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Abstract

Work in deep clustering focuses on finding a single partition of data. However,
high-dimensional data, such as images, typically feature multiple interesting char-
acteristics one could cluster over. For example, images of objects against a back-
ground could be clustered over the shape of the object and separately by the colour
of the background. In this paper, we introduce Multi-Facet Clustering Variational
Autoencoders (MFCVAE), a novel class of variational autoencoders with a hierarchy
of latent variables, each with a Mixture-of-Gaussians prior, that learns multiple
clusterings simultaneously, and is trained fully unsupervised and end-to-end. MFC-
VAE uses a progressively-trained ladder architecture which leads to highly stable
performance. We provide novel theoretical results for optimising the ELBO analyt-
ically with respect to the categorical variational posterior distribution, correcting
earlier influential theoretical work. On image benchmarks, we demonstrate that our
approach separates out and clusters over different aspects of the data in a disentan-
gled manner. We also show other advantages of our model: the compositionality of
its latent space and that it provides controlled generation of samples.

1 Introduction

Clustering is the task of finding structure by partitioning samples in a finite, unlabeled dataset
according to statistical or geometric notions of similarity [1, 2, 3].For example, we might group
items along axes of empirical variation in the data, or maximise internal homogeneity and external
separation of items within and between clusters with respect to a specified distance metric. The
choice of similarity measure and how one consequently validates clustering quality is fundamentally
a subjective one: it depends on what is useful for a particular task [2, 4]. In this work, we are
interested in uncovering abstract, latent characteristics/facets/aspects/levels of the data to understand
and characterise the data-generative process. We further assume a fully exploratory, unsupervised
setting without prior knowledge on the data, which could be exploited while fitting the clustering
algorithm, and in particular without given ground-truth partitions at training time.

When being faced with high-dimensional data such as images, speech or electronic health records,
items typically have more than one abstract characteristic. Consider the example of the MNIST
dataset [5]: MNIST images possess at least two such characteristics: The digit class, which might
impose the largest amount of statistical variation, and the style of the digit (e.g. stroke width). This
naturally raises a question: By which characteristic is a clustering algorithm supposed to partition
the data? In MNIST, both digit class and (the sub-categories of) style would be perfectly reasonable
candidates to answer this question. In our exploratory setting described above, there is not one
“correct” partition of the data.

∗Equal contribution.
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Figure 1: Latent space of a (a) single-facet model and a (b) multi-facet model (J = 3) with two
dimensions (z1, z2) per facet. Both models perfectly separate the abstract characteristics of the data.
However, the multi-facet model disentangles them into three sensible partitions (one per facet) and its
required clusters scale linearly as opposed to exponentially w.r.t. the number of aspects in the data.

Deep learning based clustering algorithms, so-called deep clustering, were particularly successful in
recent years in dealing with high-dimensional data by compressing the inputs into a lower-dimensional
latent space in which clustering is computationally tractable [6, 7]. However, almost all of these deep
clustering algorithms find only a single partition of the data, typically the one corresponding to the
given class label in a supervised dataset [8, 9, 10, 11, 12, 13, 14, 15]. When evaluating their model,
said approaches validate clustering performance by treating the one supervision label (e.g. digit
class in the case of MNIST) as the de-facto “ground truth clustering”. We argue that restricting our
view to a single facet C1 rather than all or at least multiple facets (C1, C2, . . . , CJ) is an arbitrary,
incomplete choice of formulating the problem of clustering a high-dimensional dataset.

To this end, we propose Multi-Facet Clustering Variational Autoencoders (MFCVAE), a principled,
probabilistic model which finds multiple characteristics of the data simultaneously through its multiple
Mixtures-of-Gaussians (MoG) prior structure. Our contributions are as follows: (a) Multi-Facet
Clustering Variational Autoencoders (MFCVAE), a novel class of probabilistic deep learning models
for unsupervised, multi-facet clustering in high-dimensional data that can be optimised end-to-end. (b)
Novel theoretical results for the optimisation of the corresponding ELBO, correcting and extending
an influential, related paper for the single-facet case. (c) Demonstrating MFCVAE’s stable empirical
performance in terms of multi-facet clustering of various levels of abstraction, compositionality of
facets, generative, unsupervised classification, and diversity of generation.

