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Abstract

Mixture-of-Experts models have low compu-
tational cost despite having a large number of
parameters. However, the problem of unbal-
anced expert selection during routing leads to
inefficient use of parameters. Thus, an auxiliary
loss is used to make the expert selection uni-
form, but it has been found that this interferes
with the performance of the language model.
In this paper, we propose a supervised learning
approach to Mixture-of-Experts routing using
token frequencies as the supervised signal. This
method aims to align the expert selection with
the knowledge they have acquired. As a case
study, we focus on domain adaptation for law.
The proposed method without the auxiliary loss
achieved performance comparable to a baseline
with the auxiliary loss.

1 Introduction

Mixture-of-Experts (MoE) is an ensemble tech-
nique that combines the outputs of multiple mod-
ules known as experts (Jacobs et al., 1991; Jor-
dan and Jacobs, 1993). The ensemble uses the
output of a module called a router to weight the
experts’ contributions. MoE has been applied to
deep learning (Eigen et al., 2013) and language
modeling (Shazeer et al., 2017). Moreover, the
sparse selection of experts offers the advantage of
reduced computational costs relative to the number
of parameters (Shazeer et al., 2017).

However, a major issue with expert selection in
MOoE using routers is the biased distribution of se-
lections. Recent studies in language models have
attempted to mitigate this bias by introducing a
load-balancing loss (LB loss), which is added to
the language model loss to promote more uniform
routing (Shazeer et al., 2017; Lepikhin et al., 2021;
Fedus et al., 2022). Nevertheless, the LB loss can
interfere with the performance of language mod-
els (Wang et al., 2024).

In light of these issues, we propose SvMoE
(Supervised Mixture-of-Experts), a method that in-
volves training the router through supervised learn-
ing. Our method matches the selected experts with
the knowledge they have acquired. We assume that
the token frequencies in the training data corre-
spond to the experts that specialize in these tokens.
First, we divide the training data by clustering us-
ing TF-IDF. Then the router is trained using nor-
malized token frequencies as a supervised signal.
Specifically, our approach involves: (1) clustering
the training data with TF-IDF (2) training each ex-
pert on the divided data, (3) merging them into an
MOoE model, (4) training the router with token fre-
quencies, and (5) training the entire MoE model,
thereby achieving appropriate training without us-
ing the LB loss.

As a case study, we focus on domain adap-
tation in Japanese law. We perform continual
training using Japanese legal documents on a pre-
trained model and evaluate it on a bar exam bench-
mark (Choi et al., 2024). The router trained by our
proposed method was able to make selections cor-
responding to token frequencies, and our method,
without the LB loss, achieved performance almost
equivalent to a baseline method with the LB loss.

2 Related Work

2.1 Mixture-of-Experts

MOoE has been extensively used in Transformer-
based language models (Lepikhin et al., 2021; Fe-
dus et al., 2022; Du et al., 2021; Team et al., 2022;
Shen et al., 2024; Jiang et al., 2024; DeepSeek-Al
et al., 2024). These models predominantly employ
a structure where the feedforward network (FFN)
layers of Transformer blocks are arranged in par-
allel. They are trained for a language modeling
objective.

Although MoE offers efficiency despite its num-
ber of parameters, it is known that during train-



ing, only specific experts are predominantly acti-
vated (Shazeer et al., 2017). This activation bias un-
dermines the specialization of each expert and ham-
pers the efficient use of parameters. This prompts
the adoption of the LB loss to promote more uni-
form routing (Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2022). The LB loss is incorpo-
rated into the training process alongside the stan-
dard language model loss.

However, Wang et al. (2024) have shown that the
LB loss can adversely affect the performance of lan-
guage models. This study highlights the need for
hyperparameter tuning due to trade-offs between
language model performance and the LB loss, and
achieves improvements in routing without using the
LB loss. Specifically, they propose adding a dynam-
ically learned bias term to the router’s output to en-
sure load balancing without interfering with the gra-
dients of the language model loss. This approach
is also used in subsequent research (DeepSeek-Al
etal., 2024). In line with this perspective, our study
aims to enhance MoE model performance without
relying on the LB loss.

2.2 MokE:s for Continual Training

Some studies, such as Komatsuzaki et al.’s (2023),
focus on building MoE models from pre-trained
dense models, while others, as discussed in Sec-
tion 2.1, build them from scratch.

