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Abstract

We introduce InfinityStar, a unified spacetime autoregressive framework for high-
resolution image and dynamic video synthesis. Building on the recent success of
autoregressive modeling in both vision and language, our purely discrete approach
jointly captures spatial and temporal dependencies within a single architecture.
This unified design naturally supports a variety of generation tasks such as text-
to-image, text-to-video, image-to-video, and long-duration video synthesis via
straightforward temporal autoregression. Through extensive experiments, Infini-
tyStar scores 83.74 on VBench, outperforming all autoregressive models by large
margins, even surpassing diffusion competitors like HunyuanVideo. Without extra
optimizations, our model generates a 5s, 720p video approximately 10X faster than
leading diffusion-based methods. To our knowledge, InfinityStar is the first discrete
autoregressive video generator capable of producing industrial-level 720p videos.
We release all code and models to foster further research in efficient, high-quality
video generation.

1 Introduction

Visual synthesis has witnessed remarkable progress in recent years, largely propelled by the scaling
of Transformer architectures. In particular, video generation has attracted growing interest from both
academia and industry, owing to its wide-ranging applications in content creation, world simulation,
etc. At present, diffusion models[3, 18, 17, 28, 8, 39] lead the field by iteratively denoising latent
representations to produce high-fidelity clips. Concurrently, autoregressive models[16, 30, 9] have
been explored for their potential to unify image and video generation and to generalize over longer
time horizons.

Despite their successes, each paradigm exhibits critical shortcomings. Video diffusion models excel
at synthesizing fixed-length frame sequences by exploiting bidirectional attention, yet they incur
substantial computational cost due to tens or even hundreds of sequential denoising steps, and they
struggle to extend seamlessly to video extrapolation. Autoregressive methods based on next-token
prediction, while inherently capable of streaming generation, often fall short in visual fidelity and
suffer from prohibitive latency due to tens of thousands of inference steps.

These observations motivate the need for a generation framework that simultaneously possess high
visual quality, efficiency and temporal generalization. Recently, Visual AutoRegressive modeling
(VAR)[25] redefined image generation as a coarse-to-fine next-scale prediction. Its follow-up work,
Infinity [13] further introduces bitwise modeling and scales up the vocabulary size, achieving
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comparable performance to diffusion models while offering significant advantages in inference speed.
Inspired by the success of VAR [25] and Infinity [13], we present InfinityStar, a Spacetime Pyramid
Modeling for unified text-to-image, text-to-video, zero-shot image-to-video, and zero-shot video
extrapolation. This framework models a video as an image pyramid and multiple clip pyramids,
not only naturally inheriting the text-to-image capabilities but also decoupling static appearance
from dynamic motions in videos. Furthermore, we introduce several key improvements. First, we
improve discrete reconstruction quality by leveraging knowledge inheritance from a continuous video
tokenizer. Second, we introduce Stochastic Quantizer Depth during training of the tokenizer to
alleviate the imbalanced information distribution across scales. Third, we propose Semantic Scales
Repetition, which refines the predictions of earlier semantic scales in a video, significantly enhancing
fine-grained details and complex motions of the generated videos.

We train InfinityStar on large-scale video corpora to support up to 720p resolution and variable
durations. On the VBench benchmark[38], InfinityStar establishes a new state-of-the-art among
autoregressive video models, even surpassing industry-leading HunyuanVideo[17] (83.74 v.s 83.24).
Besides, InfinityStar shows a great advantage in terms of speed. Using visual tokenizers of the
same compression rate, InfinityStar achieves a 10 x reduction in inference latency relative to leading
diffusion models.

In summary, the main contributions of our work are as follows:

1. We propose InfinityStar, a novel spacetime pyramid modeling framework that unifies diverse
visual generation tasks, demonstrating superior flexibility and versatility.

2. InfinityStar is the first discrete autoregressive model capable of generating high-quality
videos, outperforming existing autoregressive text-to-video models and matching the perfor-
mance of leading diffusion models.

