
Long Range Navigator (LRN): Extending robot
planning horizons beyond metric maps

Matt Schmittle1*, Rohan Baijal1*, Nathan Hatch3, Rosario Scalise1,
Mateo Guaman Castro1, Sidharth Talia1, Khimya Khetarpal2,4, Byron Boots1, Siddhartha Srinivasa1

1University of Washington 2Google DeepMind 3Overland AI 4Mila
*Equal Contribution

Abstract—A robot navigating an outdoor environment with no
prior knowledge of the space must rely on its local sensing, in
the form of a local metric map or local policy with some fixed
horizon. A limited planning horizon can often result in myopic
decisions leading the robot off course or worse, into very difficult
terrain. In this work, we make a key observation that effective
long range navigation only necessitates identifying good frontier
directions for planning instead of full map knowledge. To address
this, we introduce Long Range Navigator (LRN), which learns
to predict ‘affordable’ frontier directions from camera images.
LRN is trained entirely on unlabeled egocentric videos, making
it scalable and adaptable. In off-road tests on Spot and a large
vehicle, LRN reduces human interventions and improves decision
speed when integrated into existing navigation stacks.

I. INTRODUCTION

Autonomous off-road mobile robots require long-range
waypoint navigation, often in environments where prior in-
formation (e.g. satellite imagery) is inaccurate or unavailable.
Our goal is efficient navigation in these large-scale scenarios
where our domain is significantly (10X or more) larger than
the robot’s sensor footprint. The central research question is,

How can we enable robots to make less myopic decisions
facilitating long-range navigation with only incomplete

knowledge of the environment?

We assume that the robot has GPS localization together
with target waypoints. Notably, the robot is provided no other
information about the environment and must find its own path
to the goal. The robot must achieve the goal with minimal
human intervention and as fast as possible. Mobile robots with
no prior information traditionally create a metric cost map
based on onboard sensory information (e.g. cameras, lidar, and
odometry) [12, 17]. In an ideal setting, the local range of the
map would suffice for short horizon of target locations, but
with long-range goals, creating large cost maps is intractable
due to limited range of sensors together with compute and
memory limitations.

In particular, depth information required to project features
into the map is often sparse and noisy. This results in a limited
horizon of the cost map and the area outside this horizon being
a fog of unknown space.

A go-to approach to deal with unknown space is to heuris-
tically assign it a fixed cost effectively planning straight to the
goal once outside the map [17]. However, this leads to highly

Fig. 1: LRN Overview. Our approach LRN finds affordable frontiers as
intermediate representation for the robot to head towards and selects one
near the goal heading. On the right is the local perception (TOP 50m,
BOTTOM 8m) where LRN changes the default navigation direction (green)
to an affordable one (blue).

inefficient and potentially unsafe paths in many scenarios.
A key observation is that field operators can determine the
robot’s long range strategy by simply analyzing the robot’s
image feed, without the requirement of a complete terrain map.
For example, it is possible to spot the opening in a wall of
trees from images without mapping every tree. We refer to
the boundaries between known/unknown regions as frontiers.
Frontiers which visually appear open i.e. possible to navigate
to and continue beyond are referred to as affordable frontiers.
With this, we offer the following key insight:

A robot can reason further by learning to identify distant
affordable frontiers as intermediate goals.

We propose improvements to current heuristic-based ap-
proaches by learning affordable frontiers in the image space.
Specifically, we leverage the SAM2 foundation model [19],
pre-trained on a large corpus of image data, to generate
meaningful embeddings from camera sensor images. These
embeddings capture notions of scene segmentation, invariant
to lighting, camera angle, and texture. We train a small LRN
specific decoder to predict long-range affordance heatmaps
in a goal-agnostic manner. We then project the heatmaps
into heat scores for different headings the robot could follow



Fig. 2: Overview of our approach LRN. LRN is fed with egocentric camera images and a goal heading vector. LRN is composed of the following components,
namely, 1) the Affordance Backbone: computes affordable frontiers in the image space as heatmaps agnostic of the goal. These affordance hotspots are then
projected into a discrete set of affordable headings for the robot to follow, 2) the Goal Conditioned Head, wherein the affordance scores are multiplied with
a discrete gaussian score around the goal and a separate gaussian around the previous prediction (to maintain consistency). The maximum combined score
heading (red) is selected. The local system can then use that frontier as a goal for local planning instead of the true goal. This process then repeats as new
sensor information comes in.

and re-weight each heading based on the goal context. The
top scoring direction is passed to the local system as a
heading to follow to reach the goal. We refer to our method
as Long Range Navigator (LRN) depicted in Fig. 2. We
show LRN, via leveraging image data, provides an improved
heuristic over heading straight to the goal outside the map.
Key contributions of our work are:

• We introduce LRN, an approach to extend the planning
horizon of robot navigation systems using rich camera
data. Our key insight is leveraging an intermediate af-
fordance representation, amenable to image foundation
models that suffices to guide local planning.

