
Efficient Graph Continual Learning via Lightweight Graph Neural Tangent
Kernels-based Dataset Distillation

Rihong Qiu * 1 2 Xinke Jiang * 1 2 Yuchen Fang * 3 Hongbin Lai * 1 2 Hao Miao * 4

Xu Chu 1 2 5 6 Junfeng Zhao 1 2 7 Yasha Wang 2 8 6

Abstract
Graph Neural Networks (GNNs) have emerged
as a fundamental tool for modeling complex
graph structures across diverse applications. How-
ever, directly applying pretrained GNNs to var-
ied downstream tasks without fine-tuning-based
continual learning remains challenging, as this
approach incurs high computational costs and
hinders the development of Large Graph Models
(LGMs). In this paper, we investigate an efficient
and generalizable dataset distillation framework
for Graph Continual Learning (GCL) across mul-
tiple downstream tasks, implemented through a
novel Lightweight Graph Neural Tangent Kernel
(LIGHTGNTK). Specifically, LIGHTGNTK em-
ploys a low-rank approximation of the Laplacian
matrix via Bernoulli sampling and linear associa-
tion within the GNTK. This design enables effi-
cient capture of both structural and feature rela-
tionships while supporting gradient-based dataset
distillation. Additionally, LIGHTGNTK incorpo-
rates a unified subgraph anchoring strategy, al-
lowing it to handle graph-level, node-level, and
edge-level tasks under diverse input structures.
Comprehensive experiments on several datasets
show that LIGHTGNTK achieves state-of-the-art
performance in GCL scenarios, promoting the
development of adaptive and scalable LGMs.

*Equal contribution 1School of Computer Science, Peking
University, Beijing, China 2Key Laboratory of High Confidence
Software Technologies, Ministry of Education, Beijing, China
3University of Electronic Science and Technology of China
4Department of Computer Science, Aalborg University 5Center
on Frontiers of Computing Studies, Peking University, Bei-
jing, China 6Peking University Information Technology Institute,
Tianjin Binhai, China 7Big Data Technology Research Center,
Nanhu Laboratory, Jiaxing, China 8National Engineering Research
Center For Software Engineering, Peking University, Beijing,
China. Correspondence to: Junfeng Zhao, Yasha Wang <Ri-
hongQiu@stu.pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Graph Neural Networks (GNNs) (Cai et al., 2018; Kipf &
Welling, 2017; Veličković et al., 2018; Zhang et al., 2025)
have made significant advancements in recent years, estab-
lishing themselves as powerful tools for modeling complex
graph structures across diverse domains. From social net-
works (Matsugu et al., 2023; Li et al., 2022c; Qin et al.,
2022) to biochemistry (Duvenaud et al., 2015; Yang et al.,
2023; Xu et al., 2023a), and extending to transportation
systems (Gao et al., 2023a;b; Jiang et al., 2023b; Fang et al.,
2023; 2024; Duan et al., 2024b) and financial networks (Li
et al., 2022a; Huang et al., 2022; Liu et al., 2021; Duan et al.,
2024a; Jiang et al., 2025), GNNs have proven their adapt-
ability and effectiveness in a wide range of applications.
Their exceptional versatility is evident in their ability to cap-
ture relational dependencies effectively, thereby facilitating
data-driven decision-making processes.

Recently, Large Graph Models (LGMs) or Pretrained
Graph Models (PLM) (Xia et al., 2024; Hu et al., 2020b; Li
et al., 2024b; Ma et al., 2024; Zhang et al., 2023; Wang et al.,
2024b; Jin et al., 2024; Jiang et al., 2024; Liu et al., 2023;
Yu et al., 2024; 2025) have achieved breakthrough advance-
ments by emulating the success of Large Language Models
(LLMs) (OpenAI, 2023; Touvron et al., 2023), demonstrat-
ing powerful graph learning capabilities through large-scale
graph data pretraining. Inspired by the paradigm of LLMs,
LGMs such as GPT-GNN (Hu et al., 2020b), GPT-ST (Li
et al., 2024b), and GPT-Het (Ma et al., 2024) have shown
remarkable potential in capturing complex structural depen-
dencies across diverse graph domains.

Despite the remarkable capabilities of LGMs in modeling
complex graph relationships, they are hindered by signifi-
cant limitations. One critical issue is that these models lack
inherent Emergent Abilities (Zhang et al., 2023), which
stem from the intricate nature of graph structures and the
variability across different domains. As a result, LGMs
require extensive and computationally intensive fine-tuning
for downstream tasks through Graph Continual Learning
(GCL). This dependence on fine-tuning presents a crucial
challenge for practical deployment: How can we develop
strategies to effectively distill task-specific training corpora

1

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

that enable efficient and effective fine-tuning of GNNs, ulti-
mately enhancing their adaptability?

Specifically, several challenges like C1 and C2 still remain
unaddressed in the pursuit of the distilled small, synthetic,
yet informative datasets, where GNNs trained on them can
achieve competitive performance compared to those fine-
tuned on large-scale graph datasets:

❶ C1. Downstream tasks frequently involve exceedingly
large datasets with substantial noise, which results in ineffec-
tive fine-tuning and considerable computational overhead.
The cost of using the whole large datasets in fine-tuning
often rivals that of retraining an entire LGM, rendering such
methods impractical for widespread applications.

❷ C2. The transfer of pretrained LGMs to different down-
stream tasks poses significant challenges due to structural
mismatches. Specifically, current dataset distillation based
GCL methods are limited to graph-level tasks (Xu et al.,
2023b) and fail to generalize to tasks at the node level and
edge level due to inconsistent input structures.

To address the aforementioned challenges, we in-
troduce Lightweight Graph Neural Tangent Kernel
(LIGHTGNTK), a novel dataset distillation framework tai-
lored for effective GCL. Our method primarily focuses
on distilling essential knowledge from large-scale graph
datasets into compact, synthetic datasets via the Graph Neu-
ral Tangent Kernel (GNTK), which effectively captures both
structural and feature relationships through the training gra-
dients. To maintain the efficiency of conventional GNTK
while minimizing computational overhead, LIGHTGNTK uti-
lizes a low-rank approximation of the full Laplacian matrix
derived via Bernoulli sampling on the eigenvalue spectrum.
Theoretical guarantees support the quality of this approx-
imation, and its computation is further accelerated by es-
tablishing a linear association with the sampled spectrum.
Additionally, LIGHTGNTK incorporates a subgraph anchor-
ing strategy to graph input structures across graph-, node-,
and edge-level tasks, facilitating seamless adaptation to a
variety of downstream applications In general, our contribu-
tions are summarized as follows.

• A unified dataset distillation framework for LGMs in GCL
scenarios is proposed. By anchoring tasks to subgraph
structures, LIGHTGNTK demonstrates adaptability to
diverse downstream tasks, including node-level, edge-
level, and graph-level applications.

• To address the computational complexity of GNTK, a
Lightweight GNTK (LIGHTGNTK) is introduced. This
framework balances structural and feature representation
fidelity while minimizing dataset distillation overhead.

• Comprehensive experimental results demonstrate that
LIGHTGNTK outperforms baseline methods across multi-

ple benchmark datasets and tasks, particularly in continual
learning scenarios.

2. Related Work
2.1. Neural Tangent Kernel

The Neural Tangent Kernel (NTK) has emerged as a pivotal
theoretical tool in understanding the training dynamics of
neural networks (Jacot et al., 2020; Neal & Neal, 1996;
Yang, 2019; Ren & Sutherland, 2025), with a wide range
of application including neural architecture search (Park
et al., 2020; Chen et al., 2022), meta-learning (Zhou et al.,
2021), active learning (Holzmüller et al., 2023), and dataset
distillation (Nguyen et al., 2021; Guo et al., 2024; Xu et al.,
2023b). Originating from the concept of mapping infinitely
wide neural networks to kernel methods, NTK simplifies
the intricate training process of deep neural networks into
kernel ridge regression (Jacot et al., 2020; Lee et al., 2020;
Yang & Littwin, 2021).

In the realm of graph data, the Graph Neural Tangent Ker-
nel (GNTK) extends the NTK framework to capture the
relational and structural information inherent in graphs (Du
et al., 2019; Xu et al., 2023b; Wang et al., 2024a). GNTK
facilitates theoretical analysis and practical applications in
graph-based learning tasks , and has been successfully ap-
plied to various graph-related tasks.

However, the practical adoption of NTK in large-scale learn-
ing tasks is hindered by its super-quadratic runtime com-
plexity (Arora et al., 2019; Li et al., 2019; 2024a). To
address this challenge, numerous studies have focused on
accelerating NTK computations, such as using Monte Carlo
method (Novak et al., 2018; Arora et al., 2019), low-rank ap-
proximations to kernel matrices (Alaoui & Mahoney, 2015;
Avron et al., 2017; Zandieh et al., 2020), and Kronecker
Sketching methods (Jiang et al., 2022). But these meth-
ods primarily target NTK in the context of standard neural
networks and do not consider the unique characteristics
of graphs. Building on these foundations, our work in-
troduces novel enhancements and unified definitions to
improve computational efficiency and adapt GNTK to
practical scenarios, creating a more scalable and versatile
framework for graph-based problems.

2.2. Dataset Distillation for Graph Continual Learning

Dataset distillation aims to synthesize a small but in-
formative dataset to summarize the original large-scale
datasets (Yu et al., 2023; Lei & Tao, 2023; Ding et al., 2024;
Zhu et al., 2025), thereby expediting model training for con-
tinual learning, removing noise samples in the full datasets,
and reducing computational overhead. Traditional methods
like core set selection focus on identifying representative
samples from original data (Goodman & O’Rourke, 1997),

2

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

which often fall short in capturing the complex high-order
dependencies inherent in structured data. In contrast, recent
advancements in meta-learning have introduced methods
like gradient matching (Zhao et al., 2021) and trajectory
matching (Miao et al., 2024; Zhu et al., 2025) in dataset
distillation, which aligns distilled datasets and full datasets
in the perspective of gradient or trajectory.

For graph structural data, emerging approaches focus on
preserving structural and spectral properties while achiev-
ing efficient dataset distillation. Early methods address
structural preservation by leveraging self-expressive models
for graph reconstruction (Liu et al., 2024b) or maintain-
ing consistent receptive field distributions to retain local
neighborhood structures (Liu et al., 2022). Complemen-
tary to these, spectral-based approaches like GDEM (Liu
et al., 2024a) align graph eigenbases to preserve spectral
characteristics. In terms of optimization strategies, (Gupta
et al., 2024) proposes a gradient-free distillation for node
classification, while GCOND (Jin et al., 2022b) improves
efficiency through gradient-based optimization.

A recently emerging direction leverages the Graph Neural
Tangent Kernel (GNTK) (Guo et al., 2024; Xu et al., 2023b)
to distill datasets by focusing on model dynamics learning.
However, these methods encounter significant challenges,
including low computational efficiency, insufficient utiliza-
tion of graph structural information, and a lack of scalability
to graph tasks at various levels.

3. Preliminaries
The Neural Tangent Kernel (NTK) describes the training
dynamics of infinitely wide neural networks; however, its
computation is generally intractable in practical applications.
To address this limitation, the empirical Neural Tangent
Kernel (eNTK) (Jacot et al., 2020) serves as a practical
surrogate, facilitating empirical analyses of neural training
dynamics. In Section 3.1, the definition of GNNs is first
revisited. Then we review the computation of eNTK and
its extension to Graph Neural Tangent Kernel (GNTK) for
GNNs in Section 3.2. Additionally, we formally define the
problem of graph dataset distillation in Section 3.3.

3.1. Revisiting Graph Neural Networks

We adopt the message-passing framework (Kipf & Welling,
2017) for graph neural networks, which is informed by spec-
tral graph theory (Shuman et al., 2013). Consider a graph
with an adjacency matrix A ∈ Rn×n and node features X ∈
Rn×d with node number n and feature dimension d. The
Laplacian matrix is defined as L = D̃−1/2ÃD̃−1/2 (Zhang
et al., 2024; Li et al., 2022b), where Ã = A+I and D̃ is the
degree matrix. The Laplacian matrix L can be diagonalized
as UΛU⊤, with U representing the eigenvector matrix and

Λ being a diagonal matrix of eigenvalues.

In the standard spatial (message-passing) formulation, the
hidden representation at the (l + 1)-th layer, denoted as
H(l+1), is computed as

H(l+1) = σ
(
LH(l)W (l)

)
, (1)

where H(l) ∈ Rn×dl denotes the hidden representation at
layer l, H(0) = X , and W (l) are learnable parameters. σ(·)
denotes an activation function (Jiang et al., 2023a; Kipf &
Welling, 2017).

