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Abstract

Large language models must repeatedly decide whether to
answer directly from internal knowledge or to defer toward
tool like behavior. We study this answer—versus—defer arbi-
tration in autoregressive transformers and test the hypothesis
that a compact late layer module influences this choice. Us-
ing position aligned causal patching at the decision token, we
measure a decision margin the logit difference between the
canonical answer’s first token and a small, fixed set of de-
ferral trigger tokens to quantify this bias. Across the Pythia
scaling suite (2.8B, 6.9B, 12B), We observe indications of a
late layer MLP subcomponent emerging consistently whose
clean minus random corrected effect peaks near the top of
the stack and shifts later with scale. Additive interventions at
this layer reliably increase the decision margin toward answer-
ing, while placebo edits and alternate token sets yield near
zero change. Qualitatively similar late layer localization and
MLP over head dominance are observed in LLaMA-3-8B and
Phi-3-mini, suggesting that this arbitration motif generalizes
across model families. Our findings are consistent with the
view that late MLPs may encode compact, confidence like
signals influencing immediate behavioral choices, offering a
reproducible mechanistic handle for analyzing and steering
answer defer dynamics.

Introduction

When large language models (LLMs) generate text, they
repeatedly face a local decision: should they answer from
internal knowledge, or defer by producing a continuation that
resembles tool invocation or external lookup? Understand-
ing how this answer—versus—defer arbitration arises inside
transformer architectures is central to interpreting model con-
fidence, calibration, and control.

Recent work in mechanistic interpretability has revealed
structured computation within transformers. Attention heads
tend to route and align information across tokens, while MLP
sublayers apply nonlinear rules that often encode local de-
cisions or feature detectors (Elhage et al.[[2021}; |Geva et al.
2022k [Olsson et al.|2022)). Parallel research on model cali-
bration and deferral (Hanna and collaborators|[2023; Radford
et al.[2019) suggests that late layers may encode meta de-
cisions about whether to ””’trust”” internal knowledge or to
seek external input. However, the specific mechanisms that
arbitrate this choice remain poorly understood.
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Key idea and hypothesis. We hypothesize that a compact
late layer MLP may motif acts as an arbiter at the decision to-
ken, biasing the model toward either answering or deferring.
If such a mechanism exists, its influence should be (i) measur-
able through causal patching aligned to the decision position
and (ii) manipulable through small local interventions.

Experimental approach. To test this, we introduce a po-
sition aligned causal analysis centered on the token where
the decision occurs. We define a decision margin the logit
difference between the canonical answer’s first token and a
small set of tool-trigger tokens as a quantitative proxy for the
model’s answer defer bias. Using activation patching with
a clean minus random control, we map per layer contribu-
tions of attention heads and MLPs and apply local additive
interventions to probe causal influence.

Observations. Across the Pythia scaling suite (2.8B, 6.9B,
12B), we observe a consistent late layer MLP peak that shifts
deeper with scale and exceeds the strongest attention head in
the same region. Small additive amplifications of this MLP
output increase the decision margin toward answering, while
placebo edits leave it unchanged. Replications on LLaMA-3-
8B and Phi-3-mini show the same late layer localization and
task wise consistency, suggesting that this arbitration motif
may generalizes beyond a single model family.

Contributions. This work provides: (1) a token-level
causal framework for analyzing answer defer arbitration, (2)
evidence that a compact late layer MLP subcomponent ap-
pears to plays a consistent and causally testable role in this
decision across model scales and families, and (3) an inter-
pretable and position specific handle for studying or steering
confidence related behavior in autoregressive transformers.

Related Works

Mechanistic interpretability of transformer components.
Recent work has sought to reverse engineer how transform-
ers represent and process information. Foundational analyses
(Elhage et al.|[2021} |Olsson et al.|2022) formalized trans-
former circuits, showing that attention heads route informa-
tion across tokens while MLPs perform nonlinear transfor-
mations encoding decision rules or key—value associations
(Geva et al.|2022). Studies on superposition and feature disen-
tanglement (Elhage et al.[2022; |Bricken et al.|2023)) revealed



that abstract concepts are stored in overlapping subspaces,
motivating methods to isolate coherent functional units. Our
work extends this line by testing whether a compact late-
layer MLP subcircuit encodes a meta-decision of whether to
answer or defer at specific token positions.

