
Semantic Parsing by Large Language Models for Intricate Updating
Strategies of Zero-Shot Dialogue State Tracking

Yuxiang Wu1∗, Guanting Dong1∗, Weiran Xu1 ∗

1Beijing University of Posts and Telecommunications, Beijing, China
{yuxiangw,dongguanting,xuweiran}@bupt.edu.cn

Abstract

Zero-shot Dialogue State Tracking (DST) ad-
dresses the challenge of acquiring and annotat-
ing task-oriented dialogues, which can be time-
consuming and costly. However, DST extends
beyond simple slot-filling and requires effective
updating strategies for tracking dialogue state
as conversations progress. In this paper, we pro-
pose ParsingDST, a new In-Context Learning
(ICL) method, to introduce additional intricate
updating strategies in zero-shot DST. Our ap-
proach reformulates the DST task by leveraging
powerful Large Language Models (LLMs) and
translating the original dialogue text to JSON
through semantic parsing as an intermediate
state. We also design a novel framework that
includes more modules to ensure the effective-
ness of updating strategies in the text-to-JSON
process. Experimental results demonstrate that
our approach outperforms existing zero-shot
DST methods on MultiWOZ, exhibiting sig-
nificant improvements in Joint Goal Accuracy
(JGA) and slot accuracy compared to existing
ICL methods.

1 Introduction

Dialogue State Tracking (DST) is crucial in Task-
Oriented Dialogue (TOD) systems to understand
and manage user intentions(Wu et al., 2019;
Hosseini-Asl et al., 2020; Heck et al., 2020; Lee
et al., 2021; Zhao et al., 2022). Collecting and
annotating dialogue states at the turn level is chal-
lenging and expensive (Budzianowski et al., 2018),
and commercial applications often need to expand
the schema and include new domains. Therefore, it
is vital to develop DST learning strategies that can
adapt and scale effectively with minimal data.

Most of the existing fine-tuning methods for
zero-shot DST have primarily focused on domain-
transfer approaches (Hosseini-Asl et al., 2020; Lin
et al., 2021b,a), which have not yielded satisfactory

∗The first two authors contribute equally. Weiran Xu is
the corresponding author.

Decode State directly

System:

The address of it is XXX

street, do you want the XXX

hotel with a low price?

User:

No, I want an attraction XXX

instead.

Hotel-name: XXX hotel

Price-range: cheap

Attraction-name: XXX

Attraction-name: XXX

{Sys: {…

Info: {Hotel:{

address: [XXX street],

name: [XXX hotel],

price-range: [cheap]}},

…}

{User: {

Reject: {Hotel: {

name: [XXX hotel]}},

Request: {Attraction: {

name: [XXX]}}}

State Updating Strategies

Prompt (Instruction + Schema description + Example)

Context state Hotel-name: XXX hotel

Only achieve slot filling task

but hard to understand

intricate state updating

strategies in DST …

Golden label!

Translate to JSON

Mistake

Not an entity/

not in Context

Out of schema

[Delete]

Current turn dialogue

Black box

Controllable,

interpretable

Figure 1: An example of the comparison between the
previous ICL method and ours.

performance. Recent studies have showcased the
impressive and adaptable expertise possessed by
large language models (LLMs)(Raffel et al., 2020;
Ouyang et al., 2022; Liu et al., 2023). However,
with the discovery of the emergent ability of large
language models in downstream tasks (Cobbe et al.,
2021; Wei et al., 2022a,b), the In-Context Learning
(ICL) method (Brown et al., 2020) has garnered
more attention in DST research. ICL offers a more
flexible and cost-effective approach as it eliminates
the need for retraining when new slots or domains
are introduced. Some recent studies have explored
the effectiveness of ICL in DST (Hu et al., 2022;
Madotto et al., 2021; Xie et al., 2022) such as the
IC-DST method, which has demonstrated remark-
able performance surpassing previous fine-tuning
methods.

Nevertheless, all the previous methods directly
generate the dialogue state or its change, which
only achieves a simple slot-filling task that extracts
the slot’s value from dialogue but does not explain

System:

Sorry, I can not book it

for 19:00, how about

20:00 for the restaurant

in the city center?

