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Abstract
Self-supervised Audio Transformers (SAT) en-
able great success in many downstream speech
applications like ASR, but how they work has not
been widely explored yet. In this work, we present
multiple strategies for the analysis of attention
mechanisms in SAT. We categorize attentions into
explainable categories, where we discover each
category possesses its own unique functionality.
We provide a visualization tool for understand-
ing multi-head self-attention, importance ranking
strategies for identifying critical attention, and at-
tention refinement techniques to improve model
performance.

1. Introduction
Adapting the idea of self-supervised learning (Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2019; Lan et al., 2019)
to continuous speech has received much attention in recent
work (Liu et al., 2020; Jiang et al., 2019; Song et al., 2019;
Wang et al., 2020; Baevski et al., 2019b;a), where Trans-
former Encoders with multi-head self-attention (Vaswani
et al., 2017) are pre-trained on a large amount of audio data
in a self-supervised scheme. Once pre-trained, they are used
to improve various downstream supervised tasks, including
phone classification, speaker recognition, SLU, and ASR.
Despite the great success of these Self-supervised Audio
Transformers (SAT)1, their internal attention are often ne-
glected and not explored, as we have little understanding of
how they work, or the knowledge they acquire from a large
amount of unlabeled data. Understanding how SAT mod-
els draw conclusions is crucial for both their improvement
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1These pre-trained transformer encoders have several different
names in their original papers. In this paper we refer to them as
SAT for simplicity.

and application. In the area of natural language processing
(NLP), explaining and interpreting pre-trained black-box
models like BERT have been a well-explored topic (Aken
et al., 2020; Hao et al., 2019; Kovaleva et al., 2019; Clark
et al., 2019; Tenney et al., 2019a;b). However, the analy-
sis of models that are pre-trained on speech has not seen
such widespread exploration, and remains an important and
challenging endeavor for the speech community.

In this work, we propose to analyze the multi-head self-
attention mechanism of SAT through the following methods:
visualization, categorization, functionality study, and im-
portance ranking. We found that the self-attentions of SAT
models tend to converge into three categories: global atten-
tions, vertical attentions, and diagonal attentions. Diagonal
attentions either highly attend to ±t neighbor or are highly
correlated with phoneme boundaries; vertical attentions of-
ten concentrate on specific phonemes. As for noisy global
attentions, we provide a visualization tool to draw insights
about their implicit operations. Through our quantized rank-
ing analysis, we conclude that diagonal attentions outrank
the most in terms of importance, followed by vertical atten-
tions. Last but not least, we introduce attention refinement
methods which allow us to improve learned representations
by partially removing global attentions or constraining at-
tention span, resulting in a faster inference time and higher
performance.

2. Self-Supervised Audio Transformers
The main ideology of NLP BERT pre-training (Devlin et al.,
2018; Yang et al., 2019; Liu et al., 2019; Lan et al., 2019) is
to corrupt the input word tokens by randomly masking or
permuting them with a probability policy, layers of Trans-
former Encoder (Vaswani et al., 2017) are trained together
with a classifier that estimates the masked words at the out-
put. Primarily inspired by this idea, previous works (Liu
et al., 2020; Song et al., 2019; Jiang et al., 2019; Wang
et al., 2020; Baevski et al., 2019b) proposed self-supervised
learning for audio with Transformer Encoders. In this work,
we refer to these types of models as Self-Supervised Au-
dio Transformers, SAT. Unlike BERT where the inputs are
discrete text tokens, the inputs of SATs are acoustic fea-
tures (e.g., MFCC, FBANK, Mel-Spectrogram), which form
much longer sequences and could be extremely similar to



Understanding Self-Attention of Self-Supervised Audio Transformers

their neighbor features since speech signal is continuously
varying. Some SATs take continuous acoustic features as
input directly (Liu et al., 2020; Song et al., 2019), while
some conduct vector quantization in advance (Baevski et al.,
2019b;a). Also, different from BERT where the model is
trained by estimating discrete tokens, SATs change to min-
imize reconstruction error between the real frame and the
predicted frame (Liu et al., 2020; Jiang et al., 2019) or clas-
sification error for the real frame among sampled distracting
frames (Baevski et al., 2019b;a).

