
Influence Estimation in Self-Supervised Learning

Reza Akbarian Bafghi1∗
reza.akbarianbafghi@colorado.edu

Nidhin Harilal1∗
nidhin.harilal@colorado.edu

Amit Kiran Rege1∗
amit.kiranrege@colorado.edu

Maziar Raissi3
maziar.raissi@ucr.edu

Claire Monteleoni1,2
cmontel@colorado.edu

1University of Colorado Boulder, 2INRIA Paris, 3University of California, Riverside

Abstract

Self-supervised learning (SSL) has emerged as a key method for training powerful
encoders on large-scale unlabeled data. However, recent research indicates that
SSL encoders may over-rely on or even memorize many data points from their
training set. While supervised learning benefits from tools like influence functions
to identify such memorable data points, these methods do not effectively apply to
SSL due to their reliance on labels. In this work, we introduce a new label-free
definition of influence functions for SSL. Our implementation utilizes Eigenvalue-
corrected Kronecker-Factored Approximate Curvature (EK-FAC) to efficiently
estimate influence functions without requiring any retraining, making it applicable
to any pre-trained SSL model to assess the effect of training examples on its
model behavior. Our results suggest that the proposed method is informative about
memorization that can be detrimental to SSL pre-training2.

1 Introduction

Self-supervised learning (SSL) is a promising approach to extracting meaningful representations on
vast amounts of unlabeled data by solving a surrogate objective, also known as a pretext task. In
many recent SSL methods [8, 17, 13, 7, 5], such pretext tasks rely on joint-embedding architectures
where multiple network branches aim to learn representations by maximizing agreement between
differently augmented views of the same data example in the embedding space. However, recent
research shows that SSL encoders may over-rely, or in the worst case, memorize aspects of their
training data [23, 24]. This behavior not only raises privacy concerns, particularly when models are
trained on datasets containing personal information, but it also demands defining a notion of the
influence of data points on model behavior, indicating memorization.

In supervised learning, the concept of Influence functions [20] has proven valuable in assessing the
impact of individual training examples on a model’s behavior. These functions quantify how a model’s
predictions would change if a specific example were removed from the training data [11, 4, 14, 28].
Another work [11] discusses the link between memorization and the influence functions (See Sec 2.1).
Extending this notion of influence to the SSL setting is crucial, as it could provide insights into the
learning dynamics of pretrained encoders. However, this extension to SSL remains unexplored due to

∗Equal contribution
2The implementation is available at https://github.com/cryptonymous9/Influence-SSL

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/cryptonymous9/Influence-SSL

its unique challenges, as existing definitions of influence functions often rely on labels [20] and, in
some cases [11, 16], require supervised retraining of the model multiple times.

In this paper, we address these challenges by proposing a new definition of influence function in a
label-free setting for SSL. We apply our method to popular SSL methods like SimCLR [8], VicReg [5]
and DINO [7], to demonstrate our method’s effectiveness in quantifying influence. Interestingly,
when we retrain the network after removing the highest-influence examples identified by our method,
we observe improved SSL pretraining. This suggests that our proposed definition effectively identifies
instances of memorization that may be detrimental to SSL pre-training, thus offering a valuable tool
for enhancing the performance and understanding of SSL models.
Related Work: The fundamental idea of quantifying influence based on the impact of individual
training data points on model predictions has been extensively studied in supervised learning [2, 26, 6].
Feldman et al. [11] discusses link between this influence and data memorization. However, this
exploration has been limited in self-supervised learning (SSL). Only two works, Deja Vu [23] and
SSLMem [24], have addressed memorization in SSL, but both have limitations. Deja Vu assumes
access to labeled data from the encoder’s training distribution, and both methods require training
multiple encoders on subsets of training data. Our work differs significantly by not requiring training
of multiple networks, making it more efficient. We propose extending the widely accepted influence
function definition of memorization to SSL, marking the first attempt to do so in this context.