User:

Ok, it sounds good,

could you tell me the

price?

Context state

Restaurant-name: XXX

Restaurant-book_time: 19:00

Result state

Restaurant-name: XXX

Restaurant-book_time: 20:00

{Sys: {

Not_available: {Restaurant: {

book_time: [19:00]}},

Info: {Restaurant: {

book_time : [20:00],

area: [centre]}},

Ask_for: {}}}

{User: {

Reject: {},

Request: {Restaurant: {

price_range: []}}}}

Strategy-based

updating

Translate to JSON

Translate to JSON

{Sys: {

Not_available: {},

Info: {Restaurant : {

book_time : [20:00]}},

Ask_for: {}}}

Temporary state

Restaurant-name: XXX

Restaurant-book_time: 20:00 Strategy-based

updating

Filter JSON

Based on Context state

Based on Temporary state

{User: {

Reject: {},

Request: {Restaurant: {

name: [XXX],

book_time: [19:00]}}}}

Context

Message

New!

Context

Message

{User: {

Reject: {},

Request: {Restaurant: {

book_time: [20:00]}}}}

{Sys: {

Not_available: {},

Info: {Restaurant : {

name: [XXX]}},

Ask_for: {}}

Module

Figure 2: Our framework of ParsingDST that includes filter module.

how the state updating strategies work during DST
which makes the DST process a black box. And
we find the main obstacle in the current zero-shot
DST method is that the large language models
(LLMs)’ understanding of updating strategies have
not aligned with the DST task.

In this work, we proposed a new ICL method
named ParsingDST for zero-shot DST. Specifically,
we reformulate the DST task by semantic parsing
that translates the origin dialogue text into the
designed JSON format (Text-to-JSON) as the in-
termediate state through the LLMs The translated
JSON data will include the information about the
speaker, interaction action, domain, slot, and cor-
responding values in a formatted and structured
manner, which enables the introduction of manual
state updating strategies later.

We illustrated the significance of updating strate-
gies by presenting an intricate scenario in Figure 1.
Previous ICL approaches typically decode the dia-
logue to directly extract the values of all slots, such
as "hotel-name", "price-range", and "attraction-
name" in the example, without considering the up-
dating strategies, which leads to errors in the result.
In contrast, our method applies additional updating
strategies after the text-to-JSON conversion. We
delete non-entity slots like "price_range" when it
appears in the system but not in the context, and we
set the value of the "hotel name" to "[Delete]" when
it is mentioned in the user’s "reject" action, which
makes our result aligns with the golden label.

Based on our observations, we noticed that when
merging context, system, and user utterances as di-
alogue input like the previous methods, the LLMs
will often exhibit confusion between these differ-
ent types of information, which will invalidate the
updating strategies. To address this, we also de-
signed a companion framework with more process
modules to ensure the effectiveness of updating
strategies and conducted experiments to validate
them.1 We choose to test and compare ICL meth-

1Codes in github.com/ToLightUpTheSky/ParsingDST

ods with the powerful LLMs by OpenAI2: gpt-3.5-
turbo-0301 3 and text-davinci-003 (Brown et al.,
2020) on MultiWoz 2.1&2.4 dataset. :

In summary, our work makes the following con-
tributions: (1) To our best knowledge, we are the
first to apply text-to-JSON by semantic parsing as
the transition between dialogue to state, making it
possible to tool additional state updating strategies
and other modules, making the process of DST
more controllable and interpretable. (2) We pro-
posed a novel framework with modules in the pro-
cess of text-to-JSON to maintain the effectiveness
of updating strategies. (3) We experiment with
different ICL methods with various LLMs on Mul-
tiWOZ 2.1&2.4, proving our ICL method outper-
forms the previous in the same model and achieves
a new state-of-art in zero-shot DST task.

2 DST System

2.1 Data format design
As we mentioned before, we translate the origin
dialogue text to the JSON format which includes
interactive actions. The domain, slot, and value in
JSON are inferred from the utterance. And the
formats of User JSON and System JSON are
different. More details about JSON format and our
prompt are in Appendix A.3.