Causal interventions and model editing. Activation
patching and related causal analyses provide tools to localize
such mechanisms. Causal scrubbing (Casper et al.[2023)) and
activation patching (Wang and Collaborators|2023)) swap ac-
tivations across conditions to identify regions driving outputs.
Model editing methods like ROME, MEMIT, and MEND
(Meng et al.[2022} ?; ?; ?) similarly target factual associations
within specific components, but focus on static recall rather
than dynamic arbitration between behavioral modes. Our
position-aligned patching adapts these ideas to identify the
component that causally tips the model’s next-token choice
between self-reliance and deferral.

Confidence, calibration, and late-layer computation.
Late layers in transformers often consolidate high-level
control signals akin to confidence variables. Radford et al.
(2019) observed that late features generalize across tasks,
while Hanna and collaborators| (2023) linked calibration with
human-like deferral tendencies. These suggest an internal
“should I answer?” variable distinct from factual recall. Prior
work, however, examined this only at the output level via
calibration curves. We instead provide causal evidence that a
late-layer MLP subcomponent directly mediates this arbitra-
tion through activation patching.

Scaling suites and cross-family replication. The Pythia
suite (Biderman et al.|2023)) offers a controlled setting for
scaling analysis since all models share training data and order.
We extend this to LLaMA-3 (Dubey et al.|[2024) and Phi-
3 (Abdin et al.|2024) to test generality across architectures
and tokenizers. Despite family-level differences, we find a
conserved late-layer MLP pattern, suggesting that arbitration
mechanisms emerge consistently across large autoregressive
transformers.

Positioning of our work. While prior research explains
how transformers recall, align, and edit knowledge, it has
not explored the mechanistic basis of when they choose to
rely on internal knowledge versus defer. Our work bridges
mechanistic circuit analysis, causal patching, and behavioral
calibration through a unified, token-level causal study that
reveals a reproducible late-layer arbitration motif.

Method

Problem setup. Autoregressive transformers repeatedly
face a local decision at each generation step: whether to
produce an answer token that expresses internal knowledge
or to initiate a continuation that implies deferral, such as a
search or tool call. We analyze this decision token the final
token of the prompt where this arbitration occurs. Our goal is
to identify which internal components causally bias the model
toward answering or deferring, and how this bias changes
across model scales and families.

Position aligned prompt triads. Following prior work in
causal interpretability (Elhage et al.|[2021} |[Meng et al.[2022;
Casper et al.|2023} Wang and Collaborators|2023)), we design
prompts that are position aligned: all variants end at the
same token position so that activations can be replaced or
compared directly. For each short question, we generate three
variants: (1) a clean prompt that naturally elicits a direct
answer, (2) a corrupted prompt that instead encourages a tool
like continuation (e.g., “To find the answer, I should use the
command:”), and (3) a random control prompt that shares
surface form but is semantically unrelated. This alignment
allows us to isolate the causal contribution of activations
at the exact decision position rather than across arbitrary
sequence spans.

Dataset design and motivation

To probe the arbitration hypothesis systematically, we build
a small synthetic dataset of eight tasks, summarized in Ta-
ble[T} Each task uses a templated Q: /A : scaffold so that the
decision token is consistent across prompts. The tasks span
factual recall (e.g., capitals, historical events), arithmetic,
temporal knowledge, and commonsense color or unit rea-
soning. For every task, we define a canonical answer string,
a base deferral-trigger set T = {use, search, call, open},
and an alternate set Ty, = {query, fetch, browse}. We aver-
age results over 5 random seeds and 4 paraphrases per task,
yielding 160 runs per model.

Why synthetic tasks? Synthetic, templated prompts have
become a standard tool in mechanistic interpretability be-
cause they enable controlled probing of isolated computa-
tions. Similar approaches appear in work on induction heads
and in-context learning (Olsson et al.[2022), causal tracing
of factual recall (Meng et al.|2022)), and concept disentangle-
ment (Bricken et al.[2023). Synthetic datasets also feature in
probing studies of reasoning control, such as the “IOI” task
suite for subject—verb dependencies (Nanda and contributors
2023)), or causal calibration analyses in |[Hanna and collab
orators| (2023)). Our dataset follows this tradition: it elimi-
nates confounding linguistic complexity so that differences
in causal effect can be directly attributed to the answer—defer
decision, not to unrelated syntax or semantics. Moreover,
these prompts mimic the kinds of meta decisions observed
in tool augmented LLMs (Schick et al.|[2023)), allowing us
to examine a simplified analogue of that behavior in a static
transformer.

