
Taylorformer: Probabilistic Modelling for
Random Processes including Time Series

Omer Nivron * 1 Raghul Parthipan * 1 2 Damon J. Wischik 1

Abstract

We propose the Taylorformer for random pro-
cesses such as time series. Its two key com-
ponents are: 1) the LocalTaylor wrapper which
adapts Taylor approximations (used in dynamical
systems) for use in neural network-based prob-
abilistic models, and 2) the MHA-X attention
block which makes predictions in a way inspired
by how Gaussian Processes’ mean predictions
are linear smoothings of contextual data. Taylor-
former outperforms the state-of-the-art in terms
of log-likelihood on 5/6 classic Neural Process
tasks such as meta-learning 1D functions, and
has at least a 14% MSE improvement on fore-
casting tasks, including electricity, oil tempera-
tures and exchange rates. Taylorformer approxi-
mates a consistent stochastic process and provides
uncertainty-aware predictions. Our code is pro-
vided in the supplementary material.

1. Introduction
Stochastic processes are appealing because they provide
uncertainty along with point predictions, making them use-
ful for modelling random systems and for decision-making.
Limitations of conventional techniques like Gaussian Pro-
cesses (GP) include high computational costs and difficul-
ties in specifying kernels. Notable efforts to combine the
benefits of stochastic processes and neural networks have
included leveraging attention, such as the Attentive Neu-
ral Process (Kim et al., 2019), a batch-generation model,
and the state-of-the-art Transformer Neural Process (TNP)
(Nguyen & Grover, 2022), an autoregressive model. Both
models are built on the standard multi-head attention intro-

*Equal contribution 1Department of Computer Science and
Technology, University of Cambridge, UK 2British Antarctic
Survey, Cambridge, UK. Correspondence to: Omer Nivron
<on234@cam.ac.uk>, Raghul Parthipan <rp542@cam.ac.uk>.

Workshop on New Frontiers in Learning, Control, and Dynamical
Systems at the International Conference on Machine Learning
(ICML), Honolulu, Hawaii, USA, 2023. Copyright 2023 by the
author(s).

duced by Vaswani et al. (2017).

Models based on the standard multi-head attention, such as
GPT (Liu et al., 2018), have shown impressive results on nat-
ural language tasks, where the goal is to predict sequences
of discrete values. However, the scientific community is
still working out what adaptations are needed to get simi-
larly impressive results for continuous problems (such as
time-series or spatial processes), where the goal is to predict
real-valued targets on a continuum.

Problem setup. Our goal is to model the distribution of
a set of unobserved points (target), YT , at a specified set
of indices, XT , given a set of observed points and their
associated indices (context), {XC ,YC}. Here, YT ∈
RnT×α,XT ∈ RnT×β ,YC ∈ RnC×α and XC ∈ RnC×β ,
where nC and nT are the numbers of points in the context
and target sets respectively. The context or target set may
be permuted arbitrarily — they need not be ordered.

Our Contributions. (1) We propose the Taylorformer, a
probabilistic model for continuous processes. It produces
predictions and associated uncertainty for interpolation and
extrapolation settings and irregularly sampled data. It ap-
proximates a consistent stochastic process (Garnelo et al.,
2018b) and builds on insights derived from two well-known
approaches for modelling continuous processes: Taylor se-
ries and Gaussian Processes (GPs). (2) We introduce the
LocalTaylor wrapper. Taylor series can be used for local
approximations of functions, such as in dynamical systems.
But they are only useful under certain conditions. Local-
Taylor uses a neural network to learn how and when to use
the information provided by a Taylor approximation. (3)
We create the MHA-X block to incorporate an inductive
bias from GPs (specifically, how the mean prediction is a
linear smoothing of contextual values). (4) We introduce a
masking procedure for attention units in the Taylorformer
to allow training the ability to predict points at arbitrary
locations.

This work focuses on building better models for stochastic
processes, so we do not focus on computational cost or
inference efficiency.

We demonstrate Taylorformer’s performance on several

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

0 50 100 150 200 250

0.5

0.0

0.5

1.0

1.5

2.0

Sc
al

ed
 o

il
te

m
pe

ra
tu

re

Context Target

Taylorformer
Ground truth
Predictive mean
Predictive samples

0 50 100 150 200 250

Context Target

Autoformer

Forecast time / 15-min

Figure 1. Taylorformer (left) can generate higher quality samples on the ETT (Wu et al., 2021) dataset than the state-of-the-art Autoformer
(Wu et al., 2021) (right). This is representative of the general difference between these models at generation time. The task is to predict
the next 48 hours (192 target points) given a 24-hour window (96 context points).

tasks in the Neural Process (NP) and time-series forecast-
ing literature. Together, these evaluate the following i)
both mean predictions and modelled uncertainty, ii) in
both interpolation and extrapolation settings and iii) consis-
tency, where the context/target sets can either be ordered or
take arbitrary permutations. Taylorformer has a better log-
likelihood/mean-squared-error than state-of-the-art models
on 17/18 tasks, including image completion (2D regression)
and electricity consumption. The Taylorformer shows 14-
18%, 21-34% and 95-99% reductions in MSE compared to
the next best model for forecasting transformers’ oil temper-
atures, electricity consumption, and exchange rates, respec-
tively. Figure 1 shows samples from the Taylorformer and
the Autoformer for the ETT dataset (Wu et al., 2021).

2. Related Work
There has been a separation in the literature between those
that use neural networks to model random processes (the
Neural Process family) and those that model time-series.
We believe there is a shared project and are motivated by
both.

Neural Processes and Consistency. The initial members
of the Neural Process family (the Conditional Neural Pro-
cess, CNP, (Garnelo et al., 2018a) and the Neural Process,
NP, (Garnelo et al., 2018b)) set out to create a neural net-
work version of Gaussian Processes (GPs), to combine the
benefits of both. GPs are probabilistic models which specify
distributions over functions. They can be used to perform re-
gression and provide uncertainty estimates. Prior knowledge
can be incorporated through the specification of a paramet-
ric kernel function, and they can adapt to new observations.
One of their desirable properties is that a GP is a consistent
stochastic process (roughly, it does not matter what order
you present the data in); however, they can be computation-
ally intensive to use, and selecting appropriate kernels is a
challenging task.

One consequence of consistency is target equivariance
which means that for a given probability model with a like-
lihood function, pθ, for a given context set {XC ,YC} and
target set {XT ,YT }

pθ(Yπ(T) |YC ,XC ,Xπ(T)) = pθ(YT |YC ,XC ,XT)
(1)

where π(T) is a permutation of the target set. Another
consequence is context invariance, which means,

pθ(YT |YC ,XC ,XT) = pθ(YT |Yπ(C),Xπ(C),XT)
(2)

where π(C) is a permutation of the context set.