2.2 Dialogue context representation
In order to maintain semantic consistency, we still
use JSON format as context representation. When
translating system’s utterance, we put all domain-
slot-value pairs from the context state into the "re-
quest" action of the data that is User JSON’s format
as context representation. Then When translating
user’s utterance, we merge the previous context
representation and the System JSON as the new
context representation.

2More details about models in https://openai.com/
3Snapshot of gpt-3.5-turbo from March 1st, 2023, this

model will not receive updates.

github.com/ToLightUpTheSky/ParsingDST
https://openai.com/

MultiWoZ 2.1 Attraction Hotel Restaurant Taxi Train AVG
Supervised fine-tuning method
SimpleTOD++ (Hosseini-Asl et al., 2020) 28.01 17.69 15.57 59.22 27.75 29.65
T5DST + description (Lin et al., 2021b) 33.09 21.21 21.65 64.62 35.42 35.20
TransferQA (Lin et al., 2021a) 31.25 22.72 26.28 61.87 36.72 35.77
Previous sota ICL method with different LLMs
IC-DST Codex (deprecated) 59.97 46.69 57.28 71.35 49.37 56.92
IC-DST Text-davinci-003 50.69 38.55 43.98 71.25 45.99 50.09
IC-DST Gpt-3.5-turbo-0301 59.32 40.20 46.50 68.32 52.87 53.13
Our method with different LLMs
ParsingDST Text-davinci-003 64.60+13.91 39.92+1.37 62.55+18.57 80.45+9.20 51.89+5.90 59.88+9.79

ParsingDST Gpt-3.5-turbo-0301 64.95+5.63 46.76+6.56 67.04+20.54 80.26+11.94 62.78+9.91 63.36+10.23

- filter module 63.15+3.20 45.35+5.15 66.60+20.10 80.25+11.93 58.41+5.54 62.75+9.44

- framework 64.92+5.60 46.63+6.43 66.95+20.45 75.42+7.10 52.63−0.24 61.71+8.40

MultiWoZ 2.4 Attraction Hotel Restaurant Taxi Train AVG
IC-DST Gpt-3.5-turbo-0301 59.81 40.20 46.80 68.32 52.87 53.60
ParsingDST Gpt-3.5-turbo-0301 65.63+5.81 46.76+6.56 67.67+20.87 80.58+12.26 62.59+9.72 64.65+11.05

Table 1: Zero-shot per-domain JGA on MultiWOZ 2.1&2.4, we calculate the average of all per-domain JGA as the
measure of overall performance, and we use subscripts to indicate the JGA changes of our methods compared to the
previous sota ICL method under the same model.

2.3 Updating Strategies

Through the observation of the dataset, we have
formulated some status update strategies, which
are based on rulers and will influenced by the
speaker, interactive action, and entity or not. As
for slots in generated User JSON: (1) The slot in
"reject" action will be deleted later; (2) The slot in
"request" action will be updated. As for System
JSON: (1) The slot in "ask_for" or "not_avaliable"
actions wil be ignored, these actions are for
reducing the mistakes of interaction classification
in semantic parsing; (2) The slot in "info" action
will be updated when it is an entity or it also in
context state, but in other cases, we will ignore it .

2.4 Modules

The introduction of the new framework makes it
possible to use additional modules to correct the
generated previous content. In this paper, we tried
a simple module that filters System JSON to make
it only include the updated slot or entity slot in our
framework.

2.5 Framework design

The motivation for designing this framework is to
avoid harmful information from the history state or
previous speaker being mixed into the JSON gen-
erated by the subsequent speaker and affecting the
effectiveness of the update strategy. Our framework
modifies the shared input-output method which pro-
cesses all together. We make it asynchronous and
add more modules in the pipeline: process the con-
text, the system utterance, and the user utterance

dividedly. As shown in figure 2. The details of the
steps in our framework pipeline are as follows:
Step1. In the t turn of dialogue, convert the context
state St−1 to JSON format Ct as context represen-
tation (mentioned in section 2.2) in equation (1),
then merge it with the system utterance At

utt as
the dialogue input for LLM, generate the System
JSON At

JSON in equation (2):

Ct = State2JSON(St−1) (1)