3. Compared to the inefficiency of existing autoregressive models and diffusion models, Infini-
tyStar significantly accelerates high-quality video generation.

2 Related Work

2.1 Video Diffusion Models

Diffusion models excel at generating high-fidelity data by gradually denoising random noise and
can naturally extend to video generation. Early attempts [2, 5, 36] are built on U-Net architectures,
demonstrating the feasibility of this approach but falling short in producing sharp, temporally coherent
frames due to limited model capacity. The advent of Diffusion Transformers (DiT [21]) marked a
turning point. SORA [3] harnessed DiT’s scaling ability to process spatio-temporal patches at scale,
dramatically improving both video consistency and generation quality. Inspired by SORA’s success,
industry efforts [34, 17, 28] have further advanced the field, pushing video generation to new heights.
Although video diffusion models deliver outstanding quality, their slow generation speed hinders the
production of high-resolution, long-duration videos.

2.2 Video AutoRegressive Models

Another class of methods [30, 9, 16] employs autoregressive models for video generation. Inspired
by the success of LLMs, these works predict video tokens in specific orders using an autoregressive
Transformer. For example, Emu3 [30] performs next-token prediction along both spatial and temporal
axes, while NOVA [9] first predicts spatial tokens set-by-set and subsequently proceeds frame-by-
frame in the temporal dimension. Although achieving preliminary progress, they require hundreds to
thousands of inference steps, resulting in prohibitively low generation efficiency. In contrast, recent
advances in next-scale prediction [25, 13] have demonstrated state-of-the-art performance in image
synthesis, offering both improved quality and markedly faster inference. In this work, we extend the
next-scale prediction paradigm to the unified tasks of image and video generation.

2.3 Discrete Video Tokenizers

For a long time, discrete [33, 35] and continuous [17, 34, 28] video tokenizers have been developed
independently. Although some works [1, 29] provide both discrete and continuous tokenizers, the
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Figure 1: Spacetime pyramid modeling of InfinityStar. Built with an unified autoregressive
pipeline, InfinityStar is capable of performing text-to-image, text-to-video, image-to-video, video
extrapolation tasks all in one model.

network configurations are usually not aligned. For example, Cosmos [1] chooses 6 and 16 as
latent dimensions in its discrete and continuous variants respectively. This misalignment hinders
the knowledge reuse between two types of tokenizers. As a result, most mainstream discrete
video tokenizers are either trained from scratch [1] or starting from a pretrained discrete image
tokenizer [35, 29]. However, these training strategies have the following drawbacks. First, training
from scratch is inefficient and converges slowly. Second, weights pretrained on static images are not
optimal for video reconstruction. To alleviate these deficiencies, we propose a new training strategy,
which inherits the architecture and knowledge of a trained continuous video tokenizer. Experiments
show that this strategy significantly boosts the convergence of discrete video tokenizers.

3 InfinityStar Architecture

3.1 Preliminaries

Infinity for Image Generation. Infinity [13] decomposes an image into a sequence of hierarchical
token blocks using a visual tokenizer and models the relationship between tokens by a visual
autoregressive Transformer (VAR Transformer). To cover images of various sizes, Infinity pre-defines
a list of token block sizes {(h1,w1), ...(hk,wk)}, called scale schedule. The size (h;,w;) in scale
schedule grows as ¢ increases, forming a pyramid-like structure, which we refer as image pyramid
in later discussion. Next we introduce the training and inference procedure of Infinity.

In the first training stage, a visual tokenizer learns to reconstruct the raw image and compress it
into a sequence of discrete tokens, which can be modeled by the VAR Transformer in the next
stage. Specifically, the tokenizer first encodes the raw images into compact latents, then transforms
latents into K discrete residual token blocks (71,9, ..., 7k ) using a bitwise multi-scale residual
quantizer [13]. Each token block r; consists of h; x w; discrete tokens of d-dim with vocabulary
size of 2¢. Then in the second stage, a VAR Transformer is trained to predict next residual token
block 7, conditioned on text embedding v (¢) and former tokens blocks . Formally, in each step,
VAR Transformer predicts a conditional probability p(rx|r<, t(¢)). During the inference, Infinity
generates an image by running the VAR Transformer K times autoregressively, merging the predicted
tokens and running the tokenizer decoder once.