The TNP (Nguyen & Grover, 2022) is a state-of-the-art
autoregressive Neural Process based on the transformer ar-
chitecture, with adaptations, such as a new mask, for contin-
uous processes. Context invariance is enforced via the archi-
tecture, but they rely on a shuffling approach to encourage
target equivariance through the training algorithm. Nguyen
& Grover (2022) define the desired target-equivariant model
by means of its likelihood p̃θ, p̃θ(YT |YC ,XC ,XT) =
Eπ[pθ(Yπ(T) |YC ,XC ,Xπ(T))] where pθ is the likelihood
of the base TNP model. The Expectation is approximated
using a Monte Carlo average over randomly sampled per-
mutations during training. Inspired by the TNP, we use a
similar shuffling procedure for training.

The initial Neural Process work (CNP, NP) enforced con-
sistency through constraints to the architectures, but such
constraints resulted in the underfitting of data. Advances
included using attention in a way that maintains consistency
(Kim et al., 2019), using convolutional architectures (Gor-
don et al., 2019) and using hierarchical latent variables to
capture global and local latent information separately (Wang
& Van Hoof, 2020). The TNP outperformed all these by
trading an increase in flexibility for the loss of architecture-
enforced consistency.

Forecasting. There have been various improvements to
standard Attention layers in the forecasting literature. Two

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

state-of-the-art examples are Informer (Zhou et al., 2020)
and Autoformer (Wu et al., 2021). Autoformer proposes
a replacement for the classic multi-head attention block
by using an auto-correlation mechanism, and the Informer
offers a more efficient way to choose the most relevant keys
for specific queries using ProbSparse attention.

One key difference between Taylorformer and Auto-
former/Informer is that we model the targets autoregres-
sively, while the latter uses a batch-generation approach
(one-shot generation). Batch-generation approaches model
the targets as conditionally independent given the context,
analogous to CNPs (Garnelo et al., 2018a). The conditional
independence assumption is restrictive, and allowing condi-
tional dependencies between targets can improve results, as
seen by how the NP (Garnelo et al., 2018b) improves on the
CNP.

Much other work focuses on making attention mechanisms
more efficient (Zaheer et al., 2020; Wang et al., 2020;
Katharopoulos et al., 2020; Kitaev et al., 2020; Choroman-
ski et al., 2020). And there is another strand combining both
accuracy and efficiency (Wu et al., 2021; Zhou et al., 2020;
LI et al., 2019). Many are batch-generation models, so they
are more efficient at forecast time than autoregressive ones
since all the targets can be produced in one shot. As noted
earlier, though, the gap that we aim to fill is how to make a
better attention model for the data, putting efficiency aside.

3. Our approach: Taylorformer
Taylorformer is an autoregressive probabilistic model. The
likelihood assigned to YT given XT ,YC ,XC is decom-
posed in the typical autoregressive manner

p(YT |XT ,YC ,XC) = p(Y 1
T |X1

T ,YC ,XC)×
nT∏
i=2

p(Y i
T |Xi

T ,Y
1:i
T ,X1:i

T ,YC ,XC) (3)

where YT ∈ RnT×α,XT ∈ RnT×β ,YC ∈ RnC×α,XC ∈
RnC×β and Y i

T ∈ Rα. The superscript notation 1 : i means
all indices from 1 to i− 1.

The following equation reflects our full contribution. We
model Y i

T given Xi
T and a set of {X,Y} information (which

will contain context points and already-predicted target
points) as follows, illustrated here using {XC ,YC}

Y i
T = LocalTaylor(MHA-X-Net, Xi

T ,XC ,YC ; p, q)+

Linear(MHA-X-Net(W, Xi
T ,XC ,YC)) · Zi (4)

where LocalTaylor is detailed in section 3.1, and p and q
are its hyperparameters. It is a wrapper around the neural
network MHA-X-Net and uses approximations based on the
Taylor series to augment predictions. Part of the LocalTaylor

is the creation of the features W (equation (9)). The MHA-
X-Net is a neural network composed of standard multi-head
attention units (referred to here as MHA-XY) and our new
MHA-X block (section 3.2). Zi ∼ N(0, 1). The model
architecture is shown in Figure 2a. In section 3.3, we explain
how the model is trained.

3.1. LocalTaylor

Taylor polynomials (curtailed Taylor series) are useful for
making local predictions for functions, in low-noise set-
tings, based on information at neighbouring points. Such
approaches are useful in machine learning contexts too. The
usefulness of a Taylor approximation is especially clear in
the modelling of dynamical systems (Brenowitz & Brether-
ton, 2018; Gagne et al., 2020; Liu et al., 2022; Parthipan
et al., 2022; Chen et al., 2018; Ruthotto & Haber, 2018; Lu
et al., 2018), where one goal is to emulate the fixed-time-
step evolution of a system that evolves based on an ordinary
differential equation (ODE) of the form dy

dt = f(y) where
an approach based on modelling residuals

ya+δt = ya + δtNeuralNet(ya) (5)

often works far better than modelling the target outright, as
in

ya+δt = NeuralNet(ya) (6)

where NeuralNet is a machine learning function. In this
example, equation (5) has a clear parallel with the first order
Taylor approximation of ya+δt about ya which is ya+δt =

ya + δt dy
dt

∣∣∣
t=a

. The neural network in equation (5) can be
interpreted as a term to model all higher-order terms in the
Taylor expansion.

Taylor approximations are not obviously suited for making
long-range predictions (i.e., where δt in equation (5) is
large) nor when the data is too noisy. The naive fix for long-
range predictions would be to include higher-order terms in
the Taylor approximation. However, estimations of higher-
order derivative terms will become more inaccurate given
the successive estimations needed for each higher-order
derivative. Noisy data would compound the difficulty in
estimating accurate derivatives. Moreover, some functions
will have a Taylor series that only converges within a specific
range. Hence, a Taylor approximation’s appropriateness will
depend on the function being approximated, the point, a,
used for the expansion and the distance between a and the
predicted point.