Branch-Train-Merge (BTM) (Li et al., 2022)
improves performance by merging individually
trained expert models. Instead of parallelizing FFN
layers, it parallelizes entire Transformer models,
merging at the token logit level. Moreover, C-
BTM (Gururangan et al., 2023) enables parallelized
training across large datasets by using clustered
training corpora along with the BTM approach.
Branch-Train-MiX (BTX) (Sukhbaatar et al., 2024)
employs domain-partitioned data to fine-tune pre-
trained Transformers. These models are then inte-
grated by parallelizing their FFN layers to create
an MoE model. To train the entire MoE model for
routing, the LB loss is employed.

In this study, we use BTX as a baseline to explore
routing learning without relying on the LB loss.

3 Supervised MoE

We propose SVMOoE, a supervised Mixture-of-
Experts method that trains the router using token
frequencies from documents as supervised signals,
which accounts for the negative impacts of the LB

loss. We use TF-IDF to cluster the entire dataset
into subdomains, where each expert is tailored
to specialize in a particular subdomain. Instead
of forced routing based on token frequency, the
training of the router integrates the training data
information and context information during infer-
ence. SVMOE consists of five stages: clustering the
dataset, training the experts, merging the experts,
supervised learning of the router, and fine-tuning
the entire MoE model.

3.1 Creation of Training Data for the Router

In SvMOoE, each expert is trained to specialize in a
subdomain. Here, we create the supervised signals
needed for routing that aligns with the data used
to train each expert. First, we define the number
of subdomains as /N. We assume that the dataset
for a particular domain Dy is pre-categorized into
M categories where M > N. For each category,
TF-IDF is computed by regarding a category as a
document.

Using TF-IDF as features, we perform
clustering to obtain /N subdomain datasets
dp 1<n<N,dind;="0(Vi#j)). We set
D = U, d,, as the whole dataset for training.

Next, we extract the token frequencies that serve
as the supervised signal for training the router. We
count the tokens in each of the subdomain datasets,
resulting in an NV x |V'| matrix, where V' represents
the vocabulary. The token frequency vector for
each token ¢ € V is expressed as

TF, = (tf1,tf02, ..., th ) € RY,
such that "0 tf,,, =1 (vt e V).

3.2 Model Construction

Training the Experts N experts {E1, ..., En}
are trained using the dataset D prepared in Section
3.1. We use a pre-trained Transformer model and
apply continual training to it separately on each
subdomain for the purpose of language modeling,
thereby obtaining a group of experts specialized in
each subdomain.

Merging the Experts We merge the obtained
experts to create the MoE model. Following the
BTX approach, we set up the FEN layers of the
expert group in parallel for each Transformer block,
resulting in an MoE layer with [V experts. For
other layers, such as attention, we merge them by
averaging, while we initialize the router of the MoE
layers randomly.



Model LB loss PPL CMR1 SRL

Dense - 1.156+0.462 - -

) ];fof TV T [1.187£0.407 4.063+2.237 1.805+0.198
X 1.169+0.401 2.847+2.025 1.705+0.261

é;MOE T TV T [1.24540.443 2.5384+2.097 0.4651+0.316
X 1.199+0.434 2.53342.092 0.466+0.319

Table 1: Evaluation results on the test set. The best
and second-best values are highlighted in bold and
underlined, respectively. The proposed model is shown
in the bottom row (SvMoE without the LB loss).

Supervised Learning of the Router We train
the merged MoE model’s router using the token
frequency signals obtained in Section 3.1. At this
stage, only the router’s parameters are updated, and
the rest remains frozen. Given that the model has L
blocks, each block has its own router, resulting in
L routers. We define the objective loss LgyMoE as
follows when a training batch b = t1ta ... 1 (t; €
V') is given as input:

L
LsyMoE = Z Z lop(softmax(RLy), TFy),
teb =1

where RL; € RY represents the logits of the router
in the [-th block, softmax(-) is the softmax func-
tion, and ¢cg(-, ) is the cross-entropy loss. By
training the router’s parameters using Ls,\oE, the
model is encouraged to assign tokens frequently
appearing in training data to the corresponding ex-
pert.

Fine-tuning the MoE Model We train the entire
MoE model, with the trained router, for the purpose
of language modeling. The LB loss is not used.

4 Model Construction Experiment

4.1 Setup

We describe the data processing, training setup,
and evaluation. For our experiments, we set N = 8
and use 1lm-jp/llm-jp-3-1.8b' for both the model
and the tokenizer. This tokenizer is also used for
calculating TF-IDF and token frequencies.

