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Abstract

Self-supervised learning (SSL) has emerged as a key method for training powerful
encoders on large-scale unlabeled data. However, recent research indicates that
SSL encoders may over-rely on or even memorize many data points from their
training set. While supervised learning benefits from tools like influence functions
to identify such memorable data points, these methods do not effectively apply to
SSL due to their reliance on labels. In this work, we introduce a new label-free
definition of influence functions for SSL. Our implementation utilizes Eigenvalue-
corrected Kronecker-Factored Approximate Curvature (EK-FAC) to efficiently
estimate influence functions without requiring any retraining, making it applicable
to any pre-trained SSL model to assess the effect of training examples on its
model behavior. Our results suggest that the proposed method is informative about
memorization that can be detrimental to SSL pre-training2.

1 Introduction

Self-supervised learning (SSL) is a promising approach to extracting meaningful representations on
vast amounts of unlabeled data by solving a surrogate objective, also known as a pretext task. In
many recent SSL methods [8, 17, 13, 7, 5], such pretext tasks rely on joint-embedding architectures
where multiple network branches aim to learn representations by maximizing agreement between
differently augmented views of the same data example in the embedding space. However, recent
research shows that SSL encoders may over-rely, or in the worst case, memorize aspects of their
training data [23, 24]. This behavior not only raises privacy concerns, particularly when models are
trained on datasets containing personal information, but it also demands defining a notion of the
influence of data points on model behavior, indicating memorization.

In supervised learning, the concept of Influence functions [20] has proven valuable in assessing the
impact of individual training examples on a model’s behavior. These functions quantify how a model’s
predictions would change if a specific example were removed from the training data [11, 4, 14, 28].
Another work [11] discusses the link between memorization and the influence functions (See Sec 2.1).
Extending this notion of influence to the SSL setting is crucial, as it could provide insights into the
learning dynamics of pretrained encoders. However, this extension to SSL remains unexplored due to
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its unique challenges, as existing definitions of influence functions often rely on labels [20] and, in
some cases [11, 16], require supervised retraining of the model multiple times.

In this paper, we address these challenges by proposing a new definition of influence function in a
label-free setting for SSL. We apply our method to popular SSL methods like SimCLR [8], VicReg [5]
and DINO [7], to demonstrate our method’s effectiveness in quantifying influence. Interestingly,
when we retrain the network after removing the highest-influence examples identified by our method,
we observe improved SSL pretraining. This suggests that our proposed definition effectively identifies
instances of memorization that may be detrimental to SSL pre-training, thus offering a valuable tool
for enhancing the performance and understanding of SSL models.
Related Work: The fundamental idea of quantifying influence based on the impact of individual
training data points on model predictions has been extensively studied in supervised learning [2, 26, 6].
Feldman et al. [11] discusses link between this influence and data memorization. However, this
exploration has been limited in self-supervised learning (SSL). Only two works, Deja Vu [23] and
SSLMem [24], have addressed memorization in SSL, but both have limitations. Deja Vu assumes
access to labeled data from the encoder’s training distribution, and both methods require training
multiple encoders on subsets of training data. Our work differs significantly by not requiring training
of multiple networks, making it more efficient. We propose extending the widely accepted influence
function definition of memorization to SSL, marking the first attempt to do so in this context.

2 Influence in a Label-Free Setting
2.1 Preliminaries and Problem Setup

In supervised learning, we consider a training dataset D = {(xi, yi)}ni=1 and a model fθ parameter-
ized by θ, trained to minimize a loss function L(fθ(x), y). Feldman et al. [11] defines the concept of
label memorization in terms of influence - which measures how much a model’s prediction changes
when a particular example is removed from the training set:

I(xi, yi) = Ez∼D\{(xi,yi)}[fθ(D)(xi)− fθ(D\{(xi,yi)}∪{(xi,z)})(xi)] (1)

Here, θ(D) represents the model parameters learned from dataset D, and z is a random label
drawn from the marginal label distribution of D. In practice, directly computing this would involve
retraining multiple networks on various data subsets, which is computationally expensive. For
instance, Feldman [11] retrained 2,500 ResNet models to achieve this. However, on the bright side,
we can use influence functions as an approximation to simplify the computation.

