods.

2 RELATED WORK

2.1 SPARSE TRAINING

Interest in sparse DNNs has been on the rise recently, especially when dealing with resource con-
straints. The goal is to achieve comparable performance with sparse weights to satisfy the con-
straints. An influential pipeline called pruning encourages many workflows (Guo et al., 2016; Ullrich
et al., 2017; Carreira-Perpinán & Idelbayev, 2018). Recently, dynamic sparse training has emerged
and been followed by various studies, where sparse weights are maintained in the training process.
Various pruning and growth criteria are proposed, such as weight/gradient magnitude, random se-
lection, and weight sign (Mocanu et al., 2018; Bellec et al., 2018; Frankle & Carbin, 2019; Mostafa
& Wang, 2019; Dettmers & Zettlemoyer, 2019; Evci et al., 2020; Jayakumar et al., 2020; Liu et al.,
2021; Özdenizci & Legenstein, 2021; Zhou et al., 2021b; Schwarz et al., 2021).

However, the aforementioned studies focus on improving the performance of sparse training, while
neglecting the side effect of sparse training. Sparsity not only increases gradient variance, thus de-
laying convergence (Alistarh et al., 2017; Hoefler et al., 2021; Graesser et al., 2022), but also leads to
training instability (Bartoldson et al., 2020). Additionally, sparse training can also exacerbate mod-
els’ vulnerability to adversarial samples, which is a weaknesses of DNNs (Özdenizci & Legenstein,
2021). In this paper, we focus on dynamic sparse training. In general, our method can be applied to
any SGD-based sparse training pipelines.

2.2 ACCELERATING TRAINING

Studies have been conducted in recent years on how to achieve time efficiency in DNNs, and one
popular direction is to obtain a more accurate gradient estimates to update the model (Gorbunov
et al., 2020), such as variance reduction. SGD is the most common training method, where one
uses small batches of data to approach the full gradient. In standard training, the batch estimator
is unbiased, but can have a large variance and misguide the model, leading to studies on variance

2

Under review as a conference paper at ICLR 2023

reduction (Johnson & Zhang, 2013; Xiao & Zhang, 2014; Shang et al., 2018; Zou et al., 2018;
Chen et al., 2019; Gorbunov et al., 2020). While adversarial training brings bias in the gradient
estimation (Li et al., 2020), and we need to face the bias-variance tradeoff when doing gradient
correction. A shared idea is to balance the gradient noise with a less-noisy old gradient (Nguyen
et al., 2017; Fang et al., 2018; Chen et al., 2019). Some other momentum-based methods have
a similar strategy of using old information (Cutkosky & Orabona, 2019; Chayti & Karimireddy,
2022) However, all the above work considers only the acceleration in non-sparse case.

Acceleration is more challenging in sparse training, and previous research on it has focused on struc-
tured sparse training (Hubara et al., 2021; Chen et al., 2021; Zhou et al., 2021a). First, sparse training
will induce larger variance (Hoefler et al., 2021). In addition, some key assumptions associated with
gradient correction methods do not hold under sparsity constraint. In the non-sparse case, the old
and new gradients are assumed to be highly correlated, so we can collect a large amount of knowl-
edge from the old gradients (Chen et al., 2019; Chatterji et al., 2018; Dubey et al., 2016). However,
sparsity tends to lead to lower correlations, and this irrelevant information can be harmful, making
previous methods no longer applicable to sparse training and requiring a finer balance between new
and old gradients. Furthermore, the structured sparsity pattern is not flexible enough, which can lead
to lower model accuracy. In contrast, our method accelerates sparse training from an optimization
perspective and is compatible with both unstructured and structured sparse training pipelines.

3 PRELIMINARIES: STOCHASTIC VARIANCE REDUCED GRADIENT

Stochastic variance reduced gradient (SVRG) (Johnson & Zhang, 2013; Allen-Zhu & Hazan, 2016;
Dubey et al., 2016) is a widely-used gradient correction method, which has been followed by many
studies (Zou et al., 2018; Baker et al., 2019; Chen et al., 2019). Specifically, after each epoch of
training, we evaluate the full gradients g̃ based on θ̃ at that time and store them for later use. In the
next epoch, the batch gradient estimate on Bt is updated using the stored old gradients via Eq. (1).

ĝ(θt) =
1

n

∑
i∈Bt

(
gi(θt)− gi(θ̃)

)
+ g̃ (1)

where gi(θt) = ∇G(xi|θt), G(θt) = (
∑N

i=1 G(xi|θt))/N is the loss function, g̃ = ∇G(θ̃), θt
is the current parameters, n is the number of samples in each mini-batch data, and N is the total
number of samples. SVRG successfully accelerates many training tasks in the non-sparse case, but
does not work well in sparse training, which is similar to many other gradient correction methods.

4 METHOD

We propose an adaptive gradient correction (AGENT) method and integrate it with recent sparse
training pipelines to achieve accelerations and improve training stability. Specifically, to accomplish
the goal, our AGENT filters out less relevant information and obtains a well-controlled and time-
varying amount of knowledge from the old gradients. Our method overcomes the limitations of
previous acceleration methods such as SVRG (Allen-Zhu & Hazan, 2016; Dubey et al., 2016; Elibol
et al., 2020), and successfully accelerates and stabilizes sparse training. We will illustrate each part
of our method in the following sections. Our AGENT method is outlined in Algorithm 1.

4.1 ADAPTIVE CONTROL OVER OLD GRADIENTS

In AGENT, we designed an adaptive addition of old gradients to new gradients to filter less relevant
information and achieve a balance between new and old gradients. Specifically, we add an adaptive
weight ct ∈ [0, 1] to the old gradient as shown in Eq. (2), where we use gnew = 1

n

∑
i∈Bt

gi(θt)

and gold = 1
n

∑
i∈Bt

gi(θ̃) to denote the gradient on current parameters θt and previous parameters
θ̃ for a random subset Bt, respectively. When the old and new gradients are highly correlated, we
need a large c to get more useful information from the old gradient. Conversely, when the relevance
is low, we need a smaller c so that we do not let irrelevant information corrupt the new gradient.

ĝ(θt) =
1

n

∑
i∈Bt

(
gi(θt)− ct · gi(θ̃)

)
+ ct · g̃ = gnew − ct · gold + ct · g̃. (2)

3

Under review as a conference paper at ICLR 2023

A suitable ct should effectively reduce the variance of ĝ(θt). To understand how ct influence the
variance of updated gradient, we decompose the variance of ĝ(θt) in Eq. (3) with some abuse of
notation, where the variance of updated gradient is a quadratic function of ct. For simplicity, con-
sidering the case where ĝ(θt) is a scalar, the optimal c∗t will be in the form of Eq. (3). As we can
see, c∗t is not closed to 1 when the new gradient is not highly correlated with the old gradient. Since
low correlation between gnew and gold is more common in sparse training, directly setting ct = 1 in
previous methods is not appropriate and we need to estimate adaptive weights c∗t . In support of this
claim, we include a discussion and empirical analysis in the Appendix B.6 to demonstrate that as
sparsity increases, the gradient changes faster, leading to lower correlations between gnew and gold.

Var(ĝ(θt)) = Var(gnew) + c2t ·Var(gold)− 2ct · Cov(gnew, gold), c∗t =
Cov(gnew, gold)

Var(gold)
. (3)

Algorithm 1 Adaptive Gradient Correction

Input: θ̃ = θ0, epoch length m, step size ηt, c0 = 0,
scaling parameter γ, smoothing factor α
for t = 0 to T − 1 do

if t mod m = 0 then
θ̃ = θt

g̃ = (
∑N

i=1 ∇G(xi|θ̃))/N
if t > 0 then

Calculate ĉ∗t via Eq. (4)
ct = (1− α)ct−1 + αĉ∗t

end if
else

ct = ct−1

end if
Sample a mini-batch data Bt with size n

θt+1 = θt − ηt ·
(

1
n

∑
i∈Bt

(
gi(θt) − γct ·

gi(θ̃)
)
+ γct · g̃

)
end for

We find it impractical to compute the exact c∗t
and thus propose an approximation algorithm
for it to obtain a balance between the new and
old gradient. There are two challenges to calcu-
late the exact c∗t . On the one hand, to approach
the exact value, we need to calculate the gradi-
ents on every batch data, which is too expensive
to do it in each iteration. On the other hand,
the gradients are often high-dimensional and
the exact optimal c∗t will be different for dif-
ferent gradients. Thus, inspired by Deng et al.
(2020), we design an approximation algorithm
that makes good use of the loss information
and leads to only a small increase in compu-
tational effort. More specifically, we estimate
c∗t according to the changes of loss as shown
in Eq. (4) and update ĉ∗t adaptively before each
epoch using momentum. Loss is a scalar, which
makes it possible to estimate the shared corre-
lation for all current and previous gradients. In
addition, the loss is intuitively related to gradients and the correlation between losses can give us
some insights into that of the gradients (some empirical analyses are included in the Appendix B.7).

ĉ∗t =
Cov(G(B|θt), G(B|θ̃))

Var(G(B|θ̃))
, (4)

where B denotes a subset of samples used to estimate the gradients.

4.2 ADDITIONAL SCALING PARAMETER IS IMPORTANT

c∗

a3

ĉ1γĉ1

y = a1c
2 − 2a2c+ a3

Figure 1: Illustration of how the
scaling parameter γ = 0.1 ensures
the acceleration in the face of worst-
case estimate of c∗t . The blue curve
is a quadratic function, representing
the relationship between ct and the
variance. c∗ is the optimal value.
ĉ1 is a poor estimate making the
variance larger than a3 (variance in
SGD). γĉ1 can reduce the variance.

To guarantee successful acceleration in sparse and adversar-
ial training, we further propose a scaling strategy that multi-
plies the estimated c∗t by a small scaling parameter γ. There
are two main benefits of using a scaling parameter. First, the
scaling parameter γ can reduce the bias of the gradient es-
timates in adversarial training (Li et al., 2020). In standard
training, the batch gradient estimator is an unbiased estimator
of the full gradient. However, in adversarial training, we per-
turb the mini-batch of samples Bt into B̄t. The old gradients
gold are calculated on batch data B̄t, but the stored old gradi-
ents g̃ are obtained from the original data including Bt, which
makes E[gold − g̃] unequal to zero. Consequently, as shown
in Eq. (5), the corrected estimator for full gradients will no
longer be unbiased. It may have a small variance but a large
bias, resulting in poor performance. Therefore, we propose a
scaling parameter γ between 0 and 1 to reduce the bias from

4

Under review as a conference paper at ICLR 2023

ct(gold − g̃) to γct(gold − g̃).