• To reduce the dependency on human-expert annotations
and enable fast training for target environments, we lever-
age video point tracking (CoTracker [9]) to automatically
label human walking videos. With only one hour of video,
we train LRN for deployment on Spot.

• We demonstrate the efficacy of LRN in real world outdoor
navigation tasks, on a quadruped Spot robot and a Big
Vehicle traveling distances of over a kilometer.

II. PROBLEM SETUP

We consider the long-range navigation problem setting
where the robot perceives its environment from its local
sensors (e.g. camera, lidar), and is tasked with navigating to
a distant goal g ∈ G in a static, unknown environment. The
robot is equipped with a local policy πλ : O → A, that maps
the current observation o to primitive actions a ∈ A and plans
under a cost function C : (s, a, s′) → R. Planning is limited
to some horizon H due to sensor or compute limitations. We
assume the policy receives an observation o, plans, executes an
action, and replans at some frequency in a model predictive
control fashion. As it executes actions, the robot creates a
path ξπ . The objective is to minimize the expected cost of

navigating to the goal in an unknown environment ϕ.

J(ξπ) := argmin
ξπ

Eϕ∼⊕

[
C(ξπ)

]
III. LONG RANGE NAVIGATOR (LRN)

Core to our approach is the idea that while low-level
controller policy πλ is limited to a local horizon, it does not
mean that useful sensor data does not exist beyond that horizon
for navigation. Consider a set of frontier nodes f ∈ F at
the periphery of horizon H which borders known/unknown
space. Under optimal substructure property [2], if f∗ ∈ F
on the optimal path from start to goal and πλ is optimal up
to H then πλ planning to f∗ is acting globally optimally. In
practice, this is hard because πλ is usually sub-optimal and f∗

depends on unobserved information (e.g. backside of a hill).
That being said, there may exist information within the robot’s
sensor range that can help estimate affordable frontiers which
seem possible to navigate to and continue beyond.

To estimate affordable frontiers from state s, we first define
the value of a frontier f given a goal g as V (s, g, f). This can
be decomposed into two parts, namely A(s, f) and D(f, gt).
For clarity a specific navigation goal at time t is denoted gt.
Formally,

V (s, g, f) = A(s, f)D(f, gt) (1)
A(s, f) = P (∃ξsf ) P (∃ξfg,∃g | d(s, g) > H), (2)

where A(s, f) measures the affordability score. This score
is computed by multiplying the probability there exists a path
from s to f and the probability there exists some path from f
to some distant goal g beyond the local horizon H . D(f, gt)
measures the cost estimate of navigation from the frontier f
conditioned on the goal. Given, V (s, g, f) and πλ we can
define the policy we seek π.



Fig. 3: Auto-Labeled affordance heatmaps. We collect walking videos in
representative environments and track ground points in reverse to extract
trajectories for training LRN. Trajectories are converted to partially labeled
affordance heatmaps by marking the end of the trajectory as a hotspot (1),
the remainder of the trajectory as 0, and the rest of the image is left unlabeled
and hence, is ignored in the loss calculation.

fπ = argmax
f∈F

V (s, g, f) (3)

π(s, g) = πλ(s, fπ) (4)
LRN is a bi-level system, with two components: one to

estimate A(s) = [A(s, f)]f∈F and the other to estimate
D(f, gt). We implement A(s) to estimate all affordance scores
via a learned mapping from images to affordances (selective
attention) in the image space. The second component scores
frontier states given a goal context. The overall algorithm is
depicted in Alg. 1. In practice, we discretize the space around
the robot into angular bins which constitutes the space of
frontiers F .

Evaluating frontiers using image data can be challenging,
due to potential projection errors or occlusions when mapping
frontiers to image space. Besides, frontiers may not clearly
associate with important features in the image. For example,
if there is a distant opening in the trees but the local costmap
might not yet reach the treeline. Then the costmap frontier
will be far from the treeline, so evaluating its affordability
will require relating it to information in the image far from the
frontier. Further, we would like to leverage pre-trained founda-
tion models to maximize performance and many like SAM2
and DINO [16] operate in image space. For these reasons,
we propose instead to learn an intermediate representation of
affordable image frontiers and project them to local frontiers.