3.2. Revisiting eNTK & GNTK

eNTK The empirical Neural Tangent Kernel (eNTK), de-
noted by Θθ(x1, x2), quantifies the similarity between two
data points based on their gradient-space representation (Ja-
cot et al., 2020; Mohamadi et al., 2022). Formally, for a
neural network function fθ(·) parameterized by θ, the eNTK
is defined as follows:

Θθ(x1, x2) =
[
∇θ

(
fθ(x1)

)] [
∇θ

(
fθ(x2)

)]⊤
, (2)

where ∇θ(fθ(x)) represents the Jacobian of fθ(x) with
respect to the flattened parameter vector θ ∈ RP , cap-
tures the rates of change of each output dimension of the
function with respect to each input parameter. Specifi-
cally, if the model outputs O-dimensional vectors, then
∇θ(fθ(x)) ∈ RO×P , meaning that it has O rows (one for
each output dimension) and P columns (one for each pa-
rameter). This structure leads to Θθ(x1, x2) ∈ RO×O, re-
flecting the interactions between the gradients of the output
dimensions for the two input data points. When considering
two groups of data points of sizes N1 and N2, this results in
N1N2 such matrices. Stacking these O×O matrices yields
a block-structured kernel of size (N1O)×(N2O), capturing
pairwise gradient correlations across the dataset.

GNTK For graph-structured data, the Graph Neural Tan-
gent Kernel (GNTK) extends this concept by analyzing the
gradient of fθ(G) = fθ(L,X), where fθ(·) denotes a graph
neural network (GNN). Here, G represents the graph sample,
L is the graph Laplacian, and X is the node feature matrix.
The GNTK between two graphs G1 and G2 is defined as:

Θθ(G1,G2) = [∇θfθ(L1, X1)] [∇θfθ(L2, X2)]
⊤
. (3)

However, traditional spatial-domain methods for computing
the GNTK involve evaluating gradients at the graph level,
which necessitates computationally intensive operations that
scale quadratically with the number of nodes n (Shuman
et al., 2013). Consequently, calculating the GNTK becomes
prohibitive for large-scale graphs.

3

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Pretraining LGM

LGM

Graph

Corpus

• Node Level

• Edge Level

• Graph Level

...

Node

Task

Prob.

Sim?

Prototype Node

Graph

Task

Prob.

Sim?

Unified Graph Task

Edge Link ?

Node Type?

Graph Type?

Learnable Frozen

Features Gradient

Node Product

Center Node

Prob.

Sim?
Edge

Task

Node i Node j
Training Graph

Gradient Base
𝑁𝑡𝑟𝑎𝑖𝑛

Validation Graph

Gradient Base

GNTK

Similarity

Matrix 𝑲
Edge

Prototype Graph

TopK

Score

Suprivised

Finetuning

LGM

Data Selection &

Finetuning

LightGNTK Calucation

𝑣𝑚𝑣𝑚

. . .

Downstream Training

Graphs Set

Downstream Validation

Graphs Set

. . .

X

Graph Features

Orthogonally Decompose

Gradients

Sample

Selected Graphs

... 𝑁𝑣𝑎𝑙

Figure 1. The overall framework of LIGHTGNTK. Based on the unified definition proposed in Section 4.1, we represent tasks at graph,
node, and edge levels uniformly using subgraphs. ❶ Given a graph corpus, we pretrain the LGM in an unsupervised manner , utilizing
data from node, edge, and graph levels. ❷ Next, we calculate the GNTK similarity matrix K by measuring gradient dot products between
training and validation graphs. To accelerate gradient computation, we employ a low-rank approximation of the graph Laplacian matrix L
via Bernoulli sampling. ❸ Finally, data selection is performed by identifying the Nsyn most informative samples according to the GNTK
matrix. These selected samples are then used to fine-tune the LGM to improve its performance on downstream tasks.

3.3. Graph Dataset Distillation

Dataset distillation aims to condense a large dataset into a
significantly smaller synthetic subset while preserving the
essential information necessary for downstream tasks. In
this work, we focus on addressing the problem of graph
dataset distillation for classification tasks. Formally, given
a target training set Dtrain = {(Gi, Yi)}Ntrain

i=1 , our goal is to
create a smaller synthetic set Dsyn = {(G̃i, Ỹi)}

Nsyn
i=1 where

Nsyn ≪ Ntrain, such that a GNN trained on Dsyn maintains
performance comparable to one trained on Dtrain. Con-
cretely, the distillation process proceeds as follows: (1)
A distillation procedure generates Dsyn from Dtrain. (2) A
downstream classifier is trained on Dsyn and evaluated on
a test set Dtest, which is disjoint from both Dtrain and Dsyn.
The evaluation on Dtest reflects how effectively Dsyn retains
the knowledge contained in Dtrain.

4. Method
In this section, we introduce LIGHTGNTK, a novel frame-
work designed to efficiently and effectively distill graph
datasets for Graph Continual Learning (GCL), as illustrated
in Figure 1. ❶ First, as described in Section 4.1, we propose
a unified task definition that integrates tasks at the node,
graph, and edge levels within a subgraph-centric framework.
This approach facilitates the extraction of task-specific sub-
sets from large-scale training data, ensuring that these sam-
ples are well-suited for a variety of downstream tasks. ❷
Next, in Section 4.2, we provide a theoretical analysis of the
GNTK and introduce an efficient spectral-domain approxi-
mation, LIGHTGNTK, which significantly reduces both time
and space complexity compared to standard GNTK eval-
uations. We also demonstrate that our method yields an
approximation to the GNTK with a tight approximation er-
ror upper bound. ❸ Finally, in Section 4.3.2, we describe the
pretraining and fine-tuning paradigm of the LGM through
an unsupervised learning task. For improved readability, the

4

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

main notations are summarized in Table 4 of Appendix A.

4.1. Unified Task Definition

Let graph sample set G = {G1, . . . ,Gm} be a set of graphs.
Each graph Gi = (Vi, Ei, Xi, Ai, Yi) is defined as follows:
Vi is the set of nodes, with |Vi| = ni; Ei ⊆ Vi × Vi is the
set of edges; Xi ∈ Rni×d denotes the node feature matrix;
Ai ∈ Rni×ni is the adjacency matrix; Yi denotes the labels
associated with nodes, edges, or the entire graph.

In this paper, we propose a subgraph-centric framework for
the unified handling of tasks at the node, edge, and graph
levels. Given a target (node, edge, or graph), we construct a
query subgraph GQ by including the target and its neighbors
within k hops.1 We then compare this query subgraph to pro-
totype subgraphs from a support set Dsyn using a similarity
function sim(·, ·). ❶ For Node-Level and Graph-Level
Tasks. Let C denote the set of class labels, and assume
yi ∈ C is the label for a node or a graph instance. After
extracting the query subgraph GQ for the target node or
graph, we compute the output logits oi for the query. The
predicted label is given by yi = argmaxc∈C sim

(
oi, õc

)
,

where the prototype logits õc for class c can be selected as
the average logits of subgraph instances in the support set
Dsync for class c: õc = 1

|Dc|
∑

(Gj ,yj)∈Dc
oj , or as a one-hot

vector for class c, i.e., õc[c] = 1 and zeros elsewhere. ❷ For
Edge-Level Tasks. Given a candidate pair (vi, vq) for edge
prediction, subgraphs GQ

i and GQ
q centered at vi and vq are

constructed, yielding logits oi and oq . An edge is predicted
between vi and vq if there exists any neighbor vj of node
vi such that sim(oi, oq) ≥ maxvj ̸=vq

(
sim(oi, oj)

)
+ ϵ,

where ϵ ≥ 0 is a margin hyperparameter. Notably, this
criterion can also be applied symmetrically by considering
the neighborhood of vq in place of vi.

4.2. LIGHTGNTK: A Lightweight Approximation of
Graph Neural Tangent Kernel

4.2.1. LIGHTGNTK DEFINITION

To address the considerable computational overhead asso-
ciated with conventional GNTK, we introduce a series of
techniques aimed at significantly enhancing its computa-
tional efficiency.

❶ Low-Rank Optimization Building on critical insights
from spectral graph theory (Von Luxburg, 2007), we tackle
the high computational cost of GNTK by proposing a low-
rank approximation of the graph Laplacian matrix L. In
the spectral domain, each eigenvalue of the Laplacian en-
capsulates unique topological information. Importantly,
we observe that both theoretical and empirical observa-

1In graph-level tasks, the entire graph is treated as one subgraph,
and a virtual node is attached to all nodes.

tions indicate that retaining only a subset of eigenval-
ues and their associated eigenvectors is sufficient to
accurately approximate GNN gradients (Bianchi et al.,
2020; Deng et al., 2022), thereby eliminating the need for
full-rank Laplacian matrices in GNTK computation. To
achieve this low-rank approximation, we perform Bernoulli
sampling on the eigenvalues obtained from the spectral
decomposition of Laplacian matrix, effectively balancing
high-frequency and low-frequency components while pre-
serving both local and global graph structures. Formally,
given a graph Laplacian L = UΛU⊤, where the eigen-
value matrix is Λ = diag(λ1, . . . , λn) and the eigenvec-
tor matrix is U = [u1, u2, . . . , un], we define the ex-
pected rank r and sample probability p = r

n . For each
eigenvalue λi, we sample ξi ∼ Bernoulli(p) and form
Λ̃ = diag(ξ1λ1, . . . , ξnλn) ∈ Rr×r, ξi = 1. Eigenvectors
in Ũ ∈ Rn×r with nonzero ξi are retained accordingly.

Next, to compute L̃X = Ũ Λ̃Ũ⊤X efficiently, we decom-
pose the computation into three sequential steps: ❶ Z =
Ũ⊤X , where Z ∈ Rr×d; cost: O(nrd); ❷ Y = Λ̃(Z⊤),
where Y ∈ Rr×d; cost: O(r2d); ❸ L̃X = ŨY ; cost:
O(nrd). Thus, the overall computational complexity is
O(nrd) + O(r2d) + O(nrd) ≈ O(nrd), where r ≪ n.
This significantly reduces the complexity compared to the
naive approach of O(n2d), which is conceptually related to
linear attention (Katharopoulos et al., 2020). The resulting
low-rank Laplacian L̃ = Ũ Λ̃Ũ⊤ preserves essential struc-
tural information, and the low-rank approximation of GNTK
is given by:

Θ(Gi,Gj) =[
∇θfθ(ŨiΛ̃iŨi

⊤
Xi)

]
·
[
∇θfθ(ŨjΛ̃jŨj

⊤
Xj)

]⊤
.

(4)

❷ Structural Optimizations Furthermore, we implement
three additional acceleration strategies: (1) For node-level
and edge-level tasks, instead of performing eigenvalue de-
composition of the Laplacian matrix L for the entire graph,
we conduct the decomposition within subgraphs, thereby
reducing computational complexity due to the smaller ma-
trix sizes. (2) For extremely large graph-level tasks, we
adopt a batch acceleration technique based on Monte Carlo
sampling (see Appendix E) to enhance efficiency. (3) When
collecting gradients, we utilize only the gradients from the
final layer rather than from all layers, achieving a balance
between speed and accuracy.

4.2.2. APPROXIMATION QUALITY OF LIGHTGNTK

We now formalize the relationship between the gradients
obtained with the Bernoulli-sampled Laplacian L̃ and those
obtained with the full-rank Laplacian L. Throughout, we
assume that the GNN fθ(·) is L∇-smooth with respect to
its input as defined in (Heinonen, 2005).

5

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Theorem 4.1 (Gradient Approximation Error). Let X ∈
Rn×d be the node-feature matrix and let L = UΛU⊤ be the
graph Laplacian with eigen-pairs {(λi, ui)}ni=1. Construct
L̃ via independent Bernoulli sampling with probability p on
every eigenvalue, i.e. L̃ = Ũ Λ̃Ũ⊤ with Λ̃ii = ξiλi, ξi ∼
Bernoulli(p). Then the expect of gradient approximation
error is:

Eξ

[∥∥∇θfθ(L̃X)−∇θfθ(LX)
∥∥2
F

]
≤ L2

∇ (1− p)

n∑
i=1

λ2
i

∥∥u⊤
i X

∥∥2
F
,

(5)

where L∇ is the Lipschitz smoothness coefficient. The full
proof can be found in Appendix F.2.

Theorem 4.2 (LIGHTGNTK Approximation Error Upper
Bound). Let G1 and G2 denote two graphs with correspond-
ing node feature matrices X1 and X2. The approxima-
tion error of GNTK computed using the Bernoulli-sampled
Laplacian L̃ can be bounded from below as follows:∣∣ΘLIGHTGNTK(G1,G2)−ΘGNTK(G1,G2)

∣∣ ≤ L∇ (C1∆2 + C2∆1) ,

where ∆ =

√
(1− p) ·

∑n
i=1 λ

2
i

∥∥u⊤
i X

∥∥2 denotes the up-
per bound on the approximation error, as derived from the
gradient error analysis. Here, C = ∥∇θfθ(LX)∥ is a con-
stant that depends only on the network θ and graph data G.
Therefore, as the sampling probability p increases, the ap-
proximation error of GNTK decreases. The complete proof
is provided in Appendix F.3.