At
JSON = Trans2JSON(Ct, At

utt) (2)

Step2. Then the context state is updated by updat-
ing strategies and the System JSON and saved as
the temporary state St

temp as in equation (3):

St
temp = Update(St−1, A

t
JSON) (3)

Step3. Equation (4) will filter the generated System
JSON with the module mentioned in section 2.4:

At
JSON = Filter(At

JSON) (4)

Step4. Equation (5) combines context JSON and
filtered System JSON as the new context represen-
tation, then equation (6) inputs the new context
with user’s utterance U t

utt together and generate
User JSON U t

JSON with LLM:

Ct = Ct +At
JSON (5)

U t
JSON = Trans2JSON(Ct, U

t
utt) (6)

Step5. Finally, the temporary state is updated by
the updating strategies and the User JSON to get
our dialogue state of this turn St in quation (7):

St = Update(St
temp, U

t
JSON) (7)

If it is the first turn, the process will start from
step4 and At

JSON will be empty.

98.52

96.67

98.3
98.96

98.2397.94

94.73

95.95

97.78
97.16

Attraction Hotel Restaurant Taxi Train

S
lo

t
A

cc
u

ra
cy

(%

)
ParsingDST IC-DST

Figure 3: The average slot accuracy in 5 different do-
mains of MultiWOZ 2.1 with GPT -3.5 model.

3 Experiment

3.1 Dataset, Metric, and Evaluation

MultiWOZ (Budzianowski et al., 2018) is a multi-
domain human-human written dialogue dataset, the
labels and utterances have been refined in subse-
quent versions, e.g., MultiWOZ 2.1 (Eric et al.,
2019) and MultiWOZ2.4 (Ye et al., 2021) is a
cleaner version. We use Joint Goal Accuracy (JGA)
which is the average accuracy of predicting all slot
assignments for a given service in a turn correctly
to evaluate the main results of models. Regarding
text preprocessing and labeling, we followed most
of the previous work of IC-DST (Hu et al., 2022) on
preprocessing and labeling data. The only change
is that we renamed some names of the slots and do-
mains. More details about baselines and zero-shot
settings are in Appendix A.1 and Appendix A.2.

3.2 Results and Analysis

Main Result. Table 1 shows the zero-shot per-
domain JGA result on MultiWOZ 2.1, and AVG
JGA as the measure of overall performance. Be-
cause IC-DST’s best performance model Codex-
Davinci (Chen et al., 2021) has been deprecated
by openAI, we supplement two experiment results
with GPT-3.5 and Text-davinci models. We can
find from the result that the supervised fine-tuning
method is far inferior to the ICL method. And no
matter in which domain, our method always out-
performs the previous sota ICL method IC-DST by
a large-scale margin in the same model. For exam-
ple, using the same GPT-3.5 model, we achieved a
20.54% increase in JGA in the restaurant domain.
Although the supplemented experiments of IC-DST
show worse performance compared to the Codex
model, our ParsingDST method still outperforms
the IC-DST Codex in all five domains with the
same model of supplemented experiments, which
shows the strong ability of our method and the great

ID: MUL1350.json Turn: 1

Context state:

{"hotel-area": "east", "hotel-pricerange": "cheap"}

Dialogue:

System: i have found 3 , all of them are guest houses and all of them have free internet and parking .

would you like me to give your their information ?

User: sure , that sounds great .

ID: MUL1489.json Turn: 2

Context state:

{"restaurant-food": "french", "restaurant-area": "centre"}

Dialogue:

System: i have the cote in the centre . it is in the expensive range . would you like to make a booking ?

User: yes , please . i need a table for 8 on friday at 17:30 , please .