From the navigation stack’s perspective, the frontiers need
to be converted from image to metric space, yet projecting
them into 3D demands precise long-range depth. Instead,
image frontiers are projected to rays using camera intrinsics
and selecting the point at a distance H along that ray. The
projected image frontier is not where the image point truly is
in 3D space. To make this projection reasonable for navigation
the affordable image frontier must have a clear line of sight
path from the projected point to the true 3D point associated
with the image frontier. This property is impossible to enforce
perfectly without a prior map. Instead, we approximate it by
learning a mapping from images to affordance heatmaps via
automatic data labeling or human labels.

A. Learning Affordances from Unlabeled Videos

While we show results from learning image affordances
from hand-labeled data (Appendix B), this approach is tedious

Algorithm 1 LRN: Long Range Navigator

Require: k angular frontier bins, initial state sstart, goal g,
goal stdev σg , prev stdev σp, EMA parameter α
Phase I- Supervised Pre-Train Affordance Backbone
Input Dataset Dv of ego-centric videos
Track Dv into Dξ of trajectories
Convert Dξ into D of (image, heatmap) pairs
Train A(s) on D via supervised learning
Phase II- Online Control with Dynamic Planning
s← sstart
p← [1]ki=1

while s ̸= sgoal do
bfiltered ← Affordance_Backbone(s)
g← [N (xi; g, σg)]

k
i=1

v← bfiltered ∗ g ∗ p
fπ ← argmax (v)
â ∼ πλ(s, fπ)
s← Execute(s, a)
p← [N (xi; fπ, σp)]

k
i=1

end while

Algorithm 2 Affordance_Backbone A(s)

Require: EMA α
heatmap← PredictHeatmap(s)
b← Project(heatmap)
bnorm ← b/

∑k
i=1 bi

bfiltered = α ∗ bnorm + (1− α) ∗ bfiltered

Return bfiltered

and scales poorly with more data. This raises the question - can
we learn such affordances from unlabeled videos? Concretely,
we utilize unlabeled ego-centric videos to generate affordable
image frontiers. The key insight is that a trajectory’s endpoint
should represent a good frontier from the perspective of the
trajectory start. Given 3D poses, we can project a trajectory’s
endpoint into image space using camera parameters. But over
long trajectories, small pose errors can misplace points in the
sky or on obstacles. Furthermore, this restricts us to use only
robot data and ignore abundant and easy-to-collect ego-centric
videos - a person only needs to walk!

Ego-centric videos are abundantly available on the internet
[7], allow relaxation of sensor requirements on the robot
for data collection, and can easily be collected by a person
walking, biking, or driving. Note, this approach assumes that
the paths traversed in videos would be reasonable for the robot
to traverse as well. For example, a person walking on park
trails would transfer well to Spot but not to a full-scale car.

Since LRN only needs points in image space, we decide to
forgo precise localization and instead use the video tracker
model CoTracker [9]. CoTracker tracks a grid of points in
image space. To get a trajectory, we run the video in reverse
and select a subset of the grid right in front of the camera.
Once the point becomes occluded (CoTracker provides this)



Fig. 4: GPS plots of LRN and Goal Heuristic Baseline on each course. Where the Goal Heuristic blindly charges towards the goal, LRN makes earlier
decisions to avoid difficult terrain. The round image at the bottom right of each column shows the robot observation and the overlayed heatmap. Red denotes
high scores. In the dump and night scenario, there is high score to the side of the wall and on the sidewalk to the bridge. For the helipad course, the LRN
incorrectly puts some heat on the bushes also, highlighting some sub-optimal LRN predictions (Additional heatmaps in Section ??). For qualitative results of
Trav. Depth and NoMaD see Appendix A.

we mark it as affordable frontier and the rest of the trajectory
as 0 (not affordable). Fig. 3 visually shows how this process
works. Other parts of the image are left unlabeled and do not
incur a loss. We found further marking the vertical column
around the affordable hotspots as 0 reduced false positives,
particularly in the sky. We train a small de-convolution decoder
to predict these heatmaps. We use an MSE loss to train the
model with L2 regularization. Note, the Big Vehicle results,
were obtained from an earlier version of LRN which was
trained solely from human labeled images.

B. Goal Conditioning

Given the affordance heatmaps, the scores are projected to
a discrete set of angular bins. For each bin, LRN takes the
sum of scores falling in that bin for the given camera. Bins
with total scores less than a threshold hthresh are set to 0.
The max is taken for overlapping bins between cameras, and
scores are normalized. Finally, an exponential moving average
(EMA) filter is applied with weight α to reduce fluctuations
over time. If a vector of k discretized bin scores is denoted as
b, then

b = [b1, b2, . . . , bk] bnorm =
b∑k
i=1 bi

bfiltered = α · bnorm + (1− α) · bfiltered

The goal conditioned cost function (Fig. 2) takes in bfiltered

the goal angle µg and the previous selected heading µp. The
goal heading and the previously timestep’s selected heading
each define a Gaussian score centered on µg and µp previously.
Similar to how the EMA filter reduces fluctuations in the
individual scores, the previous selected heading is used to

reduced fluctuations in the final selected heading. We apply
these functions to the discrete bins to obtain a goal cost vector
and a consistency cost vector for k angular bins.