Dataset We conduct experiments using Japanese
legal texts. The dataset Dy is derived from the legal
texts obtained from e-Gov, with legal categories
(M = 50). Using the tokenizer, we compute TF-
IDF and perform equal-size spectral clustering” to
divide the dataset into eight subdomains, resulting

'A Japanese pre-trained model with 1.8B parameters.
2anamabo/Equal-Size-Spectral-Clustering

in the dataset D. We split the dataset into training,
validation, and test sets in an 8:1:1 ratio.

Model First, we train llm-jp-3-1.8b for language
modeling on each of the eight legal subdomains
to obtain eight expert models. These experts are
merged into an MoE model following the proce-
dure described in Section 3.2. The resulting model
(SvMOoE) undergoes the training of the router and
subsequent fine-tuning. For comparison, we also
evaluate a model where the LB loss is added during
the fine-tuning stage.

Additionally, we prepare a baseline model
(BTX) by merging the eight experts and perform-
ing entire fine-tuning. For this BTX baseline, we
evaluate both models with and without the LB loss
during fine-tuning.

Furthermore, we include another baseline with
a dense Transformer model (Dense), which is not
based on MoE. This model is trained on the entire
dataset without subdomain distinction.

Evaluation We compare the baseline models to
our proposed model using the dataset D. To assess
the degree to which knowledge gained from contin-
ual pre-training is retained, we evaluate the models
separately on training, validation, and test sets. The
following three metrics are used:

* PPL: The average perplexity of the model
across given texts.

« CMR}, (Conditional Mean Rank)*: Given that
the n-th expert’s rank determined by the router
logits (r1*F) equals k, the average of the n-th
expert’s rank determined by token frequen-
cies ('), ie.,, Er'F | »BL = K], A value
closer to k implies that routing follows token
frequencies.

* Sgrr: The average entropy of the router logits.
A smaller value indicates greater confidence
by the router.

4.2 Quantitative Results

Table 1 presents the evaluation results on the test
set of the dataset D.

First, regarding perplexity, Dense performs best,
followed by BTX and SvMoE. In both BTX and
SvMoE, the models without the LB loss yielded
better outcomes. This aligns with previous findings
(Wang et al., 2024), where the LB loss adversely
affected model performance.

3We report values for k = 1. Results for k& = 2 can be
found in Appendix B.


https://huggingface.co/llm-jp/llm-jp-3-1.8b
https://laws.e-gov.go.jp/bulkdownload
https://github.com/anamabo/Equal-Size-Spectral-Clustering

(b) BTX

(a) SYMoE

ifli2isi4isisivisi
(d) Legend for colors.

Figure 1: Comparison of the selected experts. In Figure
la,1b, | = 16 is reported. Excerpt from the Specific
Chemical Substances Hazard Prevention Regulations.
Figure 1c shows the selection by the token frequencies.

For CMR;, SvMoE outperformed BTX, indi-
cating that training with token frequencies enables
routing that aligns with the dataset on which the
expert is trained. Similarly, for the entropy of the
router logits Sy, SYMoE showed superior results,
suggesting that our training confidently activates
the corresponding experts. Figure 3 in Appendix
B also shows that SYMoE can select experts corre-
sponding to the input token information.

In summary, while the proposed method facili-
tates token frequency-based routing, as intended,
it does not translate to improved perplexity. This
may be due to the method’s emphasis on frequency
information rather than syntactic cues, which are
often used for expert selection in MoE (Jiang et al.,
2024; Fan et al., 2024). Furthermore, it is known
that lower perplexity does not necessarily equate to
human-like performance (Kuribayashi et al., 2021).

4.3 Qualitative Results

Figure 1 illustrates an example of expert selection.
The input sentence is taken from the test set of dy.

In SvMoE, the experts F5 and Fg, whose
datasets have higher token frequencies for the input
tokens, are frequently chosen. Conversely, in BTX,
although E; is somewhat predominant, experts are
selected more evenly overall. For instance, “2 H
B (Chloro) has high token frequencies for d4 and
ds, and appears infrequently in d;. In SYMoE, E,
and Eg are used for predicting “2~ @ 2 and the
subsequent word, respectively, whereas in BTX,
F5 and E; are employed.