IC-DST:

{"restaurant-food": "french", "restaurant-area": "centre", "restaurant-name": "cote",

"restaurant-pricerange": "expensive", "restaurant-book time": "17:30", "restaurant-book day":

"friday", "restaurant-book people": "8"}

ParsingDST:

{"restaurant-food": "french", "restaurant-area": "centre", "restaurant-name": "cote’, "restaurant-book

people": "8", "restaurant-book time": "17:30", "restaurant-book day": "friday"}

PasrsingDST:

Completion:

1. {"system": {"not_available": {}, "info": {"lodging": {"lodging_type": ["guest house"], "internet":

["yes"], "parking": ["yes"]}}, "ask_for": {"lodging": []}}}

2. {"user": {"reject": {}, "request": {"lodging": {"price_range": ["cheap"], "direction": ["east"]}}}}

Result:

{"hotel-pricerange": "cheap", "hotel-area": "east"}

ParsingDST (w/o framework):

Completion:

1. {"system": {"not_available": {}, "info": {"lodging": {"lodging_type": ["guest house"], "internet":

["yes"], "parking": ["yes"]}}, "ask_for": {}}, "user": {"reject": {}, "request": {"lodging":

{"price_range": ["cheap"], "direction": ["east"], "internet": ["yes"], "parking": ["yes"]}}}}

Result:

{"hotel-pricerange": "cheap", "hotel-area": "east", "hotel-internet": "yes", "hotel-parking": "yes"}

Figure 4: Two representative samples in the test set of
MultiWOZ 2.1.

influence of updating strategies in zero-shot DST.
Ablation Studies. We conduct an ablation study to
better prove the effectiveness of our modules and
new framework. In the situation without the frame-
work, we follow the traditional setting to merge
context, user, and system utterance as dialogue in-
put, then output JSON all at once. As shown in Ta-
ble 1, the overall performance degrades whether the
filter module or our framework is discarded. How-
ever, we observed that the JGA in certain domains
remained similar to the previous performance dur-
ing our ablation studies, we believe that is because
our modules and updating strategies still need to
be optimized.
Slot Accuracy Analysis. Figure 3 shows the slot
accuracy of models using PasingDST and IC-DST
with the Gpt-3.5 model. It can be seen that our
method achieves better results on all 5 domains
compared to the IC-DST (e.g., 2.88% improvement
in the restaurant domain), which further proves the
effectiveness of our method. We speculate that it is
crucial for DST to introduce an appropriate dialog
state update strategy into the model.
Case Studies. To further illustrate the effective-
ness of our framework, Figure 4 shows two rep-
resentative samples of different methods’ predic-
tions. In the first case, the IC-DST method makes
a wrong prediction that includes the non-entity slot
"pricerange" from system utterance that does not
appear in context, however, our method can handle
the situation well because of the introduction of
updating strategies. In the second case, parsing-

DST makes a wrong prediction when removing
its framework, because its User JSON included
slots "internet" and "parking" from system utter-
ance, which makes the updating strategies invalid
because these slots will be updated rather than be
ignored. In our method, we can process System
JSON and context JSON with modules that are
included in the framework before the harmful in-
formation influences the latter User JSON.

4 Conclusion

In this paper, we reformulate DST to semantic pars-
ing with LLMs that translate the dialogue text into
JSON as the intermediate state, which enables us
to introduce updating strategies and makes DST
process more controllable and interpretable. Fur-
thermore, we present a novel framework that in-
cludes more modules within the text-to-JSON con-
version process to ensure the effectiveness of up-
dating strategies. Through experiments on the Mul-
tiWOZ 2.1&2.4 dataset, our system achieves sota
performance in zero-shot settings. Our analyses
showed that our method surpasses the previous
ICL method and the innovative modules and frame-
work benefit the overall performance. In future
work, we plan to explore and evaluate more variety
of updating strategies and modules to further en-
hance our framework and we will test our method
in more open-source LLMs like Llama (Touvron
et al., 2023).

Limitations

This work has two main limitations: (1) The per-
formance of our framework is highly dependent on
the inference language model, which may limit the
framework’s usage. For example, it depends on the
ability of LLMs that are pre-trained in JSON and
natural language data and can understand both. (2)
Lack the detailed comparison of various updating
strategies and modules in the framework. We will
design and test more kinds of updating strategies
and modules for our framework in future work.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz–a
large-scale multi-domain wizard-of-oz dataset for
task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Mihail Eric, Rahul Goel, Shachi Paul, Adarsh Kumar,
Abhishek Sethi, Peter Ku, Anuj Kumar Goyal, San-
chit Agarwal, Shuyang Gao, and Dilek Hakkani-Tur.
2019. Multiwoz 2.1: A consolidated multi-domain
dialogue dataset with state corrections and state track-
ing baselines. arXiv preprint arXiv:1907.01669.