E[ĝ(θt)] = E[gnew − ct(gold − g̃)] ̸= E[gold] =
1

N

N∑
i=1

gi(θt). (5)

Second, the scaling parameter γ guarantees that the variance can still be reduced in the face of
worst-case estimates of c∗t to accelerate the training. The key idea is illustrated in Figure 1, where
x and y axis correspond to the weight ct and the gradient variance, respectively. The blue curve is
a quadratic function that represents the relationship between ct and the variance. Suppose the true
optimal is c∗, and we make an approximation to it. In the worst case, this approximation may be as
bad as ĉ1, making the variance even larger than a3 (variance in SGD) and slowing down the training.
Then, if we replace ĉ1 with γĉ1, we can reduce the variance and accelerate the training.

5 THEORETICAL JUSTIFICATION

Theoretically, we provide a convergence analysis for our AGENT and compare it to SVRG (Reddi
et al., 2016). We use G(.) to denote the loss function and g to denote the gradient. Our proof is
based on Assumptions 1-2, and detailed derivation is included in Appendix A.

Assumption 1. The loss function G : Rn → R is L-smooth, i.e., for all x,y ∈ Rn, it satisfies
||∇G(x)−∇G(y)|| ≤ L||x− y||.
Assumption 2. The gradient of G is σ-bounded, i.e., ||∇Gi(x)|| ≤ σ for all i ∈ [N] and x ∈ Rn.

Our convergence analysis framework outlines four steps:

• We first show that a proper selection of ct will lead to a smaller variance of gradient estimate.

• Next, we show the convergence rate of one arbitrary training epoch.

• We then extend the one-epoch results and analyze the convergence rate for the whole epoch.

• After obtaining the convergence rate, we bring it to the real case of sparse learning and find that
our method indeed yields a tighter bound.

Given Assumptions 1-2, we follow the analysis framework above and establish Theorem 1 to show
the convergence rate of our AGENT:

Theorem 1. Under Assumptions 1-2, with proper choice of step size ηt and ct, the gradient
E[||g(θπ)||2] using AGENT after T training epochs can be bounded by:

E[||g(θπ)||2] ≤
(G(θ0)−G(θ∗))LNα

Tnν
+

2κµ2σ2

Nαmν

where θπ is sampled uniformly from {{θs
t }m−1

t=0 }T−1
s=0 , N denotes the data size, n denotes the mini-

batch size, m denotes the epoch length, θ0 is the initial point and θ∗ is the optimal solution,
ν, µ, κ, α > 0 are constants depending on ηt and ct, N and n.

In regard to Theorem 1, we make the following remarks to justify the acceleration from our AGENT:

Remark 1. (Faster Gradient Change Speed) An influential difference between sparse and dense
training is the gradient change speed, which is reflected in Assumption 1 (L-smooth). Typically, L
in sparse training will be larger than L in dense training.

Remark 2. (First Term Analysis) In Theorem 1, the first term in the bound of our AGENT measures
the error introduced by deviations from the optimal parameters, which goes to zero when the number
of epochs T reaches infinity. However, in real sparse training applications, T is finite and this term
is expanded due to the increase of L in sparse training, which implies that the optimization under
sparse constraints is more challenging.

Remark 3. (Second Term Analysis) In Theorem 1, the second term measures the error introduced by
the noisy gradient and the finite data. Since σ2 is relatively small and N is large in DNNs training,
the second term is negligible or much smaller compared to the first term when T is finite.

5

Under review as a conference paper at ICLR 2023

From the above analysis, we can compare the bounds of AGENT and SVRG and find that in the
case of sparse training, an appropriate choice of ct can make the bound for our AGENT tighter than
the bound for SVRG by well-corrected gradients.
Remark 4. (Comparison with SVRG) Under Assumptions 1-2, the gradient E[||g(θπ)||2] using
SVRG after T training epochs can be bounded by (Reddi et al., 2016):

E[||g(θπ)||2] ≤
(G(θ0)−G(θ∗))LNα

Tnν∗
.

This bound is of a similar form to the first term in Theorem 1. Since the second term of Theorem 1 is
negligible or much smaller than the first one, we only need to compare the first term. With a proper
choice of ct, the variance of ĝ(θt) will decrease, which leads to a smaller ν for AGENT than ν∗ for
SVRG. Thus, AGENT can bring a smaller first term compared to SVRG, which indicates that AGENT
effectively reduces the error due to the deviations and has a tighter bound compared to SVRG.

6 EXPERIMENTS

We add our AGENT to three recent sparse training pipelines, namely BSR-Net (Özdenizci & Legen-
stein, 2021), RigL (Evci et al., 2020) and ITOP (Liu et al., 2021). BSR-Net is a new sparse training
pipeline that updates connections by Bayesian sampling and also includes adversarial setups. RigL is
also a popular dynamic sparse training paradigm which uses weight and gradient magnitudes to learn
the connections. ITOP is another recent pipeline for dynamic sparse training, which uses sufficient
and reliable parameter exploration to achieve in-time over-parameterization. Detailed information
about the dataset, model architectures, and other training and evaluation setups is provided below.

Datasets & Model Architectures: The datasets we use include CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011), and ImageNet-2012 (see Appendix) (Russakovsky et al.,
2015). For model architectures, we use VGG-16 (Simonyan & Zisserman, 2015), ResNet-18,
ResNet-50 (He et al., 2016), and Wide-ResNet-28-4 (Zagoruyko & Komodakis, 2016).

Training Settings: For sparse training, we choose two sparsity levels, namely 90% and 99%. For
BSR-Net, we consider both standard and adversarial setups. In RigL and ITOP, we focus on standard
training. In standard training, we only use the original data to update the parameters. For adversarial
part, we use the perturbed data with two popular objective (AT and TRADES) (Madry et al., 2018;
Zhang et al., 2019; Özdenizci & Legenstein, 2021). Following Özdenizci & Legenstein (2021), we
evaluate robust accuracy against PGD attacks with random starts using 50 iterations (PGD50).

6.1 CONVERGENCE SPEED & STABILITY COMPARISONS

We compare the convergence speed by two criteria, including (a) the test accuracy at the same
number of pass data (epoch) and (b) the number of pass data (epoch) required to achieve the same
test accuracy, which is widely used to compare the speed of optimization algorithms (Allen-Zhu &
Hazan, 2016; Chatterji et al., 2018; Zou et al., 2018; Cutkosky & Orabona, 2019).

For BSR-Net-based results using criterion (a), Table 1 lists the accuracies on both clean and
adversarial samples after 20, 40, 70, 90, 140, and 200 epochs of training, where the higher accura-
cies are bolded. Sparse VGG-16 are learned on CIFAR-10 in both standard and adversarial sutups.
For the standard setup, we only present the clean accuracy. As we can see, our method maintains
higher clean and robust accuracies for almost all training epochs and setups which demonstrates
the successful acceleration from our method. In particular, for limited time periods like 20 epochs,
our A-BSR-Net usually shows dramatic improvements with clean accuracy as high as 11.4%, in-
dicating a significant reduction in early search time. In addition, considering the average accuracy
improvement over the 6 time budgets, our method outperforms BSR-Net in accuracy by upto 5.0%.

For ITOP-based results using criterion (a), as shown in Figure 2, the blue curves (A-RigL-ITOP
and A-SET-ITOP) are always higher than the red curves (RigL-ITOP and SET-ITOP), indicating
faster training when using our AGENT. In addition, we can see that the red curves experience severe
up and down fluctuations, especially in the early stages of training. In contrast, the blue curves are
more stable all the settings, which indicates AGENT is effective in stabilizing the sparse training.

For BSR-Net-based results using criterion (b), Figure 3 depicts the number of training epochs
required to achieve certain accuracy. We can see that the blue curves (A-BSR-Net) are always lower

6

Under review as a conference paper at ICLR 2023

Table 1: Testing accuracy (%) of BSR-Net-based models. Sparse VGG-16 are learned in standard
and adversarial setups. Results are presented as clean/robust accuracy (%). For the same number of
training epochs, our method has higher accuracy compared to BSR-Net in almost all cases.

90% SPARSITY 99% SPARSITY

BSR-NET OURS BSR-NET OURS

A
T

20-TH 55.0 (1.59)/38.2 63.6 (1.31)/37.3 49.8 (1.46)/31.0 56.4 (1.39)/31.4
40-TH 62.2 (1.88)/39.2 64.9 (0.81)/37.9 54.1 (1.72)/33.9 57.7 (0.39)/34.5
70-TH 73.1 (0.39)/37.8 75.1 (0.27)/45.2 64.7 (0.30)/34.9 66.0 (0.23)/39.4
90-TH 73.2 (0.29)/33.6 74.1 (0.25)/44.8 63.7 (0.25)/35.8 65.8 (0.24)/39.8
140-TH 76.7 (0.27)/46.5 77.4 (0.26)/43.8 68.4 (0.20)/40.8 69.8 (0.14)/41.2
200-TH 76.6 (0.25)/43.3 78.1 (0.24)/44.6 69.0 (0.15)/42.2 70.7 (0.06)/42.0

T
R

A
D

E
S

20-TH 62.0 (0.82)/33.3 65.0 (0.61)/37.6 55.7 (0.76)/25.5 57.6 (0.45)/31.6
40-TH 65.4 (0.97)/35.3 66.0 (0.34)/37.2 60.6 (0.69)/28.9 58.4 (0.34)/33.4
70-TH 73.4 (0.52)/34.8 73.5 (0.33)/45.4 66.3 (0.35)/33.5 67.3 (0.30)/39.0
90-TH 73.0 (0.36)/36.8 73.6 (0.28)/44.8 66.2 (0.33)/31.7 67.5 (0.24)/39.1
140-TH 76.4 (0.25)/45.1 76.8 (0.25)/46.3 70.0 (0.29)/38.2 69.9 (0.21)/41.5
200-TH 75.6 (0.23)/47.2 77.0 (0.24)/46.2 70.8 (0.19)/39.3 70.9 (0.25)/41.2

S
TA

N
D

A
R

D

20-TH 70.4 (2.50)/0.0 81.8 (0.62)/0.0 60.6 (1.26)/0.0 69.8 (1.45)/0.0
40-TH 77.6 (1.39)/0.0 82.4 (0.47)/0.0 62.6 (2.47)/0.0 73.7 (0.36)/0.0
70-TH 86.8 (0.78)/0.0 89.7 (0.38)/0.0 79.7 (0.72)/0.0 83.7 (0.24)/0.0
90-TH 87.6 (0.63)/0.0 89.3 (0.22)/0.0 80.5 (0.55)/0.0 83.9 (0.42)/0.0
140-TH 91.7 (0.44)/0.0 92.5 (0.06)/0.0 85.7 (0.42)/0.0 86.9 (0.07)/0.0
200-TH 91.8 (0.23)/0.0 92.6 (0.12)/0.0 85.8 (0.12)/0.0 87.1 (0.25)/0.0

0 50 100 150 200 250
Number of epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

ac
cu

ra
cy

A-RigL-ITOP
RigL-ITOP

(a) VGG-C(RigL)

0 50 100 150 200 250
Number of epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

ac
cu

ra
cy

A-RigL-ITOP
RigL-ITOP

(b) ResNet-34(RigL)

0 50 100 150 200 250
Number of epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

ac
cu

ra
cy

A-SET-ITOP
SET-ITOP

(c) VGG-C(SET)

0 50 100 150 200 250
Number of epochs

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

ac
cu

ra
cy

A-SET-ITOP
SET-ITOP

(d) ResNet-34(SET)

Figure 2: Testing accuracy for ITOP-based models at 99% sparsity on CIFAR-10. A-RigL-ITOP
and A-SET-ITOP (blue curves) converge faster than RigL-ITOP and SET-ITOP (pink curves).