Among all the variants of SATs, we address our focus on
SATs that take continuous acoustic features as input with
reconstruction loss. In our analysis, we particularly fol-
low the framework described in Mockingjay (Liu et al.,
2020). In Mockinjgay, two techniques of downsampling
and consecutive masking are introduced to resolve these
issues. Downsampling is applied on input features to adapt
SATs to long sequences. To reduce the length of frames by
a factor of Rfactor, consecutive frames of Rfactor amount
are reshaped and stacked into one frame (Sperber et al.,
2018; Pham et al., 2019). On the other hand, consecutive
masking is applied during pre-training to avoid the model
from exploiting the local smoothness of acoustic frames.
Instead of masking a single frame, consecutive frames of
Cnum are masked to zero. To study the attentions of SAT
models, we use the prevailing framework of the LARGE
model described in Mockingjay, which consists of 12 lay-
ers of Transformer Encoders. We train three models on
the LibriSpeech (Panayotov et al., 2015) train-clean-360
subset with identical settings as in Mockingjay, except for
Cnum ∈ {3, 6, 9}, and we name them as M3, M6, M9.

3. Notations
We first define notation for self-attention mechanism and
SAT representations. Given a length T sequence of vectors
x = x1, ..., xT ∈ Rd, we denote Ah

u ∈ RT×T as attention
weights for all query-key pairs of a head h when propagating
an utterance u. Hence, Ah

u[q, k] ∈ R is the attention weight
of xq attending to xk. We use q for timestamp of query; k for
timestamp of key, where 1 ≤ q, k ≤ T . As a result, Ah

u[q] ∈
RT is the attention distribution formed by xq , which is a row
if we view Ah

u as a map. When analyzing the representations
of a L-layer SAT, we denote xl = xl

1, ..., x
l
T ∈ Rd as the

representations of a given layer, where 0 ≤ l ≤ L and x0

represents input features.

4. Visualization and Categorization
We plot out Ah

u ∈ RT×T as an attention map, where
Ah

u[0, 0] starts from the upper-left corner, like Fig 12. SAT

2Supplementary materials: https://github.com/
leo19941227/Self-Attention-on-SATs

Figure 1. Attention maps of heads favored by G, V, D, visualized
with the same utterance. (a)(c)(e) are average cases; (b)(d)(f) are
extreme cases found by maximizing the metrics.

attentions tend to converge into three categories: (1) global:
flat attention distributions; (2) vertical: attention maps with
vertical lines, and (3) diagonal: attention maps with clear di-
agonal. Because attention maps of a head are similar across
utterances with respect to the three categories, we study self-
attention on the basis of head instead of a single attention
map. To classify heads into three categories, we define three
metrics to quantify a head h: globalness G, verticality V
and diagnality D in equations 1, 2, 3, respectively.

G(h) = E
u∼U

[
1
T

∑T
q=1 H( Ah

u[q] )
]

(1)

V (h) = E
u∼U

[
−H( 1

T

∑T
q=1 A

h
u[q] )

]
(2)

D(h) = E
u∼U

[
− 1

T 2

∑T
q=1

∑T
k=1 |q − k| ·Ah

u[q, k]
]

(3)

where H is the standard definition of entropy, and U is a
speech corpus. Based on G, V, D, we would have three
ranking lists for all heads. If among the three ranking lists, a
head has the highest rank based on the list of G, it would be
categorized as global, and so on. We use ranking instead of
values because the metrics may not have the same numerical
scale. Fig 1 shows two attention maps for each category.