2 Multi-facet clustering

High-dimensional data are inherently structured according to a number of abstract characteristics,
and in an exploratory setting, it is clear that arbitrarily clustering by one of them is insufficient.
However, the question remains whether these multiple facets should also be explicitly represented
by the model. In particular, one might argue that a single partition could be used to represent all
cross-combinations2 of facets C = C1 × C2 × · · · × CJ where Cj = {1, 2, . . . ,Kj}, as in Fig. 1 (a).
In this work, we explain that explicitly representing and clustering by multiple facets, as we do in
MFCVAE and illustrated in Fig. 1 (b), has the following four properties that are especially desirable
in an unsupervised learning setting:

(a) Discovering a multi-facet structure. We adopt a probabilistically principled, unsupervised
approach, specifying an independent, multiple Mixtures of Gaussians (MoG) prior on the latent
space. This induces a disentangled representation across facets, meaning that in addition to examples
assigned to certain clusters being homogeneous, the facets (and their corresponding clusters) represent
different abstract characteristics of the data (such as digit class or digit style). Because of this multi-
facet structure, the total number of clusters required to represent a given multi-partition structure
of the data scales linearly w.r.t. the number of data characteristics. In comparison, the number of
clusters required in a single-facet model scales exponentially (see Fig. 1, and Appendix A for details).

2Note that in practice, not all cross-combinations of facets might be present. For example, in a dataset like
MNIST, one might not observe ‘right-tilted zeros’, even though we observe ‘right-tilted’ digits and ‘zeros’.
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(b) Compositionality of facets. A multi-facet model has a compositional advantage: different levels
of abstraction of the data are represented in separate latent variables. As we will show, this allows
qualitatively diverse characteristics to be meaningfully combined.

(c) Generative, unsupervised classification. Our method joins a myriad of single-facet clustering
models in being able to accurately identify known class structures given by the label in standard
supervised image datasets. However, in contrast to previous work, we are also able find interesting
characteristics in other facets with homogeneous clusters. We stress that while we compare generative
classification performance against other models to demonstrate statistical competitiveness, this task
is not the main motivation for our fully unsupervised model.

(d) Diversity of generated samples. In a generative sense, the structure of the latent space allows us
to compose new, synthetic examples by a set of J pairs of (continuous, discrete) latent variables. We
can in particular intervene on each facet separately. This yields a rich set of options and fine-grained
control for interventions and the diversity of generated examples.

We illustrate these four properties in our experiments in Section 4.

3 Multi-Facet Clustering Variational Autoencoders
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Figure 2: Graphical model of MFCVAE. [Left]
Variational posterior, qφ(~z, c|x). [Right] Gen-
erative model, pθ(x,~z, c).

Our model comprises J latent facets, each learning
its own unique clustering of samples via a Mixture-
of-Gaussians (MoG) distribution:

cj ∼ Cat(πj), zj | cj ∼ N (µcj ,Σcj ) (1)

where πj is the jth facet’s Kj-dimensional vector
of mixing weights, and (µcj ,Σcj ) are the mean
and covariance of the cj th mixture component in
facet j (Σcj can be either diagonal or full).

The multi-facet generative model (Fig. 2 [Right])
is thus structured as

pθ(x,~z, c) = pθ(x|~z)pθ(~z|c)pθ(c) = pθ(x|~z)

J∏
j=1

pθ(zj |cj)pθ(cj), (2)

where c = {c1, c2, ..., cJ}, ~z = {z1, z2, ..., zJ}, and pθ(x|~z) is a user-defined likelihood model, for
example a product of Bernoulli or Gaussian distributions, which is parameterised with a deep neural
network f(~z; θ). Importantly, this structure in Eq. (2) encodes prior independence across facets, i.e.
pθ(~z, c) =

∏
j pθ(zj , cj), thereby encouraging facets to learn clusterings that span distinct subspaces

of ~z. The overall marginal prior pθ(~z) can be interpreted as a product of independent MoGs.