The LocalTaylor wrapper models the mean prediction of
Y i
T as the sum of i) explicit Taylor expansion terms and

ii) a neural network adjustment function that uses Taylor
expansion terms as features. This approach confronts the
challenge of working out when Taylor approximations are
useful (dependent on the noisiness of data, number of terms

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

XC
YC
1

XT
i

0
0

RepresentationExtractor (W)

Positional Encoding

Masked
Multi-Head Attention

Dense

Add & Norm

Add & Norm

Masked
Multi-Head Attention

Dense

Add & Norm

Add & Norm

N-1 x

Dense

Add & Norm

Add & Norm

N-1 x

Masked
Multi-Head Attention

Dense

Add & Norm

Add & Norm

Concat & Linear

𝜎!!" 𝜇!!"
+

Closest Y (YT
n(i))

YC

X featuresXY features
with masking

XY features

Masked
Multi-Head Attention

LocalTaylor
wrapper

context

Q1

target

Q2

Q3

Q4

Q5

Q6

K1 K2 K3 K4 K5 K6

a)

b)

Figure 2. a) Taylorformer architecture corresponding to equation (4). LocalTaylor is a wrapper around the central neural network,
MHA-X-Net. The channels on the right-hand side are MHA-X. The ones on the left are MHA-XY. The noted features are shown in the
following equations: XY features with masking, eq. (14), XY features, eq. (15), and X features, eq. (16). b) Example mask for nC = 3
and nT = 3. Each token can attend to other shaded tokens in its row.

used in the Taylor approximation, and the gap over which
predictions are made) by using a neural network to learn
how to use this information when making predictions. Giv-
ing features based on the Taylor expansion to the neural
network can remove the hard-coded Taylor expansion terms
if deemed not useful. Concretely,

µY i
T
= LocalTaylor(NeuralNet,XC , X

i
T ,YC ; p, q) (7)

where p and q are hyperparameters referring to the trun-
cation order of the Taylor terms used for the hard-coded
and neural network features, respectively. This is illustrated
below for p = 1 and q = 1,

LocalTaylor(NeuralNet,XC , X
i
T ,YC ; 1, 1) =

Y
n(i)
T +∆X

n(i)
T D

n(i)
T +

Linear
(
NeuralNet(W,XC , X

i
T ,YC)

)
(8)

the first two terms are a hard-coded first-order Taylor approx-
imation, and the third is the neural network adjustment func-
tion taking in Taylor expansion terms (W) as features. Be-

low, we describe the terms Y n(i)
T ,∆X

n(i)
T , D

n(i)
T ,W, and

how they are created.

We introduce the RepresentationExtractor to create the terms
required to compute the terms for a Taylor series approxi-
mation. It takes the hyperparameter q, and we show it for
q = 1:

RepresentationExtractor(Xi
T ,XC ,YC ; 1) =

X
n(i)
T ,X

n(I)
C , Y

n(i)
T ,Y

n(I)
C ,

∆X
n(i)
T ,∆X

n(I)
C ,∆Y

n(I)
C ,DC ,D

n(I)
C , D

n(i)
T (9)

where Xn(i) (the ith element of Xn(I)) is the near-
est already-seen neighbour of X i, where the neigh-
bour may come from either context set or previ-
ously seen values of the target set. Mathematically,
n(i) = argmini′ ̸=i,i′∈C or i′<i ||Xi − Xi′ ||. The re-
maining terms are defined as ∆Xn(I) = X − Xn(I),
∆Yn(I) = Y − Yn(I) and D = ∆Yn(I)

∆Xn(I) , a data-based
approximation of the derivative at X, and Dn(I) is an

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

analogous data-based approximation of the derivative
at Xn(I). These definitions hold for {X,Y} whether
they are from the context or target sets. We handle
ties in the argmin by randomly choosing one of the
tied neighbours. We also positionally encode the X
variables, similarly to Vaswani et al. (2017). We then
define W as the concatenation of these features, W =
Concat[i for i inRepresentationExtractor(Xi

T ,XC ,YC ; 1)].

Inspiration for dealing with noisy data also comes from
local smoothing techniques, such as LOESS, which deal
with noise by adjusting the size of the data subsets used
to fit their local functions. Similarly, we can smooth out
noise using averages based on different data subsets. For
example, instead of estimating derivatives based only on the
nearest-neighbor point, we can take an average of derivatives
where each is calculated based on different points near the
estimation point.

The estimation of derivatives can be generalised to higher-
dimensions by using partial derivatives; we use it for our
2D regression experiments on the CelebA (Liu et al., 2015)
and EMNIST (Cohen et al., 2017) datasets.

3.2. MHA-X block

It is worth drawing inspiration from how GPs model pro-
cesses given they are well-liked probabilistic tools used to
model various continuous problems. In fact, they are even
included in scikit-learn (Pedregosa et al., 2011). Although
they model a restricted class of functions, based on their
wide usage, it is evident that the classes of functions which
they do model are important to users.

For a GP, the mean of its predictions of Y i
T is simply a linear

combination of the contextual information YC . This is seen
from their predictive distribution for Y i

T at Xi
T conditioned

on YC and XC , Y i
T ∼ N(A,B), where

A = K(Xi
T ,XC)K(XC ,X

′
C)YC (10)

where K is a kernel specifying the covariance and is a
function only of X. Therefore, equation (10) is a linear
weighting of YC , with the weighting done by the kernel,
which is a non-linear function of the X values.

GPs weigh contextual information in a contrasting manner
to that in a standard GPT-style attention model, where non-
linear combinations of {XC ,YC} (referred to as values, V)
are weighted based on non-linear functions of both XC and
YC (referred to as the queries Q and keys K) as follows

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (11)

where V ∈ RnC×dv , K ∈ RnC×dk , Q ∈ RnC×dk .

This standard attention’s (MHA-XY) approach to weight-
ing is important for language tasks as considerable weight

should still be put on distant words if they have similar se-
mantic meaning to closer-by words. But it is not an obvious
requirement for regression tasks seen by how GPs are so
useful despite this mechanism being absent.

We propose the MHA-X block, which allows the mean
prediction of Y i

T to be modelled as a linear weighting of
YC , with the weighting being a non-linear function, learnt
using a neural network, of just XC and Xi

T .

An MHA-X block with N layers is composed of N − 1,
multi-head attention units

MultiHead(f(XC), f(XC), f(XC)) =

Concat(head1, ..., headh)R
O (12)

with headi = Attention(QRQ
i ,KRK

i , V RV
i), where

f(XC) are non-linear functions only of features derived
from XC , and RQ

i , R
K
i ∈ Rdmodel×dk , RV

i ∈ Rdmodel×dv and
RO ∈ Rhdv×dmodel . The last layer of the MHA-X block is
composed of the multi-head attention unit:

MultiHead(g(XC), g(XC),YC) (13)

where g(XC) is the output of the previous layer in the MHA-
X block.

3.3. Training

Our model is trained by maximising the likelihood,
Pr(YT |XT ,XC ,YC). Two key differences exist between
our training and a standard transformer-decoder model
like GPT. The first is using a shuffling method to encour-
age consistency through training. For tasks where we
wish to prioritise target-equivariance, we use a shuffling
and Expectation approach similar to Nguyen & Grover
(2022): during training, we maximise the likelihood of
p(Yπ(T)|Xπ(T),YC ,XC) where π are permutations of the
target set which are chosen randomly for each training batch.
The Taylorformer enforces context invariance (equation (2))
through its architecture.