0.60 0.65 0.70 0.75 0.80 0.85
Testing accuracy

0

20

40

60

80

100

120

140

Nu
m

be
r o

f e
po

ch
s

A-BSR-Net
BSR-Net

(a) VGG-16, Standard

0.60 0.65 0.70 0.75 0.80 0.85
Testing accuracy

0

20

40

60

80

100

Nu
m

be
r o

f e
po

ch
s

A-BSR-Net
BSR-Net

(b) WRN-28-4, Standard

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675
Testing accuracy

20

40

60

80

100

120

140

160

Nu
m

be
r o

f e
po

ch
s

A-BSR-Net
BSR-Net

(c) VGG-16, AT

0.500 0.525 0.550 0.575 0.600 0.625 0.650 0.675 0.700
Testing accuracy

20

40

60

80

100

120

Nu
m

be
r o

f e
po

ch
s

A-BSR-Net
BSR-Net

(d) WRN-28-4, AT

Figure 3: Number of training epochs required to achieve the accuracy at 99% sparsity. Our A-BSR-
Net (blue curves) need less time to achieve the accuracy compared to BSR-Net (pink curves).

than the red curves (BSR-Net), and on average our method reduces the number of training epochs
by up to 52.1%, indicating faster training when using our proposed A-BSR-Net.

6.2 FINAL ACCURACY COMPARISONS

In addition, we compare the final accuracy after sufficient training. RigL-based results on CIFAR-
10/100 are shown in Table 2. Our method A-RigL tends to be the best in almost all the scenarios.

7

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250
Number of epoch

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g

ac
cu

ra
cy

A-RigL-ITOP
RigL-ITOP + SVRG
RigL-ITOP

(a) VGG-C

0 50 100 150 200 250
Number of epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

ac
cu

ra
cy

A-RigL-ITOP
RigL-ITOP + SVRG
RigL-ITOP

(b) ResNet-34

0 50 100 150 200 250
Number of epoch

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g

ac
cu

ra
cy

A-SET-ITOP
SET-ITOP + SVRG
SET-ITOP

(c) VGG-C

0 50 100 150 200 250
Number of epoch

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

in
g

ac
cu

ra
cy

A-SET-ITOP
SET-ITOP + SVRG
SET-ITOP

(d) ResNet-34

Figure 4: Testing accuracy for ITOP-based models at 99% sparsity on CIFAR-10. SVRG (green
curves) slows down the training. Our AGENT (blue curves) accelerates the training.

For BSR-Net-based results in Table 3, we compare our A-BSR-Net with BSR-Net on SVHN using
VGG-16 and WideResNet-28-4 (WRN-28-4), and our method is often the best again. This shows
that our AGENT can accelerate sparse training while maintaining or even improving the accuracy.

6.3 COMPARISON WITH OTHER GRADIENT CORRECTION METHODS

Table 2: Final accuracy (%) of RigL-based models. AGENT
+ RigL (A-RigL) maintains or even improves the accuracy.

DENSE 90% 99%

CIFAR-10
A-RIGL 95.2 (0.24) 95.0 (0.21) 93.1 (0.25)

RIGL 95.0 (0.26) 94.2 (0.22) 92.5 (0.33)

CIFAR-100
A-RIGL 72.9 (0.19) 72.1 (0.20) 66.4 (0.14)

RIGL 73.1 (0.17) 71.6 (0.26) 66.0 (0.19)

We also compare our AGENT with
SVRG (Baker et al., 2019), a pop-
ular gradient correction method in
the non-sparse case. The presented
ITOP-based results are based on
sparse (99%) VGG-C and ResNet-
34 on CIFAR-10. Figure 4 (a)-(b)
show the testing accuracy of A-RigL-
ITOP (blue), RigL-ITOP (red), and
RigL-ITOP+SVRG (green) at differ-
ent epochs. We can see that the yellow curve for RigL-ITOP+SVRG is often lower than the other
two curves, indicating that model convergence is slowed down by SVRG. As for the blue curve for
our A-RigL-ITOP, it is always on the top of the green curve for RigL-ITOP, indicating a successful
acceleration. The SET-ITOP-based results depicted in Figure 4 (c)-(d) show a similar pattern. This
demonstrates that SVRG does not work for sparse training, while AGENT overcomes its limitations.

6.4 ABLATION STUDIES
Table 3: Final accuracy (%) of BSR-Net-
based models on SVHN with adversarial
training objectives (TRADES). Our AGENT
maintains or even improves the accuracy.

BSR-NET OURS

90%
VGG-16 89.4 (0.29) 94.4 (0.25)

WRN-28-4 92.8 (0.24) 95.5 (0.23)

99%
VGG-16 86.4 (0.25) 90.9 (0.26)

WRN-28-4 89.5 (0.22) 92.2 (0.19)

We demonstrate the importance of each component
in our framework by removing it one by one and
comparing the results. Specifically, we consider ex-
amining the contribution of the time-varying weight
ct of old gradients and the scaling parameter γ.
The term ”Fixed ct” corresponds to fixing weight
ct = 0.1 during training, and ”No γ” represents a di-
rect use of ĉ∗t in Eq. (4) and the momentum scheme
without adding the scaling parameter.

Table 4 shows the clean and robust accuracies of standard and adversarial (AT or TRADES) training
on CIFAR-10 using VGG-16 under different number of training epochs. In the adversarial training,
we can see that ”No γ” is poorly learned and has the worst results. While our method outperforms
”Fix ct” and ”No γ” in almost all cases, especially in highly sparse tasks. For standard training,
”No γ” can learn some information, but still performs worse than the other two methods. ”Fix ct”
provides similar convergence speed as our method, while ours tends to have a better final score.

From the above discussion, both the adaptive update of ct and the multiplication of the scaling
parameter γ are important for the acceleration. On the one hand, the traditional way of setting ct = 1
is not desirable in sparse training. Fixing it as a smaller value, such as 0.1, sometimes can work in
standard training. But updating ct adaptively with loss-dependent information usually provides some
benefits. These benefits become more significant in sparse and adversarial training which are more

8

Under review as a conference paper at ICLR 2023

Table 4: Ablation Studies: testing accuracy (%) comparisons with Fixed c and No γ on sparse VGG-
16. Results are presented as clean/robust accuracy (%). For the same number of training epochs, our
method has higher accuracy compared to Fixed c and No γ in almost all cases.

90% SPARSITY 99% SPARSITY
FIXED ct NO γ OURS FIXED ct NO γ OURS

A
T

20-TH 54.1/36.2 28.6/20.1 63.6/37.3 10.0/10.0 10.0/10.0 56.4/31.4
40-TH 58.9/37.1 20.4/13.0 64.9/37.9 10.0/10.0 10.0/10.0 57.7/34.5
70-TH 66.8/41.6 19.9/14.7 75.1/45.2 10.0/10.0 10.0/10.0 66.0/39.4
90-TH 67.7/43.3 21.8/15.6 74.1/44.8 10.0/10.0 10.0/10.0 65.8/39.8
140-TH 71.4/43.4 20.0/12.1 77.4/43.8 10.0/10.0 10.0/10.0 69.8/41.2
200-TH 71.7/43.0 20.5/9.5 78.1/44.6 10.0/10.0 10.0/10.0 70.7/42.0

T
R

A
D

E
S

20-TH 62.6/35.2 38.5/21.8 65.0/37.6 54.5/31.2 35.2/21.6 57.6/31.6
40-TH 65.0/38.0 34.7/20.2 66.0/37.2 56.0/30.5 21.5/10.0 58.4/33.4
70-TH 73.9/44.5 28.8/18.4 73.5/45.4 62.5/36.8 18.8/16.2 67.3/39.0
90-TH 75.1/44.4 25.8/15.9 73.6/44.8 63.9/37.4 16.9/15.9 67.5/39.1
140-TH 76.7/46.5 28.6/14.1 76.8/46.3 65.5/39.0 19.7/14.4 69.9/41.5
200-TH 76.8/46.1 30.7/12.7 77.0/46.2 70.3/38.5 20.1/13.2 70.9/41.2

S
TA

N
D

A
R

D

20-TH 80.9/0.0 70.6/0.0 81.8/0.0 73.7/0.0 51.8/0.0 69.8/0.0
40-TH 83.3/0.0 68.0/0.0 82.4/0.0 74.9/0.0 55.2/0.0 73.7/0.0
70-TH 90.2/0.0 77.3/0.0 89.7/0.0 84.1/0.0 65.9/0.0 83.7/0.0
90-TH 89.8/0.0 77.8/0.0 89.3/0.0 80.5/0.0 67.8/0.0 83.9/0.0
140-TH 92.4/0.0 80.7/0.0 92.5/0.0 87.2/0.0 71.9/0.0 86.9/0.0
200-TH 92.1/0.0 78.6/0.0 92.6/0.0 86.4/0.0 70.0/0.0 87.1/0.0

challenging and of great value. On the other hand, we recommend adding a scaling parameter γ
(like 0.1) to ct to avoid increasing the variance and reduce the potential bias in adversarial training.

6.5 SCALING PARAMETER SETTING

The choice of scaling parameters is important and can be seen as a hyper-parameter tuning process.
We check different values from 0 to 1 and find that setting γ = 0.1 is a good choice to accelerate
the training effectively. If setting γ close to 1, we will not be able to completely avoid the increase
in variance, which leads to performance drop, similar to ”No γ” in Table 4. If γ is set too small,
such as 0.01, the weight of the old gradients will be too small and the old gradients will have limited
influence on the model update, which will return to SGD’s slowdown and training instability. More
detailed experimental results using different scaling parameters γ are included in the Appendix.