Michael Heck, Carel van Niekerk, Nurul Lubis, Chris-
tian Geishauser, Hsien-Chin Lin, Marco Moresi, and
Milica Gašić. 2020. Trippy: A triple copy strategy
for value independent neural dialog state tracking.
arXiv preprint arXiv:2005.02877.

Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu,
Semih Yavuz, and Richard Socher. 2020. A simple
language model for task-oriented dialogue. Advances
in Neural Information Processing Systems, 33:20179–
20191.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A Smith, and Mari Ostendorf. 2022. In-context
learning for few-shot dialogue state tracking. arXiv
preprint arXiv:2203.08568.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf.
2021. Dialogue state tracking with a language model
using schema-driven prompting. arXiv preprint
arXiv:2109.07506.

Zhaojiang Lin, Bing Liu, Andrea Madotto, Seungwhan
Moon, Paul Crook, Zhenpeng Zhou, Zhiguang Wang,
Zhou Yu, Eunjoon Cho, Rajen Subba, et al. 2021a.
Zero-shot dialogue state tracking via cross-task trans-
fer. arXiv preprint arXiv:2109.04655.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul
Crook, Zhenpeng Zhou, Zhiguang Wang, Zhou Yu,
Andrea Madotto, Eunjoon Cho, and Rajen Subba.
2021b. Leveraging slot descriptions for zero-shot
cross-domain dialogue state tracking. arXiv preprint
arXiv:2105.04222.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, et al. 2023. Summary
of chatgpt/gpt-4 research and perspective towards

the future of large language models. arXiv preprint
arXiv:2304.01852.

Andrea Madotto, Zhaojiang Lin, Genta Indra Winata,
and Pascale Fung. 2021. Few-shot bot: Prompt-
based learning for dialogue systems. arXiv preprint
arXiv:2110.08118.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730–27744.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Yizhong Wang, Swaroop Mishra, Pegah Alipoor-
molabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan
Dhanasekaran, Atharva Naik, David Stap, et al. 2022.
Benchmarking generalization via in-context instruc-
tions on 1,600+ language tasks. arXiv preprint
arXiv:2204.07705.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-
Asl, Caiming Xiong, Richard Socher, and Pascale
Fung. 2019. Transferable multi-domain state genera-
tor for task-oriented dialogue systems. arXiv preprint
arXiv:1905.08743.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I Wang,
et al. 2022. Unifiedskg: Unifying and multi-tasking
structured knowledge grounding with text-to-text lan-
guage models. arXiv preprint arXiv:2201.05966.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2021. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. arXiv preprint
arXiv:2104.00773.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,
Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. arXiv preprint
arXiv:2201.08904.

A Appendix

A.1 Baseline
SimpleTOD (Hosseini-Asl et al., 2020) Success-
fully leverage the pretrained language model GPT-
2 for the end-to-end TOD modeling in the unified
way.
T5DST (Lin et al., 2021b) A slot description en-
hanced approach for zero-shot & few-shot cross-
domain DST based on T5.
TransferQA (Lin et al., 2021a) Reformulated DST
as QA problem. The model is pre-trained with a
large amount of QA data. At inference time, the
model predicts slot values by taking synthesized
extractive questions as input
IC-DST (Hu et al., 2022) An in-context learn-
ing method for zero-shot & few-shot DST by text-
to-SQL with LLMs. It’s the previous state-of-art
method that outperforms the supervised fine-tuning
methods in zero-shot DST.

A.2 Zero-shot setting of ICL frameworks
There are no labeled examples to retrieve, but for-
matting examples are included, following previous
zero-shot learning work. (Wang et al., 2022), and
we set the temperature parameter of LLMs to 0 for
a stable result.