3.1 VaDE tricks

To train this model, we wish to optimise the evidence lower bound (ELBO) of the data marginal
likelihood using an amortised variational posterior qφ(~z, c|x) (Fig. 2 [Left]), parameterised by a
neural network g(x;φ), within which we will perform Monte Carlo (MC) estimation where necessary
to approximate expectations

log p(D) ≥ L(D; θ, φ) = Ex∼D

[
Eqφ(~z,c|x)[log

pθ(x,~z, c)

qφ(~z, c|x)
]

]
. (3)

What should we choose for qφ(~z, c|x)? Training deep generative models with discrete latent variables
can be challenging, as reparameterisation tricks so far developed, such as the Gumbel-Softmax trick
[16, 17], necessarily introduce bias into the optimisation, and become unstable when a discrete latent
variable has a high cardinality. Our setting where we have multiple discrete latent variables is even
more challenging. First, the bias from using the Gumbel-Softmax trick compounds when there is
a hierarchy of dependent latent variables, leading to poor optimisation [18]. Second, we cannot
necessarily avail ourselves of advances in obtaining good estimators for discrete latent variables as
either they do not carry over to the hierarchical case [19], or are restricted to binary latent variables
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[20]. Third, we wish for light-weight optimisation, avoiding the introduction of additional neural
networks whenever possible as this simplifies both training and neural specification.

Thus, we sidestep these problems, bias from relaxations of discrete variables and the downsides of
additional amortised-posterior neural networks for the discrete latent variables, by developing the
hierarchical version of the VaDE trick. This trick was first developed for clustering VAEs with a
single Gaussian mixture in the generative model [10]. Informally, the idea (for a single-facet model)
is to define a Bayes-optimal posterior for the discrete latent variable using the responsibilities of the
constituent components of the mixture model; these responsibilities are calculated using samples
taken from the amortised posterior for the continuous latent variable.

Estimating the ELBO for models of this form does not require us to take MC samples from discrete
distributions—the data likelihood is conditioned only on the continuous latent variable ~z, which we
sample using the reparameterization trick [21], and the posterior for ~z is conditioned only on x. Thus,
when calculating the ELBO, we can cheaply marginalise out discrete latent variables where needed.
In other words, we do not have to perform multiple forward passes through the decoder as neither it
nor the ~z samples we feed it depend on c.

As it is fundamental to our method, we now briefly recapitulate the original VaDE trick for VAEs
with a single latent mixture (correcting a misapprehension in the original form of this idea) and will
then cover our hierarchical extension3.

Single-Facet VaDE Trick: Consider a single facet model, so the generative model is pθ(x, z, c) =
pθ(x|z)pθ(z|c)pθ(c). Introduce a posterior qφ(z, c|x) = qφ(z|x)qφ(c|x) where qφ(z|x) is a multi-
variate Gaussian with diagonal covariance. The ELBO for this model for one datapoint is

L(x; θ, φ) = Eqφ(z,c|x)[log
pθ(x|z)pθ(z|c)pθ(c)
qφ(z|x)qφ(c|x)

] = Eqφ(z,c|x)[log
pθ(x|z)pθ(z)pθ(c|z)

qφ(z|x)qφ(c|x)
], (4)

where we have chosen to rewrite the generative model factorisation, pθ(z) =
∑
c pθ(z|c)pθ(c) is the

marginal mixture of Gaussians, and pθ(c|z) = pθ(z|c)pθ(c)/pθ(z) is the Bayesian posterior for c.

Expanding out the ELBO, we get

L(x; θ, φ) = Eqφ(z|x) log pθ(x|z)−KL [qφ(z|x)||pθ(z)]− Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] . (5)

We can define qφ(c|x) such that Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] is minimal, by construction, which
is the case if we choose qφ(c|x) ∝ exp

(
Eqφ(z|x) log pθ(c|z)

)
as we will show in Theorem 1. This

means that we can simply use samples from the posterior for z to define the posterior for c, using
Bayes’ rule within the latent mixture model.