7 DISCUSSION AND CONCLUSION

We develop an adaptive gradient correction (AGENT) method for sparse training to achieve the time
efficiency and reduce training instability from an optimization perspective, which can be incorpo-
rated into any SGD-based sparse training pipeline and work in both standard and adversarial setups.
To achieve a fine-grained control over the balance of current and old gradients, we use loss informa-
tion to analyze gradient changes, and add an adaptive weight on the old gradients. In addition, we
design a scaling parameter to reduce the bias of the gradient estimator introduced by the adversarial
samples and improve the worst case of the adaptive weight estimate. Experiment results on multiple
datasets, model architectures, and sparsities demonstrate that our method outperforms state-of-the-
art sparse training methods in terms of accuracy by up to 5.0% and reduces the number of training
epochs by up to 52.1% for the same accuracy achieved.

A number of methods can be employed to reduce the FLOPs in our AGENT. Similar to SVRG, our
AGENT increases the training FLOPs in each iteration due to the extra forward and backward used to
compute the old gradients. To reduce the FLOPs, the first method is to use sparse gradients (Elibol
et al., 2020), which effectively reduces the cost of backward in sparse training and can be easily
applied to our method. The second method is parallel computing Allen-Zhu & Hazan (2016). Since
the additional forward and backward over the old model parameters are fully parallelizable, we can
view it as doubling the mini-batch size. Third, we can follow the idea of SAGA (Defazio et al.,
2014) by storing gradients for each single sample. By this way, we do not need extra forward and
backward steps, saving the computation. However, it requires extra memory to store the gradients.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in Neural In-
formation Processing Systems, 30, 2017.

Zeyuan Allen-Zhu and Elad Hazan. Variance reduction for faster non-convex optimization. In
International conference on machine learning, pp. 699–707. PMLR, 2016.

Jack Baker, Paul Fearnhead, Emily B Fox, and Christopher Nemeth. Control variates for stochastic
gradient mcmc. Statistics and Computing, 29(3):599–615, 2019.

Brian Bartoldson, Ari Morcos, Adrian Barbu, and Gordon Erlebacher. The generalization-stability
tradeoff in neural network pruning. Advances in Neural Information Processing Systems, 33:
20852–20864, 2020.

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. International Conference on Learning Representations (ICLR), 2018.

Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-compression” algorithms for neural net
pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8532–8541, 2018.

Niladri Chatterji, Nicolas Flammarion, Yian Ma, Peter Bartlett, and Michael Jordan. On the theory
of variance reduction for stochastic gradient monte carlo. In International Conference on Machine
Learning, pp. 764–773. PMLR, 2018.

El Mahdi Chayti and Sai Praneeth Karimireddy. Optimization with access to auxiliary information.
arXiv preprint arXiv:2206.00395, 2022.

Beidi Chen, Tri Dao, Kaizhao Liang, Jiaming Yang, Zhao Song, Atri Rudra, and Christopher Re.
Pixelated butterfly: Simple and efficient sparse training for neural network models. arXiv preprint
arXiv:2112.00029, 2021.

Changyou Chen, Wenlin Wang, Yizhe Zhang, Qinliang Su, and Lawrence Carin. A convergence
analysis for a class of practical variance-reduction stochastic gradient mcmc. Science China
Information Sciences, 62(1):1–13, 2019.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in neural information pro-
cessing systems, 27, 2014.

Wei Deng, Qi Feng, Georgios Karagiannis, Guang Lin, and Faming Liang. Accelerating con-
vergence of replica exchange stochastic gradient mcmc via variance reduction. arXiv preprint
arXiv:2010.01084, 2020.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing
performance. arXiv preprint arXiv:1907.04840, 2019.

Kumar Avinava Dubey, Sashank J Reddi, Sinead A Williamson, Barnabas Poczos, Alexander J
Smola, and Eric P Xing. Variance reduction in stochastic gradient langevin dynamics. Advances
in neural information processing systems, 29:1154–1162, 2016.

Melih Elibol, Lihua Lei, and Michael I Jordan. Variance reduction with sparse gradients. arXiv
preprint arXiv:2001.09623, 2020.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

10

Under review as a conference paper at ICLR 2023

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator. Advances in Neural Information
Processing Systems, 31, 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. International Conference on Learning Representations (ICLR), 2019.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of sgd: Variance reduc-
tion, sampling, quantization and coordinate descent. In International Conference on Artificial
Intelligence and Statistics, pp. 680–690. PMLR, 2020.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning. In International Conference on Machine Learning, pp. 7766–7792.
PMLR, 2022.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
In Neural Information Processing Systems, pp. 1379–1387, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in
deep learning: Pruning and growth for efficient inference and training in neural networks. arXiv
preprint arXiv:2102.00554, 2021.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accel-
erated sparse neural training: A provable and efficient method to find n: m transposable masks.
Advances in Neural Information Processing Systems, 34, 2021.

Masumi Ishikawa. Structural learning with forgetting. Neural networks, 9(3):509–521, 1996.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k
always sparse training. Advances in Neural Information Processing Systems, 33:20744–20754,
2020.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. Advances in neural information processing systems, 26:315–323, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Clayton Frederick Souza Leite and Yu Xiao. Optimal sensor channel selection for resource-efficient
deep activity recognition. In Proceedings of the 20th International Conference on Information
Processing in Sensor Networks (co-located with CPS-IoT Week 2021), pp. 371–383, 2021.

Yan Li, Ethan Fang, Huan Xu, and Tuo Zhao. Implicit bias of gradient descent based adversarial
training on separable data. In International Conference on Learning Representations, 2020.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pp. 6989–7000. PMLR, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

11

Under review as a conference paper at ICLR 2023

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learn- ing Representations (ICLR), 2018.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In International Conference on Machine
Learning, pp. 2613–2621. PMLR, 2017.

Ozan Özdenizci and Robert Legenstein. Training adversarially robust sparse networks via bayesian
connectivity sampling. In International Conference on Machine Learning, pp. 8314–8324.
PMLR, 2021.

Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic variance
reduction for nonconvex optimization. In International conference on machine learning, pp. 314–
323. PMLR, 2016.

Johanna Rock, Wolfgang Roth, Mate Toth, Paul Meissner, and Franz Pernkopf. Resource-efficient
deep neural networks for automotive radar interference mitigation. IEEE Journal of Selected
Topics in Signal Processing, 15(4):927–940, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Power-
propagation: A sparsity inducing weight reparameterisation. Advances in Neural Information
Processing Systems, 34:28889–28903, 2021.

Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially robust
neural networks. arXiv preprint arXiv:2002.10509, 2020.

Fanhua Shang, Kaiwen Zhou, Hongying Liu, James Cheng, Ivor W Tsang, Lijun Zhang, Dacheng
Tao, and Licheng Jiao. Vr-sgd: A simple stochastic variance reduction method for machine
learning. IEEE Transactions on Knowledge and Data Engineering, 32(1):188–202, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. Interna- tional Conference on Learning Representations (ICLR), 2015.

Varun Sundar and Rajat Vadiraj Dwaraknath. [reproducibility report] rigging the lottery: Making all
tickets winners. arXiv preprint arXiv:2103.15767, 2021.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. CoRR, abs/1702.04008, 2017.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Rong Yu and Peichun Li. Toward resource-efficient federated learning in mobile edge computing.
IEEE Network, 35(1):148–155, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. British Machine Vision Confer-
ence, 2016.

12

Under review as a conference paper at ICLR 2023

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pp. 7472–7482. PMLR, 2019.

Xiao Zhou, Weizhong Zhang, Zonghao Chen, Shizhe Diao, and Tong Zhang. Efficient neural net-
work training via forward and backward propagation sparsification. Advances in Neural Informa-
tion Processing Systems, 34:15216–15229, 2021a.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 3599–3608, 2021b.

Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gradient langevin
dynamics. In International Conference on Uncertainty in Artificial Intelligence, 2018.

13

Under review as a conference paper at ICLR 2023

A APPENDIX: THEORETICAL PROOF OF CONVERGENCE RATE

In this section, we provide a detailed proof for the convergence rate of our AGENT method. We
start with some assumptions on which we will give some useful lemmas. Then, we will establish the
convergence rate of our AGENT method based on these lemmas.

A.1 ALGORITHM REFORMULATION

We reformulate our Adaptive Gradient Correction (AGENT) into a math-friendly version that is
shown in Algorithm 2.

Algorithm 2 Adaptive Gradient Correction
Input: Initialize θ0

0 and c−1 = 0, set the number of epochs S, epoch length m, step sizes ht, scaling
parameter γ, and smoothing factor α
for s = 0 to S − 1 do

θ̃ = θs
0

g̃ = (
∑N

i=1 ∇G(xi; θ̃))/N

Calculate ĉ∗s via Eq. (4)
c̃s = (1− α)c̃s−1 + αĉ∗s
cs = γc̃s
for t = 0 to m− 1 do

Sample a mini-batch data Bt with size n

θs
t+1 = θs

t − ηt

(
1
n

∑
i∈Bt

(
gi(θ

s
t)− cs · gi(θ̃)

)
+ cs · g̃

)
end for
θs+1
0 = θs

m

end for
Output: Iterates θπ chosen uniformly random from {{θs

t }m−1
t=0 }S−1

s=0

A.2 ASSUMPTIONS

L-smooth: A differentiable function G : Rn → R is said to be L-smooth if for all x,y ∈ Rn is
satisfies ||∇G(x)−∇G(y)|| ≤ L||x− y||. And an equivalent definition is for. all x,y ∈ Rn:

−L

2
||x− y||2 ≤ G(x)−G(y)− ⟨∇G(x),x− y⟩ ≤ L

2
||x− y||2

σ-bounded: We say function G has a σ-bounded gradient if ||∇Gi(x)|| ≤ σ for all i ∈ [N] and
x ∈ Rn

A.3 ANALYSIS FRAMEWORK

Under the above assumptions, we are ready to analyze the convergence rate of AGENT in Algo-
rithm 2. To introduce the convergence analysis more clearly, we provide a brief analytical frame-
work for our proof.

• First, we need to show that the variance of our gradient estimator is smaller than that of
minibatch SVRG under proper choice of cs. Since the gradient estimator of both AGENT
and minibatch SVRG are unbiased estimators in standard training, we only need to show
that our bound E[||ut||2] is smaller than minibatch SVRG. (See in Lemma 1)

• Based on above fact, we next apply the Lyapunov function to prove the convergence rate
of AGENT in one arbitrary epoch. (See in Lemma 3)

• Then, we extend our previous results to the entire epoch (from 0 to S-th epoch) and derive
the convergence rate of the output θπ of Algorithm 2. (See in Lemma 4)

14

Under review as a conference paper at ICLR 2023

• Finally, we compare the convergence rate of our AGENT with that of minibatch SVRG.
Setting the parameters in Lemma 4 according to the actual situation of sparse learning, we
obtain a bound that is more stringent than minibatch SVRG.