The second difference is an approach to prevent data leakage
when training to predict in arbitrary orders. To predict points
in arbitrary orders, we need a mechanism to query points at
arbitrary X locations without revealing the corresponding
Y value during training. The classic GPT-style mask is
not capable of this. Nguyen & Grover (2022) introduced a
mask and target-padding approach that deals with this. Our
process is an alternative approach. The main difference is
that the number of multiplications required for the scaled
dot-product in equation (11) is O((nC+2nT)

3) for Nguyen
& Grover (2022), whereas ours is only O((nC + nT)

3)
operations, though we reiterate that efficiency is not our
work’s focus. Our mechanism combines separate keys and
queries for the attention mechanism with specific masking.

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

The process is different for MHA-X and MHA-XY and is
detailed below.

MHA-XY For the first layer in the MHA-XY block, there
are nC + nT queries, keys and values. The queries are

Qi =

{
(X fe,i, Y fe,i, Y seen,i, 1) if i ∈ C

(X fe,i, 0, Y seen,i, 0) if i ∈ T
(14)

where X fe,i are features which are only functions of Xi and
Xj for j ∈ C ∪ {j : j < i}, Y fe,i are features which are
functions of Y i, Xi, Y j and Xj for j ∈ C ∪ {j : j < i},
and Y seen,i are features which are functions of Xi, Y j

and Xj for j ∈ C ∪ {j : j < i}. For this work,
X fe,i = [Xi, Xn(i),∆Xn(i)], Y fe,i = [Y i,∆Y n(i), Di]
and Y seen,i = [Y n(i), Dn(i)], where these terms are defined
in section 3.1. We mask Y fe,i so that when making predic-
tions for the target set, we can query by Qi (as we need
to know the X information of the point we are looking to
predict) without revealing the target value during training.
The final item is a label indicating whether the variables
Y fe,i which contain Y i are masked (set to zero) or not. The
keys and values are

Ki = Vi = (X fe,i, Y fe,i, Y seen,i, 1) (15)

The masking mechanism is designed so that: (1) the context
points only attend to themselves and (2) target points only
attend to the previous target points and the context points.
Figure 2b shows an example mask for nC = 3 and nT = 3.

For subsequent layers in MHA-XY, the queries, keys and
values are the outputs of the previous MHA-XY layers.

MHA-X For the first N-1 layers, the inputs are the outputs
of the previous layer, where the inputs to the first layer are

Qi = Ki = Vi = X fe,i (16)

For the final layer, the inputs are Qi = Ki = Oi, where Oi

is the output of the previous MHA-X layer, and Vi = Yi.
The same mask as for MHA-XY is used for MHA-X.

4. Experiments
To assess the Taylorformer as a model for continuous pro-
cesses, we evaluate on key tasks in the NP literature: 1D
regression and 2D regression (tested on image completion).
To assess it on time-series, we evaluate it on three key fore-
casting tasks: electricity consumption, the load of electricity
transformers and exchange rate.

For these experiments, it was empirically better to truncate
the explicit Taylor expansion terms to the zeroth order (set-
ting p = 0) and keep the first order terms in W (setting

q = 1) with using the approximate derivative of the near-
est neighbour. Therefore, we model the mean of Y i

T as
µY i

T
= LocalTaylor(NeuralNet,XC , X

i
T ,YC ; 0, 1). We

approximate the expectation using a single-sample Monte
Carlo.

The Taylorformer was trained on a 32GB NVIDIA V100S
GPU. Further implementation details are below.

4.1. Neural Process tasks

Datasets For 1D regression, we generate three datasets
corresponding to a meta-learning setup — each dataset con-
tains 100K sequences with X ∼ U [−2, 2]. We query Gaus-
sian Process (GPs) at those X to give Y with a random se-
lection of kernel hyper-parameters as specified in Appendix
A. Each dataset uses either the RBF, Matérn or Periodic
kernel for GP generation. The hold-out dataset includes
sequences generated in the same manner as the training
data.

For 2D regression, we use two datasets. The first comes
from the balanced EMNIST (Cohen et al., 2017) dataset,
which contains monochrome images. Each pixel yi ∈ R1 is
scaled to be in [-0.5, 0.5] and xi ∈ R2 with each dimension
scaled to be in [-1, 1]. We train on only a subset of available
classes (0-9, corresponding to handwritten numbers). There
are two hold-out sets, the first includes unseen images from
the same classes seen during training. The second includes
images from unseen classes (10-46, corresponding to hand-
written letters). The second dataset is CelebA (Liu et al.,
2015): coloured images of celebrity faces with each pixel
yi ∈ R3 with each dimension scaled to be in [-0.5, 0.5] and
xi ∈ R2 with each dimension scaled to be in [-1, 1].

Implementation details Models were trained for 250K,
71K and 125K iterations with 32, 64, and 64 batch sizes
for 1D regression, EMNIST and CelebA, respectively. Opti-
mization was done using Adam with a 10−4 learning rate.
For 1D-regression, nC ∼ U [3, 97] and nT = 100 − nC .
For EMNIST and CelebA nC ∼ U(6, 200) and nT ∼
U(3, 197). Full implementation details are found in the
Appendix.

Results. The meta-learning 1D-regression and image com-
pletion experiments were used extensively in the NP litera-
ture (Garnelo et al., 2018b; Gordon et al., 2019; Kim et al.,
2019; Lee et al., 2020; Nguyen & Grover, 2022; Wang &
Van Hoof, 2020), and we compare to NP (Garnelo et al.,
2018b), ANP (Kim et al., 2019) and TNP (Nguyen & Grover,
2022). Table 1 shows that Taylorformer improves on the
other methods for 5 out of 6 tasks. Figure 4 in Appendix
B shows that for all 1D regression tasks, the validation
loss is lowest for the Taylorformer. For the 2D regression,
we perform best on both EMNIST tasks, but there is no

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

improvement over the TNP for CelebA. We hypothesise
that noise in the CelebA dataset may benefit from taking
averages of derivatives.

4.2. Forecasting

Datasets We use three datasets: 1) hourly electricity con-
sumption data from 2013 to 2014.1 We pick client number
322 out of the 370 available clients. 2) 15-minute Electricity
transformers load (ETT) (Zhou et al., 2020) and 3) Daily
exchange rate (Lai et al., 2017) from 1990-2016 (we pick
the country denoted OT). For each dataset, we run four ex-
periments in which each sequence has a fixed length context
set, nC = 96, (with randomly selected starting position)
and a prediction length nT ∈ {96, 192, 336, 720}. We stan-
dardise yi ∈ R for all experiments. xi ∈ R is scaled to be
in [-1, 1] in each sequence — only relative time matters to
us.