Remark: We note, however, that in the original description of this idea in [10], it was claimed that
Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] could, in general, be set to zero, which is not the case. Rather, this
KL can be minimised, in general, to a non-zero value. We discuss this misapprehension in more
detail and why the empirical results in [10] are still valid in Appendix B.1.1.
Theorem 1. (Single-Facet VaDE Trick) For any probability distribution qφ(z|x), the distribution
qφ(c|x) that minimises Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] in (5) is

argmin
qφ(c|x)

Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] = π(c|qφ(z|x)) (6)

with the minimum value attained being

min
qφ(c|x)

Eqφ(z|x) KL [qφ(c|x)||pθ(c|z)] = − logZ(qφ(z|x)) (7)

where π(c|qφ(z|x)) :=
exp

(
Eqφ(z|x) log p(c|z)

)
Z(qφ(z|x))

for c = 1, . . . ,K (8)

Z(qφ(z|x)) :=

K∑
c=1

exp
(
Eqφ(z|x) log p(c|z)

)
. (9)

Proof: See Appendix B.1. �
3We note that the original VaDE paper, besides the misapprehension discussed in Section 3.1 and Ap-

pendix B.1.1, proposed a highly complex training algorithm with various pre-training heuristics which we
significantly simplified while maintaining or increasing performance (details in Appendix D.5).
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Multi-facet VaDE Trick: In this work, we consider the case of having J facets, each with its own
pair of variables (zj , cj). Perhaps surprisingly, we do not have to make a mean-field assumption
between the J facets for c once we have made one for ~z. In other words, once we have chosen that
qφ(~z, c|x) = qφ(c|x)

∏J
j=1 qφ(zj |x), where qφ(zj |x) is defined to be a multivariate Gaussian with

diagonal covariance for each j, the optimal qφ(c|x) similarly factorises4. We formalise this:
Theorem 2. (Multi-Facet VaDE Trick for factorized qφ(~z|x), p(~z, c)) For any factorized
probability distribution qφ(~z|x) =

∏
j qφ(zj |x), the distribution qφ(c|x) that minimises

Eqφ(~z|x) KL [qφ(c|x)||pθ(c|~z)] under factorized prior p(~z, c) =
∏
j p(zj , cj) of (2) is

argmin
qφ(c|x)

Eqφ(~z|x) KL [qφ(c|x)||pθ(c|~z)] =
∏
j

πj(cj |qφ(zj |x)) (10)

where the minimum value is attained at

min
qφ(c|x)

Eqφ(~z|x) KL [qφ(c|x)||pθ(c|~z)] = −
∑
j

logZj(qφ(zj |x)) (11)

where πj(cj |qφ(zj |x)) :=
exp(Eqφ(zj |x) log pθ(cj |zj))

Zj(qφ(zj |x))
, for cj = 1, . . . ,Kj (12)

Zj(qφ(zj |x)) :=

Kj∑
cj=1

exp(Eqφ(zj |x) log pθ(cj |zj)) . (13)

Proof: See Appendix B.2. �

Note that we use Eq. (12) as the probability distribution of assigning input x to clusters of facet j.

Armed with these theoretical results, we can now write the ELBO for our model, with the optimal
posterior for c, in a form that trivially admits stochastic estimation and does not necessitate extra
recognition networks for c,

LMFCVAE(D; θ, φ) =Ex∼D

[
Eqφ(~z|x) log pθ(x|~z)

−
J∑
j=1

[
Eqφ(cj |x) KL(qφ(zj |x)||pθ(zj |cj)) + KL(qφ(cj |x)||p(cj))

] ]
(14)

where the optimal qφ(cj |x) is given by Eq. (12) for each j.

To obtain the posterior distributions for c, we take MC samples from qφ(~z|x) and use these to
construct the posterior as in Eq. (12). We found one MC sample (L = 1; for each facet and for each
x) to be sufficient. We derive the complete MC estimator which we use as the loss function of our
model and ablations on two alternative forms in Appendix C.

3.2 Neural implementation and training algorithm

It is worth pausing here to consider what neural architecture best suits our desire for learning multiple
disentangled facets, and then further how we can best train our model to robustly elicit from it
well-separated facets. In the introduction, we discussed the different plausible ways to cluster high-
dimensional data, such as in MNIST digits by stroke thickness and class identity. These different
aspects intuitively correspond to different levels of abstraction about the image. It is thus natural
that these levels would be best captured by different depths of the neural networks in each amortised
posterior. These ideas have motivated the use of ladder networks in deep generative models that
aim to learn different facets of the input data into different layers of latent variables. Here, we
take inspiration from Variational Ladder Autoencoders (VLAEs) [22]: A VLAE architecture has
a deterministic “backbone” in both the recognition and generative model. The different layers of
latent variables branch out from these at different depths along. This inductive bias naturally leads
to stratification and does so without having to bear the computational cost of training a completely
separate encoder (say) for each layer. Here, we use this ladder architecture for MFCVAE, as illustrated
in Fig. 3, and refer to Appendix D.2 for further implementation details.