Time Complexity Analysis Compared with the conven-
tional GNTK, which requires O(n2d) time due to full-rank
Laplacian operations, our low-rank optimization reduces
the time complexity to O(nrd), where r ≪ n is the chosen
rank. This substantial reduction is achieved by only retain-
ing r spectral components, allowing all Laplacian-related
computations to be executed efficiently with much smaller
matrices. As a result, our approach scales to larger graphs
and offers significant computational savings over traditional
GNTK methods without sacrificing accuracy.

4.3. Graph Dataset Distillation Instantiation

This section first presents a theoretical analysis of the rela-
tionship between training and test samples, which forms
the basis for the proposed graph data sampling criteria.
Then, the corresponding graph distillation and model train-
ing pipeline is described in detail.

4.3.1. THEORETICAL ANALYSIS OF THE RELATIONSHIP
BETWEEN TRAIN & TEST DATA

We theoretically analyze the influence of training samples
gradients Go = {Lo, Xo} on test samples Gu = {Lu, Xu}

through the lens of the GNTK, as detailed in Appendix C.
The analysis demonstrates that the change in test sample
logits induced by a training step on Go is proportional to
the GNTK value Θ(Gu,Go) between the training and test
samples, quantitatively capturing the transfer of gradient in-
formation across the train-test split (Guo et al., 2024). Con-
sequently, filtering or reweighting training samples based
on GNTK values with respect to the test set can effectively
reduce undue train-test coupling and improve the general-
ization performance of dataset distillation methods (Guo
et al., 2024).

4.3.2. INSTANTIATION PIPELINE

Our practical pipeline consists of three main steps. First, we
pretrain the LGM using an unsupervised objective to obtain
robust graph representations. Next, for each candidate graph
Gc in the training set, we evaluate its quality according to the
framework of LIGHTGNTK, and select the top Nsyn query
subgraphs to construct the synthetic set Dsyn. Finally, we
use Dsyn to train the downstream classifier and evaluate its
predictive performance.

❶ Pretrain LGM We pretrain LGM in an unsupervised
fashion to jointly learn node representations and graph
structural patterns. Following the pretraining paradigm of
masked signal reconstruction and link prediction (as in GPT-
GNN (Hu et al., 2020b)), we randomly mask a subset of
node features and edges, and train the model to reconstruct
the masked information on large-scale unlabeled graphs.
This allows LGM to learn more expressive representations
for nodes and structures, which facilitates effective transfer
to various downstream graph tasks.

❷ LIGHTGNTK Calculation The theoretical analysis in
Section 4.2 demonstrates that performance on downstream
tasks can be improved by fine-tuning LGM using training
samples that are similar to those from the test set. In practice,
however, test data are not available during training process.
Under the assumption that the validation and test sets are
independently drawn from the same distribution, we use
the validation set to guide the selection of relevant training
samples. Specifically, we make the following assumption.

Assumption. Validation-Test Distribution Match In real-
world deployment scenarios, we assume that both the valida-
tion set Dval and the test set Dtest are independently sampled
from the same target distribution Πtarget, such that:

ΠDval ≡ ΠDtest ∼ Πtarget, (6)

where ΠD· denotes the underlying data distribution from
which dataset D· is sampled.

This alignment is a standard practice in machine learning
evaluation and deployment (Recht et al., 2019; Wang et al.,

6

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

2022; Lohr, 2021; Jiang & Wang, 2023), which ensures that
validation metrics reliably predict test performance during
dataset distillation. To further substantiate the distribution
match assumption, we conduct quantitative analyses in Ap-
pendix D.4. These results provide strong empirical evidence
that the validation and test sets are statistically similar.

Based on the assumption, we leverage the validation set as a
proxy for training sample selection. To measure the similar-
ity between the gradients of training and validation samples,
we utilize the GNTK, as introduced in Section 4.2. Specifi-
cally, we compute a cross-set kernel matrix K ∈ RNtrain×Nval ,
where Ntrain and Nval denote the sizes of the training and
validation sets, respectively. Each entry Kij = Θθ(G1,G2)
quantifies the gradient covariance between training graph Gi

and validation graph Gj under GNN parameters θ. Further-
more, motivated by the theoretical analysis in Section 4.2,
we adopt a computationally efficient variant of GNTK by
extracting gradients from a specific layer and computing a
lightweight similarity measure.

❸ Data Selection & Supervised Finetuning We define
the LIGHTGNTK-score I(Gc) for each candidate graph Gc ∈
Dtrain as the minimum gradient similarity between Gc and
all graphs in the validation set, that is,

I(Gc) = min
Gv∈Dval

Θ(Gc,Gv). (7)

Based on the computed LIGHTGNTK-scores, we construct
the synthetic set Dsyn by selecting those candidate graphs
with the lowest LIGHTGNTK scores, as defined in Eq. (8):

Dsyn = {Gc ∈ Dtrain | I(Gc) ∈ Min-Nsyn({I(Gi)}Ntrain
i=1)}, (8)

where Min-Nsyn(·) indicates selecting the Nsyn lowest ele-
ments from the given set.

Next, we utilize the selected samples to perform super-
vised fine-tuning of the pretrained LGM. Let z denote
the output from the last layer of the LGM. The predicted
class probabilities are computed via the softmax function:
ŷ = Softmax(z), where ôk = exp(ok)/

∑|O|
j=1 exp(zj) for

class k. To support different prediction tasks (edge, node,
and graph levels) centered on a subgraph’s node, we adopt
a unified loss function:

LSFT =
1

N

N∑
i=1

−oi log(ôi) + η∥θ∥2, (9)

where N is the number of training samples, |O| is the num-
ber of output classes, ôi represents the logits assigned by
the model to the correct class for sample i, and oi denotes
the ground-truth logits for class i. The second term is an
L2 penalty (weight decay) applied to the learnable parame-
ters θ of the GNN, scaled by a hyperparameter η to prevent
overfitting.

5. Experiment
To evaluate the effectiveness of LIGHTGNTK in graph
dataset distillation, we conduct extensive experiments on 13
datasets, including tasks at node, edge, and graph levels, and
compare our method with state-of-the-art baselines. The ex-
periments aim to address the following research questions:

• RQ1: How does LIGHTGNTK compare with state-of-the-
art methods in graph dataset distillation for GCL tasks at
node, edge, and graph levels?

• RQ2: Does LIGHTGNTK achieve improved efficiency
compared to traditional GNTK?

• RQ3: What are the contributions of the key components
towards improving LIGHTGNTK’s overall performance?

Further details and experimental results are provided in
Appendix D.

5.1. Experimental Setup

Datasets. We conduct a comprehensive evaluation using
a total of 13 datasets across three types of graph learn-
ing tasks. For graph classification , we utilize 7 datasets:
NCI1, NCI109, PROTEINS, and DD from TUDataset (Mor-
ris et al., 2020), as well as ogbg-molhiv, ogbg-molbbbp, and
ogbg-molbace from Open Graph Benchmarks (OGB) (Hu
et al., 2020a). For node classification , we employ 4 citation
network datasets: Cora, CiteSeer, and PubMed from the
Planetoid Dataset (Yang et al., 2016), along with ogbn-arxiv
from OGB. For link prediction , we include 2 datasets: ogbl-
collab and ogbl-ddi, both from OGB. Further details for all
datasets are provided in Table D.1 of Appendix D.1.

Methods and Baselines. Our experimental framework
compares LIGHTGNTK with the SOTA dataset distillation
methods for graph. We evaluate two versions of our pro-
posed framework: (i) GNTK, which directly leverages the
Laplacian matrix for feature selection without any optimiza-
tion; and (ii) the lightweight variant, LIGHTGNTK, which in-
corporates efficiency optimizations. To ensure a comprehen-
sive evaluation, we extend our baseline analysis to encom-
pass three distinct categories: ❶ Coreset selection methods,
including Random Sampling, Herding (Welling, 2009), and
K-Center Greedy Selection (Farahani & Hekmatfar, 2009;
Sener & Savarese, 2017); ❷ Learning-based graph distilla-
tion, represented by DosCond (Jin et al., 2022a); ❸ Kernel
approximation techniques, exemplified by KIDD (Xu et al.,
2023b), which uses ridge regression for graph-level tasks
to approximate GNTK computations. Detailed implemen-
tation specifics and theoretical foundations of all baseline
methods are systematically documented in Appendix D.3.

7

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Table 1. Performance comparison (mean±std) on graph classification tasks. The best and second-best results are bolded and underlined.
Name Graphs/Cl Ratio Random Herding K-Center DosCond KIDD GNTK LIGHTGNTK Whole Dataset

NCI1 (ACC) 1 0.06% 57.4±3.0 59.2±3.0 59.2±3.0 57.1±0.9 60.1±0.9 59.4±0.4 62.0±7.1
10 0.61% 59.9±2.0 62.8±0.9 59.1±0.8 60.8±0.9 61.7±1.3 64.8±0.2 64.4±3.3 80.0±1.1
50 3.04% 60.5±2.1 62.5±2.0 59.5±0.5 62.7±0.8 64.2±0.6 64.5±0.4 66.4±4.0

NCI109 (ACC) 1 0.06% 54.3±2.3 51.7±0.9 51.7±0.9 54.9±2.3 55.2±2.7 57.5±0.3 55.3±3.7
10 0.61% 61.9±1.6 63.6±0.3 52.9±1.7 61.4±1.5 63.5±0.5 64.9±0.1 64.2±4.3 77.7±0.6
50 3.03% 64.0±1.4 64.7±1.2 55.0±2.1 62.9±1.6 70.4±1.3 66.8±2.7 65.6±2.5

PROTEINS (ACC) 1 0.22% 57.8±1.8 67.6±1.7 67.6±1.7 63.4±1.9 68.8±3.9 69.3±6.4 68.1±1.2
10 2.25% 67.2±0.7 68.3±1.0 71.4±3.3 71.7±0.4 74.1±1.9 73.6±0.8 74.7±5.5 78.6±2.6
50 11.24% 69.6±4.0 70.1±1.0 72.9±2.6 73.2±0.8 75.0±1.9 74.0±3.9 75.9±3.2

DD (ACC) 1 0.21% 61.3±8.5 60.7±8.4 61.0±3.2 63.0±0.7 65.8±1.7 68.6±0.4 65.8±5.4
10 2.12% 66.8±2.1 67.4±0.7 66.2±2.4 68.1±1.8 70.6±1.3 71.4±0.1 71.5±1.7 76.9±3.2
50 10.62% 71.4±2.2 71.6±1.9 72.3±1.0 70.9±1.0 73.1±2.2 73.3±0.4 72.9±6.5

ogbg-molhiv (ROC-AUC) 1 0.01% 55.5±3.6 63.3±2.5 63.3±2.5 61.2±2.5 63.3±1.6 64.8±0.5 64.1±7.2
10 0.06% 57.9±1.2 62.1±0.9 63.0±1.3 64.7±3.1 67.5±5.4 69.2±0.2 68.5±8.7 75.0±0.7
50 0.30% 62.3±1.4 61.6±1.4 62.8±1.2 62.0±1.8 70.8±6.2 67.4±0.2 69.3±8.3

ogbg-molbbbp (ROC-AUC) 1 0.12% 57.9±2.0 62.8±1.2 62.8±1.1 58.4±3.0 62.8±1.1 64.4±0.1 64.0±4.2
10 1.23% 55.6±0.0 62.5±0.0 59.6±1.6 62.1±1.3 64.4±1.5 63.8±0.1 64.6±6.1 65.0±1.4
50 6.13% 61.0±0.7 63.0±0.7 59.5±1.5 62.8±1.2 66.2±3.0 64.2±0.1 68.2±0.6

ogbg-molbace (ROC-AUC) 1 0.17% 63.8±0.9 54.6±3.8 54.6±3.8 66.7±2.1 69.3±1.6 68.2±0.2 69.4±7.1
10 1.65% 64.9±1.7 56.1±4.1 65.8±5.8 69.4±1.4 74.8±2.0 71.2±0.5 70.8±9.6 72.7±1.7
50 8.26% 65.5±2.0 70.3±1.2 66.2±1.3 71.0±0.6 76.6±1.2 76.6±0.5 76.8±6.2

Settings and Evaluation. For the graph classification
tasks in TUDataset, we split each dataset into 80%, 10%,
and 10% for training, validation, and test sets, respectively,
and use accuracy (ACC) as the evaluation metric. For the
Planetoid and OGB datasets, we follow the official splits and
corresponding evaluation metrics. The detailed evaluation
metrics used in the experiments are provided in in Table 6 at
Appendix D.2. Throughout all experiments, we use Graph
Isomorphism Network (GIN) (Xu et al., 2019) as the GNN
backbone for our LGMs. To comprehensively assess the
effectiveness of various distillation methods, We assess clas-
sification performance at the graph, node, and edge levels
by distilling datasets in which each class contains 1, 10, or
50 samples at the corresponding level.