Implementation details Models were trained for 40K
iterations with batch sizes of 32. Optimization was done
using Adam with a 10−4 learning rate. All datasets are split
chronologically into training, validation and test sets by the
ratios 72:8:20, 69:11:20, and 69:11:20, respectively. Full
implementation details are in Appendix A.

Results The electricity, ETT and exchange rate are used
extensively in the literature, and we compare to Autoformer
(Wu et al., 2021), Informer (Zhou et al., 2020) and TNP
(Nguyen & Grover, 2022). For Autoformer and Informer,
we keep the exact setup used in the papers concerning
network and training parameters so the model is trained
on mean-squared-error. We train TNP to maximise log-
likelihood, and we set the number of network parameters
to match ours since their paper does not implement these
tasks. Further, we run a hyper-parameter search for TNP.
We do not compare to the classic ARIMA model as it is out-
performed by Autoformer and Informer on these datasets.

Table 2 shows that Taylorformer is notably better in terms
of MSE for all forecasting tasks. We outperform the au-
toregressive TNP and the batch-generating Autoformer and
Informer with 21-34%, 95-99% and 14-18% reductions in
MSE compared to the closest model for the ETT, exchange
and electricity tasks, respectively. Examples of our gener-
ated sequences can be seen in Figures 1 and 6 (Appendix).
The likelihood results show a similar trend and are provided
in Appendix B.

1https://drive.google.com/file/d/
1jinfTAApPyuyvW1P1hUDpI3rl0Jq8in1/view?
usp=share_link

4.3. Ablation study

We study what contributions are key to the final model per-
formance by performing a 1D regression task on four equally
sized models: a base transformer-decoder (just MHA-XY
units), a model with only MHA-X, a model with the Local-
Taylor wrapped around the base model, and a model with
both contributions. Results in Figure 5 indicate that the
combination of both contributions yields the best outcome.

0.0 0.1 0.2 0.3 0.4 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

co
un

t

0.0 0.1 0.2 0.3 0.4 0.5

standard deviations of log-likelihood

(a) (b)

Figure 3. By shuffling the target variables given the context during
training, we drive the model to be approximately target equivariant.
If all log-likelihood scores are equal, their standard deviation will
be zero. The histograms show these standard deviations for training
with (a) one permuted sample and (b) five permuted samples on the
RBF task. We can see that the models are ‘close’ to consistency.
Furthermore, for the specific RBF task, one permuted sample
during training seems suitable to drive consistency.

4.4. Evaluating consistency

Our model attempts to approximate target equivariance via
shuffled training. We evaluate the target equivariance (equa-
tion (1)) of Taylorformer by computing the log-likelihood
for sequences with permuted target points and taking the
standard deviation. If consistent, all the likelihoods would
be the same and the standard deviation would be zero.

Concretely, for each of the H sequences in the hold-out set,
the target set is permuted 40 times. The log-likelihoods of
these permuted sequences are calculated, and the standard
deviations of these are computed. This results in an array of
H standard deviations. This can then be visualised with a
histogram. A consistent model would show a histogram only
composed of points at zero (as the calculated log-likelihoods
of a given sequence would not change for the differing target
set permutations).

We show the results of this procedure for the RBF experi-
ment in Figure 3a. Our model does not achieve consistency
but comes close. The mean of the standard deviations is
0.038, with a 95% confidence interval of [0.002, 0.105]. We
compare this to an identical model trained with 5 permu-
tation samples for each training sequence (instead of 1) to

https://drive.google.com/file/d/1jinfTAApPyuyvW1P1hUDpI3rl0Jq8in1/view?usp=share_link
https://drive.google.com/file/d/1jinfTAApPyuyvW1P1hUDpI3rl0Jq8in1/view?usp=share_link
https://drive.google.com/file/d/1jinfTAApPyuyvW1P1hUDpI3rl0Jq8in1/view?usp=share_link

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

Table 1. Log-likelihood on a test set. Higher is better. Taylorformer outperforms the SOTA TNP in 5/6 1D and 2D regression tasks. Each
model is run five times to report log-likelihood with standard deviation results.

Log-Likelihood
Taylorformer TNP ANP NP

1D

RBF 4.13 ± 0.03 3.50± 0.05 0.96± 0.02 0.24± 0.01

Matern 3.87 ± 0.05 3.22± 0.05 1.07± 0.01 0.40± 0.02

Periodic 0.31 ± 0.02 0.13± 0.04 −0.85± 0.05 −1.56± 0.00

2D

EMNIST-seen 2.18 ± 0.01 1.59± 0.00 0.82± 0.04 0.62± 0.01

EMNIST-unseen 1.90 ± 0.03 1.47± 0.01 0.68± 0.08 0.44± 0.00

CelebA 4.00± 0.02 4.13 ± 0.02 2.78± 0.03 2.30± 0.01

Table 2. MSE on a test set. Lower is better. Taylorformer outperforms three state-of-the-art models on three forecasting tasks (details in
text). Each task is trained and evaluated with different prediction lengths nT ∈ {96, 192, 336, 720} given a fixed 96-context length. Each
model is run five times to report log-likelihood with standard deviation results.

MSE
Taylorformer TNP Autoformer Informer

E
T

T

96 0.00030 ± 0.00001 0.00041± 0.00004 0.43± 0.21 0.40± 0.20
192 0.00029 ± 0.00000 0.00044± 0.00008 0.57± 0.26 0.65± 0.30
336 0.00030 ± 0.00001 0.00038± 0.00001 0.67± 0.32 0.72± 0.34
720 0.00029 ± 0.00000 0.00039± 0.00004 0.87± 0.42 0.85± 0.40

E
xc

ha
ng

e 96 0.002 ± 0.000 0.040± 0.030 0.41± 0.20 0.57± 0.26
192 0.002 ± 0.000 0.079± 0.035 0.59± 0.28 1.53± 0.80
336 0.002 ± 0.000 0.067± 0.025 0.96± 0.46 3.28± 1.4
720 0.001 ± 0.000 0.152± 0.091 1.08± 0.51 1.47± 0.76

E
le

ct
ri

ci
ty 96 0.036 ± 0.000 0.042± 0.002 0.130± 0.039 0.133± 0.005

192 0.037 ± 0.000 0.045± 0.001 0.117± 0.001 0.148± 0.011
336 0.040 ± 0.001 0.048± 0.002 0.143± 0.011 0.150± 0.013
720 0.039 ± 0.001 0.048± 0.003 0.216± 0.040 0.129± 0.012

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

better approximate equation. Figure 3b shows that there is
no obvious improvement from this, which is supported by
the mean of the standard deviations also being 0.038, with a
95% confidence interval of [0.002, 0.110].