2 Influence in a Label-Free Setting
2.1 Preliminaries and Problem Setup

In supervised learning, we consider a training dataset D = {(xi, yi)}ni=1 and a model fθ parameter-
ized by θ, trained to minimize a loss function L(fθ(x), y). Feldman et al. [11] defines the concept of
label memorization in terms of influence - which measures how much a model’s prediction changes
when a particular example is removed from the training set:

I(xi, yi) = Ez∼D\{(xi,yi)}[fθ(D)(xi)− fθ(D\{(xi,yi)}∪{(xi,z)})(xi)] (1)

Here, θ(D) represents the model parameters learned from dataset D, and z is a random label
drawn from the marginal label distribution of D. In practice, directly computing this would involve
retraining multiple networks on various data subsets, which is computationally expensive. For
instance, Feldman [11] retrained 2,500 ResNet models to achieve this. However, on the bright side,
we can use influence functions as an approximation to simplify the computation.

Influence function: Influence functions, introduced by Cook and Weisberg [3] and popularized
in machine learning by Koh and Liang [20], provide a way to estimate the effect of individual
training points on a model’s predictions without actually retraining different networks. For a model
minimizing empirical risk R(θ,D) = 1

n

∑n
i=1 L(fθ(xi), yi), the influence of removing a training

point (xz, yz) on the loss at a test point (xt, yt) is defined as:

Ĩ(fθ, t, z) = −∇θL(fθ(xt), yt)
⊤H−1

θ ∇θL(fθ(xz), yz) (2)

where Hθ = 1
n

∑n
i=1 ∇2

θL(fθ(xi), yi) is the Hessian of the empirical risk (See Koh and Liang [20]
for a proof). Feldman [11] describes memorization corresponds to the influence of example i on the
accuracy on itself (or self-influence), i.e mem(fθ, i) = Ĩ(fθ, i, i).

2.2 Formalizing influence for SSL

We aim to generalize equation 2, which depends on the label y, to a fully label-free framework.
Naturally, this requires modifying the function L, but the challenge is determining the appropriate
modification. We propose to adapt influence functions to SSL based on the invariance-distinctiveness
trade-off inherent in SSL objectives. Our approach quantifies a training point’s influence by measuring
how its removal affects the model’s ability to match augmented views. This provides a principled
method for understanding individual training examples’ roles in SSL, bridging the gap between
influence functions and self-supervised learning paradigms.

2

50 0 50
t-SNE Component 1

100

50

0

50

100

t-S
NE

 C
om

po
ne

nt
 2

All Examples

50 0 50
t-SNE Component 1

100

50

0

50

100

t-S
NE

 C
om

po
ne

nt
 2

Lowest 4k Examples

50 0 50
t-SNE Component 1

100

50

0

50

100

t-S
NE

 C
om

po
ne

nt
 2

Top 4k Examples

Figure 1: t-SNE projection of CIFAR-10 training images. The left plot shows all examples, while
the middle and right plots display the lowest 4,000 and top 4,000 examples by influence score,
respectively. Low-influence images are tightly clustered, while high-influence ones are more spread
out. This clustering explains why removing low-influence images affects accuracy more in SSL.

4000 8000 16000
No. of points removed

40

42

44

46

To
p-

1

SimCLR

4000 8000 16000
No. of points removed

70

72

74

Supervised

Lowest-k influence
Random
Top-k influence

Figure 2: Accuracy on CIFAR-100 (y-axis) vs. number of removed samples (x-axis). Data points
were removed using influence from pre-trained SimCLR, and supervised ResNet-18. The trend in
performance is observed to be reversed in the supervised setting compared to SSL.

To this end, we introduce a new definition for the influence score I using a pre-trained self-supervised
learning (SSL) model fθ, applied to an unlabelled image xi, as follows:

I(f, i) = −∇θL(fθ(xi), fθ(x̂i))
⊤H−1

θ ∇θL(fθ(xi), fθ(x̂i)) (3)

where L is defined as the cosine distance between an image xi and its augmented counterpart x̂i, i.e.,
L(ti, tj) = 1− ti·tj

||ti||||tj || and we use EK-FAC (See Appendix A) to efficiently compute H−1
θ .