Reproducibility. To ensure reproducibility, we optimize
the parameters of baseline models using the Adam Opti-
mizer with L2 regularization. During the pretrain process of
the GNN backbone, a binary classification task is employed
to distinguish between positive and negative edge samples
on graphs. For the downstream tasks, a classification head
is added above GNN backbone to predict. Furthermore,
An early-stopping strategy with a patience of 50 epochs is
employed to mitigate overfitting.

5.2. Dataset Distillation Results (RQ1)

The evaluation results for the graph-level and node-level
tasks are summarized in Table 1 and Table 2 respectively,
while edge-level results are reported in Table 8 in Ap-
pendix D.5. Based on these experiments, we identify the
following key findings:

Outperforming Existing Methods. The proposed dataset
distillation method LIGHTGNTK demonstrates superior per-
formance compared to almost all baseline methods across
various tasks, including graph, node, and edge levels. No-
tably, LIGHTGNTK can surpass baselines on most datasets,
highlighting its ability to reduce data dependency while
maintaining high predictive accuracy. These results clearly
demonstrate that our method provides a more effective and
reliable solution for efficient graph dataset distillation.

Effective Learning from Limited Data We observe
that the model under dataset distillation method LIGHT-
GNTK achieves excellent performance across all three lev-
els, even when trained with as few as one sample per class.
This highlights the effectiveness and representativeness of
the selected training samples, which are capable of captur-
ing the essential characteristics of each class. Remarkably,
even with less than 10% of the original training data, the
model demonstrates performance that is nearly comparable
to the results obtained when using the entire dataset. This
suggests that LIGHTGNTK is highly efficient in sampling
and leveraging the available data, and its ability to gener-
alize effectively with limited information underscores the
robustness of the distillation method.

5.3. Computational Efficiency Analysis (RQ2)

In addition to evaluating predictive accuracy, it is crucial
to assess the computational efficiency of our approach.
LIGHTGNTK is designed to significantly improve efficiency
by leveraging a theoretically principled approximation of
GNTK. We report the computation time of GNTK and

8

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Table 2. Performance comparison (mean±std) on node classification tasks. The best and second-best results are bolded and underlined.

Name Nodes/Cl Ratio Random Herding K-Center DosCond GNTK LIGHTGNTK Whole Dataset

CiteSeer 1 0.18% 38.3±6.8 34.4±5.9 36.8±4.4 42.2±5.7 43.8±2.1 44.7±2.4
10 1.80% 56.7±2.7 63.7±0.9 60.3±1.2 61.9±0.8 62.3±0.4 62.7±5.1 63.6±1.3
50 9.02% 64.0±2.6 63.7±1.2 64.6±3.2 63.5±1.1 64.8±1.6 63.4±1.1

Cora 1 0.26% 35.9±9.0 37.3±4.5 39.4±6.2 39.3±2.4 42.7±5.6 44.6±7.2
10 2.58% 74.0±2.2 75.7±1.8 72.8±2.6 74.2±2.6 75.5±3.9 76.2±0.6 77.6±1.0
50 12.92% 77.6±1.0 77.4±1.0 77.7±1.1 77.4±0.9 77.6±1.0 77.9±2.5

PubMed 1 0.02% 53.8±5.0 52.9±6.1 52.9±6.2 55.6±2.7 56.4±3.0 55.8±1.8
10 0.15% 65.8±3.2 65.5±4.1 64.5±3.9 61.0±3.8 70.1±2.0 70.7±2.1 69.7±2.9
50 0.76% 71.3±4.1 71.8±1.4 70.3±0.7 69.8±4.1 72.3±0.8 71.2±3.1

ogbn-arxiv 1 0.02% 11.5±6.6 14.5±3.0 14.5±3.0 13.2±0.8 15.7±1.4 15.3±0.7
10 0.24% 16.1±2.6 15.3±1.7 16.4±2.1 16.3±4.5 18.2±0.8 18.9±3.2 51.4±1.4
50 1.18% 25.1±2.1 24.4±1.3 22.0±1.4 24.0±1.8 28.5±1.4 29.1±0.4

LIGHTGNTK during the distillation process across all
graph-level datasets, as summarized in Table 3. As demon-
strated in the table, the computation time required by LIGHT-
GNTK is consistently lower than that of the original GNTK
across all benchmarks, with reductions ranging from 6% to
27% depending on the graph size of dataset.

These results demonstrate that our approximation provides
substantial efficiency gains. Importantly, as shown in pre-
vious sections, this improvement is achieved without sacri-
ficing the representational power or predictive performance
of GNTK. This improved efficiency enables the practical
scaling of kernel-based graph methods to large real-world
datasets.

Table 3. Computation time (in seconds) of GNTK and LIGHT-
GNTK on graph classification datasets.

Dataset GNTK LIGHTGNTK

NCI1 196 144
NCI109 184 136
PROTEINS 26.3 24.8
DD 278 203
ogbg-molhiv 921 683
ogbg-molbbbp 72.6 59.7
ogbg-molbace 54.5 48.8

5.4. Key Components Study (RQ3)

To demonstrate the effectiveness of key components in
LIGHTGNTK, we conduct the following explorations. ❶ We
explore different low-rank optimization strategies, including
selecting the r largest eigenvalues (top-r sampling), select-
ing the r smallest eigenvalues (bottom-r sampling), and
selecting r eigenvalues based on Bernoulli sampling, where
r is the rank of the approximated Laplacian matrix. The
comparative performance of these methods is summarized
in Table 9 in Appendix D.6. ❷ We evaluated the quality and

computational cost of our distillation method under different
sampling rates p in Bernoulli sampling, and represent the
result in Table 10 and Table 11 in Appendix D.7.

These experimentals demonstrate the effectiveness of our
eigenvalue sampling strategy. Among various sampling
strategies, Bernoulli sampling achieves the best performance
by capturing both global and local eigenvalue information
on the entire graph. Moreover, as the sampling rate in-
creases, computational overhead increases rapidly, but per-
formance improvements levels off after a certain threshold.
Based on empirical observations, we set the sampling rate
to 0.1 in experiments, which offers a favorable trade-off
between performance and computational efficiency.

6. Conclusion and Future Work
In this paper, we propose Lightweight Graph Neural Tan-
gent Kernel (LIGHTGNTK), a novel framework for ef-
ficient dataset distillation in Graph Continual Learning
(GCL). LIGHTGNTK leverages a low-rank Laplacian ap-
proximation via Bernoulli sampling and linear associa-
tions in GNTK, substantially reducing computation while
maintaining strong performance on graph, node, and edge
tasks through a unified subgraph anchoring strategy. Exten-
sive experiments on diverse benchmarks show that LIGHT-
GNTK achieves state-of-the-art performance and provides a
scalable, cost-effective solution for continual learning.

In future work, we will investigate the effects of distribu-
tional shifts between pretrain and fine-tuning datasets and
explore methods to further improve model generalization
and transferability in large-scale dynamic graphs.

Acknowledgments
This work is supported by the National Natural Science
Foundation of China (No.U23A20468).

9

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Impact Statement
This paper advances the efficiency and adaptability of Graph
Neural Networks through a lightweight dataset distillation
framework for large graph models. We anticipate posi-
tive societal impact by lowering the computational barriers
to graph-based machine learning across diverse domains.
We do not foresee any ethical issues or negative societal
consequences beyond those generally associated with the
advancement of machine learning.

References
Alaoui, A. and Mahoney, M. W. Fast randomized kernel

ridge regression with statistical guarantees. Advances in
neural information processing systems, 28, 2015.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. R.,
and Wang, R. On exact computation with an infinitely
wide neural net. Advances in neural information process-
ing systems, 32, 2019.

Avron, H., Clarkson, K. L., and Woodruff, D. P. Faster ker-
nel ridge regression using sketching and preconditioning.
SIAM Journal on Matrix Analysis and Applications, 38
(4):1116–1138, 2017.

Bai, S., Zhang, M., Zhou, W., Huang, S., Luan, Z., Wang,
D., and Chen, B. Prompt-based distribution alignment
for unsupervised domain adaptation. In Proceedings of
the AAAI conference on artificial intelligence, volume 38,
pp. 729–737, 2024.

Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral
clustering with graph neural networks for graph pooling.
In International conference on machine learning, pp. 874–
883. PMLR, 2020.

Borgwardt, K. M., Ong, C. S., Schönauer, S., Vishwanathan,
S., Smola, A. J., and Kriegel, H.-P. Protein function
prediction via graph kernels. Bioinformatics, 21(suppl 1):
i47–i56, 2005.

Cai, H., Zheng, V. W., and Chang, K. C.-C. A comprehen-
sive survey of graph embedding: Problems, techniques,
and applications. IEEE TKDE, 2018.

Chen, X., Hsieh, C.-J., and Gong, B. When vision transform-
ers outperform resnets without pre-training or strong data
augmentations, 2022. URL https://arxiv.org/
abs/2106.01548.

Deng, C., Li, X., Feng, Z., and Zhang, Z. Garnet: Reduced-
rank topology learning for robust and scalable graph neu-
ral networks. In Learning on Graphs Conference, pp. 3–1.
PMLR, 2022.

Ding, H., Fang, Y., Zhu, R., Jiang, X., Zhang, J., Xu, Y.,
Chu, X., Zhao, J., and Wang, Y. 3ds: Decomposed diffi-
culty data selection’s case study on llm medical domain
adaptation. arXiv preprint arXiv:2410.10901, 2024.

Du, S. S., Hou, K., Póczos, B., Salakhutdinov, R., Wang,
R., and Xu, K. Graph neural tangent kernel: Fusing
graph neural networks with graph kernels, 2019. URL
https://arxiv.org/abs/1905.13192.

Duan, Y., Zhang, G., Wang, S., Peng, X., Wang, Z.,
Mao, J., Wu, H., Jiang, X., and Wang, K. Cat-gnn:

10

https://arxiv.org/abs/2106.01548
https://arxiv.org/abs/2106.01548
https://arxiv.org/abs/1905.13192

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Enhancing credit card fraud detection via causal tem-
poral graph neural networks. ArXiv, abs/2402.14708,
2024a. URL https://api.semanticscholar.
org/CorpusID:267783062.

Duan, Y., Zhao, J., Mao, J., Wu, H., Xu, J., Ma, C., Wang,
K., Wang, K., Li, X., et al. Causal deciphering and in-
painting in spatio-temporal dynamics via diffusion model.
Advances in Neural Information Processing Systems, 37:
107604–107632, 2024b.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams, R. P.
Convolutional networks on graphs for learning molecular
fingerprints. In NeurIPS, 2015.

Fang, Y., Qin, Y., Luo, H., Zhao, F., Xu, B., Zeng, L., and
Wang, C. When spatio-temporal meet wavelets: Dis-
entangled traffic forecasting via efficient spectral graph
attention networks. In ICDE, 2023.

Fang, Y., Liang, Y., Hui, B., Shao, Z., Deng, L., Liu, X.,
Jiang, X., and Zheng, K. Efficient large-scale traffic
forecasting with transformers: A spatial data management
perspective. SIGKDD 2024, 2024.

Farahani, R. Z. and Hekmatfar, M. Facility location: con-
cepts, models, algorithms and case studies. Springer
Science & Business Media, 2009.

Gao, X., Chen, H., and Haworth, J. A spatiotemporal analy-
sis of the impact of lockdown and coronavirus on london’s
bicycle hire scheme: from response to recovery to a new
normal. GIS, 2023a.

Gao, X., Haworth, J., Zhuang, D., Chen, H., and Jiang,
X. Uncertainty quantification in the road-level traffic
risk prediction by spatial-temporal zero-inflated negative
binomial graph neural network (stzinb-gnn). GIScience
2023, 2023b.

Goodman, J. E. and O’Rourke, J. (eds.). Handbook of
discrete and computational geometry. CRC Press, Inc.,
USA, 1997. ISBN 0849385245.

Guo, S., Ren, Y., Albrecht, S. V., and Smith, K. lpntk:
Better generalisation with less data via sample interaction
during learning. arXiv preprint arXiv:2401.08808, 2024.

Gupta, M., Jain, S., Ramani, V., Kodamana, H., and
Ranu, S. Bonsai: Gradient-free graph distilla-
tion for node classification. ArXiv, abs/2410.17579,
2024. URL https://api.semanticscholar.
org/CorpusID:273532424.

Heinonen, J. Lectures on Lipschitz analysis. Number 100.
University of Jyväskylä, 2005.

Holzmüller, D., Zaverkin, V., Kästner, J., and Steinwart,
I. A framework and benchmark for deep batch active
learning for regression, 2023. URL https://arxiv.
org/abs/2203.09410.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020a.

Hu, W., Fey, M., Ren, H., Nakata, M., Dong, Y.,
and Leskovec, J. Ogb-lsc: A large-scale challenge
for machine learning on graphs. arXiv preprint
arXiv:2103.09430, 2021.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In Proceedings of the 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2020b.