Diagonal attentions attend to local neighbors for every query.
Some exhibit a highly focused behavior like Fig 1(f) and
some are block diagonal like Fig 1(e). Interestingly, no SAT
contains highly focused diagonal attention at main diagonal.
They shift either to the left or right, and larger masking
span Cnum is accompanied by a larger shift, possibly due
to SAT models trying to get useful information from further
frames. The functionality of block diagonal attentions is
discussed in section 5. Vertical attentions like Fig 1(c)(d)
always attend to similar locations for all queries given an
utterance; global attentions like Fig 1(a)(b) behave randomly.
These two categories are discussed in section 6. Finally, we
visualize the head distribution2 according to metrics and
find the model trained with a larger masking span Cnum has
more global heads. On the contrary, M3 contains the most
diagonal heads, suggesting that smaller Cnum makes SAT
focus on local structure more.

https://github.com/leo19941227/Self-Attention-on-SATs
https://github.com/leo19941227/Self-Attention-on-SATs
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Figure 2. Four images on the left side are plotted with the same
utterance. (a) a block diagonal attention map. (b) a block diagonal
map plotted with true phoneme boundaries. Two orange dotted
lines show two examples of boundaries. (c) similarity matrix for
(a). (d) similarity matrix for MFCCs. (e) precision-recall curve for
M3, M6, M9 attentions and MFCCs.

5. Phoneme Segmentation
There are attention maps of clear block diagonal like
Fig 2(a). The borders of blocks might be phoneme bound-
aries, as illustrated in Fig 2(b). It seems diagonal attention
knows phoneme intervals. We conduct phoneme segmenta-
tion to examine the correlation.

We mainly follow the algorithm proposed in (Bhati et al.,
2017), which first calculates a similarity matrix from a se-
quence of features, containing all pairwise distances be-
tween features, and then extract boundary points from the
similarity matrix. For segmentation with an attention map,
its rows are considered as the feature sequence for comput-
ing the similarity matrix2. Examples of similarity matrices
are shown in Fig 2(c)(d) when segmentation features are
the attentions map and MFCCs, respectively. We slightly
modify the boundary-point-extraction algorithm2 in (Bhati
et al., 2017), the modification makes algorithm a little more
stable, but only little performance difference is found.

TIMIT (Garofolo et al., 1993) is used for evaluating
the phoneme segmentation since it provides ground-truth
phoneme boundaries. We follow the setup in (Stan et al.,
2016) that uses a small subset of training set as validation
to adjust a few algorithm parameters and evaluate on test
set. We use a 20ms tolerance window and evaluate with
R-value (Räsänen et al., 2009) and precision-recall curve.
We hand-pick a visually block diagonal head for each of
M3, M6, and M9. We choose MFCC as baseline feature
since it is the most prevailing feature (Bhati et al., 2017;
2019; Scharenborg et al., 2010; Mporas et al., 2008) for seg-
mentation. Little performance difference is found between
MFCC and x0 (Mel-scale spectrogram).

Fig 2(e) verifies the correlation between block diagonal at-
tentions and phoneme boundaries, that attentions clearly sur-
pass MFCC under the same setting. As for R-value, under

the strict hit counting scenario (Räsänen et al., 2009), MFCC
achieves 76.68; M3, M6, M9 achieve 79.99, 78.43, 78.19,
respectively. Interestingly, larger masking span Cnum leads
to poorer performance. The reason is that when Cnum = 3,
masked portions are typically within a phoneme interval,
the model learned to utilize features in the same interval to
reconstruct. On the other hand, Cnum = 9 can sometimes
mask an entire phoneme interval, the model then tries to
retrieve information beyond the interval.

Worth mentioning, similarity matrices on MFCCs and
learned block diagonal attentions have a fundamental dif-
ference that the former show high activation on similar but
distant frames in Fig 2(d), while the latter are more aware
of phoneme neighborhood structure. Figures similar to
Fig 2(d) are shown2 when we compute similarity matrix on
Mel-scale spectrogram or SAT representations, suggesting
that despite there are similar frames located far apart, block
diagonal heads learned to ignore distant information and
focus on neighborhood structure.