Decision margin as a quantitative measure

Let £ € RV be the model’s next token logits at the decision
position, Y,y the first token of the canonical answer, and T’
the deferral trigger token set. We define the decision margin:

A=l — I}leajz(ft. )

A higher A indicates a stronger internal bias toward answer-
ing. This margin functions as a token-level logit difference
analogue of confidence, a quantity widely used in calibration
and probing analyses (Radford et al.|2019; Desai and Durrett
2020; |Geva et al.[2022; [Hanna and collaborators|2023)). We
validate its stability by re-computing A under Ty, and across



paraphrases, observing Spearman p = 0.93 correlation sug-
gesting that it captures an intrinsic decision bias rather than
token-level variance. While A does not exhaustively capture
every linguistic form of deferral, it isolates the concrete next
token decision that precedes longer tool like continuations.
Hence, it functions as a conservative and reproducible proxy
for the answer vs. defer arbitration event, consistent with
established practice in token level causal analysis.

Position aligned activation patching

To localize the circuitry controlling this decision, we per-
form position aligned activation patching (Elhage et al.[2021}
Meng et al.|[2022} |Casper et al.|[2023). For each layer L
and component C' € {attention head 7, MLP}, let A7 and

A‘L“?g denote cached activations at the decision token from
clean and random control runs, respectively. In the corrupted
run (which tends to defer), we replace A%’% with one of these
cached activations and recompute A. We measure:

B8 = Alcorr | ARG « ATTE) — Alcomn),  (2)
B = Alcorr | ARG « ARE) — A(corr),  (3)

and report their corrected difference:
Effect;, o = Ef — EP"¢. 4)

This clean minus random correction controls for non se-
mantic magnitude artifacts (Wang and Collaborators|2023)
and isolates causal contribution specific to decision bias
rather than general activation energy.

Identifying and testing the arbiter layer

For each layer, we compare Effect; yip to the maximum
head effect maxy, Effecty, ,. We define the arbiter layer £*
as:

0* = arg max Effects, mip. 5)

A consistent peak late in the network indicates that the arbi-
tration mechanism consolidates near the output, echoing late
layer decision integration reported in Radford et al.|(2019);
Hanna and collaborators| (2023)).

Local additive interventions. To verify causal control
rather than correlation, we apply small additive perturbations
to the MLP output at £*. Let h be the MLP output at that
position for the corrupted run and h<***" the corresponding
activation from the clean run. We modify:

h < h+ah®™ o€ {0.90,0.95,1.00,1.05,1.10,1.15}.

(6)
We then compute A(«) — A(1.0) averaged over seeds and
paraphrases. A monotonic increase for > 1 indicates that
amplifying the identified subcomponent biases the model
toward answering, consistent with a functional arbitration
role. Repeating the intervention at adjacent layers or with Ty

produces negligible effects, confirming specificity.

Expected empirical signatures. If a late layer MLP truly
acts as an arbitration circuit, we expect three signatures: (1)
a pronounced late layer peak in Effect, mpp surpassing atten-
tion heads in the same layer, (2) the arbiter layer £* shifting

later as model size increases, consistent with hierarchical
consolidation (Biderman et al.[2023)), and (3) local additive
interventions at £* producing consistent upward shifts in A.
Position alignment ensures that these results reflect causal
structure at the decision token rather than uncontrolled cross
sequence interactions.

Experiments
Model selection and scaling rationale

We conduct experiments on three models from
the Pythia family (Biderman et al| [2023):
pythia-2.8b-deduped, pythia-6.9b-deduped,
and pythia-12b-deduped. These checkpoints are
trained on the same dataset in the same order, making them
ideal for layerwise scaling comparisons without confounding
data effects. To test generalization across architectures and
tokenizers, we replicate the full observational pipeline on
three additional model families: LL.aMA-3-8B (Dubey et al.
2024), and Phi-3-mini (Abdin et al|[2024). All models
are accessed through TransformerLens (Nanda and
contributors|2023)), ensuring consistent activation hooks and
layer indexing.

Scaling analysis is central to our hypothesis: if a compact
arbitration circuit exists, it should consolidate deeper into the
model as representational capacity increases. We therefore
track the location and magnitude of the maximal corrected
MLP effect (Eq.[d) across these model scales.

Prompt dataset and sampling procedure

Each model is evaluated using the eight templated task cate-
gories described in Table[I] For every task, we generate three
prompt variants (clean, corrupted, and random-control) Each
task is instantiated with four paraphrases, each paraphrase
run under five random seeds, yielding 8 x 4 x 5 = 160 sam-
ples per model. All prompt templates, paraphrase scripts, and
token mappings are released alongside our code for exact
reproducibility.