g = [N (xi; g, σg)]
k
i=1 p = [N (xi; fπ, σp)]

k
i=1

Where, σg and σp are both fixed parameters. Finally all the
vectors are multiplied together to obtain final scores. The
maximum scoring angle is then selected.

fπ = argmax(bfiltered · g · p)

IV. EXPERIMENTAL DESIGN

We instantiate LRN in two setups, namely, Spot, and a
Big Vehicle platform both operating outdoors. Our experiment
design is motivated by empirically studying the following
research questions:

[Q1.]: Can the intermediate affordance representation
proposed in LRN exhibit more-efficient, safe-navigation ca-
pability compared to other approaches?

[Q2.]: Considering the connection between affordance
quality and overall system performance, do better affordances
lead to more-efficient paths?

[Q3.]: How does auto-labeling versus human labeling
affect affordance quality?

For both robot’s local policies, we follow a traditional
perception, planning, and control pipeline where perception
creates a metric costmap, planning finds a path through it,
and control tracks that path re-planning with new-information.
Details can be found in Appendix D. For each robot, we
collected training data in the representative biome excluding
the test sites. Spot’s data was auto-labeled while the Big
Vehicle experiment used an early version of LRN trained on
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Fig. 5: Comparisons on Spot tests. We report average and 95 % confidence intervals for 3 real world experiments with 5 runs each. Time and Distance
suboptimality are with respect to human baseline runs. ∗ denote statistical significance : ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, and ∗∗∗∗p < 0.0001

human labeled data. We use MobileSam [29] image encoder
for Spot and SAM2 [19] for Big Vehicle. LRN performs
inference on raw front/rear fisheye lens from a Insta360 camera
on Spot and four time-synced cameras for Big Vehicle. On
both platforms (Big Vehicle with more compute) LRN achieves
a ∼4hz inference with autonomy also running. For more
details of the the dataset sizes, training parameters, and goal-
conditioned head parameters see Appendix E.

3. Traversability + Depth Anything V2 (Spot) combines
a visual traversability estimator trained on our datasets and
Depth Anything V2 [28] monocular depth model. The intuition
is that distant traversable points should be hotspots. We com-
bine the two outputs by muliplying their normalized scores to
produce a heatmap which is used instead of the LRN hotspots.
See Appendix C for more details and visualizations.

A. Baselines
We consider the following baselines: 1. Goal Heuristic (Big

Vehicle, Spot) plans the shortest path to a set of points at the
edge of the costmap nearest the goal similar to a high uniform
unknown cost. Goal Heuristic is implemented using the Goal
Conditioned Head of LRN but given a uniform distribution for
bfiltered to focus our comparison on the image affordances
from LRN. 2. NoMaD [23] (Spot) is a state-of-the-art diffusion
policy that predicts a trajectory from a ego-camera view and
a goal image. We fine-tuned it on data from the same biome
as our test sites and left Spot’s internal obstacle avoidance
active while forgoing the local stack, as NoMaD’s designed
to handle perception-to-control end-to-end. NoMaD has been
shown to excel when a dense topological map is available,
but our off-road experiments provide only a single goal image
with no prior map. This mismatch exposes the challenges of
long-horizon navigation in unmapped outdoor terrain.

B. Real World Robot Evaluation
a) Spot: We perform 5 tests per approach on Spot (60

total) and another 30 tests total for the ablation. To illustrate

the challenges of a limited range metric map, we found
specific scenarios in semi-urban environments that showcase
the failures practitioners would encounter. We tested on three
courses: dump, night, and helipad as seen in Fig. 4. Dump: A
bug-trap wall hides the goal 60 m from the start position. The
wall is outside the range of the local map until the robot gets
close. Night: Partially lit by streetlights, the robot must travel
57 m across a river; bushes and the river block the direct route,
but a wide bridge to the left offers a way over. Helipad: The
robot must get to the other side of the helipad 82m away. The
environment is an open field, but a hedge blocks the direct
line to the goal.

Each approach was tested for five trials per course (given
weather and foot-traffic limitations). We measure Total Dis-
tance, Human Interventions, and Total Time. We intervened
only when the robot stalled or risked danger: first reorienting
it toward the goal, then escorting it until it formed a sensible
plan. Interventions due solely to local-perception failures were
excluded.

b) Big Vehicle: This is a more holistic test of LRN on
a full system. Thus, we provide each approach with a single
waypoint 660m away which crosses three hills two of which
have dense clusters of trees that should be avoided. We use
similar metrics and guidelines for human interventions as Spot.
Given time constraints, we were only able to run each method
for one trial demonstrating the system but not fully testing it.