5. Discussion
Limitations Two limitations of the LocalTaylor approach
are as follows: first, when dealing with noisy data, there
needs to be a clear recommendation on how many samples
of derivative estimations to use when computing the average
derivative, for example. This is just a hyperparameter for
now. Second, it would be better if we could also learn how
many of the hard-coded Taylor approximation terms to use
instead of it just being a hyperparameter. An extension to
augment the LocalTaylor approach would be to use a weight-
ing function to more strongly weight data points closer to
the point of estimation.

Taylorformer is an autoregressive model so is slower to gen-
erate predictions than batch-generation models. Moreover,
the extra steps in the RepresentationExtractor (such as the
nearest neighbour search) have an associated computational
cost affecting training and inference — one which is absent
from the other NP models. Taylorformer would need to be
better-suited for tasks where fast sampling and generation
of sequences are required. A one-shot model such as the
Autoformer (Wu et al., 2021) may be more suitable.

Another limitation is that autoregressive models like ours
are prone to error accumulation, unlike batch-generation
models. It is well-known in the dynamical modeling liter-
ature (Lorenz & Hilborn, 1995) that predictions from an
autoregressive model slowly deviate from target values. A
fully consistent process would address this, but as noted in
section 4.4, Taylorformer does not have strict target equiv-
ariance. Nevertheless, the shuffling approach to training
encourages consistency and is one part of what we expect
to be the solution to the error accumulation issue.

Conclusions The Taylorformer is built on two key com-
ponents: the MHA-X block and the LocalTaylor wrapper.
Although the MHA-X block relies on using attention-based
models, the LocalTaylor approach could be easily deployed
for use in other classes of models too, such as RNNs, if
preferred by the modeller.

References
Brenowitz, N. D. and Bretherton, C. S. Prognostic valida-

tion of a neural network unified physics parameterization.
Geophysical Research Letters, 45(12):6289–6298, 2018.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,

D. K. Neural ordinary differential equations. In Neural
Information Processing Systems, 2018.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlós, T., Hawkins, P., Davis, J., Mohiud-
din, A., Kaiser, L., Belanger, D., Colwell, L. J., and
Weller, A. Rethinking attention with performers. ArXiv,
abs/2009.14794, 2020.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A. Em-
nist: an extension of mnist to handwritten letters. arXiv
preprint arXiv:1702.05373, 2017.

Gagne, D. J., Christensen, H. M., Subramanian, A. C., and
Monahan, A. H. Machine learning for stochastic pa-
rameterization: Generative adversarial networks in the
lorenz’96 model. Journal of Advances in Modeling Earth
Systems, 12(3):e2019MS001896, 2020.

Garnelo, M., Rosenbaum, D., Maddison, C. J., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D. J., and
Eslami, S. M. A. Conditional neural processes. ArXiv,
abs/1807.01613, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S. M. A., and Teh, Y. W. Neural
processes. ArXiv, abs/1807.01622, 2018b.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. arXiv preprint arXiv:1910.13556, 2019.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast autoregressive transformers
with linear attention. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5156–5165. PMLR, 13–18 Jul
2020.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, S.
M. A., Rosenbaum, D., Vinyals, O., and Teh, Y. W. At-
tentive neural processes. ArXiv, abs/1901.05761, 2019.

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. ArXiv, abs/2001.04451, 2020.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. Modeling
long- and short-term temporal patterns with deep neural
networks. The 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval,
2017.

Lee, J., Lee, Y., Kim, J., Yang, E., Hwang, S. J., and Teh,
Y. W. Bootstrapping neural processes. Advances in neural
information processing systems, 33:6606–6615, 2020.

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

LI, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X.,
and Yan, X. Enhancing the locality and breaking the mem-
ory bottleneck of transformer on time series forecasting.
ArXiv, abs/1907.00235, 2019.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R.,
Kaiser, Ł., and Shazeer, N. Generating wikipedia by sum-
marizing long sequences. In 6th International Conference
on Learning Representations, ICLR 2018 - Conference
Track Proceedings, 2018.

Liu, Y., Kutz, J. N., and Brunton, S. L. Hierarchical deep
learning of multiscale differential equation time-steppers.
Philosophical Transactions of the Royal Society A, 380
(2229):20210200, 2022.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning face
attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

Lorenz, E. N. and Hilborn, R. C. The essence of chaos.
1995.

Lu, Y., Zhong, A., Li, Q., and Dong, B. Beyond finite layer
neural networks: Bridging deep architectures and numeri-
cal differential equations. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 3276–3285. PMLR, 10–15 Jul
2018.

Nguyen, T. and Grover, A. Transformer neural processes:
Uncertainty-aware meta learning via sequence modeling.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C.,
Niu, G., and Sabato, S. (eds.), Proceedings of the 39th
International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp.
16569–16594. PMLR, 17–23 Jul 2022.

Parthipan, R., Christensen, H. M., Hosking, J. S., and Wis-
chik, D. J. Using probabilistic machine learning to better
model temporal patterns in parameterizations: a case
study with the lorenz 96 model. EGUsphere, pp. 1–27,
2022.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Ruthotto, L. and Haber, E. Deep neural networks motivated
by partial differential equations. Journal of Mathematical
Imaging and Vision, 62:352–364, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Wang, Q. and Van Hoof, H. Doubly stochastic variational in-
ference for neural processes with hierarchical latent vari-
ables. In International Conference on Machine Learning,
pp. 10018–10028. PMLR, 2020.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. ArXiv,
abs/2006.04768, 2020.

Wu, H., Xu, J., Wang, J., and Long, M. Autoformer: Decom-
position transformers with auto-correlation for long-term
series forecasting. In Neural Information Processing
Systems, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., and Ahmed, A. Big bird: Transformers for
longer sequences. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., and Lin, H. (eds.), Advances in
Neural Information Processing Systems, volume 33, pp.
17283–17297. Curran Associates, Inc., 2020.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong,
H., and Zhang, W. Informer: Beyond efficient trans-
former for long sequence time-series forecasting. ArXiv,
abs/2012.07436, 2020.

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

Table 3. Network and training details for forecasting tasks ETT/ exchange/ electricity. If a cell contains one value then all tasks share the
same parameter and otherwise the cell is split by a slash respectively. ∗ indicates that early stopping was used. For the electricity dataset
the total number of parameters for Autoformer and Informer is reduced (relative to original implementation) to improve their results and
match the number of Taylorformer parameters.