Huang, M., Liu, Y., Ao, X., Li, K., Chi, J., Feng, J., Yang,
H., and He, Q. Auc-oriented graph neural network for
fraud detection. In WWW, 2022.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent ker-
nel: Convergence and generalization in neural networks.
NeurIPS, 2020.

Jiang, S., Man, Y., Song, Z., Yu, Z., and Zhuo, D. Fast
graph neural tangent kernel via kronecker sketching. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 7033–7041, 2022.

Jiang, T. and Wang, K. Asymptotic properties of random
restricted partitions. Mathematics, 11(2):417, 2023.

Jiang, X., Qin, Z., Xu, J., and Ao, X. Incomplete graph
learning via attribute-structure decoupled variational auto-
encoder. In WSDM oral 2023, pp. 304–312. 2023a.

Jiang, X., Zhuang, D., Zhang, X., Chen, H., Luo, J., and
Gao, X. Uncertainty quantification via spatial-temporal
tweedie model for zero-inflated and long-tail travel de-
mand prediction. In CIKM, 2023b.

Jiang, X., Qiu, R., Xu, Y., Zhang, W., Zhu, Y., Zhang, R.,
Fang, Y., Chu, X., Zhao, J., and Wang, Y. Ragraph: A
general retrieval-augmented graph learning framework.
NeurIPS 2024, 2024.

Jiang, X., Zhang, W., Fang, Y., Gao, X., Chen, H., Zhang,
H., Zhuang, D., and Luo, J. Time series supplier alloca-
tion via deep black-litterman model. AAAI 2025, 39(11):
11870–11878, 2025.

Jin, B., Liu, G., Han, C., Jiang, M., Ji, H., and Han, J. Large
language models on graphs: A comprehensive survey.
IEEE Transactions on Knowledge and Data Engineering,
2024.

11

https://api.semanticscholar.org/CorpusID:267783062
https://api.semanticscholar.org/CorpusID:267783062
https://api.semanticscholar.org/CorpusID:273532424
https://api.semanticscholar.org/CorpusID:273532424
https://arxiv.org/abs/2203.09410
https://arxiv.org/abs/2203.09410

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Jin, W., Tang, X., Jiang, H., Li, Z., Zhang, D., Tang, J.,
and Yin, B. Condensing graphs via one-step gradient
matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, KDD ’22, pp. 720–730. ACM, August 2022a. doi:
10.1145/3534678.3539429. URL http://dx.doi.
org/10.1145/3534678.3539429.

Jin, W., Zhao, L., Zhang, S., Liu, Y., Tang, J., and Shah, N.
Graph condensation for graph neural networks, 2022b.
URL https://arxiv.org/abs/2110.07580.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. 5th International
Conference on Learning Representations, ICLR 2017 -
Conference Track Proceedings, pp. 1–14, 2017.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide neural net-
works of any depth evolve as linear models under gradient
descent. Journal of Statistical Mechanics: Theory and Ex-
periment, 2020(12):124002, December 2020. ISSN 1742-
5468. doi: 10.1088/1742-5468/abc62b. URL http:
//dx.doi.org/10.1088/1742-5468/abc62b.

Lei, S. and Tao, D. A comprehensive survey of dataset
distillation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2023.

Li, G., Hsu, H., Chen, C.-F., and Marculescu, R. Fast-ntk:
Parameter-efficient unlearning for large-scale models. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 227–234, 2024a.

Li, K., Liu, Y., Ao, X., Chi, J., Feng, J., Yang, H., and He,
Q. Reliable representations make a stronger defender:
Unsupervised structure refinement for robust gnn. In
SIGKDD, 2022a.

Li, R., Jiang, X., Zhong, T., Trajcevski, G., Wu, J., and
Zhou, F. Mining spatio-temporal relations via self-paced
graph contrastive learning. In SIGKDD 2022, pp. 936–
944. 2022b.

Li, S., Xie, R., Zhu, Y., Ao, X., Zhuang, F., and He, Q. User-
centric conversational recommendation with multi-aspect
user modeling. In SIGIR, 2022c.

Li, Z., Wang, R., Yu, D., Du, S. S., Hu, W., Salakhutdinov,
R., and Arora, S. Enhanced convolutional neural tangent
kernels. arXiv preprint arXiv:1911.00809, 2019.

Li, Z., Xia, L., Xu, Y., and Huang, C. Gpt-st: generative
pre-training of spatio-temporal graph neural networks.
Advances in Neural Information Processing Systems, 36,
2024b.

Liu, J., Jiang, G., Bai, Y., Chen, T., and Wang, H. Under-
standing why neural networks generalize well through
gsnr of parameters, 2020. URL https://arxiv.
org/abs/2001.07384.

Liu, M., Li, S., Chen, X., and Song, L. Graph condensation
via receptive field distribution matching. arXiv preprint
arXiv:2206.13697, 2022. doi: 10.48550/arXiv.2206.
13697. URL https://arxiv.org/abs/2206.
13697.

Liu, Y., Ao, X., Qin, Z., Chi, J., Feng, J., Yang, H., and He,
Q. Pick and choose: a gnn-based imbalanced learning
approach for fraud detection. In Proceedings of the Web
Conference 2021, pp. 3168–3177, 2021.

Liu, Y., Bo, D., and Shi, C. Graph distillation with eigen-
basis matching, 2024a. URL https://arxiv.org/
abs/2310.09202.

Liu, Z., Yu, X., Fang, Y., and Zhang, X. Graph-
prompt: Unifying pre-training and downstream tasks
for graph neural networks. In Proceedings of the
ACM Web Conference 2023, WWW ’23, pp. 417–428,
New York, NY, USA, 2023. Association for Comput-
ing Machinery. ISBN 9781450394161. doi: 10.1145/
3543507.3583386. URL https://doi.org/10.
1145/3543507.3583386.

Liu, Z., Zeng, C., and Zheng, G. Graph data condensation
via self-expressive graph structure reconstruction, 2024b.
URL https://arxiv.org/abs/2403.07294.

Lohr, S. L. Sampling: design and analysis. Chapman and
Hall/CRC, 2021.

Ma, Y., Yan, N., Li, J., Mortazavi, M., and Chawla, N. V.
Hetgpt: Harnessing the power of prompt tuning in pre-
trained heterogeneous graph neural networks. In Proceed-
ings of the ACM on Web Conference 2024, pp. 1015–1023,
2024.

Matsugu, S., Fujiwara, Y., and Shiokawa, H. Uncovering
the largest community in social networks at scale. In
IJCAI, 2023.

McCallum, A. K. and Nigam, K. Automating the construc-
tion of internet portals with machine learning. In Proceed-
ings of the 3rd international conference on knowledge
discovery and data mining (KDD-2000), pp. 122–128,
2000.

12

http://dx.doi.org/10.1145/3534678.3539429
http://dx.doi.org/10.1145/3534678.3539429
https://arxiv.org/abs/2110.07580
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
http://dx.doi.org/10.1088/1742-5468/abc62b
http://dx.doi.org/10.1088/1742-5468/abc62b
https://arxiv.org/abs/2001.07384
https://arxiv.org/abs/2001.07384
https://arxiv.org/abs/2206.13697
https://arxiv.org/abs/2206.13697
https://arxiv.org/abs/2310.09202
https://arxiv.org/abs/2310.09202
https://doi.org/10.1145/3543507.3583386
https://doi.org/10.1145/3543507.3583386
https://arxiv.org/abs/2403.07294

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Miao, H., Liu, Z., Zhao, Y., Guo, C., Yang, B., Zheng,
K., and Jensen, C. S. Less is more: Efficient time se-
ries dataset condensation via two-fold modal matching.
VLDB, 2024.

Mohamadi, M. A., Bae, W., and Sutherland, D. J. A fast,
well-founded approximation to the empirical neural tan-
gent kernel. 2022. doi: 10.48550/ARXIV.2206.12543.
URL https://arxiv.org/abs/2206.12543.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020. URL www.graphlearning.
io.

Neal, R. M. and Neal, R. M. Priors for infinite networks.
Bayesian learning for neural networks, pp. 29–53, 1996.

Nguyen, A. T., Tran, T., Gal, Y., Torr, P., and Baydin, A. G.
KL guided domain adaptation. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=0JzqUlIVVDd.

Nguyen, T., Chen, Z., and Lee, J. Dataset meta-
learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2021.

Novak, R., Xiao, L., Lee, J., Bahri, Y., Yang, G.,
Hron, J., Abolafia, D. A., Pennington, J., and Sohl-
Dickstein, J. Bayesian deep convolutional networks with
many channels are gaussian processes. arXiv preprint
arXiv:1810.05148, 2018.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774,
2023.

Park, D. S., Lee, J., Peng, D., Cao, Y., and Sohl-Dickstein,
J. Towards nngp-guided neural architecture search, 2020.
URL https://arxiv.org/abs/2011.06006.

Qin, Y., Fang, Y., Luo, H., Zhao, F., and Wang, C. Next
point-of-interest recommendation with auto-correlation
enhanced multi-modal transformer network. In SIGIR,
2022.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V. Do
cifar-10 classifiers generalize to cifar-10? arXiv preprint
arXiv:1806.00451, 2019.

Ren, Y. and Sutherland, D. J. Learning dynamics of llm
finetuning, 2025. URL https://arxiv.org/abs/
2407.10490.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

Senior, D. and Sandeep, A. Citeseer: A citation index for
computer science. Journal of Computer Science, 25:445–
460, 2010.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J.,
Mehlhorn, K., and Borgwardt, K. M. Weisfeiler-lehman
graph kernels. Journal of Machine Learning Research,
12(9), 2011.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and
Vandergheynst, P. The emerging field of signal processing
on graphs: Extending high-dimensional data analysis
to networks and other irregular domains. IEEE Signal
Processing Magazine, 2013.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models, 2023. URL https://arxiv.org/
abs/2302.13971.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Von Luxburg, U. A tutorial on spectral clustering. Statistics
and computing, 17:395–416, 2007.

Wale, N., Watson, I. A., and Karypis, G. Comparison of
descriptor spaces for chemical compound retrieval and
classification. Knowledge and Information Systems, 14:
347–375, 2008.

Wang, J., Lan, C., Liu, C., Ouyang, Y., and Qin, T. Gen-
eralizing to unseen domains: A survey on domain gen-
eralization. IEEE Transactions on Knowledge and Data
Engineering, 35(8):8052–8072, 2022.

Wang, L., Fan, W., Li, J., Ma, Y., and Li, Q. Fast graph
condensation with structure-based neural tangent ker-
nel, 2024a. URL https://arxiv.org/abs/2310.
11046.

Wang, Y., Rossi, R. A., Park, N., Chen, H., Ahmed,
N. K., Trivedi, P., Dernoncourt, F., Koutra, D., and
Derr, T. Large generative graph models, 2024b. URL
https://arxiv.org/abs/2406.05109.

Welling, M. Herding dynamical weights to learn. In Pro-
ceedings of the 26th annual international conference on
machine learning, pp. 1121–1128, 2009.

Xia, L., Kao, B., and Huang, C. Opengraph: Towards open
graph foundation models, 2024.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

13

https://arxiv.org/abs/2206.12543
www.graphlearning.io
www.graphlearning.io
https://openreview.net/forum?id=0JzqUlIVVDd
https://openreview.net/forum?id=0JzqUlIVVDd
https://arxiv.org/abs/2011.06006
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2407.10490
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.11046
https://arxiv.org/abs/2310.11046
https://arxiv.org/abs/2406.05109

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Xu, Y., Chu, X., Yang, K., Wang, Z., Zou, P., Ding, H., Zhao,
J., Wang, Y., and Xie, B. Seqcare: Sequential training
with external medical knowledge graph for diagnosis
prediction in healthcare data. In Proceedings of the ACM
Web Conference 2023, pp. 2819–2830, 2023a.

Xu, Z., Chen, Y., Pan, M., Chen, H., Das, M., Yang, H., and
Tong, H. Kernel ridge regression-based graph dataset dis-
tillation. In Proceedings of the 29th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, KDD
’23, pp. 2850–2861, New York, NY, USA, 2023b. Associ-
ation for Computing Machinery. ISBN 9798400701030.
doi: 10.1145/3580305.3599398. URL https://doi.
org/10.1145/3580305.3599398.

Yang, G. Wide feedforward or recurrent neural networks
of any architecture are gaussian processes. Advances in
Neural Information Processing Systems, 32, 2019.

Yang, G. and Littwin, E. Tensor programs iib: Architec-
tural universality of neural tangent kernel training dynam-
ics, 2021. URL https://arxiv.org/abs/2105.
03703.

Yang, K., Xu, Y., Zou, P., Ding, H., Zhao, J., Wang, Y., and
Xie, B. Kerprint: local-global knowledge graph enhanced
diagnosis prediction for retrospective and prospective
interpretations. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pp. 5357–5365,
2023.