To confirm robustness, we repeat the full procedure with
both the base and alternate deferral trigger sets T' = {use,
search, call, open} and Ty, = {query, fetch, browse}. De-
cision margins and causal effects remain stable (Pearson
r = 0.94 across trigger sets), validating that our results do
not depend on specific lexical cues.

Experimental protocol

The overall evaluation pipeline is summarized in Algorithm|[T]
(Appendix ).

Evaluation metrics and visualization

We aggregate causal effects and intervention results across
seeds and paraphrases to obtain mean + standard deviation
per model. To visualize scaling, we plot (i) normalized layer
index of £* vs. model size, (ii) MLP vs. max-head corrected
effect curves, and (iii) intervention response curves A(a) —
A(1.0) with 95% confidence intervals. All visualizations are
produced with consistent normalization so that magnitudes
are comparable across models.
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Why this design tests the hypothesis. The combined scal-
ing and cross family evaluation directly probe the three em-
pirical predictions of the late MLP arbitration hypothesis: (i)
localization a specific late-layer MLP exhibits the strongest
causal effect; (ii) scaling shift this layer moves deeper with
increasing model size; and (iii) causal control small local
additive edits modulate the answer defer bias without affect-
ing unrelated behaviors. By using position aligned synthetic
datasets and a clean minus random correction, the experi-
ment isolates genuine mechanistic structure from incidental
co-activations or dataset artifacts.

Results

R1: A late-layer MLP peak emerges and shifts later with
scale. Across the Pythia suite (2.8B — 6.9B — 12B), the
maximal corrected MLP effect Effect, pip consistently oc-
curs in late layers, with its normalized index increasing with
model size (Fig.[Zh in Appendix). The peak moves from the
last quarter of depth (2.8B) to the penultimate or final lay-
ers (6.9B/12B), suggesting that arbitration becomes more
localized and consolidated as capacity grows.

R1b: Heatmap evidence localizes the arbiter late. Layer-
wise heatmaps of the corrected MLP effect (Fig. [T) show con-
centrated activation in the upper portion of the stack across all
scales. Earlier and mid layers remain near-zero after control
subtraction, indicating that the residual signal reflects a spe-
cific late-layer MLP contribution rather than global activation
magnitude.

R2: Late-layer MLP dominance over attention heads. In
late layers, Effectr, mip exceeds the maximum per-head ef-
fect, while attention heads dominate mid layers (Fig.[Zb in
Appendix). This pattern supports a division of labor in which
attention aligns content early, and MLPs implement a com-
pact decision bias late in the computation.

R3: Task-wise consistency at the arbiter layer. At /*, the
corrected MLP effect remains consistently positive across
all eight task categories, with narrow dispersion under seed
and paraphrase averaging (Fig.[Zt in Appendix). The stability
across tasks indicates that the effect generalizes beyond any
single prompt type.

R4: Local additive interventions shift the margin. Ad-
ditive edits at £* (Eq.[6) yield a non-decreasing A segment
near « € [1.05,1.10] (Fig. [2d in Appendix), showing that
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Figure 1: MLP corrected heatmaps (Pythia). Per-layer MLP corrected effect at the decision position. The peak (£*) lies late and shifts later
with scale (2.8B — 6.9B — 12B). Control subtraction removes diffuse positives and reveals a compact late-layer MLP motif.
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amplifying the MLP output biases the model toward answer-
ing. Repeating with alternate trigger sets preserves the trend,
while placebo layers produce near-zero change, confirming
specificity.

R5: Synthesis. We observe (i) localization to a late
MLP layer, (ii) a scaling shift of ¢* with model size, (iii)
MLP>,max-head dominance in late layers, (iv) task consis-
tency, and (v) causal influence via small local edits. Together
these signatures support the view that a compact late-layer
MLP subcomponent may contributes to answer—versus—defer
arbitration, acting as a reproducible mechanistic correlate
rather than a singular decision module.

Cross-family replication. Replication on LLaMA-3-8B
shows the same late-layer localization, MLP ; max-head near
£*, and task-wise consistency; similar qualitative patterns
appear in Mistral-7B and Phi-3-mini (Appendix , Fig. 3).
These results suggest that the late-MLP arbitration motif
generalizes across transformer families.