3.2 Spacetime Pyramid Modeling for Unified Generation

Extending the spatial-only next-scale prediction paradigm of Infinity [13] to video generation presents
a primary challenge: how to incorporate the temporal dimension. The straightforward strategies
are either letting time grows uniformly, i.e., from (1, 1,1) to (T, H, W), or keeping time constant,
i.e., from (7,1,1) to (T, H,W). We empirically found that letting time grow uniformly produces
flickering videos. As for the constant time pyramid, we refer to it as the pseudo-spacetime pyramid.
Despite its conceptual simplicity, it suffers from two fundamental limitations. First, the treatment of
videos differs markedly from that of images, preventing a text-to-video (T2V) model from effectively
leveraging the knowledge learned by a text-to-image (T2I) model and complicating its extension to
tasks such as image-to-video (I2V). Second, because appearance and motion in videos are coupled in
this design, the model faces significant difficulty in accurately fitting both aspects.

To overcome these challenges, we propose a novel spacetime pyramid modeling framework as
shown in Fig.1. Each video is decomposed into sequential clips {c1, ¢a, - - - , ey }. We regard the first
frame as c; (i.e., T' = 1) to encode video main static appearance cues specifically and other clips
share an equal duration 7" > 1. Each clip is modeled as a 3D volume pyramid similar as Infinity [13].
In particular, for each clip, there are K scales with each represented as a residual token block 7y, of
(T, hy, wy ) dimension. It is worth noting that all scales in the pyramid are extended only in spatial
dimension instead of time. Mathematically, the clip tokens are generated auto-regressively across
scales as:

K
p(ris.orie) = [ otk [rls om0 (1), 0))
k=1

For inter-clip predictions, clips are generated sequentially conditioned on prior clip predictions and
the text input in an autoregressive manner. In this way, we could generate infinitely long videos
theoretically. Formally, the autoregressive likelihood of the whole video can be expressed as:

N K
p(r%,...,rg):HHp(r; |7, e, 0(), )
k=1

c=1
3.3 Visual Tokenizer

Training video tokenizers faces greater challenges than training image tokenizers. First, training
tokenizers on videos of tens of frames is much computationally heavier than training on static images.
Therefore, training a video tokenizer from scratch is extremely time-consuming and suffers from slow
convergence. Second, the scale schedule in videos leads to more imbalanced information distribution,
where most information is concentrated in the last few scales. This brings great difficulties to
the optimization of VAR Transformer. To solve these challenges, we introduce two techniques,
knowledge inheritance from continuous video tokenizer and stochastic quantizer depth.

Knowledge Inheritance from Continuous Video Tokenizer. Instead of designing and training a
discrete video tokenizer from scratch, we inherit the architecture and weights of a trained continuous
video tokenizer, i.e. video VAE. Specifically, we first insert a parameter-free quantizer between the
pre-trained VAE encoder and the decoder. The quantizer is based on binary spherical quantization [40],
being similar to that of Infinity [13] but with new spacetime pyramid scale schedule. This does not
introduce any new parameter like codebook in VQ [26] and well retains knowledge of the original
VAE. As shown in Fig.5, the discrete video tokenizer reconstructs videos decently, even without any
fine-tuning. To further improve the reconstruction quality, we fine-tune the new tokenizer jointly on
images and videos like previous works [29, 1]. During the fine-tuning, the KL loss of the original
VAE is replaced with the commitment loss plus the entropy penalty [40]. As shown in Fig.5, with the
help of knowledge of continuous video VAE, the convergence accelerates dramatically.