4We also provide the VaDE trick for the general form of the posterior for ~z, i.e. without assuming the
factorisation qφ(~z|x) =

∏J
j=1 qφ(zj |x), in Appendix B.3.
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Figure 3: Ladder-MFCVAE architecture. [Left]
Variational posterior. [Right] Generative model.

Further, we found progressive training [23], pre-
viously shown to help VLAEs learn layer-by-
layer disentangled representations, to be of great
use in making each facet consistently represent
the same aspects of data. The general idea of
progressive training is to start with training a sin-
gle facet (typically the one corresponding to the
deepest recognition and generative neural net-
works) for a certain number of epochs, and pro-
gressively and smoothly loop in the other facets
one after the other. We discuss the details of our
progressive training schedule in Appendix D.3.
We find that both the VLAE architecture and pro-
gressive training are jointly important to stabilise training and get robust qualitative and quantitative
results as we show in Appendix E.1.

4 Experiments

In the following, we demonstrate the usefulness of our model and its prior structure in four experimen-
tal analyses: (a) discovering a multi-facet structure (b) compositionality of latent facets (c) generative,
unsupervised classification, and (d) diversity of generated samples from our model. We train our
model on three image datasets: MNIST [5], 3DShapes (two configurations) [24] and SVHN [25].
We refer to Appendices D and E for experimental details and further results. We also provide our
code implementing MFCVAE, using PyTorch Distributions [26], and reproducing our results at
https://github.com/FabianFalck/mfcvae.

4.1 Discovering a multi-facet structure

We start by demonstrating that our model can discover a multi-facet structure in data. Fig. 4 visualises
input examples representative of clusters in a two-facet (J = 2) model. For each facet j, input
examples x with latent variable zj are assigned to latent cluster cj = argmaxcjπj(cj |qφ(zj |x))
according to Eq. (12). Surprisingly, we find that we can represent the two most striking data
characteristics—digit class and style (mostly in the form of stroke width, e.g. ‘bold’, ‘thin’) in
MNIST, object shape and floor colour in 3DShapes (configuration 1), and digit class and background
colour in SVHN—in two separate facets of the data. In each facet, clusters are homogeneous w.r.t. a
value from the represented characteristic. When comparing our results on MNIST with LTVAE [27],
the model closest to ours in its attempt to learn a clustered latent space of multiple facets, LTVAE
struggles to separate data characteristics into separate facets (c.f. [27] Fig. 5; in particular, both
facets learn digit class, i.e. this characteristic is not properly disentangled between facets), whereas
MFCVAE better isolates the two.

To quantitatively assess the degree of disentanglement in the learned multi-facet structure of our model,
we perform a set of supervised experiments. For each dataset, we formulate three classification tasks,
for which we use latent embeddings z1, z2 and ~z, respectively, sampled from their corresponding
amortised posterior, as inputs, and the label present in the dataset (e.g. digit class in MNIST) as
the target. For each task and dataset, we train (on the training inputs) a multi-layer perceptron
of one hidden layer with 100 hidden units and a ReLU activation, and an output layer followed
by a softmax activation, which are the default hyperparameters in the Python package sklearn.
Table 1 shows test accuracy of these experiments. We find that the supervised classifiers predict
the supervised label with high accuracy when presented with latent embeddings which we found
to cluster the abstract characteristic corresponding to this label, or with the concatenation of both
latent embeddings. However, when presented with latent embeddings corresponding to the “non-
label” facet, the classifier should—if facets are strongly disentangled—not be presented with useful
information to learn the supervised mapping, and this is indeed what we find, observing significantly
worse performance. This demonstrates the multi-facet structure of the latent space, which learns
separate abstract characteristics of the data.
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Figure 4: Input examples for clusters of MFCVAE with two-facets (J = 2) trained on MNIST,
3DShapes and SVHN. Clusters (rows) in each facet j are sorted in decreasing order by the average
assignment probability of test inputs over each cluster. Inputs (columns) are sorted in decreasing
order by their assignment probability maxcjπj(cj |qφ(zj |x)). We visualise the first 10 clusters and
inputs from the test set (see Appendix E.3 for all clusters).