Qualitatively, SYMoE makes selections based
more on token frequency information than BTX,
confirming its alignment with token frequencies in
expert selection.

Model LB loss | accuracy (%)
_Dense - | _ - 4833 _
51.67
BTX X 47.22
I . 4833
SYMoE 5111

Table 2: Results for the Japanese bar exam.

5 Evaluation on a Downstream Task

We compare the proposed method with baselines
in a downstream task. We focus on a Japanese bar
exam benchmark constructed by Choi et al. (2024).

Setup Given that the bar exam includes complex
formats such as selecting correct combinations, we
use a light task format that involves determining the
correctness of individual sentences, referred to as a
binary judgment task. We evaluate the five models
constructed in Section 4 in a few-shot setting. Five
questions from the 2019 bar exam are chosen as
the few-shot examples, and 180 questions from the
2023 bar exam are evaluated.

Results Table 2 shows the results for the binary
judgment task. The BTX baseline with the LB loss
achieved the highest score, and the score dropped
by more than four points without the LB loss. Con-
versely, SYMOoE achieved a high score even without
the LB loss, nearly matching the BTX baseline
with the LB loss. When the LB loss is applied
to SvMOoE, the score drops by about three points
compared to when it is not used. This suggests that
SvMOoE can replace the need for the LB loss.

Although SvMoE did not outperform the base-
line in terms of perplexity evaluation in Section
4.2, it demonstrated comparable performance in
the downstream task. Given the influence of the
LB loss on the model performance, as shown in
Table 2, the proposed method is advantageous. The
fact that it does not require hyperparameter tuning
suggests its usefulness.

6 Conclusion

We proposed the SYMoE framework, which trains
the router without relying on the LB loss, thereby
avoiding its negative impact on model performance.
We constructed an MoE model using the proposed
method and confirmed that it enables routing based
on the characteristics of the dataset on which each
expert is trained. Additionally, in a downstream
task, our approach achieved performance compara-
ble to that of baselines with the LB loss.


https://laws.e-gov.go.jp/law/347M50002000039
https://laws.e-gov.go.jp/law/347M50002000039

Limitations

We focused on the continual learning for adapta-
tion in the legal domain as a case study. In other
words, it has not been verified in general MoE, in-
cluding pre-training. However, we believe that the
proposed method, which consists of the clustering
using TF-IDF and the supervised learning based on
token frequencies, has general applicability.

We only conducted the experiment in Japanese
because we believe that the proposed method is not
affected by the language. In addition, the explo-
ration of model size is also future work.

The router architecture may require improve-
ments. In this paper, following previous research,
we used linear transformations to select experts.
However, the router had relatively few parameters
compared to other components, which may have
been insufficient for effective learning.

Furthermore, we did not thoroughly examine
which layers should be targeted for load balancing.
As seen in Figure 1, the routing behavior varies
greatly across layers. Therefore, it may be benefi-
cial to limit the layers subjected to load balancing
or to adjust the coefficients for each layer.
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1D Train Val. Test Total
1 23.0M 32M 19M | 28.1M
2 18.0M 2.0M 2.6M | 22.6M
3 | 240M 35M 24M | 29.9M
4 | 32.1IM 3.8M 4.7M | 40.5M
5 | 31.3M  43M 4.1M | 39.7M
6 | 734M 59M 8.1M | 87.4M
7 | 21.0M 29M 25M | 26.4M
8 | 395M 2.0M 5.3M | 46.9M

Table 3: The number of tokens per subdomain.

Model LB loss CMRs
Dense - -
T TV T [474242.206
P aossa21sn2
v~ T [3:50312.374
SVMoE | 351842 365

Table 4: CMR results for the test set.

A Details of the Clustering

As mentioned in the main text, we perform clus-
tering on categories obtained from e-Gov* using
TF-IDF as features. Due to the uneven distribution
of the data, the categories ‘National Tax,” ‘Finance
and Insurance,” and ‘Local Finance’ are fixed as
individual subdomains. In other words, we cluster
the remaining 47 categories into 5 clusters. Table 3
shows the number of tokens per subdomain and the
results of the clustering are shown in Table 5.