Influence function: Influence functions, introduced by Cook and Weisberg [3] and popularized
in machine learning by Koh and Liang [20], provide a way to estimate the effect of individual
training points on a model’s predictions without actually retraining different networks. For a model
minimizing empirical risk R(θ,D) = 1

n

∑n
i=1 L(fθ(xi), yi), the influence of removing a training

point (xz, yz) on the loss at a test point (xt, yt) is defined as:

Ĩ(fθ, t, z) = −∇θL(fθ(xt), yt)
⊤H−1

θ ∇θL(fθ(xz), yz) (2)

where Hθ = 1
n

∑n
i=1 ∇2

θL(fθ(xi), yi) is the Hessian of the empirical risk (See Koh and Liang [20]
for a proof). Feldman [11] describes memorization corresponds to the influence of example i on the
accuracy on itself (or self-influence), i.e mem(fθ, i) = Ĩ(fθ, i, i).

2.2 Formalizing influence for SSL

We aim to generalize equation 2, which depends on the label y, to a fully label-free framework.
Naturally, this requires modifying the function L, but the challenge is determining the appropriate
modification. We propose to adapt influence functions to SSL based on the invariance-distinctiveness
trade-off inherent in SSL objectives. Our approach quantifies a training point’s influence by measuring
how its removal affects the model’s ability to match augmented views. This provides a principled
method for understanding individual training examples’ roles in SSL, bridging the gap between
influence functions and self-supervised learning paradigms.
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Figure 1: t-SNE projection of CIFAR-10 training images. The left plot shows all examples, while
the middle and right plots display the lowest 4,000 and top 4,000 examples by influence score,
respectively. Low-influence images are tightly clustered, while high-influence ones are more spread
out. This clustering explains why removing low-influence images affects accuracy more in SSL.
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Figure 2: Accuracy on CIFAR-100 (y-axis) vs. number of removed samples (x-axis). Data points
were removed using influence from pre-trained SimCLR, and supervised ResNet-18. The trend in
performance is observed to be reversed in the supervised setting compared to SSL.

To this end, we introduce a new definition for the influence score I using a pre-trained self-supervised
learning (SSL) model fθ, applied to an unlabelled image xi, as follows:

I(f, i) = −∇θL(fθ(xi), fθ(x̂i))
⊤H−1

θ ∇θL(fθ(xi), fθ(x̂i)) (3)

where L is defined as the cosine distance between an image xi and its augmented counterpart x̂i, i.e.,
L(ti, tj) = 1− ti·tj

||ti||||tj || and we use EK-FAC (See Appendix A) to efficiently compute H−1
θ .

One might question how the choice of L as the cosine distance is justified, given that different SSL
methods optimize empirical risk using varying loss functions L̃. We argue that cosine distance is
a valid and consistent measure of influence across most SSL methods. While distillation-based
approaches like DINO [7] and BYOL [13] explicitly maximize cosine similarity, recent theoretical
studies [19, 25] show that contrastive methods implicitly maximize cosine similarity. Moreover,
recent work [27] demonstrates that Masked AutoEncoders (MAE) also implicitly align mask-induced
positive pairs in a similar manner.

3 Experiments

We leverage various SSL frameworks, including the contrastive-based SimCLR [8], distillation-based
DINO [7], and regularization-based VICReg [5], to ensure a broad evaluation of our method. While
our ultimate goal is to scale the method to ImageNet-1k [10], due to its large size, we begin by
demonstrating the effectiveness of our influence estimation on smaller, more manageable datasets like
CIFAR-10 [21] and CIFAR-100 [21]. For additional implementation details, please see Appendix B.1.

In the subsequent sections, we describe the results of the experiments based on the proposed new
definition of influence function adapted for SSL as described in section 2.2.

3.1 Marginal utility with low vs. high-influence examples

Given a pretrained SSL model, we first calculate the influence scores. In order to evaluate the marginal
utility of influential examples, we removed the images with both the highest and lowest influence
scores, then trained the model on the remaining dataset.
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Is there a case of detrimental memorization in SSL? We explored the impact of removing
high-influence data points in both self-supervised learning (SSL) and supervised learning using
CIFAR-100. In the case of SimCLR, removing the top 16,000 most influential points led to a 2.3%
improvement in linear evaluation accuracy compared to random removal, as shown in Figure 2,
indicating the presence of detrimental memorization in SSL. A similar pattern was observed in
VICReg, where performance improved by approximately 4% on the test set. These findings suggest
that in SimCLR, the high-influence points have been leading to a form of detrimental memorization -
perhaps the model was relying too heavily on specific image features that were easy to match across
augmentations, rather than learning more generalizable representations.