C. Offline Evaluation

We test the offline performance on human-labeled test sets
(330 Spot and 315 Big Vehicle images) unseen during training
but from the same environments. Since no other affordance
heatmap predictor exists to our knowledge we compare against
Traversability + Depth Anything V2 [28]. Separate LRN mod-
els were trained for auto-labeled and hand-labeled data for
each environment. To evaluate these methods we binarize the
target heatmaps with a threshold of 0.15. We use Area Under



Fig. 6: Full scale LRN and Goal Heuristic demonstration. Paths taken by
baseline Goal Heuristic and LRN systems given the same start and goal. The
intervention and human teleop for the Goal Heuristic was due to it pushing
into dense trees near a ditch. The LRN avoids the dense forests on all the
hills. It misses an opening towards the end and takes a slightly longer path
to the goal.

Algorithm Interventions Avg./Max Speed (m/s) Distance (m) Time (s)

Goal Heuristic 1 4.02 / 8.09 941.79 247.00
LRN 0 4.98 / 8.66 1435.09 289.00

TABLE I: Run metrics for the Big Vehicle demonstration shown in Fig. 6.

the Reciever Operator Curve (AUROC), F1 score, Precision,
Recall, False Positive Rate (FPR), and False Negative Rate
(FNR). All metrics are [0, 1].

V. RESULTS

[Q1.] Can the intermediate affordance representation proposed
in LRN exhibit more efficient safe navigation capability as
compared to other approaches?

For Spot, we report in Fig. 5 that LRN outperformed Goal
Heuristic on all metrics on Dump and Night courses and was
comparable on Helipad course. Compared to Trav. Depth and
NoMaD, LRN outperformed on Dump and Heli mostly and
saw competitive performance on Night. LRN, Trav. Depth and
NoMaD see a higher total distance in Helipad compared to
the Goal Heuristic due to these predictive models switching
directions more frequently causing wandering. Finally, unlike
all other methods, LRN needed no interventions.

Qualitative analysis shows in Fig. 4 that LRN can make
earlier decisions to avoid large obstacles compared to Goal

Heuristic highlighting its longer range reasoning ability (See
Appendix A for more qualitative results). The GPS paths for
LRN visibly are more jagged, particularly in helipad due to
some switching of LRN directions which slows the robot down.
For the Big Vehicle, Table. I shows that LRN achieves a higher
average and max speed with zero interventions. This is
likely due to LRN taking a longer, more open route around
dense/difficult terrain. Despite only being a single run, the
result shows promise LRN can handle real-world navigation
on a full system. In Fig. 6, the Goal Heuristic (orange) twice
hits treelines and needs a 60 m intervention, whereas LRN
(blue) skirts the trees, briefly detouring South at the end of
the course (likely from a fixed σg), reaching the goal unaided.

Remark I: Through these experiments, we see LRN drives
down interventions and shortens routes by spotting hazards
early, improving overall navigation performance.

[Q2.] Considering the connection between the quality of
the affordance model against system performance, do better
affordances lead to more efficient paths?

To evaluate the connection between affordance heatmap
quality and navigation performance, we run an ablation on
the Dump course (Fig. 7) where we adjust heatmap quality.
To vary quality, we adjust the heatmap threshold hthresh

from 0 to 1.0. At hthresh = 0, much of the environment is
predicted as affordable, so the robot takes a direct path to the
goal and gets stuck in local minima like the Goal Heuristic.
With hthresh = 1, almost nothing appears affordable, so the
robot oscillates between the goal and rare hotspots. Between
extremes, we see how a hthresh best tuned for the system
translates to better navigation performance.

Remark II: By adjusting the heatmap quality via hthresh

we see a correlation between improved affordances and im-
proved performance, indicating affordance qualitiy’s impact on
system performance. But we note, better affordances may not
always lead to shorter paths as LRN is a heuristic that cannot
predict what the environment will be like beyond view.

System Metric LRN Auto LRN Hand Trav. Depth

Big Vehicle AUROC ↑ 0.63 0.84 0.56
F1 ↑ 0.11 0.52 0.09
Prec. ↑ 0.08 0.51 0.07
Rec. ↑ 0.17 0.52 0.13
FPR ↓ 0.03 0.01 0.03
FNR ↓ 0.83 0.48 0.87

Spot AUROC ↑ 0.93 0.77 0.61
F1 ↑ 0.10 0.32 0.14
Prec. ↑ 0.06 0.30 0.14
Rec. ↑ 0.35 0.35 0.13
FPR ↓ 0.01 0.0 0.0
FNR ↓ 0.65 0.65 0.87

TABLE II: Classification metrics for heatmap backbone on test set. Prec.
and Rec. stand for Precision and Recall. The F1/Prec/Rec/FPR/FNR/ are from
the highest scoring heatmap thresholds for each method: Trav. Depth and LRN.