Models Taylorformer TNP Autoformer Informer

Network parameters

Dropout rate 0.05/0.05/0.25 0.05/0.1/0.25 0.05 0.05

Layers
attention heads attention heads 2 encoder, 2 encoder,

6/8/6 7/6/4 1 decoder 1 decoder

Parameters 90K/90K/200K 90K/90K/200K 42m/42m/200K 45m/45m/200K

Training parameters

Iterations 40K∗ 40K∗ 15K∗ 15K∗

Batch size 32 32 32 32
Learning rate 3e−4 3e−4 1e−4 1e−4

Optimizer Adam Adam Adam Adam

Hardware

Processor 32GB NVIDIA V100S GPU 120GB NVIDIA T4x4 GPU

A. Experimental Details
The NP, ANP and TNP architectures follow closely from those used by (Nguyen & Grover, 2022). The TNP hyperparameters
are the same as in (Nguyen & Grover, 2022) for the 1D regression and image completion tasks. For the electricity forecasting
task, we set the TNP dropout to 0.25 to reduce overfitting. Specifics for the ANP and NP are provided below. The TNP, NP
and ANP all use Relu activation functions for their Dense layers.

The Autoformer and Informer architectures follow exactly those from the official code base of (Wu et al., 2021) — code can
be found in https://github.com/thuml/Autoformer. The number of parameters in both models are reduced to
make a fair comparison with our model. This practically means that we set d model = 20 and dff = 512 (notation as used in
the original work).

In all cases, during training we monitored performance on a validation set and saved the model weights for the iterations
they performed best (in terms of validation log-likelihood).

A.1. 1D Regression

Data generation. For a GP with a given kernel, first we sampled random kernel hyparameters (distributions are given
below). Next, we generated X ∼ U [−2, 2], where X ∈ R200x1 and then queried the GP at those locations to give Y.
From this, nC context pairs and nT target ones were randomly selected, with nC ∼ U(3, 97) and nT = 100− nC . This
process was repeated to generate all the sequences. The hyperparameters were drawn from the following distributions:
for the RBF kernel, k(x, x′) = s2 exp(−|x − x′|2/2l2), s ∼ U(0.1, 1.0) and l ∼ U(0.1, 0.6). For the Matérn 5/2,
k(x, x′) = (1 +

√
5d/l + 5d2/(3l2)) exp(−

√
5d/l), d = |x − x′|, l ∼ U(0.3, 1.0). For the periodic kernel, k(x, x′) =

exp(−2 sin2(π|x− x′|2/p)/l2), l ∼ U(0.1, 0.6) and p ∼ U(0.5, 1.0).

Training and testing. Three training sets (for each kernel) were generated, comprising 100,000 sequences each. The test
set (for each kernel) comprised 10,000 unseen sequences. All models were trained for 250,000 iterations, with each batch
comprising 32 sequences. We used Adam with a learning rate of 10−4.

Architectures. For the NP, the latent encoder has 3 dense layers before mean aggregation, and 2 after it. The deterministic
encoder has 4 dense layers before mean aggregation. The decoder has 4 dense layers. All dense layers are of size 128. For
the ANP, the latent encoder and decoder are the same as for the NP. The deterministic encoder has an additional 2 dense
layers to transform the key and queries. The multihead attention has 8 heads. All dense layers are of size 128.

https://github.com/thuml/Autoformer

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

Table 4. Negative log-likelihood on a test set. Lower is better. Taylorformer outperforms three state-of-the-art models on three forecasting
tasks (details in text). Each task is trained and evaluated with different prediction lengths nT ∈ {96, 192, 336, 720} given a fixed
96-context length. Each model is run five times to report means with standard deviation results.

Negative Log-Likelihood
Taylorformer TNP Autoformer Informer

E
T

T
96 −2.69 ± 0.02 −2.47± 0.05 0.65± 0.16 0.61± 0.16
192 −2.68 ± 0.01 −2.42± 0.14 0.87± 0.13 0.92± 0.14
336 −2.64 ± 0.01 −2.48± 0.02 0.88± 0.15 0.87± 0.14
720 −2.56 ± 0.01 −2.38± 0.03 1.38± 0.07 1.01± 0.13

E
xc

ha
ng

e 96 −1.31 ± 0.04 0.27± 1.11 0.65± 0.15 0.86± 0.11
192 −1.21 ± 0.03 0.38± 0.40 0.87± 0.13 1.33± 0.15
336 −1.05 ± 0.04 1.21± 0.47 1.19± 0.09 1.80± 0.07
720 −0.68 ± 0.02 0.94± 0.55 1.05± 0.13 1.52± 0.06

E
le

ct
ri

ci
ty 96 −0.53 ± 0.01 −0.42± 0.03 0.38± 0.13 0.41± 0.02

192 −0.50 ± 0.00 −0.40± 0.02 0.35± 0.01 0.46± 0.04
336 −0.41 ± 0.03 −0.28± 0.08 0.44± 0.04 0.47± 0.05
720 −0.44 ± 0.03 −0.25± 0.13 0.64± 0.09 0.39± 0.05

A.2. Image completion

Data generation. For a given image, we sampled the 2D coordinates of a pixel, and rescaled to [-1,1] to compose X and
rescaled the pixel value to [-0.5,0.5] to compose Y. The number of context, nC , and target, nT , points are chosen randomly
for each image, with nC ∼ U(6, 200) and nT ∼ U(3, 197).

Training and testing. For EMNIST, all models were trained for 200 epochs (71,000 iterations with a batch size of 64).
For CelebA, all were trained for 45 epochs (125,000 iterations with a batch size of 64). In both cases, we used Adam with a
learning rate of 10−4.

Architectures. For EMNIST, in the NP, the latent encoder has 5 dense layers before mean aggregation, and 2 after it.
The deterministic encoder has 5 dense layers before mean aggregation. The decoder has 4 dense layers. In the ANP, the
latent encoder has 3 dense layers before mean aggregation and 3 after it. The deterministic encoder has 3 dense layers. The
decoder has 4 dense layers. The deterministic encoder has 3 dense layers followed by a self-attention layer with 8 heads,
then 3 dense layers to transform the keys and queries. The final cross-attention has 8 heads. All dense layers are of size 128.

For CelebA, in the NP, the latent encoder has 6 dense layers before mean aggregation, and 3 after it. The deterministic
encoder has 6 dense layers before mean aggregation. The decoder has 5 dense layers. In the ANP, the latent encoder has 4
dense layers before mean aggregation and 3 after it. The deterministic encoder has 4 dense layers. The decoder has 4 dense
layers. The deterministic encoder has 4 dense layers followed by a self-attention layer with 8 heads, then 3 dense layers to
transform the keys and queries. The final cross-attention has 8 heads. All dense layers are of size 128.

A.3. Electricity forecasting

Training and testing. All models were trained for 40,000 iterations with a batch size of 32. We used Adam with a learning
rate of 10−4.