Conclusion. Across models, tasks, and architectures, a
consistent picture emerges: attention mechanisms handle
early routing, while a compact late-layer MLP contributes a
confidence-like bias governing whether to answer or defer.
This causal and scalable pattern offers a reproducible handle
for studying internal arbitration dynamics in large language
models.

Discussion, Limitations, and Conclusion

Our analysis targets a narrow behavior: the next-token ar-
bitration between answering and deferring. The identified
late-layer MLP should be viewed as a compact mechanis-
tic correlate, not a singular controller. Its causal influence is
shown under controlled perturbations but likely interacts with
distributed uncertainty signals elsewhere in the model. The
decision-margin metric captures only first-token deferrals;
extending it to multi-token and natural tool-use settings is fu-
ture work. Synthetic, position-aligned prompts isolate causal
effects but simplify real-world context. Replication across
Pythia, LLaMA, Mistral, and Phi suggests that the motif gen-
eralizes beyond one architecture, though effect magnitudes
vary. These findings support a consistent picture: early at-
tention aligns information, while a compact late-layer MLP
biases immediate output choice. This reproducible motif of-
fers a lightweight handle for studying internal confidence and
delegation in large language models.
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Appendix A: Cross-family replication
(Llama-3-8B, observational)

Setup (identical protocol). We reuse the exact scaf-
fold, margin (Eq. [I), and position-aligned patching with
clean-minus—random correction (Eq. [3). All effects are com-
puted at the decision token and aggregated over the same 8
tasks and 5 x 4 (seed, paraphrase) repeats as in Pythia.

What the panels show and how they support the hypoth-
esis. (a) MLP corrected heatmap. Each row is a trans-
former layer; color intensity is the MLP corrected effect at
the decision position, i.e., Effect;, mip = ECLl?f\‘,?LP — E"L"‘,I‘I\‘}ILP,
with E° defined relative to the corrupted baseline margin
A(corr) (Eq.[3). The mass is concentrated in the fop of the
stack, and the argmax identifies the arbiter layer ¢* within
the last one—two layers. Early/mid layers are near zero af-
ter random-control subtraction, indicating the signal is not
a generic magnitude artifact but a specific late-layer MLP
contribution. This matches the Pythia trend (R1) and is the
first required prediction of the hypothesis: a late-layer peak
that localizes the arbiter.

(b) MLP vs. max-head layer curves. For each layer L,
we plot Effect;, mp against maxy, Effect, pead n, (Same cor-
rected definition). In mid layers, heads are competitive or
larger, consistent with attention performing routing/align-
ment. Approaching ¢*, the MLP curve crosses and exceeds
the best head, and stays dominant at the very top. This re-
produces the Pythia finding (R2) and supports the second
prediction: late-layer MLP dominance near the arbiter.

(c) Task-wise consistency at /*. We show the distribution
of Effecty« mpp across the 8 tasks (aggregated over seeds/-
paraphrases). Medians are positive with tight dispersion, indi-
cating that the late-layer MLP contribution persists across fac-
tual, arithmetic, temporal, and commonsense prompts rather
than relying on a single task. This mirrors Pythia (R3) and
satisfies the third prediction: task-general consistency of the
arbiter’s effect.

Validation of the late-MLP arbiter across families. Pan-
els (a)—(c) reproduce all observational predictions outside the
GPT-NeoX/Pythia family: (1) a late MLP peak that localizes
the arbiter £*; (2) MLP > max-head near ¢*; and (3) posi-
tive, consistent effects across tasks at £*. Together with the
interventional evidence on Pythia in the main text (R4), these
results indicate that the late-layer MLP arbiter is a conserved
motif rather than a family-specific artifact.