An interesting contrast emerges when we use the highest influence scores obtained from SimCLR
to remove examples in supervised training. Unlike in the self-supervised setting, where removing
high-influence examples improves performance, removing these influential points in a supervised
setting results in a performance drop compared to removing random examples (Figure 2). This
divergence likely stems from the differing objectives between supervised and self-supervised learning.
In self-supervised learning, learn representations that are invariant to augmentations but distinct
between different images, and we hypothesize that removing highly influential examples may prevent
the model from focusing too heavily on the overrepresented instances, leading to better generalization.
However, in supervised learning, these high-influence examples may correspond to critical points that
guide the model in learning discriminative features tied to the labels. Consequently, their removal
disrupts the model’s ability to accurately map inputs to labels, causing a decline in performance.
This indicates that in supervised learning, influential examples are more essential for the task-
specific learning process, whereas in self-supervised learning, their removal can help balance the
representation learning. We also tested this on CIFAR-10, as detailed in Appendix B.4.

Embedding sparsity in low vs. high-influence examples: Figure 1 presents t-SNE visualizations
of the model’s embeddings, revealing distinct patterns for low- and high-influence examples. The
4,000 lowest-influence images cluster tightly, suggesting they occupy a homogeneous region in the
feature space. In contrast, the 4,000 highest-influence images are more dispersed. This clustering
difference offers insights into the model’s utilization of these examples. Low-influence images likely
contribute to well-represented, consistent regions in the feature space, supporting generalization with-
out introducing significant variability. Their removal may affect model performance by eliminating
a stable portion of the data. High-influence examples, being more diverse, may represent harder
or unique samples. In SSL, removing these points seems to prevent overfitting to specific features,
leading to better generalization. However, in supervised learning, these dispersed high-influence
examples are likely crucial for capturing the variation needed to associate inputs with labels correctly.
The spatial distribution of low- and high-influence examples in the embedding space thus highlights
their distinct roles in model training and performance across different learning paradigms.

3.2 Visualization of influential examples

Figure 3 compares low and high-influence images in CIFAR-100 and CIFAR-10. High-influence
examples are more diverse and complex, while low-influence examples are often similar, reflecting
their tighter clusters in the t-SNE projections in Figure 1. Remarkably, removing high-influence
examples enhances downstream classification performance, indicating that diverse examples may
cause overfitting in self-supervised learning, while homogeneous low-influence examples support
the learning of generalizable features. This highlights the effectiveness of our influence estimation
method in optimizing training data selection for SSL, challenging traditional views on the role of
diversity in representation learning.

4 Discussion and Conclusion

Our work extends influence functions to SSL, offering valuable insights into the dynamics of
representation learning. Notably, we uncover a phenomenon where high-influence data points in
SSL can contribute to detrimental memorization, demanding further exploration. Additionally, the
divergence in trends between SSL and supervised learning calls for deeper investigation. We also
examine sparsity patterns in influential examples, highlighting their connection to memorization.
While our study is limited to smaller datasets and architectures, we believe future research can scale
this approach to larger datasets and more complex models.
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(a) CIFAR-100 (b) CIFAR-10

Figure 3: Images with the lowest (top) and highest (bottom) influence values for the “bee” (CIFAR-
100) and “automobile” (CIFAR-10) classes. Harder examples (e.g., bees with flowers) appear in the
bottom row, while duplicated cars appear in the top row.
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Supplementary material

This document presents the materials that were excluded or summarized due to space limitations in
the main text. It is organized as follows:

Appendix A provides additional information related to the method, especially covering more details
on K-FAC approximation for computing the inverse Hessian H−1 additional results.

Appendix B covers the experimental configurations, the impact of different settings, and the distribu-
tion of influence scores in SSL.

A Computational Challenges with Influence Estimation

One of the main computational bottlenecks with estimating influence function is the estimation
of Inverse Hessian Vector Product (IHVP). While most of the existing work uses iterative approx-
imations [1], we instead use Eigenvalue-corrected Kronecker-Factored Approximate Curvature
(EK-FAC) [12] to approximate the IHVP. The following section describes EK-FAC in more detail.

A.1 EK-FAC Approximation for Estimating IHVP

Computing the exact inverse Hessian H−1 for large neural networks is intractable, requiring O(d2)
memory and O(d3) time for d parameters. The Kronecker-Factored Approximate Curvature (K-FAC)
method [22] addresses this by approximating the Fisher information matrix F as:

F ≈ diag(F1, F2, ..., FL), Fl ≈ Al ⊗Gl (4)

where L is the number of layers, Al is the second moment of activations, and Gl is the second
moment of gradients for layer l, ⊗ is the Kronecker product. This allows efficient inversion:

F−1
l ≈ A−1

l ⊗G−1
l (5)

For a layer with dimensions m and n, this reduces inversion cost from O((mn)3) to O(m3 + n3).
EK-FAC approximates the inverse-Hessian-vector product as:

H−1v ≈ (F + λI)−1v (6)

where λ is a damping term.