[Q3.] How does auto-labeling versus human labeling affect
affordance quality?

We report offline test results shown in Table II. We note
that the performance for both Big Vehicle and Spot is better



in the human labeled data. This is not surprising as any error in
approximating the correct affordances in auto-labeling induces
a bias thereby impacting performance. When trained with
human-expert labeled data, LRN can be viewed as equipped
with oracle affordance labels. That being said, we observe that
both LRN hand labels and auto labels outperform Trav. Depth
for all metrics suggesting auto labels can still provide a useful
learning signal. This is supported by Spot test where LRN,
trained only with auto-labels, outperformed other methods.

Remark III: We note that LRN’s performance is dependent
on the accuracy of the affordance model. Having access to per-
fect affordances e.g. in human-expert labels used for training in
Big Vehicle induces less bias and therefore better performance.
In contrast, automatic labeling of affordance labels while
less burdensome can result in less accurate affordances, and
therefore induce higher bias shown in offline evaluation and
some wandering behavior on Spot. That being said, empirical
Spot results suggest auto-labels still provide sufficient signal
to improve navigation performance.

Remark IV - OOD Qualitative Results: While our method
allows for fast re-training in a target environment we expect the
model, leveraging vision foundation models, should generalize
some to OOD conditions. Fig. 8 shows a few examples
in diverse environments with various biomes (urban/forest),
lighting conditions (night/day), and slopes (hilly/flat). The
model was trained on data from walking around a park which
had some overcast/sunny skies, flat ground, and brown winter
vegetation. While the predictions in OOD settings are lower
confidence as expected, they still predict promising visual
frontiers highlighting the power of visual foundation models
as a backbone of our method.

VI. RELATED WORK

Subgoal Planning ([24, 5, 27, 18]): These works focus on
planning to subgoals or frontiers similar to LRN. Most similar
is Stein et al. [24], which predicts goal reachability and cost-
to-go for subgoals. They focus on indoor environments and
uses lidar input whereas LRN targets outdoor environments
with camera input. projection. Qi et al. [18] use cameras,
learning navigable areas by back-projecting robot paths into
image space. Unlike our work, they rely on perfect depth in
simulated game environments. Near to Far learning ([6, 1,
25, 14, 15, 30]): These works try to extend the metric map at
a lower resolution. While these methods have shown to extend
the map some, they still require depth for mapping (or make
a flatground assumption) which has limited range and can be
occluded. Visual navigation ([22, 23, 11]): These works are
similar in practice but target local navigation. They require
topological maps for longer range navigation. We compare
against NoMaD [23] on the shorter Spot tests. Further, LRN
could be combined with these local methods to enable longer
range reasoning when a map is not available. Traversability
Prediction ([4, 20, 8, 26]): These works predict traversability
in image space. While this task is related, traversability alone
is not sufficient to find affordable frontiers. We show this

Fig. 7: Better affordances can lead to more efficient paths To investigate
this claim, we modify the heatmap threshold affecting the affordance set
size. Low threshold means LRN considers more potentially poor options
i.e. everything is affordable. High threshold means LRN sees very few or
no options i.e. nothing is affordable. We note that an intermediate value of
affordance threshold (i.e. 0.7) gives the optimal affordance heatmaps resulting
in LRN to take shorter travel distance, and drives most gains when compared to
the Goal Heuristic. Our optimal threshold is 0.7. We fit a line from threshold
0.0 to 0.7 and test the hypothesis that the slope is less than 0. We find there
is a correlation (p < 0.05) between affordance quality and traversal distance.

via comparing with the Traversability + Depth Anything V2
baseline. Cost Inpainting ([21, 3, 12]): These methods attempt
to in-paint cost in unknown space. Notably [3] uses a diffusion
model to predict a larger map given the local costmap, but does
not use sensor information besides the costmap for prediction.

VII. LIMITATIONS

While LRN has shown better overall long range navigation,
our method is not without its limitations. We here discuss key
failure modes.

First, LRN does not reason about depth explicitly. Without
depth, we are implicitly assuming that the angular distance to
goal from an LRN hotspot is a sufficient proxy for distance to
goal. This assumption can break when two or more hotspots
are equal angular distance from the goal heading but in reality,
one is much closer to the goal. This appears as occasional
wandering on the Helipad and Big Vehicle courses due to
open environments with many hotspots in LRN predictions.