Yang, L. and Dong, L. Pubmed: A new repository for
biomedical research. In International Conference on
Bioinformatics and Biomedical Engineering (ICBBE-
2016), pp. 234–239, 2016.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International conference on machine learning, pp. 40–48.
PMLR, 2016.

Yu, R., Liu, S., and Wang, X. Dataset distillation: A compre-
hensive review. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2023.

Yu, X., Zhou, C., Fang, Y., and Zhang, X. Multigprompt
for multi-task pre-training and prompting on graphs. In
Proceedings of the ACM Web Conference 2024, WWW
’24, pp. 515–526, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400701719.
doi: 10.1145/3589334.3645423. URL https://doi.
org/10.1145/3589334.3645423.

Yu, X., Gong, Z., Zhou, C., Fang, Y., and Zhang, H. Samgpt:
Text-free graph foundation model for multi-domain pre-
training and cross-domain adaptation. In Proceedings
of the ACM on Web Conference 2025, WWW ’25, pp.

1142–1153, New York, NY, USA, 2025. Association for
Computing Machinery. ISBN 9798400712746. doi: 10.
1145/3696410.3714828. URL https://doi.org/
10.1145/3696410.3714828.

Zandieh, A., Nouri, N., Velingker, A., Kapralov, M., and
Razenshteyn, I. Scaling up kernel ridge regression via
locality sensitive hashing. In International Conference
on Artificial Intelligence and Statistics, pp. 4088–4097.
PMLR, 2020.

Zhang, H., Wang, D., Zhao, W., Lu, Z., and Jiang, X. Imcsn:
An improved neighborhood aggregation interaction
strategy for multi-scale contrastive siamese networks.
Pattern Recognition, 158:111052, 2025. ISSN 0031-
3203. doi: https://doi.org/10.1016/j.patcog.2024.111052.
URL https://www.sciencedirect.com/
science/article/pii/S0031320324008033.

Zhang, R., Jiang, X., Fang, Y., Luo, J., Xu, Y., Zhu, Y., Chu,
X., Zhao, J., and Wang, Y. Infinite-horizon graph filters:
Leveraging power series to enhance sparse information
aggregation. arXiv preprint arXiv:2401.09943, 2024.

Zhang, Z., Li, H., Zhang, Z., Qin, Y., Wang, X., and Zhu,
W. Graph meets llms: Towards large graph models, 2023.
URL https://arxiv.org/abs/2308.14522.

Zhao, B., Mopuri, K. R., and Bilen, H. Dataset condensation
with gradient matching, 2021. URL https://arxiv.
org/abs/2006.05929.

Zhou, Y., Wang, Z., Xian, J., Chen, C., and Xu, J. Meta-
learning with neural tangent kernels, 2021. URL https:
//arxiv.org/abs/2102.03909.

Zhu, R., Jiang, X., Wu, J., Ma, Z., Song, J., Bai, F., Lin, D.,
Wu, L., and He, C. Grait: Gradient-driven refusal-aware
instruction tuning for effective hallucination mitigation.
NAACL 2025, 2025.

14

https://doi.org/10.1145/3580305.3599398
https://doi.org/10.1145/3580305.3599398
https://arxiv.org/abs/2105.03703
https://arxiv.org/abs/2105.03703
https://doi.org/10.1145/3589334.3645423
https://doi.org/10.1145/3589334.3645423
https://doi.org/10.1145/3696410.3714828
https://doi.org/10.1145/3696410.3714828
https://www.sciencedirect.com/science/article/pii/S0031320324008033
https://www.sciencedirect.com/science/article/pii/S0031320324008033
https://arxiv.org/abs/2308.14522
https://arxiv.org/abs/2006.05929
https://arxiv.org/abs/2006.05929
https://arxiv.org/abs/2102.03909
https://arxiv.org/abs/2102.03909

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

A. Notations
The main notations in this paper are summarized in Table 4.

Table 4. Notations Tables in LIGHTGNTK
Notation Definition

G graph
X node feature matrix
A adjacency matrix
Y label matrix
L graph Laplacian matrix
Λ eigenvalues matrix of L
D degree matrix of graph
U eigenvectors matrix of L
H hidden representation in GNN
n number of nodes in a graph
d dimension of node features
k k hop for subgraph
r expected rank of L
Θ Neural Tangent Kernel
K Neural Tangent Kernel Matrix
f neural network function
θ parameters of neural network

Dtrain target training subgraphs set
Dval validation subgraphs set
Dsyn synthetic training subgraphs set
Dtest test subgraphs set
Ntrain number of subgraphs in Dtrain
Nval number of subgraphs in Dval
Nsyn number of subgraphs in Dsyn
ΠD· the underlying data distribution

B. More Motivation Details
B.1. Why could GNTK Capture Both Structural and Feature Relationships?

The ability of GNTK to capture both structural and feature relationships is rooted in its gradient-based dataset distillation
mechanism. In our LIGHTGNTK framework, structural information is propagated through the Laplacian matrix L, while
feature information is encoded through the weight matrix W .

Mathematically, in standard (non-graph) dataset distillation, the gradient of the loss function L with respect to the weight
matrix W (l) at layer l is given by:

∂L
∂W (l)

=
∂L
∂Z(l)

· a(l−1)T

where a(l−1) represents the activations from the previous layer, and T denotes the matrix transpose to ensure correct
dimensional alignment.

However, in the GNTK-based formulation, the gradient incorporates graph structural dependencies via the Laplacian matrix
L and is expressed as:

∂L
∂W (l)

= H(l−1)L

(
∂L
∂Z(l)

⊙ σ′(Z(l))

)
where H(l−1) is the node representation at layer (l− 1), L is the graph Laplacian, encoding structural relationships, σ′(Z(l))
represents the element-wise derivative of the activation function.

15

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

From this formulation, it is evident that GNTK-based gradients inherently embed structural information through L
while simultaneously encoding feature dependencies via H(l−1) and the weight parameters. This allows GNTK to effectively
distill graph-structured datasets while preserving essential structural and feature relationships.

B.2. The Difference between GNTK and LIGHTGNTK

While the concepts of GNTK have indeed been explored in KIDD(Xu et al., 2023b), our approach in LIGHTGNTK differs
significantly. KIDD is specifically designed for graph classification and employs GNTK for kernel ridge regression-based
dataset distillation. However, the kernel regression paradigm in KIDD does not guarantee that training graph samples remain
relevant during the inference stage.

In contrast, our LIGHTGNTK framework unifies graph classification, node classification, and link prediction tasks. We
introduce a Bernoulli-sampled low-rank Laplacian-approximated GNTK to enhance similarity-based dataset distillation.
This novel formulation enables efficient, scalable, and task-adaptive distillation beyond the scope of KIDD.

C. Gradient Analysis Between Train Set and Test Set
In this section, we analyze the gradient relationship between the training and test samples and its impact on the logits of
the test set output: o = Softmax(z) = Softmax

(
f(L,X)

)
, and f(·, ·) is the GNN Encoder. For alignment with (Guo et al.,

2024), we denote o = q(LX). For consistency in notation, we denote the graph of the training sample as Go = {Lo, Xo}
and the graph of the test sample as Gu = {Lu, Xu}. We will analyze the gradients from two perspectives: ❶ individual
sample pairs and ❷ overall sample set pairs.

C.1. Single Sample Gradient Analysis

In this section, we analyze the gradient of an arbitrary training sample and its numerical relationship with the
gradients of the test samples. By examining this relationship, we aim to understand how the changes in the output logits
of the test samples are influenced by the gradients. This analysis will provide insights into the impact of training sample
gradients on the performance of the model on the test set.

Here, we define the change in the output logits for the test sample Gu between two consecutive optimization steps as:

∆LoXoq(LuXu) ≜ qt+1(LuXu)− qt(LuXu), (10)

where the subscript LoXo refers to the training data sample used between iteration Dtrain and iteration t+ 1 (following the
proof approach from (Guo et al., 2024; Mohamadi et al., 2022), with a batch size equal to 1). The learning rate is denoted by
η, and the change in LuXu is given by:

qt+1(LuXu)− qt(LuXu) ≈ ∇zq
t(LuXu)

∣∣
θt · (θt+1 − θt) [First-order Taylor Expansion]

=
(
∇zq

t(LuXu)
∣∣
zt · ∇θz

t(LuXu)
∣∣
θt

)
·
(
−η∇θL(LoXo)

∣∣
θt

)⊤
= ∇zq

t(LuXu)
∣∣
zt · ∇θz

t(LoXo)
∣∣
θt ·

(
−η · ∇θz

t(LuXu)
∣∣
zt · ∇θL(LoXo)

∣∣
θt

)⊤
= −η∇zq

t(LuXu)
∣∣
zt · ∇θz

t(LuXu)
∣∣
θt ·

(
∇θz

t(LoXo)
∣∣
θt

)⊤ · ∇θL(LoXo)
∣∣
zt

= η · ∇θq
t(LXu)|θt ·Θt(LuXu, LoXo) ·

(
ptar(LoXo)− qt(LoXo)

)
,

(11)

where Θt(LuXu, LoXo) = ∇θq
t(LuXu)|θt · (∇θq

t(LoXo)|θt)
⊤ is the GNTK value. It is important to note that ptar(·)

represents the ground truth logits (Guo et al., 2024).

Through analysis, we observe that the influence of the training sample Go on the test set sample Gu is significant. Specifically,
the gradient information from the training sample is transferred to the gradient of the test sample through the GNTK value,
causing a shift in the gradient direction of the test sample and thus affecting the final prediction results. Such influence not
only impacts the gradient computation of individual test samples but also has the potential to alter the overall performance
of the test set, particularly when there exists a considerable discrepancy between the training and test sets. To mitigate
the excessive influence of training samples on the test set, it is crucial to filter the gradient samples based on the GNTK
value. This filtering process can help prevent interference from training samples on the gradients of the test set, ultimately
enhancing the model’s generalization ability.

16

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

C.2. Gradient Analysis and Generalization Error

In this section, we analyze the statistical properties of the gradients computed on the population sample, specifically for the
training and test sets, and discuss their influence on generalization error.

For the loss function of the neural network, we define it as follows:

LSFT =
1

N

N∑
i=1

L(Yi, q(LiXi; θ)), (12)

where θ represents the parameters of the neural network, {Go} and {Gu} denote the training and test datasets, respectively,
and ∇θqo and ∇θqu represent the gradients with respect to the training and test datasets. Here we assume the batch size
equals ∞. Next, following (Liu et al., 2020), we introduce the Gradient Signal-to-Noise Ratio (GSNR) as:

GSNR :=
E
[
∇̃θqo · ∇̃θqu

]√
ρ2o · ρ2u

, (13)

where the mean and variance of the gradients for the training and test datasets are given as:∇̃θqo = E{Go}[∇θqo], ∇̃θqu =
E{Gu}[∇θqu], and ρ2o = ρ{Go}[∇wqo], ρ2u = ρ{Gu}[∇wqu]. respectively. We then define the generalization error Egen as
the expectation of the difference between the loss on the test set and the training set:

Egen = E[Lu − Lo]. (14)

After a single parameter update on the training dataset {Go} (we only consider the first-order Taylor expansion), we can
express the change in the test set loss as follows: Lu(θt+1) ≈ Lu(θt)+∇θLu(θt)

T (θt+1−θt). Using the parameter update
rule, we have: θt+1 = θt − η∇θLo(θt). Substituting this update into the expansion of the loss function gives:

Lu(θt+1) ≈ Lu(θt)− η∇θLu(θt) · ∇θLo(θt). (15)

Thus, we can express the generalization error as:

Egen = E[Lu(θt)− Lo(θt)] ≈ E[−η∇θqo · ∇θqu]. (16)

Finally, taking the expectation of this gives:

E[∆Lu] ≈ −η · GSNR ·
√

ρ2o · ρ2u. (17)

Therefore, GSNR measures the alignment between training and test grades. Then we found that low GSNR leads to lower
generalization error.

D. Further Experiment Details
D.1. Datasets Statics

We employ 13 benchmark datasets for evaluation, including 7 real-world static datasets for graph-level classification tasks, 4
citation networks datasets for node-level classification tasks and 2 datasets for edge-level link prediction tasks. The detailed
dataset statistics are provided in Table 5. 2

The detail of each dataset is introduced below:

• NCI1 (Wale et al., 2008) is a collection of chemical compound graphs, used for graph classification. Each graph
represents a chemical compound, where nodes correspond to atoms and edges represent bonds between them. The
graphs are classified into two classes: active and inactive compounds in the context of cancer drug discovery. This
dataset consists of 4,110 graphs, with an average of 29.9 nodes and 32.3 edges per graph, resulting in a graph density
of 7.5e-2.

2The code and datasets are available at https://github.com/Artessay/LightGNTK.