EK-FAC [12] further improves this approximation by learning individual eigenvalues for the full
Kronecker product, rather than just using the eigenvalues of the factors. It decomposes each Fl as:

Fl ≈ (UA ⊗ UG)diag(λ)(UA ⊗ UG)
T (7)

where UA and UG are eigenvectors of Al and Gl respectively, and λ are learned eigenvalues. This
allows for a more accurate approximation while maintaining computational efficiency.

The inverse-Hessian-vector product is then approximated as:

H−1v ≈ (UA ⊗ UG)(Λ + λI)−1(UA ⊗ UG)
T v (8)

where Λ is the diagonal matrix of learned eigenvalues.

EK-FAC provides a better trade-off between approximation accuracy and computational efficiency
compared to K-FAC, enabling more accurate influence function computations for large neural
networks. It’s worth noting that while EK-FAC provides improved accuracy over K-FAC, it introduces
additional memory overhead for storing the eigendecompositions. This trade-off between accuracy
and memory usage should be considered when applying EK-FAC to very large models.

B Experiments

B.1 Configurations

We utilized the solo-learn library [9] for our training and adhered to the default augmentation settings
for each joint embedding SSL algorithm. The SimCLR model was trained for 1000 epochs, with
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Figure 4: The x-axis shows the number of points removed from the training dataset, and y-axis shows
the top-1 accuracy on CIFAR-100. The left plot compares different methods for calculating influence
functions, while the right plot shows the effect of different data augmentation settings. Both plots
demonstrate that removing low-influence points results in a sharper drop in accuracy compared to
randomly removing points.
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Figure 5: Distribution of influence scores across training epochs for SimCLR on CIFAR-10. The
x-axis represents the influence score, and the y-axis represents the frequency of examples. The
leftward shift indicates a decrease in the number of high-influence examples.

checkpoints saved at epochs 100, 400, and 800. We used the exact hyperparameters from solo-learn
for training SimCLR and VICReg, including the LARS optimizer and learning rates of 0.4 for
SimCLR and 0.3 for VICReg. Influence scores were calculated using the kronfluence library [15].
We use ResNet-18 [18] as the backbone for all models.

B.2 The effect of different settings

Figure 4 illustrates the effect of removing images based on influence scores and its impact on model
performance. The left subplot (Figure 4a) compares different methods for calculating influence
functions, showing how removing the lowest-influence images leads to a significant drop in accuracy.
We select the loss function and measurement methods, including Mean Squared Error, the SimCLR
loss, and cosine distance, and compare them against a random baseline. The right subplot (Figure
4b) highlights the role of data augmentations, demonstrating that different augmentation strategies
consistently exhibit similar trends: removing low-influence examples causes a more severe decline
in top-1 accuracy than removing randomly selected images. One-view augmentation means that
one input remains unchanged, while in two-view augmentation, both inputs are augmented. These
results suggest that low-influence images, despite their subtle contribution to individual predictions,
collectively play a critical role in maintaining overall model accuracy, particularly in SSL settings.

B.3 Influence distribution across SSL

We visualize the distribution of influence estimates over training epochs in Figure 5a and across
different SSL frameworks in Figure 5b. Consistent with existing studies [11, 24], we observe that our
influence estimates follow long-tailed distribution. We compare the distribution of examples with
the both the highes and the lowest influence scores for SimCLR across epochs 100, 400, and 800 in
Figure 5a. We observe a noticeable leftward shift as training progresses. This suggests that as the
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Figure 6: t-SNE projection of CIFAR-10 training images calculated with supervised loss, with clusters
created through supervised training. The left plot shows all examples, while the middle and right
plots display the lowest 4,000 and top 4,000 examples by influence score, respectively. Low-influence
images form tightly clustered groups, whereas high-influence images are more dispersed."
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Figure 7: Accuracy on CIFAR-10 (y-axis) vs. number of removed samples (x-axis). Data points
were removed using pre-trained SimCLR. Models were retrained for 100 epochs. The trend is also
reversed in the supervised setting compared to SSL.

model trains for more epochs, the examples with high influence become less impactful. Over time,
the most influential examples early in training may no longer be as critical, possibly due to the model
aligning the features across different views of the data better. When comparing influence distributions
across SSL frameworks, we observe SimCLR to have more low influential examples compared to
VICReg and DINO, with DINO having the most high-influential examples.

B.4 Marginal utility of influence estimates on CIFAR-10

We repeat the experiment in 3.1 on CIFAR-10. The results in Figure 7 show that the trend differs
between supervised and self-supervised methods, similar to our observations with CIFAR-100. In
this experiment, we include only SimCLR.
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