One might question how the choice of L as the cosine distance is justified, given that different SSL
methods optimize empirical risk using varying loss functions L̃. We argue that cosine distance is
a valid and consistent measure of influence across most SSL methods. While distillation-based
approaches like DINO [7] and BYOL [13] explicitly maximize cosine similarity, recent theoretical
studies [19, 25] show that contrastive methods implicitly maximize cosine similarity. Moreover,
recent work [27] demonstrates that Masked AutoEncoders (MAE) also implicitly align mask-induced
positive pairs in a similar manner.

3 Experiments

We leverage various SSL frameworks, including the contrastive-based SimCLR [8], distillation-based
DINO [7], and regularization-based VICReg [5], to ensure a broad evaluation of our method. While
our ultimate goal is to scale the method to ImageNet-1k [10], due to its large size, we begin by
demonstrating the effectiveness of our influence estimation on smaller, more manageable datasets like
CIFAR-10 [21] and CIFAR-100 [21]. For additional implementation details, please see Appendix B.1.

In the subsequent sections, we describe the results of the experiments based on the proposed new
definition of influence function adapted for SSL as described in section 2.2.

3.1 Marginal utility with low vs. high-influence examples

Given a pretrained SSL model, we first calculate the influence scores. In order to evaluate the marginal
utility of influential examples, we removed the images with both the highest and lowest influence
scores, then trained the model on the remaining dataset.

3

Is there a case of detrimental memorization in SSL? We explored the impact of removing
high-influence data points in both self-supervised learning (SSL) and supervised learning using
CIFAR-100. In the case of SimCLR, removing the top 16,000 most influential points led to a 2.3%
improvement in linear evaluation accuracy compared to random removal, as shown in Figure 2,
indicating the presence of detrimental memorization in SSL. A similar pattern was observed in
VICReg, where performance improved by approximately 4% on the test set. These findings suggest
that in SimCLR, the high-influence points have been leading to a form of detrimental memorization -
perhaps the model was relying too heavily on specific image features that were easy to match across
augmentations, rather than learning more generalizable representations.

An interesting contrast emerges when we use the highest influence scores obtained from SimCLR
to remove examples in supervised training. Unlike in the self-supervised setting, where removing
high-influence examples improves performance, removing these influential points in a supervised
setting results in a performance drop compared to removing random examples (Figure 2). This
divergence likely stems from the differing objectives between supervised and self-supervised learning.
In self-supervised learning, learn representations that are invariant to augmentations but distinct
between different images, and we hypothesize that removing highly influential examples may prevent
the model from focusing too heavily on the overrepresented instances, leading to better generalization.
However, in supervised learning, these high-influence examples may correspond to critical points that
guide the model in learning discriminative features tied to the labels. Consequently, their removal
disrupts the model’s ability to accurately map inputs to labels, causing a decline in performance.
This indicates that in supervised learning, influential examples are more essential for the task-
specific learning process, whereas in self-supervised learning, their removal can help balance the
representation learning. We also tested this on CIFAR-10, as detailed in Appendix B.4.

Embedding sparsity in low vs. high-influence examples: Figure 1 presents t-SNE visualizations
of the model’s embeddings, revealing distinct patterns for low- and high-influence examples. The
4,000 lowest-influence images cluster tightly, suggesting they occupy a homogeneous region in the
feature space. In contrast, the 4,000 highest-influence images are more dispersed. This clustering
difference offers insights into the model’s utilization of these examples. Low-influence images likely
contribute to well-represented, consistent regions in the feature space, supporting generalization with-
out introducing significant variability. Their removal may affect model performance by eliminating
a stable portion of the data. High-influence examples, being more diverse, may represent harder
or unique samples. In SSL, removing these points seems to prevent overfitting to specific features,
leading to better generalization. However, in supervised learning, these dispersed high-influence
examples are likely crucial for capturing the variation needed to associate inputs with labels correctly.
The spatial distribution of low- and high-influence examples in the embedding space thus highlights
their distinct roles in model training and performance across different learning paradigms.

3.2 Visualization of influential examples

Figure 3 compares low and high-influence images in CIFAR-100 and CIFAR-10. High-influence
examples are more diverse and complex, while low-influence examples are often similar, reflecting
their tighter clusters in the t-SNE projections in Figure 1. Remarkably, removing high-influence
examples enhances downstream classification performance, indicating that diverse examples may
cause overfitting in self-supervised learning, while homogeneous low-influence examples support
the learning of generalizable features. This highlights the effectiveness of our influence estimation
method in optimizing training data selection for SSL, challenging traditional views on the role of
diversity in representation learning.