A.4 LEMMA

We first denote step length ηt = N · ht. Since we mainly focus on a single epoch, we drop the

superscript s and denote ut =
1
n

∑
i∈Bt

(
gi(θt)−c ·gi(θ̃)

)
+c · g̃ which is the gradient estimator in

our algorithm and τt =
1
n

∑
i∈Bt

(
gi(θt)−c ·gi(θ̃)

)
, then lines the update procedure in Algorithm

2 can be replaced with θt+1 = θt − ηt · ut

A.4.1 LEMMA 1

For the ut defined above and function G is a L-smooth, λ - strongly convex function with σ-bounded
gradient, then we have the following results:

E
[
||ut||2

]
≤ 2E

[
||g(θt)||2

]
+

4c2L2

n
E
[
||θt − θ̃||2

]
+

4(1− c)2

n
σ2 (6)

Proof :

E
[
||ut||2

]
= E

[
||τt + c · g̃||2

]
= E

[
||τt + c · g̃ − g(θt) + g(θt)||2

]
≤ 2E

[
||g(θt)||2

]
+ 2E

[
||τt − E(τt)||2

]
≤ 2E

[
||g(θt)||2

]
+

2

n
E
[
τ 2
t

]
= 2E

[
||g(θ)||2

]
+

2

n
E
[
||c(gi(θt)− gi(θ̃)) + (1− c)gi(θt)||2

]
≤ 2E

[
||g(θ)||2

]
+

4

n
E
[
||c(gi(θt)− gi(θ̃))||2

]
+

4(1− c)2

n
E
[
||gi(θt)||2

]
≤ 2E

[
||g(θ)||2

]
+

4c2L2

n
E
[
||θt − θ̃||2

]
+

4(1− c)2

n
σ2

The first and third inequality are because ||a+b||2 ≤ 2||a||2+2||b||2 , the second inequality follows
the E

[
||τ − E [τ] ||2

]
≤ E

[
||τ ||2

]
and the last inequality follows the L-smoothness and σ-bounded

of function Gi.

Remark 5. Compared with the gradient estimator of minibatch SVRG, the bound of E[||ut||2] is
smaller when L is large, σ is relative small and c is properly chosen.

A.4.2 LEMMA 2

E [G(θt+1)] ≤ E
[
G(θt) + ηt||g(θt)||2 +

Lη2

2
||ut||2

]
(7)

Proof :

By the L-smoothness of function G, we have

E [G(θt+1)] ≤ E
[
G(θt) + ⟨g(θt),θt+1 − θt⟩+

L

2
||θt+1 − θt||2

]
By the update procedure in algorithm 2 and unbiasedness, the right hand side can further upper
bounded by

E
[
G(θt) + ηt||g(θt)||2 +

Lη2t
2

||ut||2
]

15

Under review as a conference paper at ICLR 2023

A.4.3 LEMMA 3

For bt, bt+1, ζt > 0 and bt and bt+1 have the following relationship

bt = bt+1(1 + ηtζt +
4c2η2tL

2

n
) + 2

c2η2tL
3

n

and define

Φt := ηt −
bt+1ηt
ζt

− η2tL− 2bt+1η
2
t

Ψt := E
[
G(θt) + bt||θt − θ̃||2

]
(8)

ηt, ζt and bt+1 can be chosen such that Φt > 0.Then the xt in Algorithm 1 have the bound:

E[||g(θt)||2] ≤
Ψt −Ψt+1 +

2(Lη2
t+2bt+1η

2
t)(1−c)2

n σ2

Φt

Proof :
We apply Lyapunov function

Ψt = E
[
G(θt) + bt||θt − θ̃||2

]
Then we need to bound ||θt − θ̃||

E
[
||θt+1 − θ̃||2

]
= E

[
||θt+1 − θt + θt − θ̃||2

]
= E

[
||θt+1 − θt||2 + ||θt − θ̃||2 + 2⟨θt+1 − θt,θt − θ̃⟩

]
= E

[
η2
t ||ut||2 + ||θt − θ̃||2

]
− 2ηtE

[
⟨g(θt),θt − θ̃⟩

]
≤ E[η2t ||us+1

t ||2 + ||θt − θ̃||2] + 2ηtE
[

1

2ζt
||g(θt)||+

ζt
2
||θt − θ̃||2

]
(9)

The third equality due to the unbiasedness of the update and the last inequality follows Cauchy-
Schwarz and Young’s inequality. Plugging Equation (6), Equation (7) and Equation (9) into Equation
(8), we can get the following bound:

Ψt+1 ≤ E [G(θt)] +

(
bt+1(1 + ηtζt +

4c2η2tL
2

n
) +

2c2η2tL
3

n

)
E[||θt − θ̃||2]

− (ηt −
bt+1ηt
ζt

− Lη2t − 2bt+1η
2
t)E

[
||g(θt)||2

]
+ 4(

Lη2t
2

+ bt+1η
2
t)
(1− c)2

n
σ2

= Ψt − (ηt −
bt+1ηt
ζt

− Lη2t − 2bt+1η
2
t)E

[
||g(θt)||2

]
+ 4(

Lη2t
2

+ bt+1η
2
t)
(1− c)2

n
σ2

A.4.4 LEMMA 4

Now we consider the effect of epoch and use s to denote the epoch number. Let bsm = 0, ηst = η,
ζst = ζ and bst = bst+1(1 + ηζ +

4c2sηL
2

n) + 2
c2sη

2L2

n , Φs
t = η − bst+1η

ζt
− η2L − 2bst+1η

2 Define
ϕ := mint,s Φ

s
t . Then we can conclude that:

16

Under review as a conference paper at ICLR 2023

E[||g(θπ)||2] ≤
G(θ0)−G(θ∗)

Tϕ
+

S−1∑
s=0

m−1∑
t=0

2(L+ 2bst+1)(1− cs)
2η2σ2

Tnϕ

Proof :

Under the condition of ηst = η, we apply telescoping sum on Lemma 3, then we will get:

m−1∑
t=1

E[||g(θs
t)||2] ≤

Ψs
0 −Ψs

m

ϕ
+

m−1∑
t=0

2(L+ 2bst+1)(1− cs)
2η2σ2

nϕ

From previous definition, we know Ψs
0 = G(θ̃s), Ψs

m = G(θ̃s+1) and plugging into previous
equation, we obtain:

m−1∑
t=1

E[||g(θs
t)||2] ≤

G(θ̃s)−G(θ̃s+1)

ϕ
+

m−1∑
t=0

2(L+ 2bst+1)(1− cs)
2η2σ2

nϕ

Take summation over all the epochs and using the fact that θ̃0 = θ0, G(θ̃S) ≤ G(θ∗) we immedi-
ately obtain:

1

T

S−1∑
s=0

m−1∑
t=1

E[||g(θs
t)||2] ≤

G(θ0)−G(θ∗)
ϕ

+

S−1∑
s=0

m−1∑
t=0

2(L+ 2bst+1)(1− cs)
2η2σ2

Tnϕ
(10)

A.5 THEOREM

A.5.1 THEOREM 1

Define ξs =
∑m−1

t=0 (L+ 2bst+1) and ξ := mins ξs. Let η = µn
LNα (0 < µ < 1) and (0 < α ≤

1), ζ = L
Nα/2 and m = N

3α
2

µn . Then there exists constant ν, µ, α, κ > 0 such that ϕ ≥ nν
LNα and

ξ ≤ κL. Then E[||g(θπ)||2] can be future bounded by:

E[||g(θπ)||2] ≤
(G(θ0)−G(θ∗))LNα

Tnν
+

2κµ2σ2

Nανm

Proof :

By applying summation formula of geometric progression on the relation bst = bst+1(1 + ηtζt +
4c2sη

2
tL

2

n) + 2
c2sη

2
tL

3

n , we have bst =
2c2sη

2L3

n
(1+ωs)

m−t−1
ωs

where:

ωs = ηζ +
4c2sη

2L

n
=

µn

N
3α
2

+
4c2sµ

2n

N2α
≤ (4c2s + 1)µn

N
3α
2

This bound holds because µ ≤ 1 and N ≥ 1 and thus 4c2sµ
2n

N2α =
4c2sµn

N
3α
2

× µ

N
α
2
≤ 4c2sµn

N
3α
2

. And using
this bound, we obtain:

17

Under review as a conference paper at ICLR 2023

bs0 =
2η2c2sL

3

n

(1 + ωs)
m − 1

ωs
=

2µ2nc2sL

N2α

(1 + ωs)
m − 1

ωs

≤ 2µnc2sL((1 + ωs)
m − 1)

N
α
2 (4cs + 1)

≤
2µnc2sL((1 +

(4c2s+1)µn

N
3α
2

)
N

3α
2

µn − 1)

N
α
2 (4c2s + 1)

≤ 2µnc2sL(e
1

4c2s+1 − 1)

N
α
2 (4c2s + 1)

The last inequality holds because (1 + 1
x)

x is a monotone increasing function of x when x > 0.

Thus (1 + (4c2s+1)µn

N
3α
2

)
N

3α
2

µn ≤ e
1

4c2s+1 in the third inequality. And we can obtain the lower bound for
ϕ

ϕ = min
t,s

Φs
t ≥ min

s
(η − bs0η

ζ
− η2L− 2bs0η

2) ≥ nν

LNα

The first inequality holds since bts is a decrease function of t. Meanwhile, the second inequality
holds because there exist uniform constant ν such that ν ≥ µ(1− bs0η

ζ − Lη − bs0η).

Remark 6. In practice, bs0 ≈ 0 because both γ and cs is both smaller than 0.1 which leads to
µ(1− bs0

ζ −Lη − bs0η) ≈ µ(1−Lη) and this value is usually much bigger than the ν∗ in the bound
of minibatch SVRG.

We need to find the upper bound for ξ

ξs =

m−1∑
t=0

(L+ 2bst+1) = mL+ 2

m−1∑
t=0

bst+1

= mL+ 2

m−1∑
t=0

2c2sη
2L3

n

(1 + ωs)
m−t − 1

ωs

= mL+
2c2sη

2L3

nωs
[
(1 + ωs)

m+1 − (1 + ωs)

ωs
−m]

≤ mL+
2c2sη

2L3

n
[
1 + ωs

ω2
s

(e
1

4c2s+1 − 1)−m]

≤ mL+
2c2sLN

α

n
(1 +

µn

N3α/2
)(e

1
4c2s+1 − 1)− 2c2sµ

2nmL

N2α

= L[(1− 2c2sµ
2nL

N2α
)m+

2c2sN
α

n
(1 +

µn

N3α/2
)(e

1
4c2s+1 − 1)]

The reason why the first inequality holds is explained before and the second inequality holds because
1+x
x2 is a monotone decreasing function of x when x > 0, ωs = µn

N
3α
2

+
4c2sµ

2n
N2α ≤ µn

N
3α
2

and η =

µn
LNα . Then ξ = maxs ξs ≤ κL where κ ≥ maxs((1− 2c2sµ

2nL
N2α)m+

2c2sN
α

n (1+ µn
N3α/2)(e

1
4c2s+1 −1)).