6. Phoneme Relation Map
To study the functionality of global and vertical heads, we
propose to align attentions to phoneme relations to see
whether some heads focus on looking for specific phoneme
relations in the utterances. For a sequence of input fea-
tures x0, there exists frame-wise phoneme labels y ∈ Y T ,
where Y is a predefined phone set. We consider xl

q attend-
ing to xl

k as when observing phoneme yq the head would
look for phoneme yk. We quantify a phoneme relation
Ym → Yn inside a head h by summing up all attention
weights Ah

u[q, k] whose phoneme relation yq → yk equals
Ym → Yn, over the entire speech corpus. More specifically,
we plot a phoneme relation map (PRM) Ph ∈ R|Y |×|Y | by
the following equations:

P
′

h[m,n] = E
u∼U

[
1

T

T∑
q=1

T∑
k=1

Iyq=Ym · Iyk=Yn ·Ah
u[q, k]

]
(4)

Ph[m,n] =
P

′

h[m,n]− PU [m,n]

PU [m,n]
(5)

where 1 ≤ m,n ≤ |Y |, I is indicator function, P
′

h, PU ∈
R|Y |×|Y | and PU is the distribution of all possible phoneme
relations2 in speech corpus U , normalizing the effect of
dominating relations like sil → sil which appears in all
utterances. As a result, positive values in Ph represent
preference for specific phoneme relations; negative values
represent the opposite.

PRMs are plotted using TIMIT (Garofolo et al., 1993) with
39 phonemes, and results of several heads are shown2 in
Fig 3. Since diagonal heads are interpretable themselves, we
focus on vertical and global heads. There are several opera-
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Figure 3. Some observed operations from PRMs: (a) sil attends
to sil; non-sil attends to non-sil (b) sil attends to non-sil; non-sil
attends to sil, ch, sh (c) attends to identity, the same phoneme as
query (d) not attends to identity (e) attends to sil (f) not attends to
sil (g) attends to ch, jh, s, sh (h) not attends to s, sh.

Figure 4. (a) The relation between verticality V of a head and
its extreme concentration value. Each dot represents a head h.
(b) zooms in the bottom-left of (a) since outliers dominate too
much. PRMs of representative heads are marked by red squares:
Fig 3(e)(g)(f)(h) are for 1,2,3,4 respectively; Fig 4 (c) is for 5.

tions: attending to silence, identity, specific phonemes, and
not attending to these (not operations). We observe tendency
of vertical heads either focus or neglect specific phonemes
for all queries, and we bridge their connections. For later
discussion, we use focus and neglect to refer to these types
of behaviours. While a PRM characterizes all phoneme rela-
tions of a head, we further define concentration Ch ∈ R|Y |
of a head h, where each Ch[n] ∈ R quantifies the amount of
focus (when positive) or neglect (when negative) of a head
on specific phoneme Yn, over all queries:

Ch[n] =
1
|Y |
∑|Y |

m=1 Ph[m,n] (6)

Fig 4 verifies the connection between verticality and concen-
tration. We report the maximum focus or neglect for each
head. Fig 4(a) points out that heads with high verticality do
focus on specific phonemes; Fig 4(b) points out even a slight
increase of the verticality V of a head has correlation to con-
centration, for both focus and neglect. Some low-verticality
heads with extreme neglect at the bottom-left of Fig 4(b)
are diagonal heads, which always attend to their neighbors
dynamically and show extreme neglect for all phonemes.

7. Importance Ranking
To evaluate the importance of different attention patterns,
we conducted two pruning-based probing experiments. We
ablate partial functionality of self-attention directly at in-
ference time in two aspects: (1) ablates an entire head; (2)
ablates the visible span for all heads. If an attention pat-
tern is essential, ablating it should exhibit immediate loss
in terms of the quality of final representations. We examine
representation quality by three probing tasks: spectrogram
reconstruction, phoneme classification, and speaker recogni-
tion. For the first task, we examine the richness in terms of
spectrogram details of refined representations. We reuse the
reconstruction head during pre-training and measure L1 loss
compared to the original. For the latter two tasks, we exam-
ine the usefulness of refined representations on downstream
tasks. For phoneme and speaker classifications, we train the
downstream models using LibriSpeech (Panayotov et al.,
2015) train-clean-100 subset and fixed 50k steps. In frame-
level setting, we use single-hidden MLP; in utterance-level
setting, we use mean-pooling followed by a linear trans-
form. Phoneme classification is conducted under frame-
level setting; speaker recognition is under frame-level and
utterance-level. Following (Liu et al., 2020), phoneme la-
bels are obtained by the Montreal Force Aligner (McAuliffe
et al., 2017), and all evaluations are done on the LibriSpeech
test-clean subset.