4 Discussion and Conclusion

Our work extends influence functions to SSL, offering valuable insights into the dynamics of
representation learning. Notably, we uncover a phenomenon where high-influence data points in
SSL can contribute to detrimental memorization, demanding further exploration. Additionally, the
divergence in trends between SSL and supervised learning calls for deeper investigation. We also
examine sparsity patterns in influential examples, highlighting their connection to memorization.
While our study is limited to smaller datasets and architectures, we believe future research can scale
this approach to larger datasets and more complex models.

4

Low Influence

High Influence

(a) CIFAR-100 (b) CIFAR-10

Figure 3: Images with the lowest (top) and highest (bottom) influence values for the “bee” (CIFAR-
100) and “automobile” (CIFAR-10) classes. Harder examples (e.g., bees with flowers) appear in the
bottom row, while duplicated cars appear in the top row.

References
[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for

machine learning in linear time. Journal of Machine Learning Research, 18(116):1–40, 2017.

[2] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A
closer look at memorization in deep networks. In International conference on machine learning,
pages 233–242. PMLR, 2017.

[3] A. C. Atkinson, R. D. Cook, and Sanford Weisberg. Residuals and influence in regression.
Biometrics, 39(3):818–, 1983.

[4] Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger B Grosse. If influence
functions are the answer, then what is the question? Advances in Neural Information Processing
Systems, 35:17953–17967, 2022.

[5] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regular-
ization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[6] Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer:
Evaluating and testing unintended memorization in neural networks. In 28th USENIX security
symposium (USENIX security 19), pages 267–284, 2019.

[7] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PMLR, 2020.

[9] Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-
learn: A library of self-supervised methods for visual representation learning. Journal of
Machine Learning Research, 23(56):1–6, 2022.

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[11] Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages
954–959, 2020.

[12] Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast
approximate natural gradient descent in a kronecker factored eigenbasis. Advances in Neural
Information Processing Systems, 31, 2018.

[13] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

5

[14] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. Studying large language model
generalization with influence functions. arXiv preprint arXiv:2308.03296, 2023.

[15] Roger Baker Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini,
Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamil.e Lukovsiut.e,
Karina Nguyen, Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Sam Bowman. Studying
large language model generalization with influence functions. ArXiv, abs/2308.03296, 2023.

[16] Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon, Ian Tenney, and Tolga Bolukbasi.
Simfluence: Modeling the influence of individual training examples by simulating training runs.
arXiv preprint arXiv:2303.08114, 2023.

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[18] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2015.

[19] Weiran Huang, Mingyang Yi, Xuyang Zhao, and Zihao Jiang. Towards the generalization of
contrastive self-supervised learning. arXiv preprint arXiv:2111.00743, 2021.

[20] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
In International conference on machine learning, pages 1885–1894. PMLR, 2017.

[21] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[22] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In Proceedings of the 32nd International Conference on International
Conference on Machine Learning - Volume 37, ICML’15, page 2408–2417. JMLR.org, 2015.

[23] Casey Meehan, Florian Bordes, Pascal Vincent, Kamalika Chaudhuri, and Chuan Guo. Do ssl
models have déjà vu? a case of unintended memorization in self-supervised learning. Advances
in Neural Information Processing Systems, 36, 2024.

[24] Wenhao Wang, Muhammad Ahmad Kaleem, Adam Dziedzic, Michael Backes, Nicolas Papernot,
and Franziska Boenisch. Memorization in self-supervised learning improves downstream
generalization. arXiv preprint arXiv:2401.12233, 2024.

[25] Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A
new theoretical understanding of contrastive learning via augmentation overlap. arXiv preprint
arXiv:2203.13457, 2022.

[26] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[27] Qi Zhang, Yifei Wang, and Yisen Wang. How mask matters: Towards theoretical understandings
of masked autoencoders. Advances in Neural Information Processing Systems, 35:27127–27139,
2022.