Stochastic Quantizer Depth. When tokenizing videos using the spacetime pyramid schedule, the
information distribution on different scales gets extremely imbalanced. Specifically, there are only a
few tokens in the early scales, while there are tens of thousands of tokens in the last scales. Thus the
tokenizer tends to reconstruct videos solely relying on tokens from the last few scales and not to learn
useful representation in early scales as shown in Fig.6 (left). However, this imbalanced distribution is
difficult to model using VAR Transformer because the dependence between the latter token blocks
and the former ones is weak. To alleviate this problem, we propose a regularization called stochastic
quantizer depth. During training, each one of the last N scales has a probability p of being discarded.



In this way, there are 2V possible scale schedules during training. This requires the tokenizer to
reduce the reliance on last scales and store more information in tokens of early scales. As in Fig.6
(right), with the help of this regularization, the reconstruction results of early scales become much
clearer. This balanced information distribution makes the training of VAR Transformer easier.

3.4 Spacetime Autoregressive Transformer

To accommodate the newly introduced temporal dimension, enhance the quality of generated videos,
and alleviate the substantial computational overhead associated with a large number of tokens, we
propose the following modifications to the VAR Transformer: Spacetime RoPE, Semantic Scale
Repetition, and Spacetime Sparse Attention. We put Spacetime RoPE in the appendix.

Semantic Scale Repetition. With carefully crafted positional encodings, InfinityStar can already
generate videos of acceptable quality. However, we observe that the structural coherence and motion
dynamics in these outputs remain suboptimal. As shown in Figure 6, the overall layout and the
placement of foreground objects are determined by the early scales of the clip pyramid—what we
term the “semantic scales." This observation motivates us to enhance generation fidelity at these
semantic scales. To this end, we introduce a simple yet effective technique called semantic scale
repetition. Concretely, if a clip pyramid comprises K scale tuples, we repeat the first K s tuples N
times, thereby reinforcing the semantic-level representations. In this way, every earlier residual 7y,
undergoes multiple rounds of refinement, improving the generation quality of semantics and the
performance in complex scenarios with large motion. Given that the tokens at these early scales
account for only a small fraction of the total token count, the additional computational overhead
incurred by repeating them is negligible.
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Figure 2: Illustration of three causal attention variants. We plot three pyramids on the scale size =
(1,2,3) for visualization simplicity. From left to right, VAR block-wise causal mask with full history,
Switti block-wise non-causal mask with full history, and spacetime sparse attention.

Spacetime Sparse Attention. Autoregressive video generation faces significant challenges due to the
high computational costs of long context. As on the left of Fig.2, Infinity [13] employs a block-wise
causal mask for single pyramid modeling. Switti [27] verifies that conditioning next-scale predictions
solely on inputs from preceding scales is sufficient, resulting in a sparser attention mask as on the
middle of Fig.2. For long video generation, it’s necessary to attend history tokens to achieve temporal
consistency. However, attending full history leads to an explosively long sequence. Considering each
clip corresponds to 5s, which is sufficient to maintain temporal consistency, here we only attend to
the last scale of the preceding clip. Finally, we obtain a highly sparse attention as show in Fig.2
(right). Our spacetime sparse attention drastically reduces attention computational overhead during
both training and inference, all while delivering better performance.

4 Experiment

4.1 Implementation

Datasets. The training data of InfinityStar includes text-to-image data and text-to-video data. We
curated 130 pretraining and 70M high-quality text-to-image data. They are either from open-
sourced data like COYO[4], Openlmages[19] or bought from external suppliers. To balance the
data distribution and improve overall aesthetics, we also involve 5M high-quality synthetic data. In
terms of text-to-video data, we curated around 16M video data. All videos are longer than 5 seconds.
Among them 13M videos are under 336 x 192 resolution used for pre-training. They are mainly from
Panda-70M[7], Mira[ 1 5], and other internal video-text pairs. Apart from those 192p videos, we also
curated 3M 480p and 50K 720p high-quality videos for fine-tuning.



A woman with shoulder-length brown hair is seen talking to someone off-screen to the right. She is wearing a dark-colored top and a necklace. The background is blurred, but
it appears to be an indoor setting with some mdlstmcl objects and a window. The woman slightly moves her head while speaking.