17

https://github.com/Artessay/LightGNTK

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Table 5. Dataset statistics.
Name # Graphs # Nodes # Edges # Features # Classes
NCI1 4110 29.9 32.3 37 2

NCI109 4127 29.7 32.1 38 2
PROTEINS 1113 39.1 72.8 3 2

DD 1179 284.1 7161.2 89 2
ogbg-molhiv 41127 25.5 27.5 9 2

ogbg-molbbbp 2039 24.1 51.9 9 2
ogbg-molbace 1513 34.1 73.7 9 2

Cora 1 2708 5429 1433 7
CiteSeer 1 3312 4732 3703 6
PubMed 1 19717 44338 500 3

ogbn-arxiv 1 169343 1166243 128 40
ogbl-collab 1 235868 1285465 128 2

ogbl-ddi 1 4267 1334889 0 2

• NCI109 (Shervashidze et al., 2011) is a chemical compound dataset similar to NCI1, but it contains 4,127 graphs
representing chemical compounds, where nodes correspond to atoms and edges represent bonds. This dataset is used
for drug discovery and consists of compounds classified into two classes based on their activity. The average graph has
29.7 nodes and 32.1 edges, with a density of 7.5e-2, making it suitable for graph classification tasks.

• PROTEINS (Borgwardt et al., 2005) is a graph dataset for protein function prediction, containing 1,113 graphs. Each
graph represents a protein, with nodes representing amino acids and edges indicating interactions between amino acids.
An edge is formed between two amino acid nodes if their distance is less than 6 Å (angstroms). The dataset is used for
graph classification tasks, with the goal of distinguishing enzymes from non-enzymes. On average, each graph contains
39.1 nodes and 72.8 edges, with a graph density of 9.8e-2.

• DD (Shervashidze et al., 2011) is a dataset consisting of graphs that represent chemical compounds. Each node in
the graph represents an atom, and the edges represent bonds. The dataset includes 1,179 graphs, classified into two
categories: mutagenic and non-mutagenic compounds. The graphs in this dataset average 284.1 nodes and 7161.2
edges, with a density of 1.8e-1. The task is to predict whether a protein is an enzyme.

• ogbg-molhiv (Hu et al., 2021) is part of the Open Graph Benchmark (OGB) collection and contains molecular graphs
for predicting HIV activity. The nodes in each graph represent atoms, while the edges represent chemical bonds. The
dataset contains 41,127 graphs with an average of 25.5 nodes and 27.5 edges per graph. The goal is to predict whether
a molecule is active against HIV, making it a binary classification problem.

• ogbg-molbbbp (Hu et al., 2021) is a dataset from OGB, consisting of molecular graphs for predicting blood-brain
barrier penetration. Each graph represents a molecule, with nodes as atoms and edges as bonds. The dataset contains
2,039 graphs, with an average of 24.1 nodes and 51.9 edges per graph. The classification task involves determining
whether a molecule can cross the blood-brain barrier.

• ogbg-molbace (Hu et al., 2021) is another dataset from OGB for predicting the activity of molecules against the
BACE (Beta-site amyloid precursor protein cleaving enzyme) protein. The graphs in this dataset represent chemical
compounds, with nodes representing atoms and edges representing bonds. It includes 1,513 graphs, with an average of
34.1 nodes and 73.7 edges per graph, used for binary classification tasks.

• Cora (McCallum & Nigam, 2000) is a classic citation network dataset widely used for node classification tasks. The
dataset consists of 2,708 scientific papers, classified into seven research topics. The citation network contains 5,429
edges, representing citation relationships between papers. Each paper is represented by a 0/1-valued word vector, where
the vector’s dimensions correspond to 1,433 unique words in the dictionary, indicating the presence or absence of each
word in the paper. The Cora dataset is primarily used for node classification and link prediction tasks and is one of the
benchmark datasets in the field of graph data analysis.

• CiteSeer (Senior & Sandeep, 2010) is a citation network dataset where each node represents a paper and edges
represent citations between them. It contains 3,312 documents and 4,732 citation links, with an average of 2.9 edges

18

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

per paper. The task involves classifying papers into one of six categories. It is widely used for node classification tasks
in citation network studies.

• PubMed (Yang & Dong, 2016) is a citation network dataset where nodes represent scientific articles, and edges
represent citation links. The dataset contains 19,717 documents in the biomedical domain and 44,338 citation links.
The task is to predict the topic of a paper, classified into one of three categories: cancer, genetics, and other. It is
primarily used for node classification tasks.

• ogbn-arxiv (Hu et al., 2021) is a graph dataset from OGB for predicting the subject areas of arXiv papers. Nodes
represent papers, and edges represent citation relationships. The dataset includes 169,343 papers and 1.16 million
citation links. Papers are classified into one of 40 categories, making it a large-scale multi-class node classification task.

• ogbl-collab (Hu et al., 2021) is part of the OGB collection, consisting of a graph representing scientific collaboration
networks. Each node represents a researcher, and edges represent co-authorships. The dataset contains 235,868 nodes
and 1,285,465 edges, representing a large collaboration network. The task is to predict whether two researchers are
likely to collaborate in the future, making it a link prediction problem.

• ogbl-ddi (Hu et al., 2021) is a drug-drug interaction dataset from OGB. Each node represents a drug, and edges indicate
whether two drugs interact with each other. The dataset contains 4,267 nodes and 1,334,889 edges, used for link
prediction tasks to predict potential drug interactions based on the graph structure.

D.2. Datasets Evaluation Metrics

In the experiments, we use accuracy (ACC) as the evaluation metric for graph classification tasks in TUDataset. And we
follow the official recommend evaluation metric for tasks in Planetoid and OGB benchmark suites. Specifically, we use ACC
for Cora, CiteSeer, PubMed, and ogbn-arxiv; ROC-AUC for ogbg-molhiv, ogbg-molbbbp, and ogbg-molbace; Hits@50 for
ogbl-collab; and Hits@20 for ogbl-ddi.

Table 6. Evaluation metrics for each dataset.
Dataset Evaluation Metric

Cora, CiteSeer, PubMed, ogbn-arxiv ACC
ogbg-molhiv, ogbg-molbbbp, ogbg-molbace ROC-AUC
ogbl-collab Hits@50
ogbl-ddi Hits@20

D.3. Baseline Details

In our experiments, there are three coreset dataset distillation methods: Random, Herding (Welling, 2009), and K-Center
(Farahani & Hekmatfar, 2009; Sener & Savarese, 2017), a learning-based graph distillation method, DosCond (Jin et al.,
2022a), and a GNTK-based graph-level distillation method, KIDD (Xu et al., 2023b). All experiments are repeated for 5
runs and we report the mean and standard deviation of the results. All implementations are carried out using PyTorch 2.5.1
with Python 3.12 on NVIDIA GeForce RTX 3090 GPUs. The details of these baselines are presented below:

• Random: The most naive coreset selection method that constructs the distilled dataset Dsyn by uniformly sampling
graphs from the original training set Dtrain without leveraging any structural or semantic information.

• Herding(Welling, 2009): A class-wise prototype-based method. First, graph representations are learned by a GLM
pre-trained on the entire training set Dtrain. Then, for each class, it iteratively selects the sample closest to the current
class centroid in the representation space until the desired subset size is reached.

• K-Center(Farahani & Hekmatfar, 2009; Sener & Savarese, 2017): A greedy facility location-based approach. After
extracting graph representations via the pre-trained GIN, it initializes centers using Herding and iteratively adds the
sample that minimizes the maximum distance between any graph in Dtrain and its nearest center in Dsyn. This minimizes
the worst-case approximation error in the feature space.

19

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

• DosCond(Jin et al., 2022a): A gradient-matching graph distillation method. It optimizes the distilled dataset Dsyn by
aligning the gradients of model parameters trained on Dsyn with those from Dtrain at the initialization phase. While
efficient due to its single-step approximation, it simplifies the bi-level optimization objective through heuristic gradient
alignment rather than solving it rigorously.

• KIDD(Xu et al., 2023b): A kernel-based method grounded in GNTK theory. It derives an exact closed-form solution
for the bi-level distillation objective by matching the GNTK Gram matrices between Dsyn and Dtrain, avoiding
approximations used in learning-based methods like DosCond. This ensures theoretical alignment of model behaviors
on both datasets.

D.4. Empirical Evaluation of the Validation-Test Distribution Match

To empirically verify the assumption that the validation and test sets are drawn from similar distributions (introduced in
Section 4.3.2), we compute the Maximum Mean Discrepancy (MMD) and Kullback-Leibler (KL) divergence between GNN
embeddings sampled from both splits after model training. The experimental results are summarized in Table 7.

Table 7. MMD and KL Divergence between Validation and Test Sets

NCI1 NCI109 PROTEINS DD ogbg-molhiv ogbg-molbbbp ogbg-molbace

MMD 0.0023 0.0024 0.0120 0.0056 0.0018 0.0196 0.1171
KLD 0.0660 0.0520 0.0941 0.0019 0.0275 0.0651 0.0301

As shown in Table 7, all MMD and KL divergence values are below commonly used critical thresholds for identifying
substantial distribution shift (Bai et al., 2024; Nguyen et al., 2022), suggesting that the validation and test sets are statistically
similar. These results support the reliability of using the validation set as a proxy for estimating test set performance in our
subsequent experiments.

D.5. Edge Level Experiments Result

We comprehensively evaluate the performance of link prediction tasks in edge-level across two datasets: ogbl-collab and
ogbl-ddi. The results are summarized in Table 8.

Table 8. Performance comparison (mean±std) on link prediction tasks. The best and second-best results are bolded and underlined.
Name Links/Cl Ratio Random Herding K-Center DosCond GNTK LIGHTGNTK Whole Dataset

ogbl-collab (Hits@50) 1 < 0.01% 13.0±0.3 12.2±0.5 12.7±0.4 13.5±0.6 17.1±0.7 17.4±0.8
10 < 0.01% 15.3±0.9 14.8±1.1 16.1±1.3 17.2±1.5 18.9±1.2 19.5±1.4 36.8±0.6
50 0.04% 22.6±1.8 24.3±2.1 23.9±1.7 25.8±2.3 27.2±1.9 26.6±2.0

ogbl-ddi (Hits@20) 1 0.05% 12.0±8.6 4.9±4.5 4.9±4.5 11.2±3.1 13.8±0.4 13.4±5.5
10 0.47% 12.3±5.2 7.8±6.4 8.9±0.7 12.5±1.9 14.2±3.0 14.6±4.7 24.1±4.9
50 2.30% 11.1±4.7 13.2±4.2 12.3±3.6 12.7±6.4 13.8±2.6 13.6±0.9

D.6. Ablation Study on Different Low-Rank Strategies

To better understand the impact of different low-rank optimization strategies in our framework, we conduct an ablation study
on multiple graph classification benchmarks. Specifically, we compare three commonly used sampling methods for low-rank
approximation: (1) selecting the r largest eigenvalues (top-r sampling), (2) selecting the r smallest eigenvalues (bottom-r
sampling), and (3) selecting r eigenvalues based on Bernoulli sampling (Bernoulli Sampling).

For each method, we integrate the sampling strategy into the model’s critical low-rank projection components while keeping
other hyperparameters fixed. We evaluate performance on six graph classification datasets, including NCI1, NCI109,
and PROTEINS (measured by classification accuracy), as well as the ogbg-molbace, ogbg-molbbbp, and ogbg-molhiv
datasets (measured by ROC-AUC). The results summarized in Table D.6 demonstrate the effectiveness of different sampling
strategies across diverse molecular and protein graph tasks.

20

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Table 9. Performance comparison of different low-rank optimization strategies on graph classification datasets.

Sample Method NCI1
(ACC)

NCI109
(ACC)

PROTEINS
(ACC)

ogbg-molbace
(ROC-AUC)

ogbg-molbbbp
(ROC-AUC)

ogbg-molhiv
(ROC-AUC)

Top-r Sampling 65.4 64.0 74.7 76.1 67.9 69.2
Bottom-r Sampling 65.1 65.4 75.6 76.7 67.9 69.1
Bernoulli Sampling 66.4 65.6 75.9 76.8 68.2 69.3

D.7. Ablation Study on Different Sampling Rates

To systematically investigate the effect of the Bernoulli sampling rate in LIGHTGNTK, we conduct an ablation study by
varying the sampling rate p to 0.05, 0.1, 0.2, and 0.5. The results in terms of performance and time consumption are shown
in Table 10 and Table 11, respectively.

Table 10. Performance (ACC and ROC-AUC) across different sampling rates.

Sample rate NCI1
(ACC)

NCI109
(ACC)

PROTEINS
(ACC)

ogbg-molbace
(ROC-AUC)

ogbg-molbbbp
(ROC-AUC)

ogbg-molhiv
(ROC-AUC)

0.05 65.7 65.0 74.5 74.9 67.2 68.8
0.10 66.4 65.6 75.9 76.8 68.2 69.3
0.20 66.5 64.6 75.0 76.6 67.6 69.4
0.50 65.4 65.1 74.5 76.4 68.2 69.3

Table 11. Time consumption (seconds) across different sampling rates.