[28] Rui Zhang and Shihua Zhang. Rethinking influence functions of neural networks in the
over-parameterized regime. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 9082–9090, 2022.

6

Supplementary material

This document presents the materials that were excluded or summarized due to space limitations in
the main text. It is organized as follows:

Appendix A provides additional information related to the method, especially covering more details
on K-FAC approximation for computing the inverse Hessian H−1 additional results.

Appendix B covers the experimental configurations, the impact of different settings, and the distribu-
tion of influence scores in SSL.

A Computational Challenges with Influence Estimation

One of the main computational bottlenecks with estimating influence function is the estimation
of Inverse Hessian Vector Product (IHVP). While most of the existing work uses iterative approx-
imations [1], we instead use Eigenvalue-corrected Kronecker-Factored Approximate Curvature
(EK-FAC) [12] to approximate the IHVP. The following section describes EK-FAC in more detail.

A.1 EK-FAC Approximation for Estimating IHVP

Computing the exact inverse Hessian H−1 for large neural networks is intractable, requiring O(d2)
memory and O(d3) time for d parameters. The Kronecker-Factored Approximate Curvature (K-FAC)
method [22] addresses this by approximating the Fisher information matrix F as:

F ≈ diag(F1, F2, ..., FL), Fl ≈ Al ⊗Gl (4)

where L is the number of layers, Al is the second moment of activations, and Gl is the second
moment of gradients for layer l, ⊗ is the Kronecker product. This allows efficient inversion:

F−1
l ≈ A−1

l ⊗G−1
l (5)

For a layer with dimensions m and n, this reduces inversion cost from O((mn)3) to O(m3 + n3).
EK-FAC approximates the inverse-Hessian-vector product as:

H−1v ≈ (F + λI)−1v (6)

where λ is a damping term.

EK-FAC [12] further improves this approximation by learning individual eigenvalues for the full
Kronecker product, rather than just using the eigenvalues of the factors. It decomposes each Fl as:

Fl ≈ (UA ⊗ UG)diag(λ)(UA ⊗ UG)
T (7)

where UA and UG are eigenvectors of Al and Gl respectively, and λ are learned eigenvalues. This
allows for a more accurate approximation while maintaining computational efficiency.

The inverse-Hessian-vector product is then approximated as:

H−1v ≈ (UA ⊗ UG)(Λ + λI)−1(UA ⊗ UG)
T v (8)

where Λ is the diagonal matrix of learned eigenvalues.

EK-FAC provides a better trade-off between approximation accuracy and computational efficiency
compared to K-FAC, enabling more accurate influence function computations for large neural
networks. It’s worth noting that while EK-FAC provides improved accuracy over K-FAC, it introduces
additional memory overhead for storing the eigendecompositions. This trade-off between accuracy
and memory usage should be considered when applying EK-FAC to very large models.

B Experiments

B.1 Configurations

We utilized the solo-learn library [9] for our training and adhered to the default augmentation settings
for each joint embedding SSL algorithm. The SimCLR model was trained for 1000 epochs, with

7

4000 8000 16000
No. of points removed

39

40

41

42

43

44

45

46

To
p-

1

MSE - Lowest Influence
MSE - Top-k Influence
SimCLR - Lowest Influence
SimCLR - Top-k Influence
Cosine - Lowest Influence
Cosine - Top-k Influence
Random

(a) Different Methods

4000 8000 16000
No. of points removed

39

40

41

42

43

44

45

46

To
p-

1

One View - Lowest-k Influence
One View - Top-k Influence
Two Views - Lowest-k Influence
Two Views - Top-k Influence
Random

(b) Different Augmentations

Figure 4: The x-axis shows the number of points removed from the training dataset, and y-axis shows
the top-1 accuracy on CIFAR-100. The left plot compares different methods for calculating influence
functions, while the right plot shows the effect of different data augmentation settings. Both plots
demonstrate that removing low-influence points results in a sharper drop in accuracy compared to
randomly removing points.