When cs ≈ 0, (1− 2c2sµ
2nL

N2α)m+
2c2sN

α

n (1 + µn
N3α/2)(e

1
4c2s+1 − 1) ≈ m.

Now we obtain the lower bound for ϕ and upper bound for ξ, plugging them into equation (10), we
will have:

18

Under review as a conference paper at ICLR 2023

E[||g(θπ)||2] ≤
G(θ0)−G(θ∗)

ϕ
+

S−1∑
s=0

m−1∑
t=0

2(L+ 2bst+1)(1− cs)
2η2σ2

Tnϕ

≤ (G(θ0)−G(θ∗))LNα

Tnν
+

S−1∑
s=0

m−1∑
t=0

2(L+ 2bst+1)η
2σ2

Tnϕ

≤ (G(θ0)−G(θ∗))LNα

Tnν
+

S−1∑
s=0

(
2η2σ2

Tnϕ
)

m−1∑
t=0

(L+ 2bst+1)

≤ (G(θ0)−G(θ∗))LNα

Tnν
+

2κµ2σ2

Nανm

A.6 REAL CASE ANALYSIS FOR SPARSE TRAINING

A.6.1 CIFAR-10/100 DATASET

In our experiments, we apply both SVRG and AGENT on CIFAR-10 and CIFAR-100 dataset with
η = 0.1, γ = 0.1, batch size m = 128 and in total 50000 training sample. Under this parameter
setting, ν and ν∗in Theorem 1 and Remark 4 are about 0.1 and 0.06, respectively. While 2κµ2σ2

Nανm

is around 10−5 which is negligible so we know AGENT should have a tighter bound than SVRG in
this situation which matches with the experimental results show in Figure 6.

A.6.2 SVHN DATASET

Meanwhile, in SVHN dataset, we train our model with parameters: η = 0.1, γ = 0.1, batch size
m = 573 and sample size N = 73257. ν, ν∗ equal 0.4 and 0.06 respectively and 2κµ2σ2

Nανm is around
10−4. Although the second term in Theorem 1 is bigger. Since ν here is a lot bigger than ν∗ which
lead to the first term in Theorem 1 much smaller than that of Remark 4. So we still obtain a more
stringent bound compared with SVRG which also meets with the outcome presented in Figure 9.

19

Under review as a conference paper at ICLR 2023

B ADDITIONAL EXPERIMENTAL RESULTS

We summarize additional experimental results for the BSR-Net-based Özdenizci & Legenstein
(2021), RigL-based Evci et al. (2020), and ITOP-based Liu et al. (2021) models.

B.1 ACCURACY COMPARISONS IN DIFFERENT EPOCHS

Aligned with the main manuscript, we compare the accuracy for a given number of epochs to com-
pare both the speed of convergence and training stability. We first show BSR-Net-based results in
this section. Since our approach has faster convergence and does not require a long warm-up period,
the dividing points for the decay scheduler are set to the 50th and 100th epochs. In the manuscript,
we also use this schedule for BSR-Net for an accurate comparison. In the Appendix, we include the
results using its original schedule. BSR-Net and BSR-Net (ori) represent the results learned using
our learning rate schedule and original schedule in Özdenizci & Legenstein (2021), respectively.
As shown in Figures 5, 6, 7, 8, 9, 10, 11, the blue curves (A-BSR-Net) are always higher than the
yellow curves and also much smoother than yellow curves (BSR-Net and BSR-Net (ori)), indicating
faster and more stable training when using our proposed A-BSR-Net.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 5: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with natural training on CIFAR-10
using VGG-16.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 6: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with adversarial training (objective:
AT) on CIFAR-10 using VGG-16.

20

Under review as a conference paper at ICLR 2023

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 7: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with natural training on CIFAR-10
using Wide-ResNet-28-4.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 8: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with adversarial training (objective:
AT) on CIFAR-10 using Wide-ResNet-28-4.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 9: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with natural training on SVHN
using VGG-16.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 10: Comparisons (accuracy given the number of epochs) with BSR-Net Özdenizci & Legen-
stein (2021). We evaluate sparse networks (99% or 90%) learned with adversarial training (objective:
TRADES) on SVHN using VGG-16.

21

Under review as a conference paper at ICLR 2023

(a) CIFAR-100,VGG-16 (b) SVHN,VGG-16 (c) CIFAR-100,WRN-28-
4

(d) SVHN,WRN-28-4

Figure 11: Training curve (accuracy given number of epochs) of BSR-Net-based models (Özdenizci
& Legenstein, 2021). Sparse networks (99%) are learned in standard setups on (a) CIFAR-100 using
VGG-16, (b) SVHN using VGG-16, (c) CIFAR-100 using WRN-28-4, (d) SVHN using WRN-28-4.

(a) Standard (b) Adversarial (AT)

Figure 12: Training curve (required epochs to reach given accuracy) of BSR-Net-based mod-
els (Özdenizci & Legenstein, 2021). Dense networks are learned in standard and adversarial setups
on CIFAR-10 using VGG-16.

In Figure 12, we also compare the convergence speed without sparsity. We show a BSR-Net-based
result, where dense network is learned by adversarial training (AT) and standard training on CIFAR-
10 using VGG-16. The blue curve of our A-BSR-Net tends to be above the yellow curve of BSR-Net,
indicating successful acceleration. This demonstrates the broad applicability of our method.

Then, we also show ITOP-based results on ImageNet-2012. As shown in Figure 13, the red and blue
curve represent AGENT + RigL-ITOP and RigL-ITOP on 90% sparse ResNet-50, respectively. We
can see that the red curve is more stable than the blue curve, which shows the stable effect of our
AGENT on large data sets and is a slightly different manifestation of the strengths of our AGENT.
If we use SVRG in this case, we will not only fail to train stably, but also slow down the training
speed. In contrast, our AGENT can solve the limitation of SVRG.

For other sparsity levels, we can expect advantages of our AGENT, in terms of acceleration or
stability. Moreover, we can expect more significant speedups at different sparsity levels with more
hyperparameter tuning, as the speedups are guaranteed by theoretical proofs.

B.2 NUMBER OF TRAINING EPOCH COMPARISONS

We also compare the number of training epochs required to reach the same accuracy in BSR-Net-
based results. In Figures 14, 15, 16, 17, 18, 19, 20, the blue curves (A-BSR-Net) are always lower
than yellow curves (BSR-Net and BSR-Net (ori)), indicating faster convergence of A-BSR-Net.

B.3 SCALING PARAMETER SETTING

The choice of the scaling parameter γ is important to the acceleration and can be seen as a hyper-
parameter tuning process. We experiment with different values of γ and find that setting γ = 0.1

22

Under review as a conference paper at ICLR 2023

0 20 40 60 80 100
Number of epochs

10

20

30

40

50

60

70

Te
st

in
g

ac
cu

ra
cy

RigL-ITOP
A-RigL-ITOP

(a) Standard

Figure 13: Training curve (required epochs to reach given accuracy) of ITOP-based models (Liu
et al., 2021). Sparse networks are learned in standard setup on ImageNet-2012 using ResNet-50.

(a) Wide-ResNet-28-4 (b) ResNet-18

Figure 14: Comparisons (required hours to reach given accuracy. We evaluate sparse networks
(99%) learned with natural training on CIFAR-100 using (a) Wide-ResNet-28-4, and (b) ResNet-18.

is a good choice for effective acceleration of training. The presented results are based on sparse
networks (99%) learned with adversarial training (objective: AT) on CIFAR-10 using VGG-16.

As shown in Figure 21 (a), we compare the training curves (testing accuracy at different epochs)
A-BSR-Net (γ = 0.1), A-BSR-Net (γ = 0.5), and BSR-Net. The yellow curve for A-BSR-Net
(γ = 0.5) collapses after around 40 epochs training, indicating a model divergence. The reason is
that if setting γ close to 1, e.g., like 0.5, we will not be able to completely avoid the increase in
variance. The increase in variance will lead to a decrease in performance, which is similar to ”No
γ” in section 5.4 of the manuscript.

As shown in Figure 21 (b), we compare the training curves (testing accuracy at different epochs)
A-BSR-Net (γ = 0.1), A-BSR-Net (γ = 0.01), and BSR-Net. The yellow curve for A-BSR-Net
(γ = 0.01) is below the blue curve for A-BSR-Net (γ = 0.1), indicating a slower convergence
speed. The reason is that if γ is set small, such as 0.01, the weight of the old gradients will be small.
Thus, the old gradients will have limited influence on the updated direction of the model, which
tends to slow down the convergence and sometimes can lead to more training instability.

23

Under review as a conference paper at ICLR 2023

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 15: Comparisons (required hours to reach given accuracy. We evaluate sparse networks (99%
or 90%) learned with natural training on CIFAR-10 using VGG-16.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 16: Comparisons (required hours to reach given accuracy). We evaluate sparse networks
(99% or 90%) learned with adversarial training (objective: AT) on CIFAR-10 using VGG-16.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 17: Comparisons (required hours to reach given accuracy). We evaluate sparse networks
(99% or 90%) learned with natural training on CIFAR-10 using Wide-ResNet-28-4.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 18: Comparisons (required hours to reach given accuracy). We evaluate sparse networks
(99% or 90%) learned with adversarial training (objective: AT) on CIFAR-10 using Wide-ResNet-
28-4.

B.4 OTHER VARIANCE REDUCTION METHOD COMPARISONS

We also include more results about comparison between our ADSVRG and stochastic variance re-
duced gradient (SVRG) Baker et al. (2019); Chen et al. (2019); Zou et al. (2018), a popular variance
reduction method in non-sparse case, to show the limitations of previous methods.

24

Under review as a conference paper at ICLR 2023

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 19: Comparisons (required hours to reach given accuracy). We evaluate sparse networks
(99% or 90%) learned with natural training on SVHN using VGG-16.

(a) 90% Sparsity (b) 90% Sparsity (c) 99% Sparsity (d) 99% Sparsity

Figure 20: Comparisons (required hours to reach given accuracy). We evaluate sparse networks
(99% or 90%) learned with adversarial training (objective: TRADES) on SVHN using VGG-16.