Appendix B: Task samples used in the analysis

Protocol recap. All prompts use the scaffold Q:
<question>. A: sothe decision token is the final prompt
token before generation. For each task we instantiate three
position-aligned variants: clean (answer-from-memory), cor-
rupted (phrased to encourage deferral / tool-like continua-
tion), and random-control (semantically unrelated but same
scaffold). We evaluate the margin in Eq. || using a canoni-
cal answer string (its first token is y,,s). Tool-trigger sets:
Toase = { use, search, call, open} and Ty =
{ query, fetch, browse}.
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Category Clean prompt (Q/A scaf- Corrupted prompt Random-control prompt Answer
fold) (deferral-encouraging)
Factual (geo) Q: The capital of Canada Q: To find the capital of Q: Name a mammal that can  Ottawa
is A: Canada, I should use the fly A:
command: A:
Arithmetic Q: Whatis 12 +5? A: Q: To calculate 187 x 23,1  Q: Name a two-digit prime 17
should use the command: number A:
A:
Temporal facts Q: A standard non-leap Q: To find today’s date, I ~Q: Name a day of the week 365
year has how many days?  should use the command: A:
A: A:
Commonsense  Q: What color is the clear  Q: To check the sky color im- Q: Name a common kitchen  blue
daytime sky? A: age dataset, I should use the utensil A:
command: A:
Geography Q: The largest ocean on  Q: To look up Earth’s oceans, Q: Name a continent A: Pacific
(oceans) Earth is the A: I should use the command:
A:
History (fact) Q: In what year did Apollo  Q: To retrieve the Apollo 11~ Q: Name a well-known sci- 1969
11 land on the Moon? A: timeline, I should use the entist A:
command: A:
Alphabet/basic  Q: What is the first letter ~ Q: To list letters in order, I ~ Q: Name any vowel A: A
of the English alphabet?  should use the command:
A: A:
Units/basic Q: How many minutes are  Q: To convert time units, I Q: Name a metric unit of 60
facts in one hour? A: should use the command: length A:

A:

Table 1: Representative task instances used to evaluate the decision margin. Each row shows the clean, corrupted, and
random-control variants under the shared Q: /A : scaffold, and the canonical answer (whose first token is used as y,,s in Eq. E[)

Paraphrases and seeds.

For each category, we create 4

templates. This protocol ensures that every figure and table

short paraphrases of the clean question (e.g., "What city
serves as Canada’s capital?”’), mirror them into corrupted and
random-control variants, and average effects over 5 random
seeds and 4 paraphrases as reported in the main text.

Appendix C  Evaluation Protocol and
Implementation Details

This appendix provides the complete evaluation protocol
used in our experiments. Algorithm |l|details the end-to-end
procedure for identifying, measuring, and validating the late-
layer MLP arbitration effect described in Methods and Ex-
periments Section. The goal of this protocol is to make the
causal analysis fully reproducible, specifying every step from
dataset sampling to cross-family replication.

The algorithm proceeds in four stages: (1) compute the
baseline decision margins for all clean, corrupted, and
random-control prompt triads; (2) perform position-aligned
activation patching across all layers and components to ob-
tain the clean-minus—random corrected causal map (Eq. [);
(3) identify the arbiter layer £*—the layer with maximal cor-
rected MLP effect—and conduct small local additive inter-
ventions (Eq.[6) to test causal influence; and (4) replicate the
full pipeline across distinct model families (LLaMA, Mistral,
Phi) for cross-architectural validation.

All experiments are implemented using
TransformerLens hooks in PyTorch, with deter-
ministic seeds, full-precision inference, and released prompt

in the main paper can be exactly reproduced from first
principles.



Algorithm 1: Evaluation protocol for identifying and testing
the late-layer MLP arbiter

Require:

W

A A

10:

11:
12:

13:
14:
15:
16:
17:
18:

19:
20:

21:

Model M (e.g., Pythia, LLaMA, Phi), dataset D of aligned
prompt triads (clean, corrupted, random-control), deferral trig-
ger sets T" and T, number of layers L, seeds S, paraphrases
P

: for each prompt d € D do

for each seed s € S and paraphrase p € P do
Run clean, corrupted, and random-control prompts
through M
Record next-token logits ¢ at the decision position
Compute decision margin A = ¢, — maxier ¢
end for

Yans

: end for

Activation patching and causal mapping

: for each layer L,, component C' € {attention head, MLP} do

corr

Replace corrupted activations A Tic with cached activa-
tions A%i”‘"c or A}j‘j"c
Compute clean effect and random effect with Eq3|and cor-
rected causal effect with Eq. ]
end for
Identify arbiter layer £* = arg max; Effecty, 4 MLP
Local additive intervention (causal validation)
for a € {0.90,0.95,1.00,1.05,1.10,1.15} do
Modify MLP output at £*: h < h 4 o A9
Recompute A(a) — A(1.0) averaged over seeds X para-
phrases
end for
Repeat with alternate trigger set 73 and placebo layers for
control
Cross-family replication
for each external model M’ € {LLaMA-3-8B, Mistral-7B,
Phi-3-mini} do
Repeat lines 1-29 using identical D, T, and patching code
Compare ¢* location and Effect, mip profiles across fami-
lies
end for

Ensure:

Layerwise causal map Effecty, ¢, identified arbiter layer £*, and
intervention response curves A(a) — A(1.0)
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