Fig. 8: OOD predicted heatmap examples. Shown are images with a 0.5 threshold on heatmaps (nominal 0.7) to allow for lower-confident OOD predictions.

That said, LRN recovered by eventually finding more direct
hotspots and reaching the goal without intervention. Beyond
incorporating depth, this issue can be addressed by adding a
detector for wandering behavior and reducing σp encouraging
sticking to one decision or reverting to Goal Heuristic until
fluctuations in LRN stabilize. A good signal for this is non-
monotonic erratic fluctuations is distance to goal, which may
not always be decreasing (e.g. going further around an obsta-
cle), but should change smoothly.

Second, LRN can exhibit switching behavior due to fluctuat-
ing heat scores. Small fluctuations in score between two very
different directions causes the robot to switch back and forth.
This problem motivated the EMA filter and previous heading
gaussian score but we found it does not completely alleviate
the issue and more exploration is needed. We would like to
explore learning the goal conditioned head with history to see
if it can learn to maintain consistent headings.

Third, while some heatmaps seemed reasonable in online
tests, we noticed more optimism from the Spot model where
it puts heat on obstacles near an opening. We attribute this
to the automated labels which some have small tracking
errors putting heat on the edges of openings. Future work on
reducing tracking error or filtering bad labels could improve
performance on this front.

Finally, LRN is a heuristic for exploring unknown space.
While we show it can be an improved heuristic over other
methods, all heuristic frontier approaches suffer from not truly
knowing the whole environment. Thus LRN cannot guarantee
improved performance because a frontier that looks good from
one perspective may actually lead down an unseen bad path.
Incorporating history into the LRN could help so if the robot
reached a dead end it could remember a previous hotspot and
backtrack to that position.

VIII. CONCLUSION

In summary, we presented LRN, a novel method for think-
ing beyond metric costmaps to make less myopic navigation
decisions, by leveraging an intermediate affordance representa-
tion from solely video data on top of a local navigation system
or policy. Through extensive experiments, we demonstrated
that better affordances can lead to better performance by
making less myopic decisions, that LRN exhibits generaliza-

tion to OOD data, and reported overall improved long-range
navigation as compared to multiple baselines both qualitatively
and quantitatively, with tests on two very different platforms.

Future work requires considering how sparse depth can
improve performance when available. A key open question is
how to incorporate memory of previous affordable frontiers
into navigation decisions alongside incorporating history of
observations to better handle dead-ends and wandering.
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APPENDIX A
QUALITATIVE SPOT RESULTS

Fig. 9 shows sample paths each approach took on all courses. As shown there were multiple interventions for the baselines
because the robot got off course and needed to be corrected. We also see variations in performance of Traversability + Depth
Anything V2 and NoMaD across courses. For example, Traversability + Depth Anything V2 does quite well in the Night
course but on Helipad incurs a lot of wandering due to the more open environment.

Fig. 9: GPS plots of all approaches on each course. Many of the baselines incurred interventions for going off course and exhibit various degrees of wandering



APPENDIX B
ADDITIONAL HEATMAP PREDICTIONS

A. Big Vehicle

A sample of qualitative heatmap results can be found in Fig. 10. Traversability + Depth Anything V2 has varying levels of
performance. In the leftmost image, it finds distant hills traversable and thus predicts them as a high score, not considering
the uncertainty of getting to the hills. Right of that, it predicts sky as traversable and distant. This happens on and off and
is due to fluctuations in depth predictions from Depth Anything V2. In the next two right images, it gets close to the correct
hotspots but has no reasoning for whether the robot can continue from that point, thus marking paths leading into dense trees
as traversable.
LRN, on the other hand, gets much closer to the human labels, identifying key openings between trees. While it mostly gets
the correct hotspots, it tends to smooth the heat between them more than the true labels, resulting in some heat on undesirable
areas.

Fig. 10: Big Vehicle heatmap predictions compared to human-labeled heatmaps on the test set.



B. Spot

Qualitative heatmap results are presented in Fig. 11. As shown, Traversability + Depth Anything V2 is very sensitive to
fluctuations in depth prediction, sometimes giving no hot spots in the heatmap, whereas LRN tended to be more stable. LRN
also seemed overly optimistic compared to human labels, which we think contributes to some of the switching behavior in
real-world tests.

Fig. 11: Spot heatmap predictions compared to human-labeled heatmaps on the test set.