B.4.1 BSR-NET-BASED RESULTS

The presented results are based on sparse networks (99%) learned with adversarial training (objec-
tive: AT) on CIFAR-10 using VGG-16. As presented in Figure 22, we show the training curves
(testing accuracy at different epochs)of A-BSR-Net, BSR-Net, and BSR-Net using SVRG. The yel-
low curve for BSR-Net using SVRG rises to around 0.4 and then rapidly decreases to a small value
around 0.1, indicating a model divergence. This demonstrates that SVRG does not work for sparse
training. As for the blue curve for our A-BSR-Net, it is always above the green curve for BSR-Net,
indicating a successful acceleration.

B.4.2 RIGL-BASED RESULTS

The presented results are based on sparse networks (90%) learned with standard training on CIFAR-
100 using ResNet-50. As presented in Figure 23, we show the training curves (testing accuracy at
different epochs) of A-RigL, RigL, and RigL using SVRG. The yellow curve for RigL using SVRG
is always below the other two curves, indicating a slower model convergence. This demonstrate that
SVRG does not work for sparse training. As for the blue curve for our A-RigL, it is always on the
top of the green curve for RigL, indicating that the speedup is successful.

B.5 FINAL ACCURACY COMPARISONS

We also provide additional BSR-Net-based results for the final accuracy comparison. In addition to
the BSR-Net and A-BSR-Net in the manuscript, we also include HYDRA in the appendix, which is
also a SOTA sparse and adversarial training pipeline. The results are trained on SVHN using VGG-
16 and WideResNet-28-4 (WRN-28-4). The final results for BSR-Net and HYDRA are obtained
from Özdenizci & Legenstein (2021) using their original learning rate schedules. As shown in Table
5, it is encouraging to note that our method tends to be the best in all cases when given clean test
samples. In terms of the robustness, our A-BSR-Net beats HYDRA in most cases, while experience
a performance degradation compared to BSR-Net.

25

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Number of epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

ac
cu

ra
cy

A-BSR-Net, 0.1
A-BSR-Net, 0.5
BSR-Net

(a) Scaling parameter = 0.1 or 0.5

0 25 50 75 100 125 150 175 200
Number of epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

ac
cu

ra
cy

A-BSR-Net, 0.1
A-BSR-Net, 0.01
BSR-Net

(b) Scaling parameter = 0.1 or 0.01

Figure 21: Comparisons (testing accuracy given the number of epochs) with different scaling pa-
rameters in BSR-Net-based models Özdenizci & Legenstein (2021). We evaluate sparse networks
(99%) learned with adversarial training (objective: AT) on CIFAR-10 using VGG-16. (a) scaling
parameter = 0.1 or 0.5, (b) scaling parameter = 0.1 or 0.01.

0 25 50 75 100 125 150 175 200
Number of epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

ac
cu

ra
cy

A-BSR-Net
BSR-Net, SVRG
BSR-Net

Figure 22: Comparisons (testing accuracy given the number of epochs) with different variance re-
duction methods in BSR-Net-based models Özdenizci & Legenstein (2021). We evaluate sparse
networks (99%) learned with adversarial training (objective: AT) on CIFAR-10 using VGG-16.

Table 5: Comparisons the BSR-Net Özdenizci & Legenstein (2021) and HYDRA Sehwag et al.
(2020). Evaluations of sparse networks learned with robust training objectives (TRADES) on SVHN
using VGG-16 and WideResNet-28-4. Evaluations are after full training (200 epochs) and presented
as clean/robust accuracy (%). Robust accuracy is evaluated via PGD50 with 10 restarts ϵ = 8/255.

BSR-NET HYDRA OURS

90% SPARSITY
VGG-16 89.4/53.7 89.2/52.8 94.4/51.9

WRN-28-4 92.8/55.6 94.4/43.9 95.5/46.2

99% SPARSITY
VGG-16 86.4/48.7 84.4/47.8 90.9/47.9

WRN-28-4 89.5/52.7 88.9/39.1 92.2/51.1

26

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250
Number of epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

A-RigL
RigL, SVRG
RigL

Figure 23: Comparisons (testing accuracy given the number of epochs) with different variance re-
duction methods in RigL-based models Evci et al. (2020). We evaluate sparse networks (90%)
learned with standard training on CIFAR-100 using ResNet-50.

B.6 GRADIENT CHANGE SPEED & SPARSITY LEVEL

In sparse training, when there is a small change in the weights, the gradient changes faster than in
dense training, and this phenomenon can be expressed as a low correlation between the current and
previous gradients, making the existing variance reduction methods ineffective.

We first demonstrate this lower correlation from an intuitive point of view. Considering the weights
on which the current and previous gradients were calculated, there are three cases to be discussed
in sparse training when the masks of current and previous gradients are different. First, if current
weights are pruned, we do not need to consider their correlation because we do not need to update
the current weights using the corresponding previous weights. Second, if current weights are not
pruned but previous weights are pruned, the previous weights are zero and the difference between
two weights is relatively large, leading to a lower relevance. Third, if neither the current nor the
previous weights are pruned, which weights are pruned can still change significantly, leading to
large changes in the current and previous models. Thus, the correlation between the current and
previous gradients of the weights will be relatively small. Thus, it is not a good idea to set c = 1
directly in sparse training which can even increase the variance and slow down the convergence.

When the masks of the current and previous gradients are the same, the correlation still tends to be
weaker. As we know, c∗t = Cov(gnew,gold)

Var(gold)
. Even if Cov(gnew, gold) does not decrease, the variance

Var(gold) increases in sparse training, leading to a decrease in c∗t .

Apart from the analysis above, we also do some experiments to demonstrate that the gradient
changes faster as the sparsity increases. To measure the rate of change, our experiments are de-
scribed below. We begin with fully-trained checkpoints from ResNet-50 on CIFAR-100 with RigL
and SET at 0%, 50%, 80%, 90%, and 95% sparsity. We calculate and store the gradient of each
weight on all training data. Then, we add Gaussian perturbations (std = 0.015) to all the weights and
calculate the gradients again. Lastly, we calculate the correlation between the gradient of the new
perturbed weights and the old original weights.

As we know, there is always a difference between the old and new weights. If the gradients become
very different after adding some small noise to the weights, the new and old gradients will tend to
have smaller correlations. If the gradients do not change a lot after adding some small noise, the
old and new gradients will have a higher correlation. Thus, we add Gaussian noise to the weights to
simulate the difference between the new and old gradients. As shown in Table 6, the correlation de-

27

Under review as a conference paper at ICLR 2023

creases with increasing sparsity, which indicates a weaker correlation in sparse training and supports
our claim.

Table 6: Correlation between the gradient of the new perturbed weights and the old original weights
from ResNet-50 on CIFAR-100 produced by RigL and SET at different sparsity including 0%, 50%,
80%, 90%, 95%, 99%.

SPARSITY 0% 50% 80% 90% 95%

RESNET-50, CIFAR-100 (RIGL) 0.6005 0.4564 0.3217 0.1886 0.1590
RESNET-50, CIFAR-100 (SET) 0.6005 0.4535 0.2528 0.1763 0.1195

B.7 COMPARISON BETWEEN TRUE CORRELATION & OUR APPROXIMATION

In this section, to test how well our approximation estimates the true optimum c, we empirically
compare the approximation c∗ in Eq. (4) (in the main manuscript) and the correlation between gra-
dient of current weights and gradient of previous epoch weights. As shown in Figure 24, the yellow
and blue curves represent the approximation c∗ and the correlation, respectively. The two curves
tend to have similar up-and-down patterns, and the yellow curves usually have a larger magnitude.
This suggests that our c approximation captures the dynamic patterns of the correlation. For the
larger magnitude, it can be matched by our scaling parameter.

5 10 15 20 25 30
Number of epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu

e True Correlation
c Approximation

(a) 90%

5 10 15 20 25 30
Number of epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lu

e True Correlation
c Approximation

(b) 99%

Figure 24: Comparisons between the approximation c∗ and correlation between gradient of current
weights and gradient of previous epoch weights. We evaluate sparse networks learned with RigL-
based standard training on CIFAR-10 using ResNet-50 with (a) 90% sparsity and (b) 99% sparsity.

B.8 VARIANTS OF RIGL

RigL is one of the most popular dynamic sparse training pipeline which uses weight magnitude
for pruning and gradient magnitude for growing. Our method adaptively updates the new batch
gradient using the old storage gradient which usually has less noise. As a result, the variance of the
new batch gradient is reduced, leading to fast convergence. Currently, we only use gradients with
corrected variance in weight updates. A natural question is how does it perform if we also use this
variance-corrected gradient for weight growth in RigL.

We do some experiments in RigL-based models trained on CIFAR-10. As shown in Figure 25, the
blue curves (RigL-ITOP-G) and yellow curves (RigL-ITOP) correspond to the weight growth with
and without the variance-corrected gradient, respectively. We can see that in the initial stage, the
blue curves are higher than the yellow curves. But after the first learning rate decay, they tend to be
lower than the yellow curves. This suggests that weight growth using a variance-corrected gradient
at the beginning of training can help the model improve accuracy faster. However, this may lead
to a slight decrease in accuracy in the later training stages. This may be due to the fact that some
variance in the gradient can help the model explore local regions better and find better masks as the
model approaches its optimal point.

28

Under review as a conference paper at ICLR 2023

0 50 100 150 200 250
Number of epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

RigL-ITOP-G
RigL-ITOP

(a) VGG-C

0 50 100 150 200 250
Number of epoch

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

RigL-ITOP-G
RigL-ITOP

(b) ResNet-34

Figure 25: Comparisons (testing accuracy given the number of epochs) between weight growth
with (RigL-ITOP-G) and without (RigL-ITOP) variance-corrected gradient Liu et al. (2021). We
evaluate sparse networks (99%) learned with standard training on CIFAR-10 using (a) VGG-C and
(b) ResNet-34.

B.9 COMPARISON WITH OTHER ADAPTIVE GRADIENT METHOD

We add experiments to compare our AGENT with Adam (Kingma & Ba, 2014). and find that our
method has a faster convergence rate compared to Adam. As shown in Figure 26, our AGENT (blue
curve) is usually higher than Adam (pink curve), indicating that our AGENT has better acceleration.

The main reason is that our AGENT is designed for sparse training and is tailored to the character-
istics of sparse training. When old information is used to correct the gradients, the main problem is
the reduced correlation between the old and new gradients. Therefore, our AGENT approximates
the correlation and adds an adaptive weight to the old gradient to establish a balance between the old
and new gradients. However, previous adaptive gradient methods, such as Adam, are not designed
for sparse training. Although they also provide adaptive gradients, their adaptivity is different and
does not take correlation into account.