7.1. Head-based Pruning

For each head h, we first compute values of G(h), V (h),
D(h), and cumulatively prune heads from high to low for
each metric by setting Ah

u = 0, resulting in three curves
as shown in Fig 5(a)(b)(c). We rank the importance of the
three categories by observing which pruning results in a
larger performance drop. We find ranking results are con-
sistent for different Cnum, so we only show the result of
M3. There are several findings: (1) Diagonal heads are the
most important. Performances on all three tasks drop signif-
icantly with only 24 heads pruned. (2) Vertical heads rank
second. While pruning them does not hurt reconstruction
or phoneme classification much, it drops faster than global
heads in speaker recognition. This suggests that vertical
attentions have more relation to speaker identity. (3) Global
heads have the least importance that pruning them has the
least effect on all tasks. (4) Both global and vertical heads
are harmful to the phonetic structure. Fig 5(b) shows that
pruning them even improve the phoneme classification accu-
racy. For vertical heads, we speculate that the vertical heads
might focus on distant phonemes when forming a new repre-
sentation independently (disrespectfully) of query phoneme,
which might corrupt the local phonetic structure. (5) In
Fig 5(b), when we prune according to diagonality, phoneme
accuracy drops dramatically for the first 24 heads pruned,
while it surprisingly increases as we prune more heads. This
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Figure 5. Performance curves of attention pruning. Curves marked
by dots are frame-level setting; otherwise utterance-level setting.

is because when pruning more than 24 diagonal heads, we
start to prune the heads that are more vertical or global than
diagonal, supporting the previous finding that vertical and
global attentions are harmful for phonemic information.

We further show the result of ranking the importance of
heads based on their maximum attention weights, denoted
as weight in Fig 5(a)(b)(c), which has been shown to be
a strong baseline in the previous work (Hao et al., 2020).
Fig 5(c) shows pruning based on globalness has less influ-
ence than weight. Fig 6(a) visualizes the difference between
two ranking strategies. Although they agree on which heads
are essential, they slightly diverge on which are not. Their
decision boundaries in terms of the first 24 heads to be
pruned are shown by red and blue lines in Fig 6(a), which
is the direct cause of their performance differences. Global-
ness prunes blue dots while leaving red dots unpruned; and
vise versa for weight (while they all prune green dots). Since
globalness-based pruning results in a better performance
than weight-based pruning, this suggests that heads of red
dots are more important than blue dots. We select the head
with the highest ranking difference from both red and blue
dots, and plot their PRMs in Fig 6(b) and (c), respectively.
We find that while Fig 6(b) shows strong neglect, (c) does
not possess observable operation. In fact, heads of red dots
are mostly with clear neglect2. We argue that this is the main
reason why globalness performs better after pruning, that
heads with neglect are essential to speaker identity, and glob-

Figure 6. (a) Different ranking of a head according to globalness
and attention weight. Each dot is a head, and the one with higher
ranking number is more important. The first 24 heads to be pruned
are green and blue for globalness, green and red for weight. (b)
and (c) are PRMs of heads in red and blue dots, respectively.

alness defined by entropy is able to recognize neglect and
score them higher. On the other hand, weight is confused
by attentions with large weights but without meaningful
operation, suggesting that weight do not always reflect the
importance of heads. We speculate that these heads might
learn to neglect less useful frames, like sil in Fig 6(b), and
focus more on other frames with more speaker information
(Wang et al., 2018). Based on the above observations, we
choose globalness as our refinement metric. Fig 5(d)(e)(f)
show pruning results for M3, M6, M9. The importance of
global heads become less for larger Cnum, and we keep
observing performance boost for phoneme classification.
Despite all three models drop for speaker recognition, the
drop is mitigated dramatically in utterance-level setting (a
more common scenario), suggesting that global heads are
not necessary when speaker classification is performed on
utterance level. In conclusion, we can prune SAT heads for
more than 50% without sacrificing performance.