A.3 Prompt design
Below are the template of the user and system’s
prompt in zero-shot settings. The last example
is the test instance that needs to be completed.
We find the example is more useful than the
task-description prompt in the in-context learning,
so we use a simple example that includes all slots
of the domain to map the relationship between
slot and value in the dialogue rather than directly
describe the slot and its value. Furthermore, for
LLMs to understand the meaning of action in
JSON format, we also formulate some examples to
demonstrate some interaction typical scenarios.
System prompt template
translate system message to JSON:

data format of JSON:

input message:
system: "..."
output JSON:
{"system": {"not_available": {domain: {slot: [value]}}, "info": {domain: {slot:
[value]}}, "ask_for": {domain: [slot]}}}
[END]

example:

input message:
system: "the booking for restaurant at 10:00 on sunday was successful"
output JSON:
{"system": {"not_available": {}, "info": {"restaurant": {"clock_book":
["10:00"], "week_day": ["sunday"]}}, "ask_for": {}}}
[END]

example:
input message:
system: "it is a chinese restaurant in the centre"
output JSON:
{"system": {"not_available": {}, "info": {"cuisine": ["chinese"], "direction":
["centre"]}, "ask_for": {}}}
[END]

example:
input message:
system: "how about abc restaurant in the city centre"
output JSON:
{"system": {"not_available": {}, "info": {"restaurant": {"full_name": ["abc
restaurant"], "direction": ["centre"]}}, "ask_for": {}}}
[END]

example:
input message:
system: "how about the part of the area and food type for the restaurant"
output JSON:
{"system": {"not_available": {}, "info": {}, "ask_for": {"restaurant":
["direction", "cuisine"]}}}
[END]

example:
input message:
system: "do you need certain price range or part of area for restaurant"
output JSON:
{"system": {"not_available": {}, "info": {}, "ask_for": {"restaurant":
["price_range", "direction"]}}}
[END]

example:
input message:
system: "sorry i can not book restaurant nusa for you . i can only find nandos"
output JSON:
{"system": {"not_available": {"restaurant": {"full_name": ["nusha"]}}, "info":
{"restaurant": {"full_name": ["nandos"]}}, "ask_for": {}}}
[END]

[DM]
[ST]
[KW]

example:
context:
[PREDIC]
input message:
[DIALOG]
output JSON:

User prompt template

translate user message to JSON:

data format of JSON:

input message:
user: "..."
output JSON:
{"user": {"reject": {domain: [slot]}, "request": {domain: {slot: [value]}}}}
[END]

example: input message:
user: "i want a place to eat . in the city centre . with cheap price"
output JSON:
{"user": {"reject": {}, "request": {"restaurant": {"direction": ["centre"],
"price_range": ["cheap"]}}}}
[END]

example:
input message:
user: "no particular food type"
output JSON:
{"user": {"reject": {}, "request": {"restaurant": {"cuisine": ["any"]}}}}
[END]

example:
{"system": {"not_avaliable": {}, "info": {}, "ask_for": {"restaurant":
["price_range", "cuisine"]}}}

input message: user: "no , i am not picky as long as it book for 4 on sunday"
output JSON:
{"user": {"reject": {}, "request": {"restaurant": {"price_range": ["any"],
"cuisine": ["any"], "num_people": ["4"], "week_day": ["sunday"]}}}}
[END]

example:
input message:
user: "i want to be in the east of town . can i get their phone number and
address please"
output JSON:
{"user": {"reject": {}, "request": {"restaurant": {"direction": ["east"],
"phone_number": [], "address": []}}}}
[END]

example:
input message:
user: "nusha is not a restaurant but an attraction"
output JSON:
{"user": {"reject": {"restaurant": ["full_name"]}, "request": {"attraction":
{"full_name": ["nusha"]}}}}
[END]

[DM]
[EXM]
[ST]
[KW]

example:
context:
[PREDIC]
input message:
[DIALOG]
output JSON:

Special tokens in prompt
The prompt has some special tokens which will
be replace by something else in the data-bulding
process:
"[DM]" is the domain list.
"[EXM]" is the domain example which is a user
utterance that includes all slots of the domain and
its translated JSON.
"[ST]" is the slot list of the domain.
"[KW]" is the possible choice of some slot.
"[PREDIC]" is the context JSON.
"[DIALOG]" is the utterance that should be trans-
lated to JSON.
"[END]" is the stop token.