Table 1: Supervised classification experiment to assess the disentanglement of MFCVAE’s multi-facet
structure on all three datasets. Values report test accuracy in %. Error bars are the sample standard
deviation across 3 runs.

MNIST 3DShapes config. 1 3DShapes config. 2 SVHN
digit class object shape floor colour object shape wall colour digit class

z1 17.34 (0.24) 95.00 (0.45) 20.00 (0.68) 98.26 (0.16) 73.40 (1.48) 69.46 (0.36)
z2 94.95 (0.04) 32.43 (1.38) 100.00 (0.00) 24.41 (1.34) 100.00 (0.00) 22.30 (0.16)
~z 95.27 (0.07) 95.18 (0.42) 100.00 (0.00) 98.19 (0.30) 99.97 (0.06) 70.39 (0.29)

4.2 Compositionality of latent facets

A unique advantage of the prior structure of MFCVAE compared to other unsupervised generative
models, say a VAE with an isotropic Gaussian prior, is that it allows different abstract characteristics
to be composed in the separated latent space. Here, we show how this enables interventions on a
per-facet basis, illustrated with a two-facet model where style/colour is learned in one facet and
digit/shape is learned in the other facet. Let us have two inputs x(1) and x(2) assigned to two different
style clusters according to Eq. (12) (and two different digit clusters). For both inputs, we obtain their
latent representation z̃j as the modes of qφ(zj |x), respectively. Now, we swap the style/colour facet’s
representation, i.e. z̃1 of both inputs for MNIST, and z̃2 of both inputs for 3DShapes and SVHN,
and pass these together with their unchanged digit/shape representation (z̃2 for MNIST and z̃1 for
3DShapes and SVHN) through the decoder f(~z; θ) to get reconstructions x̂(1) = f({z̃(1)1 , z̃

(2)
2 }; θ)

and x̂(2) = f({z̃(2)1 , z̃
(1)
2 }; θ) which we visualise in Fig. 5 (see Appendix E.4 for a more rigorous

explanation of this swapping procedure).

Surprisingly, by construction of this intervention in our multi-facet model, we observe reconstruc-
tions that “swap” their style/background colour, yet in most cases preserve their digit/shape. This
intervention is successful across a wide set of clusters on MNIST and 3DShapes. It works less so on
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Figure 5: Reconstructions of two input examples when swapping their latent style/colour.

Table 2: Unsupervised clustering accuracy (%) of single-facet (SF) and multi-facet (MF), generative
(G) and non-generative (NG) models on the test set. Error bars (if available) are the sample standard
deviation across multiple runs. Results marked with η do not provide error bars.

Method MNIST SVHN

DEC ([8]; SF; NG) 84.3 η 11.9 (0.4)
VaDE ([10]; MLP; SF; G) 94.46 η; 89.09 (3.32) 27.03 (1.53)
VaDE ([10]; conv.; SF; G) 92.65 (1.14) 30.80 (1.99)

IMSAT ([11]; SF; NG) 98.4 (0.4) 57.3 (3.9)
ACOL-GAR ([15]; SF; NG) 98.32 (0.08) 76.80 (1.30)

VLAC ([28]; MF; G) - 37.8 (2.2)
LTVAE ([27]; MF; G) 86.3 -

MFCVAE (ours; MF; G) 92.02 (3.18) 56.25 (0.93)

SVHN where we hypothesise that this is due to the much more diverse dataset and (consequently) the
model reaching a lower fit (see Section 4.3). We show further examples including failure cases in
Appendix E.4 which show that our model learns a multi-facet structure allowing complex inventions.