7.2. Span-based Pruning

Since most of the heads have attention span over a long
range (no matter what category it belongs to), we further
conduct attention-span pruning to examine if global infor-
mation is genuinely not helpful for extracting phonetic in-
formation. We limit the visible span of all heads by length
r, either to the left or right. That is, we set Ah

u[q, k] = 0 for
any |q − k| > r. Results are presented in Fig 5(g)(h)(i).

8. Conclusion
In this paper, we present multiple strategies for analyzing
the self-attention mechanism in SATs, including phoneme
segmentation, phoneme relation map, and two aspects of
pruning. We find several attention functionality and opera-
tions. We identify critical attentions and show our visualiza-
tion tool useful for understanding pruning behavior. Finally,
we conclude that we can refine representations and speed
up inference time for a given SAT in two aspects: removing
global heads or constraining attention span.
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Aken, B. v., Winter, B., Löser, A., and Gers, F. A. Vis-

bert: Hidden-state visualizations for transformers. In
Companion Proceedings of the Web Conference 2020, pp.
207–211, 2020.

Baevski, A., Auli, M., and Mohamed, A. Effectiveness of
self-supervised pre-training for speech recognition. arXiv
preprint arXiv:1911.03912, 2019a.

Baevski, A., Schneider, S., and Auli, M. vq-wav2vec: Self-
supervised learning of discrete speech representations.
arXiv preprint arXiv:1910.05453, 2019b.

Bhati, S., Nayak, S., and Murty, K. S. R. Unsupervised
segmentation of speech signals using kernel-gram matri-
ces. In National Conference on Computer Vision, Pattern
Recognition, Image Processing, and Graphics, pp. 139–
149. Springer, 2017.

Bhati, S., Nayak, S., Murty, K. S. R., and Dehak, N. Un-
supervised acoustic segmentation and clustering using
siamese network embeddings. In INTERSPEECH, pp.
2668–2672, 2019.

Clark, K., Khandelwal, U., Levy, O., and Manning, C. D.
What does BERT look at? an analysis of BERT’s atten-
tion. In Proceedings of the 2019 ACL Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks
for NLP, pp. 276–286, Florence, Italy, August 2019. As-
sociation for Computational Linguistics. doi: 10.18653/
v1/W19-4828. URL https://www.aclweb.org/
anthology/W19-4828.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805,
2018.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G.,
and Pallett, D. S. Darpa timit acoustic-phonetic continous
speech corpus cd-rom. nist speech disc 1-1.1. STIN, 93:
27403, 1993.

Hao, Y., Dong, L., Wei, F., and Xu, K. Visualizing
and understanding the effectiveness of BERT. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4143–4152, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1424. URL https:
//www.aclweb.org/anthology/D19-1424.

Hao, Y., Dong, L., Wei, F., and Xu, K. Self-attention attri-
bution: Interpreting information interactions inside trans-
former. arXiv preprint arXiv:2004.11207, 2020.

Jiang, D., Lei, X., Li, W., Luo, N., Hu, Y., Zou, W., and
Li, X. Improving transformer-based speech recogni-
tion using unsupervised pre-training. arXiv preprint
arXiv:1910.09932, 2019.

Kovaleva, O., Romanov, A., Rogers, A., and Rumshisky,
A. Revealing the dark secrets of BERT. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4365–4374, Hong Kong, China,
November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-1445. URL https:
//www.aclweb.org/anthology/D19-1445.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Liu, A. T., Yang, S.-w., Chi, P.-H., Hsu, P.-c., and Lee,
H.-y. Mockingjay: Unsupervised speech representation
learning with deep bidirectional transformer encoders. In
ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp.
6419–6423. IEEE, 2020.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

McAuliffe, M., Socolof, M., Mihuc, S., Wagner, M., and
Sonderegger, M. Montreal forced aligner: Trainable text-
speech alignment using kaldi. In Interspeech, volume
2017, pp. 498–502, 2017.

Mporas, I., Ganchev, T., and Fakotakis, N. Phonetic seg-
mentation using multiple speech features. International
Journal of Speech Technology, 11(2):73–85, 2008.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: An asr corpus based on public domain audio
books. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206–5210,
2015.

Pham, N.-Q., Nguyen, T.-S., Niehues, J., Müller, M.,
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