0.00 0.01 0.02 0.03 0.04
Influence Score

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Lowest 16k Examples

0.0 0.2 0.4 0.6
Influence Score

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

Top 16k Examples

Epoch=100 Epoch=400 Epoch=800

(a) Different Epochs

0.00 0.02 0.04 0.06 0.08
Influence Score

0

200

400

600

800

Fr
eq

ue
nc

y

Lowest 16k Examples

0.2 0.4 0.6
Influence Score

0

1000

2000

3000

Fr
eq

ue
nc

y

Top 16k Examples

SimCLR VICReg DINO

(b) Different Models

Figure 5: Distribution of influence scores across training epochs for SimCLR on CIFAR-10. The
x-axis represents the influence score, and the y-axis represents the frequency of examples. The
leftward shift indicates a decrease in the number of high-influence examples.

checkpoints saved at epochs 100, 400, and 800. We used the exact hyperparameters from solo-learn
for training SimCLR and VICReg, including the LARS optimizer and learning rates of 0.4 for
SimCLR and 0.3 for VICReg. Influence scores were calculated using the kronfluence library [15].
We use ResNet-18 [18] as the backbone for all models.

B.2 The effect of different settings

Figure 4 illustrates the effect of removing images based on influence scores and its impact on model
performance. The left subplot (Figure 4a) compares different methods for calculating influence
functions, showing how removing the lowest-influence images leads to a significant drop in accuracy.
We select the loss function and measurement methods, including Mean Squared Error, the SimCLR
loss, and cosine distance, and compare them against a random baseline. The right subplot (Figure
4b) highlights the role of data augmentations, demonstrating that different augmentation strategies
consistently exhibit similar trends: removing low-influence examples causes a more severe decline
in top-1 accuracy than removing randomly selected images. One-view augmentation means that
one input remains unchanged, while in two-view augmentation, both inputs are augmented. These
results suggest that low-influence images, despite their subtle contribution to individual predictions,
collectively play a critical role in maintaining overall model accuracy, particularly in SSL settings.

B.3 Influence distribution across SSL

We visualize the distribution of influence estimates over training epochs in Figure 5a and across
different SSL frameworks in Figure 5b. Consistent with existing studies [11, 24], we observe that our
influence estimates follow long-tailed distribution. We compare the distribution of examples with
the both the highes and the lowest influence scores for SimCLR across epochs 100, 400, and 800 in
Figure 5a. We observe a noticeable leftward shift as training progresses. This suggests that as the

8

Figure 6: t-SNE projection of CIFAR-10 training images calculated with supervised loss, with clusters
created through supervised training. The left plot shows all examples, while the middle and right
plots display the lowest 4,000 and top 4,000 examples by influence score, respectively. Low-influence
images form tightly clustered groups, whereas high-influence images are more dispersed."

4000 8000 16000
No. of points removed

92.5

93.0

93.5

94.0

94.5

To
p-

1

Supervised

4000 8000 16000
No. of points removed

72

74

76

78

SimCLR

Lowest-k Influence
Top-k Influence
Random

Figure 7: Accuracy on CIFAR-10 (y-axis) vs. number of removed samples (x-axis). Data points
were removed using pre-trained SimCLR. Models were retrained for 100 epochs. The trend is also
reversed in the supervised setting compared to SSL.

model trains for more epochs, the examples with high influence become less impactful. Over time,
the most influential examples early in training may no longer be as critical, possibly due to the model
aligning the features across different views of the data better. When comparing influence distributions
across SSL frameworks, we observe SimCLR to have more low influential examples compared to
VICReg and DINO, with DINO having the most high-influential examples.

B.4 Marginal utility of influence estimates on CIFAR-10

We repeat the experiment in 3.1 on CIFAR-10. The results in Figure 7 show that the trend differs
between supervised and self-supervised methods, similar to our observations with CIFAR-100. In
this experiment, we include only SimCLR.

9

	Introduction
	Influence in a Label-Free Setting
	Preliminaries and Problem Setup
	Formalizing influence for SSL

	Experiments
	Marginal utility with low vs. high-influence examples
	Visualization of influential examples

	Discussion and Conclusion
	Computational Challenges with Influence Estimation
	EK-FAC Approximation for Estimating IHVP

	Experiments
	Configurations
	The effect of different settings
	Influence distribution across SSL
	Marginal utility of influence estimates on CIFAR-10