4.3 Generative, unsupervised classification

Recall our fully unsupervised, exploratory setting of clustering where the goal is to identify and
characterise multiple meaningful latent structures de novo. In practice, we have no ground-truth data
partition—if labels were available, the task would be better formulated as a supervised classification
in the first place. That said, it is often reasonable to assume that the class label in a supervised
dataset represents a semantically meaningful latent structure that contributes to observed variation
in the data. Indeed, this assumption underlies the common approach for benchmarking clustering
models on labelled data: the class label is hidden during training; afterwards it is revealed as a pseudo
ground-truth partitioning of the data for assessing clustering “accuracy”. MFCVAE aims to capture
multiple latent structures and can be deployed as a multi-facet generative classifier, as distinct from
standard single-facet discriminative classifiers [1, p.30]. But we emphasise that high classification
accuracy is attained as a by-product, and is not our core goal—we do not explicitly target label
accuracy, nor does high label accuracy necessarily correspond to the “best” multi-facet clustering.

Following earlier work, in Table 2, we report classification performance on MNIST and SVHN in
terms of unsupervised clustering accuracy on the test set, which intuitively measures homogeneity
w.r.t. a set of ground-truth clusters in each facet (see Appendix E.5 for a formal definition). We
compare our method against commonly used single-facet (SF) and multi-facet (MF), generative (G)
and non-generative (NG) deep clustering approaches (we use results as reported) of both deterministic
and probabilistic nature. We report the mean and standard deviation (if available) of accuracy over T
runs with different random seeds, where T = 10 for MFCVAE. For VaDE [10], we report results
from the original paper, and our two implementations, one with a multi-layer perceptron encoder and
decoder architecture, one using convolutional layers. Models marked with η explicitly state that they
instead report the best result obtained from R restarts with different random seeds (DEC: R = 20,
VaDE: R = 10). Both of these types of reporting in previous work—not providing error bars over
several runs and picking the best run (while not providing error bars)—ignore stability of the model
w.r.t. initialisation. We further discuss this issue and the importance of stability in deep clustering
approaches in Appendix E.1.
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Figure 6: Synthetic samples generated from MFCVAE with two facets (J = 2) trained on MNIST,
3DShapes, and SVHN. For each cluster cj in facet j, zj is sampled from p(zj |cj) and zj′ is sampled
from p(zj′) for the other facet j′ 6= j. Each row corresponds to 10 random samples from a cluster.
Clusters (rows) are sorted and selected (and are from the same trained model) as in Fig. 4 (see
Appendix E.6 for visualisation of all clusters and comparison with LTVAE).

MFCVAE is able to recover the assumed ground-truth clustering stably. It achieves competitive
performance compared to other probabilistic deep clustering models, but is clearly outperformed by
ACOL-GAR on SVHN, a single-facet, non-generative and deterministic model which does not possess
three of the four properties demonstrated in Sections 4.1, 4.4) and 4.2). Besides the results presented
in the table, we also note that MFCVAE performs strongly on 3DShapes, obtaining 99.46%± 1.10%
for floor colour and 88.47%± 1.82% for object shape on configuration 1, and 100.00%± 0.00% for
wall colour and 90.05%± 2.65% for object shape on configuration 2. Lastly, it is worth noting that
we report classification performance for the same hyperparameter configurations and training runs
of our model that are used in all experimental sections and in particular for Fig. 4, 5 and 6, i.e. our
trained model has a pronounced multi-facet characteristic. In contrast, while it is somewhat unclear,
LTVAE seems to report its clustering performance when trained with only a single facet, not when
performing multi-facet clustering [27].

4.4 Diversity of generated samples

We lastly show that MFCVAE enables diverse generation of synthetic examples for each given cluster
in the different facets, as a downstream task in addition to clustering. To obtain synthetic examples
for a cluster cj in facet j, we sample zj from p(zj |cj), and sample zj′ from p(zj′) for all other facets
j′ 6= j. We then take the modes of pθ(x|~z) where ~z = (z1, . . . , zj , . . . , zJ) as the generated images.
Fig. 6 shows synthetic examples generated from the models (J = 2) trained on MNIST, 3DShapes
and SVHN.