B Details of the Model Construction

Setup For a training batch b, the LB loss L1 is
formulated as:

N
L1 = NZDﬂ’i,

i=1
1
D, = — Z 1{argmax G(z;) = i},
bl 4
1
Pi = 7 Z g(!l?'t),
bl 4

where x; is the hidden state for token ¢ and G(-) is
the router function including the top-k process. D;
and P; represent the proportion of tokens assigned
to E; and the proportion of the routing probability
for F;, respectively. Using this £1,5 and the lan-
guage model loss L1, the objective loss used in
the entire training of MoE models L is defined as:

L=Lim+ alrp,

where « is a hyperparameter which determines the
LB loss’s weight.

*https://laws.e-gov.go. jp/bulkdownload
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Figure 2: Loss curves for the proposed method and
baselines.

For all models with an MoE architecture, we set
the coefficient for the LB loss a to 0.01, following
the BTX setup. The number of experts selected per
inference is fixed at 2.

Results The loss curve during model training is
shown in Figure 2. In the initial stages of training,
the pre-trained router in SYMoE displayed lower
loss than BTX, which was initialized randomly.
However, the final training loss showed the best
results for BTX without the LB loss. As indicated
in Section 5, loss does not necessarily directly cor-
relate with model performance.

Next, CMR; for the test set is reported in Fig-
ure 4. The trend was the same as CMR mentioned
in Section 4.2.

The evaluation results on the training and vali-
dation sets are presented in Table 6, which follow
the same methodology used for the test set results
in Table 1. Overall, a tendency similar to the test
set results was observed, but better outcomes were
shown for the training set compared to the others.

Additionally, Figure 3 displays the results of
counting the frequency of expert selections on the
test set. As shown in Table 3, there is a imbal-
ance in the number of input data, and SvMoE pre-
dominantly selects experts corresponding to this
presence. On the other hand, BTX selects experts
relatively evenly, especially when the LB loss is
used, irrespective of the input data distribution. It is
also observed that near the input and output layers,
a bias in selections arises under all conditions.


https://laws.e-gov.go.jp/bulkdownload

ID | Category Names

1 | ‘Criminal’, ‘National Diet’, ‘Mining’, ‘Enterprise’, ‘Commerce’, ‘Land’, ‘Culture’, ‘Judiciary’, ‘Civil’, ‘Foreign
Affairs’

‘Fisheries’, ‘Government Bonds’, ‘Local Autonomy’, ‘General Industry Provisions’, ‘Disaster Response’
‘Constitution’, ‘General Finance Provisions’, ‘Postal Services’, ‘Administrative Procedures’, ‘Urban Planning’,
‘Roads’, ‘Social Welfare’, ‘Social Insurance’, ‘Forestry’, ‘Freight Transport’

4 | ‘National Property’, ‘Administrative Organization’, ‘National Public Employees’, ‘National Land Development’,
‘Labor’, ‘Statistics’, ‘Education’, ‘Maritime’, ‘Agriculture’, ‘Defense’

5 | “Tourism’, ‘Police’, ‘Firefighting’, ‘Industry’, ‘Telecommunications’, ‘Environmental Protection’, ‘Foreign Ex-
change and Trade’, ‘Health’, ‘Land Transport’, ‘Rivers’, ‘Aviation’, ‘Building and Housing’

‘National Tax’

‘Finance and Insurance’

‘Local Finance’

w N

[eIEN le)

Table 5: Categories of legal classifications assigned to each subdomain. The original category names are in Japanse.

Split | Model LB loss | PPL CMR; CMR3 SRL
Dense - 1.042+0.087 - - -
. I _B_T;( _______ 1.08940.159 ~ 4.043£2254 4755£2.205 ~1.802+0.201 ~
Train X 1.069+0.145 2.802+2.035 4.08742.150 1.69140.269
I évI\/I:)E_ TV T [ 1.1414+0.196 ~ 2.473£2.078 3.54312.369 0.449+0.316
X 1.099+0.202 2.477+2.079 3.5634+2.360 0.45040.318
Dense - 1.154+0.331 - - -
I _B_T;(_ T TV T 1.188+0.320 ~ 4.1454£2214 47749£2201 T 1.803+0.199
Valid. X 1.169+0.316  3.057+2.086 4.086+2.152 1.71640.256
I évIVI;)E_ T TV T [ 124340348 * 2.6874£2.164 3.558+2.397 0.477+0.327
X 1.201+£0.340  2.681+2.161 3.5694+2.385 0.476+0.329

Table 6: The evaluation results on the data used for training. The best and second-best values within each set are
highlighted in bold and underlined, respectively.
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Figure 3: Frequencies of expert selection per layer for each model.
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