A man wearing a green Adidas shirt and a blue cap is holding a sketchbook with both hands. He is standing outdoors in front of a building with a blue facade and some
greenery. The man is flipping through the pages of the sketchbook. He points to different parts of the drawings while talking.

The camera gently pans over the mountainside, gliding above the trectops, and offering an expansive view of the mountains and the distant lake. As the drone flies smoothly,

the entire natural landscape unfolds without abrupt perspective shifts, presenting the audience with a wide view and a feeling of tranquility.

Figure 3: Text to image and text to video examples.

Model and Training. After inserting the patchify and unpathify layers between WAN 2.1 VAE’s
encoder and decoder, we obtain a video tokenizer with a compression rate of 4 x 16 x 16 and a latent
dimension of 64. BSQ quantization is adopted with a vocabulary of size 26%. In contrast to using a
vocabulary of size 24 for all scales, we use a vocabulary of size 2'6 for the former small scales and
264 for the latter large scales. We empirically find that it boosts convergence and has a negligible
impact on the reconstruction quality. Starting with the pretrained weights of WAN 2.1 VAE, the
discrete tokenizer is fine-tuned jointly on images of 256 x 256, 512 x 512, 768 x 768 and videos of
256 x 256 x 81 for 30K iterations. The learning rate is 1le=*

InfinityStar is trained progressively with four stages. The first stage is T2I pre-training. Then the
pretrained weights of T2I are loaded as initialization of T2V. The latter three stages are training with
videos of 192p, 360p, 720p, respectively. Each time we increase the training resolution, we preserve
scale schedule of lower resolutions and append several larger scales, which enables better inheritance.
The global batch size for 192p is 2048 and that of 360p and 720p is 1024. The learning rate for
192p is 2e~*. Then we decay it to 1le~* for 360p and 720p. We train the model on videos of 192p,
360p, 720p for 50K, 8K, 3K iterations, respectively. Specifically, each clip pyramid is composed of
80 frames at 16 fps, and Semantic Scales Repetition repeats the first Ky = 7 scales N = 6 times.
Details about infrastructure optimizations are presented in the appendix.

4.2 Text-to-Image Generation

The upper part of Fig.3 shows generated images from our InfinityStar-T2I model, showcasing
InfinityStar’s strength in generating high-fidelity and photo-realistic images across various categories
and image styles. We also carry out the quantitative evaluation on the GenEval[12] and DPG[14]
benchmarks. As in Tab.1, InfinityStar achieves the best overall score of 0.79 on the GenEval bench
with a prompt rewriter. It’s worth noting that InfinityStar exceeds Infinity by 6% on overall score. We
attribute the significant improvement to the larger model size and the architectural innovations. On
the DPG bench, InfinityStar reaches an overall score of 86.55, surpassing Infinity by 3.09%. These



Table 1: Evaluation on the GenEval [12] and DPG [14] benchmark. { result is with prompt rewriting.
GenEvalf DPGT

Methods # Params

Two Obj.  Position Color Attri. Overall Global Relation Overall
Diffusion Models
SDXL [22] 2.6B 0.74 0.15 0.23 0.55 83.27 86.76 74.7
PixArt-Sigma [6] 0.6B 0.62 0.14 0.27 0.55 86.89 86.59 80.5
SD3 (d=38) [10] 8B 0.89 0.34 0.47 0.71 - - -
SANA-1.0 [31] 1.6B - - - 0.66 - - 84.8
FLUX-dev [20] 12B - - - 0.67 - - 84.0
FLUX-schnell [20] 12B - - - 0.71 - - 84.8
AutoRegressive Models
LlamaGen [23] 0.8B 0.34 0.07 0.04 0.32 65.2
Chameleon [24] 7B - - - 0.39 - - -
Show-o [32] 1.3B 0.80 0.31 0.50 0.68 - - 67.5
Emu3 [30] 8B 0.81f 0.49° 0.45f 0.66" - - 81.6
Infinity [13] 2B 0.85% 0.49% 0.57 0.73% 93.11 90.76 83.46
InfinityStar-T2I 8B 0.90% 0.621 0.671 079"  91.68  91.87 86.55

quantitative results demonstrate InfinityStar’s strong capabilities of image generation following users’
prompts.