APPENDIX C
TRAVERSABILITY + DEPTH ANYTHING V2

In this section we explain more about the Traversability + Depth Anything V2 baseline. The heatmaps are created by combining
the traversability and monocular depth. We first normalize their individual scores. Depth is only normalized in regions that
have a non-zero traversability. We then multiply the scores to produce a heatmap similar to LRN and threshold the values,
which are then used instead of LRN hotspots. The monocular depth model we used was Depth Anything V2 base model which
was the largest model we could run at a reasonable rate on the Orin AGX.
For Spot traversability, a V-Strong model was not available so we trained a traversability model using the same model and
training as LRN, but instead of considering only the hotspot to be 1 in the loss, we mark the whole trajectory as traversable.
To improve traversability further we take a trick from V-Strong and expand the traversable region by making a SAM mask
seeded from the robot’s path.
Fig. 12 shows the intermediate outputs that lead to the final heatmap scores on Spot. As shown, traversability reasonably covers
the space of traversable terrain but emphasizes regions directly in front of the robot, likely due to training trajectories heading
straight out. Monocular depth gives reasonable values but becomes foggier further from the robot. Combining and thresholding
the two tends to produce heatmaps that resemble LRN (e.g. column 3), but can also be overly optimistic or pessimistic. In
practice, the biggest issue was fluctuations in depth prediction, leading to instability in hotspot locations.

Fig. 12: Traversability + Depth Anything V2. Blue indicates more traversable regions, while Red indicates less traversable areas. Similarly for depth, darker
is closer and lighter is further. The resulting heatmap is thresholded to focus on hotspots, but this threshold can be overly conservative, sometimes leading to
no hotspots (e.g., column 1).



APPENDIX D
LOCAL POLICIES

a) Spot: We leverage Elevaton Mapping CuPy [13] a fast elevation mapping software. The local elevation map is a square
with 16m width/height and created from a combination of depth cameras and an ouster OS1 lidar . The elevation map is
converted to a costmap for planning by mapping slopes to cost via simple rules. We then use an ARA∗ planner [10] over a
lattice to plan a path through that map. A carrot point 3m ahead along the planned path is used to compute a body frame
velocity which is passed to Spot’s internal navigation system. The internal navigation system handles locomotion and performs
some obstacle avoidance. The entire stack and LRN is run on a Jetson Orin AGX in realtime.
b) Big Vehicle: We had an opportunity to deploy on a Big Vehicle platform. It is a 12 ton tracked vehicle equipped with three
front facing cameras and one rear camera amongst other lidar and odometry sensors. The local stack in this demonstration was
a heavily optimized perception planning and control stack with a circular costmap of radius 50m. The planner is a search-based
planner that will plan to the goal but stop once it reaches a frontier node at the edge of the costmap within a short tolerance
of the goal heading. This allows the planner some flexibility in case an obstacle is blocking the exact goal.

APPENDIX E
LRN SETUP

a) Spot: We collected datasets in two semi-urban environments by walking around with an Insta360 camera collecting videos
totaling 54 minutes. Since the points of interest are the ground, the tracked points can drift over long times. In order to have
clean data, we chopped the videos into 2 minute segments. The videos were then processed by our automatic labeling pipeline
to produce a dataset of 92,711 heatmap labels. The training used an MSE loss with L2 weight regularization to train a 5 layer
decoder network.
b) Big Vehicle: The Big Vehicle experiment used an early version of LRN trained on human labeled data. The dataset was
1,901 human labeled heatmap images from a California oak savanna. Notably the labeled images were only front-facing camera
images from a different Big Vehicle than the one we deployed on. We asked humans to label all affordable frontiers in each
image. They additionally had access to future/past observations and side-cameras for context (some example images are shown
in the supplementary materials). Human selected regions were positive labels and the rest of the image is assumed negative. We
additionally add some Gaussian blur around positive labels as we found the smooth transitions helped with training. To improve
robustness to visual variations, we further augmented the dataset by applying random color jitter, sharpness adjustments,
rotations, and blur increasing the dataset size to 11,406 images. Our loss was a pixel-wise MSE loss with additional L2
regularization on the weights.

A. Goal Conditioned Head

a) Spot: For the goal-conditioned level we use an angle discretization of 5 degree width bins, hthresh = 0.7, α = 0.1, σg = 90,
and σp = 110. Additionally, to avoid walking past the goal we implement two additions. First, when the robot is within 30m of
the goal it linearly reduces the σg based on its distance to goal. Second, when the robot is within 12m of the goal it switches
to heading straight to the goal.
b) Big Vehicle: For Big Vehicle we used a threshold of hthresh = 0.15. The EMA filter used to reduce noise in affordance
scores was set to α = 0.1. For goal costs we used σg = 70 and σp = 100 weighting previous predictions less than the goal
direction. When the robot got within 75m of the goal it would return to heading straight for the goal. There was no linear
decrease in σg like in the Spot experiments.
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