Sample rate NCI1 NCI109 PROTEINS ogbg-molbace ogbg-molbbbp ogbg-molhiv

0.05 117 109 21.6 43.0 57.8 621
0.10 144 136 24.8 48.8 59.7 683
0.20 183 171 26.1 59.1 63.3 733
0.50 186 180 28.3 62.9 65.4 816

E. Gradient Sampling Method for Large Graphs
In large graph computations, the time complexity for calculating gradients can be significant. To alleviate this, we propose
a gradient sampling method based on Monte Carlo sampling, which reduces computational overhead while maintaining
accuracy in gradient estimation. Instead of calculating gradients for all samples within the batch at once, we perform K
random experiments with a batch size defined as BS, each time with a different random grouping of the samples. In each
experiment, we compute the gradient ∇wq(Lx) of the loss function using backpropagation through the GNNs. For a single
experiment, the gradient is computed as follows:

∇wq(Lx) =
1

BS

∑
x∈B

∇w(Lx), (18)

where B represents the set of samples in the batch. We then average the gradients over the K repetitions using the Monte
Carlo sampling technique:

∇wq(Lx)final = E
[
∇wq(Lx)

]
≈ 1

K

K∑
k=1

∇k
wq(Lx). (19)

This approach helps reduce the computational cost by a factor of BS/K, while still maintaining a robust estimate of the
gradient.

21

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

F. Spectral Sampling Approximation Error of LIGHTGNTK

To gain a deeper theoretical understanding of the approximation quality of LIGHTGNTK, we focus on analyzing the
differences in gradient representations that arise from using the exact versus the sampled Laplacian matrices. This
examination is crucial, as it lays the groundwork for evaluating how well our low-rank approximation of the Laplacian can
capture the underlying dynamics of the graph neural network (GNN).

Let fθ(·) denote a GNN model that is parameterized by θ. The full graph Laplacian, which we denote as L, can be expressed
through its eigendecomposition as L = UΛU⊤. In the context of LIGHTGNTK, we generate a low-rank approximation
L̃ = Ũ Λ̃Ũ⊤ by employing Bernoulli sampling on the eigenvalue spectrum. Specifically, the diagonal matrix of eigenvalues
is approximated as follows:

Λ̃ = diag(ξ1λ1, . . . , ξnλn), ξi ∼ Bernoulli(p). (20)

Here, X ∈ Rn×d represents the node feature matrix. Consequently, the GNN processes the input in the form of either LX
or L̃X .

F.1. Lipschitz Gradient Assumption

For our analysis, we assume that the GNN fθ(·) is L∇-smooth with respect to its input. This means that for any two distinct
inputs A and B, the following inequality holds:

∥∇θfθ(A)−∇θfθ(B)∥ ≤ L∇ ∥A−B∥ , (21)

where L∇ is the Lipschitz smoothing coefficient. This Lipschitz condition is a standard assumption in the literature
concerning neural tangent kernels (NTK) and gradient-based dataset distillation, as referenced in works by (Jacot et al.,
2020; Nguyen et al., 2021; Guo et al., 2024). The assumption is particularly valid when the activation functions used within
the model are Lipschitz continuous, such as ReLU or GELU, and when weight regularization is applied throughout the
network.

F.2. Laplacian Approximation Error Analysis

We proceed to derive the expected deviation of the gradient when utilizing the sampled Laplacian L̃. The expected squared
difference between the gradients can be expressed as:

Eξ

[∥∥∥∇θfθ(LX)−∇θfθ(L̃X)
∥∥∥2] ≤ L2

∇ · Eξ

[∥∥∥(L− L̃)X
∥∥∥2] . (22)

To analyze the term L− L̃, we utilize the spectral decomposition of L:

L− L̃ =

n∑
i=1

(1− ξi)λiuiu
⊤
i then (L− L̃)X =

n∑
i=1

(1− ξi)λiui(u
⊤
i X). (23)

Next, we take the expectation over the Bernoulli sampling process while leveraging the independence of the ξi:

Eξ

[∥∥∥(L− L̃)X
∥∥∥2] ≈

n∑
i=1

[1− ξi]
2 · λ2

i ·
∥∥u⊤

i X
∥∥2 =

n∑
i=1

[1− 2ξi + ξ2i] · λ2
i ·

∥∥u⊤
i X

∥∥2
=

n∑
i=1

[1− 2ξi + ξi] · λ2
i ·

∥∥u⊤
i X

∥∥2 ≈ (1− p)

n∑
i=1

λ2
i

∥∥u⊤
i X

∥∥2 . (24)

Consequently, we arrive at a bound on the expected squared deviation of the gradient:

Eξ

[∥∥∥∇θfθ(LX)−∇θfθ(L̃X)
∥∥∥2] ≤ L2

∇ · (1− p) ·
n∑

i=1

λ2
i

∥∥u⊤
i X

∥∥2 . (25)

This expression illustrates that the approximation error in the gradient is directly influenced by the smoothness of the GNN
and the extent of the eigenvalue sampling. The term (1 − p) indicates how the sampling probability affects the overall
approximation quality, emphasizing the importance of choosing a suitable sampling rate in practical applications.

22

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

F.3. LIGHTGNTK Approximation Error Upper Bound

To analyze the impact of gradient deviation on the GNTK approximation, we examine the difference between the GNTK
computed using the sampled Laplacian L̃ and the full-rank Laplacian L. Specifically, we consider the following expression
for the error:

∣∣ΘLIGHTGNTK(G1,G2)−ΘGNTK(G1,G2)
∣∣ = ∣∣∇θfθ(L̃1X1) · ∇θfθ(L̃2X2)

⊤ −∇θfθ(L1X1) · ∇θfθ(L2X2)
⊤∣∣. (26)

By applying the triangle inequality, which states that |A ·B − C ·D| ≤ |A| · |B −D|+ |D| · |A− C|, we obtain:

∣∣∇θfθ(L̃1X1) · ∇θfθ(L̃2X2)
⊤ −∇θfθ(L1X1) · ∇θfθ(L2X2)

⊤∣∣ ≤∥∇θfθ(L1X1)∥ · ∥∇θfθ(L̃2X2)−∇θfθ(L2X2)∥+
∥∇θfθ(L̃1X1)−∇θfθ(L1X1)∥ · ∥∇θfθ(L2X2)∥.

(27)

Since ∥∇θfθ(L1X1)∥ and ∥∇θfθ(L2X2)∥ are consistent values that depend on the corresponding graphs G1 and G2, we
define them as C1 = ∥∇θfθ(L1X1)∥ and C2 = ∥∇θfθ(L2X2)∥. Therefore, we can rewrite the expression as:∣∣ΘLIGHTGNTK(G1,G2)−ΘGNTK(G1,G2)

∣∣ = ∣∣∇θfθ(L̃1X1) · ∇θfθ(L̃2X2)
⊤ −∇θfθ(L1X1) · ∇θfθ(L2X2)

⊤∣∣
≤ C1∥∇θfθ(L̃2X2)−∇θfθ(L2X2)∥+ C2∥∇θfθ(L̃1X1)−∇θfθ(L1X1)∥

≤ C1L∇ ·

√√√√(1− p) ·
n2∑
i=1

λ2
i

∥∥u⊤
i X2

∥∥2 + C2L∇ ·

√√√√(1− p) ·
n1∑
i=1

λ2
i

∥∥u⊤
i X1

∥∥2
= L∇ (C1∆2 + C2∆1) ,

(28)

where ∆ =

√
(1− p) ·

∑n
i=1 λ

2
i

∥∥u⊤
i X

∥∥2 is the error calculated by Laplacian Approximation error bound.

F.4. Analysis of Error Bounds for Different Low-Rank Approximation Approaches

In this section, we will compare three different methods: Bernoulli sampling, Largest-r sampling, and Smallest-r sampling.
We utilize the Gradient Normalized Error as our evaluation metric for the following reasons. The non-normalized metric
Eξ

[
∥(L− L̃)X∥2

]
faces two significant issues:

1. Scale Variation: Different graphs may have Laplacian matrices with vastly different scales, which makes absolute
error values incomparable. This variation can lead to misleading interpretations of error magnitudes across different
datasets.

2. Uneven Feature Weighting: Some feature directions have a low weight, meaning that even a large error in these
directions might have a negligible effect on the overall gradient. As a result, direct computations of norms tend to
overemphasize errors occurring in high-weight directions, skewing the assessment of approximation quality.

To address these issues, we propose using the normalized error (normalized in elgenvalue dimension) defined as:
E
[
∥(L−L̃)X∥

∥LX∥

]
, which effectively removes the influence of data scale and more accurately reflects the impact on the

gradient direction. Next, we will analyze three sampling strategies:

1. Bernoulli Sampling: In this approach, each eigenvalue is retained with probability p: ξi ∼ Bernoulli(p), i =
1, . . . , n. The approximation error can be expressed as: (L− L̃)X =

∑n
i=1(1− ξi)λiui(u

⊤
i X). The normalized error

for this method is given by:

Eξ

[
∥(L− L̃)X∥

∥LX∥

]
=

n∑
i=1

1

n

Eξ[1− ξi]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
. (29)

23

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

2. Largest-r Selection: In this strategy, only the r largest eigenvalues are retained: ξi = ⊮[i ≤ r]. Consequently, the
error can be expressed as: (L− L̃)X =

∑n
i=r+1(1− ξi)λiui(u

⊤
i X), and the normalized error for this method is:

ErrorLargest =

n∑
i=1

1

n

Ii∈[r+1,n]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
. (30)

3. Smallest-r Selection: Here, only the r smallest eigenvalues are retained: ξi = ⊮[i > n− r]. Thus, the error is given
by: (L− L̃)X =

∑n−r
i=1 (1− ξi)λiui(u

⊤
i X), with the normalized error defined as:

ErrorSmallest =

n∑
i=1

1

n

Ii∈[1,n−r]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
. (31)

To compare the tightness of the error bounds, we compute the differences of the error bounds for the Largest-r and Smallest-r
methods relative to Bernoulli sampling:

∆Largest = ErrorLargest − ErrorBern =

n∑
i=1

1

n

Ii∈[r+1,n]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
−

n∑
i=1

1

n

Eξ[1− ξi]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
.

∆Smallest = ErrorSmallest − ErrorBern =

n∑
i=1

1

n

Ii∈[1,n−r]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
−

n∑
i=1

1

n

Eξ[1− ξi]λ
2
i ∥u⊤

i X∥2

λ2
i ∥u⊤

i X∥2
.

(32)

Numerical experiments indicate that:

• Largest-r: Discarding the n− r smallest eigenvalues might lead to a moderate loss of information, especially if the
discarded directions have low energy. However, the performance is sensitive to the distribution of eigenvalues.

• Smallest-r: Discarding the n− r largest eigenvalues results in significant information loss, which leads to a much
higher error bound.

• Bernoulli Sampling: With a fixed sampling probability p = r
n , the normalized error is expressed as: ErrorBern = 1− r

n ,
which remains independent of the eigenvalue distribution, providing a lower and more stable error bound.

Thus, the Bernoulli sampling method is preferred in practice due to its lower and more consistent error bounds across various
graph structures.

G. Gradient Formulation of ∇θf(L̃X) in Graph Neural Networks
We analyze the gradient of Graph Neural Networks (GNNs) through the examination of forward and backward propagation.
In GNNs, the forward propagation at a hidden layer is represented by the equation:

H(l) = σ
(
L̃H(l−1)W (l)

)
, (33)

where:

• H(l) denotes the hidden embeddings at layer l,

• L̃ is the normalized adjacency matrix or a low-rank approximation of the graph Laplacian,

• W (l) represents the trainable weight matrix at layer l,

• σ(·) is the activation function, which introduces non-linearity into the model.

24

Efficient Graph Continual Learning via Lightweight Graph Neural Tangent Kernels-based Dataset Distillation

Backpropagation Through Graph Laplacian and Weight Matrices

To compute the gradient of the loss L with respect to the hidden activations, we apply the chain rule:

∂L
∂H(l)

= L̃T

(
∂L

∂Z(l+1)
⊙ σ′(Z(l))

)
, (34)

where:
Z(l) = L̃H(l−1)W (l). (35)

This equation illustrates how the gradient flows back through the layers, modulated by the graph structure represented by the
Laplacian matrix L̃. The term L̃T indicates that the gradient flow is influenced by the connectivity of the graph.

Gradient with Respect to Weight Matrices

The gradient of the loss with respect to the weight matrix W (l) is expressed as:

∂L
∂W (l)

= H(l−1)T L̃T

(
∂L
∂Z(l)

⊙ σ′(Z(l))

)
. (36)

This expression highlights the dependence of the gradients on both the activations H(l−1) and the Laplacian matrix L̃. It
illustrates how information propagates through the network during the learning process.

Thus, the gradient ∇θf(L̃X) can be obtained by aggregating the gradients from each layer:

∇θf(L̃X) =

total layers⊕
i=1

∂L
∂W (l)

, (37)

where
⊕

is the concatenation function.

25