4.3 Text-to-Video Generation

In the lower part of Fig.3, we present the generated videos of InfinityStar regarding user prompts. The
generated videos successfully capture the semantic information in user prompts while maintaining
high aesthetics and visual quality. Especially for the second example in Fig.3, the generated video
accurately restores the delicate movements of the characters flipping through sketchbooks, talking
while pointing to different parts of the drawings. In Tab.2, we compare InfinityStar with leading
diffusion and autoregressive approaches on VBench—a comprehensive video benchmark spanning
16 evaluation dimensions. Our model achieves an overall score of 83.74, outperforming all open-
source autoregressive baselines by a substantial margin. Moreover, InfinityStar surpasses diffusion-
based competitors such as OpenSora[41], CogVideoX[34], and HunyuanVideo[ 1 7]. These results
demonstrate that, through its novel spacetime autoregressive design, InfinityStar not only pushes the
capabilities of discrete autoregressive video models but also attains performance on par with—and in
some cases superior to—state-of-the-art diffusion methods.

0s Rerference Video Ss Extrapolated Video 10s

In a realistic medium shot, a camera steadily moves to follow a middle-aged Chinese woman. She wears a light brown top paired with blue jeans and
holds a smartphone in her hand. She walks casually inside a mall. In the background, there is a clothing store and a wall adorned with cartoon patterns.
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The camera slowly zooms in on the lips of a 30-year-old Chinese woman who is applying moisturizing lipstick. She has a natural smile adorning her face,
set against a bright indoor background

Figure 4: Zero-shot video extrapolation examples.
Zero-shot Generation. Although trained exclusively on T2V data, InfinityStar can generate videos
conditioned on an image or a video as historical without any fine-tuning. Fig.4 shows video ex-
trapolation results. The synthesized videos exhibit strong temporal coherence with the reference
while faithfully capturing the semantic nuances of texts. Zero-shot I2V samples are presented in the
appendix.

4.4 Ablation Study

Visual Tokenizer. As shown in Fig.5 and Tab.3, loading weights of continuous video tokenizer
significantly speeds up the convergence and achieves the best reconstruction results. As shown in
Fig.6, stochastic quantizer depth largely improves the reconstruction quality of early scales. In terms
of generation, using VAE with SQD leads to a notable improvement in VBench scores (81.28 v.s.
81.07 as shown in Tab.4). Moreover, we observe that SQD contributes to faster convergence during
the video generation training.



Table 2: Evaluation on the VBench benchmark.  result is with prompt rewriting.

Human Multiple Appear. Quality Semantic
Models # Params Action Scene Objects Style Score Score Overall
Diffusion Models
AnimateDiff-V2 1.5B 92.60  50.19 36.88 22.42 82.90 69.75 80.27

VideoCrafter-2.0[5] 1.5B 95.00  55.29 40.66 25.13 82.20 73.42 80.44
OpenSora V1.2[41] 1.1B 85.80 4247 58.41 23.89 80.71 73.30 79.23

Show-1[37] 6B 95.60  47.03 45.47 23.06 80.42 72.98 78.93
Gen-3 [11] - 96.40  54.57 53.64 24.31 84.11 75.17 82.32
CogVideoX-5B[34] 5B 9940 53.20 62.11 2491 82.75 77.04 81.61
HunyuanVideo[17] 13B 9440  53.88 68.55 19.80 85.09 75.82 83.24
Wan 2.1[28] 14B 98.80  53.67 81.44 21.13 85.64 80.95 84.70
AutoRegressive Models

Nova[9]t 0.6B 95.20  54.06 717.52 20.92 80.39 79.05 80.12
Emu3[30] 8B 7771 37.11 44.64 20.92 84.09 68.43 80.96
InfinityStar{ 8B 96.43  52.08 78.66 21.81 84.73 79.78 83.74
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Figure 5: Influence of pretrained weights on reconstruction and convergence. The left sub-figure
shows the reconstructed frames using different pretrained weights without finetuning. Loading
weights of continuous video tokenizer achieves the best results. The right sub-figure shows that
training with pretrained video tokenizer converges significantly faster than the other two strategies.