For all three datasets, we observe synthetic samples that are homogeneous w.r.t. the characteristic
value (e.g. ‘red background’) of a cluster in the chosen facet (as we sample this continuous latent
variable from the conditional distribution), but heterogeneous and diverse w.r.t. all other facets (as
we sample all other continuous latent variables from their marginal distribution). For example, on
MNIST, when fixing a cluster in the digit facet, we observe generated samples that have the same
digit class (e.g. all ‘1’), but are diverse in style (e.g. different ‘stroke width’). Conversely, when fixing
a cluster in the style facet, we get samples homogeneous in style, but heterogeneous in digit class.
Likewise, on 3DShapes, fixing a cluster in the wall colour facet produces generations diverse in shape,
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but having the same wall color, and conversely when fixing the shape facet. Besides, in all clusters,
generated samples are diverse w.r.t. other factors of variation on 3DShapes, such as orientation and
scale. On SVHN, while less strong than in Fig. 4, these patterns extend here to the two facets style
(background colour is particularly distinct) and digit class. These results are consistent with and
underline the observed disentanglement of facets that we found in our previous experimental analyses.
We also compare sample generation performance between MFCVAE and LTVAE and assess the
diversity of generations quantitatively in Appendix E.6.

5 Related work

Within the deep generative framework, various deep clustering models have been proposed. VaDE [10]
is the most important prior work, a probabilistic model which has been highly influential in deep
clustering. Related approaches, GM-VAEs [29] and GM-DGMs [30, 31, 32], have similar overall
performance and explicitly represent the discrete clustering latent variable during training. Non-
parametric approaches include DLDPMMs [30], and HDP-VAEs [33]. Further, many non-generative
methods for clustering have been proposed that use neural components [8, 9, 14, 11, 15, 29, 12]. All
these approaches, however, propose single-facet models.

Hierarchical VAEs can both be a way to learn more powerful models [34, 35, 36, 37, 38], but can also
enable to separate out representations where each layer of latent variables represents a different aspect
of the data. Variational Ladder Autoencoders (VLAEs) [22] aim to do the latter: to learn independent
sets of latent variables, each representing some part of the data; but each group of latent variables
within this set has a N (0,1) prior, so it does not perform clustering. Recently, progressive training
for VLAEs has been proposed [23] which sharpens the separation between layers. Here, we also
mention disentanglement methods [39, 40, 41, 42] which likewise attempt to find separated latent
variables. However, rather than discovering facets through the prior and a hierarchical structure, these
techniques attempt to find statistically-independent representations via regularisation, leading the loss
to deviate from the ELBO. Unfortunately, these methods require lucky selection of hyperparameters
to work [43, 44], and do not provide a clustered latent space.

Learning multiple clusterings simultaneously has been studied in the case of very low dimensional
datasets [45, 46, 47, 48] under the names alternative clusterings and non-redundant clustering.
However, when it comes to clustering high-dimensional data like images, approaches are rare. The
recently proposed LTVAE [27] aims to perform this task, proposing a variational autoencoder with a
latent tree model prior for a set of continuous latent variables ~z, of which each zj has a GMM prior.
The neural components are trained via stochastic gradient ascent under the ELBO; this is interleaved
with a heuristic (hill-climbing) search algorithm to grow or prune the tree structure and message-
passing to learn its nodes’ GMM parameters of the current structure of the tree prior in a manner
reminiscent of SVAEs [49], rendering the entire training algorithm not end-to-end differentiable (in
contrast to MFCVAE). LTVAE learns multiple clusterings over the data, however, lacks a proper
disentanglement of facets, as discussed in Section 4.1.

6 Conclusion

We introduced Multi-Facet Clustering Variational Autoencoders (MFCVAE), a novel class of proba-
bilistic deep learning models for unsupervised, multi-partition clustering in high-dimensional data
which is end-to-end differentiable. We provided novel theoretical results for optimising its ELBO,
correcting and extending an influential related paper for the single-facet case. We demonstrated
MFCVAE’s empirical performance in terms of multi-facet clustering of various levels of abstraction,
and the usefulness of its prior structure for composing, classifying and generating samples, achieving
state-of-the-art performance among deep probabilistic multi-facet models.

An important limitation of our work shared with many other deep clustering algorithms is the lack
of a procedure to find good hyperparameters through a metric known at training time. Future work
should explore: MFCVAE with J > 2; automatic tuning of hyperparameters J and Kj ; application
to large-scale datasets of other modalities; and regularising the model facet-wise to further enforce
disentangled representations in the latent space [50]. While we successfully stabilised model training,
further work will be key to harness the full potential of deep clustering models.
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