B. Further results
Validation loss for 1D regression. For all the 1D regression experiments with GPs, we see in Figure 4 that the validation
set negative log-likelihood is lowest for the Taylorformer compared to other Neural Process models. The TNP has a
particularly noisy loss curve.

Log-likelihood results for forecasting experiments. Please refer to table 4 for results.

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

100

125

150 Periodic

NP ANP TNP Taylorformer

200

0

va
lid

at
io

n
ne

ga
tiv

e
lo

g-
lik

el
ih

oo
d

RBF

0 100 200 300 400 500
Iterations/100

200

0
Matern

Figure 4. Validation set negative log-likelihood (NLL). Lower is better. Our Taylorformer outperforms NP(Garnelo et al., 2018b), ANP
(Kim et al., 2019) and TNP (Nguyen & Grover, 2022) on the meta-learning 1D regression task (see task details in the main text).

Ablation study. The results of our ablation study are shown in Figure 5. We see that it is the combination of both the
LocalTaylor approach and the MHA-X attention block which yields the best outcome.

0 20000 40000 60000 80000 100000
iterations

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

ta
rg

et
 n

eg
at

iv
e

lo
g-

lik
el

ih
oo

d Base model
MHA-X
LocalTaylor + Base model
Taylorformer

Figure 5. Ablations for our model showing that using both the LocalTaylor wrapper and the MHA-X together (green line) contributes to
the improved results. This is shown for a 1D regression task (GP RBF kernel).

Electricity forecasting samples. We show samples from the Taylorformer and the TNP for the electricity forecasting task
for target-336-context-96. Both models do well but the Taylorformer tracks the peaks and troughs better.

C. Code
Our code can be found at https://github.com/oremnirv/Taylorformer.

https://github.com/oremnirv/Taylorformer

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

0 50 100 150 200 250 300 350 400
4

2

0

2

0 50 100 150 200 250 300 350 400
time/hours

4

2

0

2

sc
al

ed
 e

le
ct

ric
ity

 c
on

su
m

pt
io

n

CONTEXT Truth
Taylorformer

Truth
TNP

Figure 6. 20 samples from our model and the TNP on the electricity task. Ours tracks the periodic trend remarkably well. Although the
TNP tracks the periodic trend, it struggles to maintain the appropriate periodicity, especially at longer lead times. The Taylorformer
appears to have better-calibrated uncertainty, too: it is more uncertain about the peaks in consumption, and so can produce time-series
samples that can capture the large peak around hour 300, unlike the TNP.

D. Model implementation
D.1. Embedding

We follow a similar formulation to the embedding from Vaswani et al. (2017), but adapt it to continuous values.

PE(t, 2i) = sin(
t/δt

(tmax/δt)2i/d
) (17)

PE(t, 2i+ 1) = cos(
t/δt

(tmax/δt)2i/d
) (18)

where d is the total embedding dimension and i runs from 1 to d. We will denote the vector of all embedding dimensions for
a specific t as PE(t).

D.2. Model implementation

We present a generic implementation of our training for batch data in algorithm 1. The algorithm notation follows the
notation presented in the main text. We denote the mask as M . It follows the same masking described in the main text and
in Figure 2. The PositionalEncoding is described in D.1. By Split(W) we refer to the operation of extracting subsets of
variables from W.

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

Algorithm 1 Model implementation for batch data – training phase
Input: data X = [XC ,XT], X ∈ RB×ℓ×1, Y = [YC ,YT], Y ∈ RB×ℓ×α, mask M ; batch size B; context length nC ;
target length nT ; sequence length ℓ; embedding dimension d; output dimension dO; MHA layers N .

X′ = PositionalEncoding(X) {X′ ∈ RB×ℓ×d }

W = Concat[i for i inRepresentationExtractor(Xi
T ,XC ,YC ; q)]

{W ∈ RB×ℓ×(d+α+4q)}

Xfe, Yfe, Yseen = Split(W) {Xfe ∈ RB×ℓ×(d+2q), Yfe ∈ RB×ℓ×(α+2αq), Yseen ∈ RB×ℓ×(2αq)}

QC
MHA-XY = [Xfe

C ,Yfe
C , Yseen

C , 1] {QC
MHA-XY ∈ RB×nC×(4αq+α+2q+d+1) }

QT
MHA-XY = [Xfe

T , 0,Yseen
T , 0] {QT

MHA-XY ∈ RB×nT×(4αq+α+2q+d+1) }

QMHA-XY = Concat[QC ,QT] {QMHA-XY ∈ RB×ℓ×(4αq+α+2q+d+1) }

KMHA-XY = [Xfe,Yfe,Yseen, 1] {KMHA-XY ∈ RB×ℓ×(4αq+α+2q+d+1)}

VMHA-XY = KMHA-XY

QMHA-X = KMHA-X = VMHA-X = Xfe

OX = MultiHead(QMHA-X,KMHA-X,VMHA-X,mask = M) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,Dense(QMHA-X))) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,Linear(Dense(OX)))) {OX ∈ RB×ℓ×dO}

OXY = MultiHead(QMHA-XY,KMHA-XY,VMHA-XY,mask = M) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Dense(QMHA-XY))) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Linear(Dense(OXY)))) {OXY ∈ RB×ℓ×dO}

for j = 1 to N − 2 do

QMHA-X = OX , QMHA-XY = OXY

OX = MultiHead(OX , OX , OX ,mask = M) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,QMHA-X)) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,Linear(Dense(OX))) {OX ∈ RB×ℓ×dO}

OXY = MultiHead(OXY , OXY , OXY ,mask = M) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Q
MHA-XY)) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Linear(Dense(OXY))) {OXY ∈ RB×ℓ×dO}

end for

Taylorformer: Probabilistic Modelling for Random Processes including Time Series

QMHA-X = OX , QMHA-XY = OXY

OX = MultiHead(OX , OX ,Y,mask = M) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,QMHA-X)) {OX ∈ RB×ℓ×dO}

OX = LayerNorm(Add(OX ,Linear(Dense(OX))) {OX ∈ RB×ℓ×dO}

OXY = MultiHead(OXY , OXY , OXY ,mask = M) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Q
MHA-XY)) {OXY ∈ RB×ℓ×dO}

OXY = LayerNorm(Add(OXY ,Linear(Dense(OXY))) {OXY ∈ RB×ℓ×dO}

O = Linear(Concat(OX , OXY)) {O ∈ RB×ℓ×2α}

A,B = O[:, :, : α], O[:, :, α :] {A,B ∈ RB×ℓ×α}

µ, σ = A+Yn(I), B {Yn(I) ⊂ W, µ, σ ∈ RB×ℓ×α}
Return µ[:, nC :, :], σ[:, nC :, :]