Table 3: Reconstruction metrics on an internal high-motion video benchmark (480p 81 frames).

Pretrained Weights PSNR(1) SSIM(1) LPIPS(])
Continuous Video VAE 33.37 0.94 0.065
Image VAE 29.10 0.90 0.123
None 30.04 0.90 0.124
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Figure 6: The influence of stochastic quantizer depth. Sub-figure (s;, nt) represents the reconstructed
frame nt using all tokens from the image pyramid plus tokens of first ¢ scales in the clip pyramid.
SQD significantly improves the reconstruction quality of early scales. Besides, the earlier scales
correspond to global semantics, while the later ones are responsible for local visual details.

Pseudo-Spacetime Pyramid v.s. Spacetime Pyramid. As illustrated in Fig.7, videos generated by
the pseudo-spacetime pyramid lack visual details and deliver simpler motion. In contrast, spacetime
pyramid generates videos with richer details and higher motion. Besides, spacetime pyramid improves
VBench’s overall score from 80.30 to 81.28 as illustrated in Tab.4. These experiments support the
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A man stands in a well-lit kitchen with white cabinets, a large window, and various kitchen items on the counter and shelves. He gestures
with his hand while speaking, then turns and walks towards a pot on the stove. The man reaches out to lift the lid of the pot.
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The video shows a cable car system with a tower in the foreground, situated on a mountainous area with lush greenery. In the background,
there is a cityscape with buildings and a river, partially obscured by fog. A cable car moves from the right towards the left.

Figure 7: Comparison between Pseudo-Spacetime Pyramid and Spacetime Pyramid. Spacetime
Pyramid could generate videos with richer details and higher motion.

hypothesis that spacetime pyramid could decouple appearance and temporal information. The image
pyramid corresponds to the appearance information and clip pyramids focus on subsequent motions.
This decoupling makes it easier to learn video motions. In addition to advances in performance,
spacetime pyramid could unify T2I, T2V, I2V tasks into one framework.

Semantic Scale Repetition. In Fig.6, we can observe that the earlier scales correspond to semantic
information, while the later ones are responsible for high-frequency details. Here we compare the
generation results with and without semantic scale repetition. As shown in Fig.8, semantic scale
repetition is highly effective in improving the structure stability and motion quality. The quantitative
results further confirm the significant gains. As shown in Tab.4, semantic scale repetition improves
VBench’s overall score from 75.72 to 81.28.

Spacetime Sparse Attention. In Tab.4 and Tab.5, we compare different attention mechanisms.
Spacetime sparse attention shows superior performance to full attention in the Vbench total score
(81.28 v.s. 80.77), while showing a significant advantage in saving computation and GPU VRAM.
SSA reaches 1.5 x speedup when generating 192p 161 frames. The efficiency advantage becomes
larger as the resolution and duration grow. For 480p 161 frames, full attention fails due to OOM
while SSA completes it within 44.7s using 63GB VRAM. We hypothesize that SSA produces better
results than full attention because it reduces exposure bias. Full attention is more susceptible to
accumulated errors. The reason we do not condition on smaller scales of the preceding clip is that it
misses the former clips’ visual details and brings visual inconsistency between clips. Although it
reaches 1.1x , 1.5x speedup for 192p and 480p 161 frames, we observe a significant performance
drop in Vbench from 81.28 to 80.75 as shown in Tab.4. Therefore, the proposed spacetime sparse
attention strikes a better balance between computational efficiency and visual quality.