0 50 100 150 200 250
Number of epochs

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

ac
cu

ra
cy

AGENT-RigL-ITOP
Adam-RigL-ITOP

(a) VGG-C(RigL)

0 50 100 150 200 250
Number of epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g

ac
cu

ra
cy

AGENT-RigL-ITOP
Adam-RigL-ITOP

(b) ResNet-34(RigL)

0 50 100 150 200 250
Number of epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

in
g

ac
cu

ra
cy

AGENT-SET-ITOP
Adam-SET-ITOP

(c) VGG-C(SET)

0 50 100 150 200 250
Number of epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

in
g

ac
cu

ra
cy

AGENT-SET-ITOP
Adam-SET-ITOP

(d) ResNet-34(SET)

Figure 26: Testing accuracy for ITOP-based models at 99% sparsity on CIFAR-10. AGENT-RigL-
ITOP and AGENT-SET-ITOP (blue curves) converge faster than Adam-RigL-ITOP and Adam-SET-
ITOP (pink curves).

B.10 COMPARISON WITH REDUCING LEARNING RATE

To demonstrate the design of the scaling parameter γ, we compare our AGENT with ”Reduce LR”,
where we remove the scaling parameter γ from AGENT and set the learning rate to 0.1 times the
original one. As shown in Table 7, reducing the learning rate can lead to a comparable convergence
rate in the early stage. However, it slows down the later stages of training and leads to sub-optimal
final accuracy. The reason is that it reduces both signal and noise, and therefore does not improve
the signal-to-noise ratio or speed up the sparse training.

The motivation of γ is to avoid introducing large variance due to error in approximating ct and bias
due to the adversarial training. The true correlation depends on many factors such as the dataset,
architecture, and sparsity. In some cases, it can be greater or smaller than 10%. For the value of

29

Under review as a conference paper at ICLR 2023

γ, it is a hyperparameter and we can choose different values for different settings. In our case,
for simplicity, we choose γ = 0.1 for all the settings, and find that it works well and accelerates
the convergence. If we tune the value of γ for different settings according to their corresponding
correlations, it is possible to obtain faster convergence rates.

Table 7: Testing accuracy (%) of SET-ITOP-based models for AGENT (ours) and ”Reduce LR”.
Sparse VGG-C and ResNet-34 are learned in standard setups.

EPOCH 20 80 130 180 240

REDUCE LR (VGG-C, SET-ITOP) 76.5 81.3 84.6 85.5 85.5
AGENT (VGG-C, SET-ITOP) 76.1 81.5 87.6 87.1 88.6

REDUCE LR (RESNET-34, SET-ITOP) 81.4 85.9 89.3 89.5 89.8
AGENT (RESNET-34, SET-ITOP) 83.0 85.6 92.0 92.3 92.5

B.11 COMPARISON WITH MOMENTUM-BASED METHODS

The momentum-based approach works well in general, but it still suffers from optimization difficul-
ties due to sparsity constraints. For example, in our baseline SGD, following the original code base,
we have also added momentum to the optimizer. However, as shown in the pink curves in Figure
2, it still has training instability and convergence problems. The reason is that they do not take into
account the sparse and adversarial training characteristics and cannot provide an adaptive balance
between old and new information.

Our method AGENT is designed for sparse and adversarial training and can establish a finer control
over how much information we should get from the old to help the new. To demonstrate the impor-
tance of this fine-grained adaptive balance, we do ablation studies in Section 6.4. In ”Fixed ct”, we
set ct = 0.1 and test the convergence rate without the adaptive control. We find that the adaptive
balance (ours) outperforms ”Fixed ct” in almost all cases, especially in adversarial training. For
standard training, ”Fix ct” provides similar convergence rates to our method, while ours tends to
have better final scores.

C ADDITIONAL DETAILS ABOUT EXPERIMENT SETTINGS

C.1 IMPLEMENTATIONS

In BSR-Net-based results, aligned with the choice of Özdenizci & Legenstein (2021), the gradients
for all models are calculated by SGD with momentum and decoupled weight decay (Loshchilov &
Hutter, 2019). All models are trained for 200 epochs with a batch size of 128.

In RigL-based results, we follow the settings in Evci et al. (2020); Sundar & Dwaraknath (2021).
We train all the models for 250 epochs with a batch size of 128, and parameters are optimized by
SGD with momentum.

In ITOP-based results, we follow the settings in Liu et al. (2021). For CIFAR-10 and CIFAR-100,
we train all the models for 250 epochs with a batch size of 128. For ImageNet-2012, we train all the
models for 100 epochs with a batch size of 64. Parameters are optimized by SGD with momentum.

C.2 LEARNING RATE

Aligned with popular sparse training methods (Evci et al., 2020; Özdenizci & Legenstein, 2021; Liu
et al., 2021), we choose piecewise constant decay schedulers for learning rate and weight decay.
In our A-BSR-Net, we use the 50th and 100th epochs as the dividing points of our learning rate
decay scheduler. The reason is that our approach has faster convergence and doesn’t require a long
warm-up period. In the evaluation shown in the manuscript, we also use this scheduler for BSR-Net
for a more accurate and fair comparison.

30

Under review as a conference paper at ICLR 2023

C.3 INITIALIZATION (BSR-NET-BASED RESULTS)

Consistent with Özdenizci & Legenstein (2021), we also choose Kaiming initialization to initialize
the network weights He et al. (2015)

C.4 BENCHMARK DATASETS (BSR-NET-BASED RESULTS)

For a fair comparison, we choose the same benchmark datasets as Özdenizci & Legenstein (2021).
Specifically, we use CIFAR-10 and CIFAR-100 Krizhevsky et al. (2009) and SVHN Netzer et al.
(2011) in our experiments. Both CIFAR-10 and CIFAR-100 datasets include 50, 000 training and
10, 000 test images. SVHN dataset includes 73, 257 training and 26, 032 test samples.

C.5 DATA AUGMENTATION

We follow a popular data augmentation method used in Özdenizci & Legenstein (2021); He et al.
(2016). In particular, we randomly shift the images to the left or right, crop them back to their
original size, and flip them in the horizontal direction. In addition, all the pixel values are normalized
in the range of [0, 1].

D SPARSE TRAINING METHOD DESCRIPTION

D.1 BAYESIAN SPARSE ROBUST TRAINING

Bayesian Sparse Robust Training (BSR-Net) Özdenizci & Legenstein (2021) is a Bayesian Sparse
and Robust training pipeline. Based on a Bayesian posterior sampling principle, a network rewiring
process simultaneously learns the sparse connectivity structure and the robustness-accuracy trade-off
based on the adversarial learning objective. More specifically, regarding its mask update, it prunes
all negative weights and grows new weights randomly.

E LIMITATIONS OF OUR ADAPTIVE GRADIENT CORRECTION METHOD

E.1 EXTRA FLOPS

Similar to SVRG, our ADSVRG increases the training FLOPs in each iteration due to the extra
forward and backward used to compute the old gradients.

However, the true computation difference can be smaller and the GPU-based runining time of SVRG
will not be affected that much. For example, in the adversarial setting, we need additional compu-
tations to generate the adversarial samples, which is time-consuming and only needs to be done
once in each iteration of our AVR and SGD. For BSR-Net, we empirically find that the ratio of time
required for each iteration of our AVR and SGD is about 1.2.

There are also several methods to reduce the extra computation caused by SVRG. The first approach
is to use the sparse gradients proposed by M Elibol (2020) Elibol et al. (2020). It can effectively
reduce the computational cost of SVRG and can be easily applied to our method. The second
approach is suggested by Allen-Zhu and Hazan (2016) Allen-Zhu & Hazan (2016). The extra cost
on computing batch gradient on old model parameters is totally parallelizable. Thus, we can view
SVRG as doubling the mini-batch size. Third, we can follow the idea of SAGA Defazio et al.
(2014) and store gradients for individual samples. By this way, we do not need the extra forward
and backward step and save the computation. But it requires extra memory to store the gradients.

In the main manuscript, we choose to compare the convergence speed of our ADSVRG and SGD for
the same number of pass data (epoch), which is widely used as a criterion to compare SVRG-based
optimization and SGD (Allen-Zhu & Hazan, 2016; Chatterji et al., 2018; Zou et al., 2018; Cutkosky
& Orabona, 2019). A comparison in this way in this way can demonstrate the accelerating effect of
the optimization method and provide inspiration for future work.

31

Under review as a conference paper at ICLR 2023

E.2 SCALING PARAMETER TUNING

In our adaptive variance reduction method (AVR), we add an additional scaling parameter γ which
need to be adjusted. We find that setting γ = 0.1 is a good choice for BSR-Net, RigL, and ITOP.
However, it can be different for other different sparse training pipelines.

E.3 ROBUST ACCURACY DEGRADATION

For the final accuracy results of BSR-Net-based models, there is a small decrease in the robustness
accuracy after using our AVR. It is still an open question how to further improve the robust accuracy
when using adaptive variance reduction in sparse and adversarial training.

32

	Introduction
	Related Work
	Sparse Training
	Accelerating Training

	Preliminaries: Stochastic Variance Reduced Gradient
	Method
	Adaptive Control over Old Gradients
	Additional Scaling Parameter is Important

	Theoretical Justification
	Experiments
	Convergence Speed & Stability Comparisons
	Final Accuracy Comparisons
	Comparison with Other Gradient Correction Methods
	Ablation Studies
	Scaling Parameter Setting

	Discussion and Conclusion
	Appendix: Theoretical Proof of Convergence Rate
	Algorithm Reformulation
	Assumptions
	Analysis framework
	lemma
	lemma 1
	Lemma 2
	Lemma 3
	Lemma 4

	Theorem
	Theorem 1

	Real Case Analysis for Sparse Training
	CIFAR-10/100 dataset
	svhn dataset

	Additional Experimental Results
	Accuracy Comparisons in Different Epochs
	Number of Training Epoch Comparisons
	Scaling Parameter Setting
	Other Variance Reduction Method Comparisons
	BSR-Net-based Results
	RigL-based Results

	Final Accuracy Comparisons
	Gradient Change Speed & Sparsity Level
	Comparison between True Correlation & Our Approximation
	Variants of RigL
	Comparison with Other Adaptive Gradient Method
	Comparison with Reducing Learning Rate
	Comparison with Momentum-based Methods

	Additional Details about Experiment Settings
	Implementations
	Learning Rate
	Initialization (BSR-Net-based results)
	Benchmark Datasets (BSR-Net-based results)
	Data Augmentation

	Sparse Training Method Description
	Bayesian Sparse Robust Training

	Limitations of Our Adaptive Gradient Correction Method
	Extra FLOPs
	Scaling parameter tuning
	Robust Accuracy Degradation