4.5 Inferency Latency

As shown in Tab.6, we report the end-to-end inference latency measured on a single GPU, including
both the text encoder and VAE decoder. Wan-2.1[28] and Nova[9] were evaluated using their default
GitHub configurations. Even without employing stronger compression, InfinityStar achieves a 32 x
speedup over Wan-2.1. Furthermore, despite its larger model size, InfinityStar delivers a 6 x speedup
compared to Nova. These results highlight our model’s significant efficiency advantage over both
diffusion and autoregressive approaches.

5 Conclusion and Limitation

We introduce InfinityStar, a unified spacetime autoregressive framework capable of synthesizing
high-resolution images and dynamic, high-motion videos. By seamlessly integrating spatial and
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Figure 8: Semantic Scale Repetition (SSR) greatly improves structure stability and motion qﬁality.

Table 4: Comprehensive ablation studies. Experiment with 1M 192p training data, batch_size = 40,
and 30K iterations. We evaluate the results on the Vbench benchmark.

total quality semantic

Vbench

score score score
InfinityStar (Our Model) 81.28 81.56 80.16
Attend to former clip’s largest scale
Ablation by removing/replacing core components
w/o Semantic Scale Repetition(SSR) 75.72 76.73 71.68
w/o Spacetime Pyramid (using Pseudo-Spacetime) 80.30  80.81 78.28
w/o Stochastic Quantizer Depth(SQD) 81.07 81.21 80.54
Comparison of different Attention Mechanism variants
Full Attention 80.77  81.15 79.23
Attend to former clip’s 3rd largest scale 80.86  81.26 79.26
Attend to former clip’s 6th largest scale 80.75 80.98 79.80

Table 5: Computational efficiency comparison of attention mechanisms on a single GPU.

(192p 65 frames)  (192p 161 frames) (480p 161 frames)

Full Attention 8.6s / 40.8GB 24.3s/ 57GB OOM
Attend to former clip’s largest scale 7.7s /1 38.5GB 16.7s / 40GB 44.7s /1 63 GB
Attend to former clip’s 3rd largest scale 7.4s /38.2GB 15.8s/39GB 34.5s /58 GB
Attend to former clip’s 6th largest scale 7.3s/37.9GB 15.2s / 38GB 30.5s / 55GB

Table 6: Computational efficiency comparison.

Method Model # Parameters Durations(s) Frames Resolution Time(s) Speedup
Diffusion Wan 2.1[28] 14B 5 81 720p 1864 1
AR Nova[9] 0.6B 5 81 480p 354 5
AR InfinityStar 8B 5 81 720p 58 32

temporal prediction within a purely discrete architecture, InfinityStar supports diverse generation tasks
while maintaining both state-of-the-art quality and exceptional efficiency. Our extensive evaluation
demonstrates that InfinityStar outperforms prior autoregressive video models and rivals leading
diffusion-based approaches, producing Ss of 720p video in one-tenth the inference time. As the first
discrete autoregressive model to deliver industrial-grade 720p video synthesis, we anticipate that
InfinityStar will catalyze future research on rapid, long video generation.

However, due to limited computational resources, we did not scale our model training and parameter
size to the level of leading diffusion models, which bottlenecks current performance. Furthermore,
our inference pipeline has not yet been fully optimized, indicating room for future improvement.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper claims the contributions that we are the first discrete autoregressive
model to achieve high-quality 720p video generation with the fastest generation speed in the
abstract and introduction

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Our proof, such as the autoregressive likelihood formula, has been validated
and verified through experimental comparisons, demonstrating the effectiveness of the proof.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will open-source our model and code, and use publicly available data
to guide people on how to reproduce our results, as training large-scale video generation
models is extremely resource-intensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Currently, the code needs to be cleaned, and the data needs to be maintained as
an open-source subset to ensure the community can follow along. We will soon open-source
the code along with documentation for some of the data sources.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have outlined the multi-stages of our training, including the training steps
and relevant training steps, and learning rate for each stage.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For both our benchmark and ablation study evaluations, we run multiple trials
and report the average results to ensure the statistical significance of the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use internal clusters to train our models. In terms of estimation, the
four-stage video generation process consumes 5,000, 40,000, 30,000, and 30,000 GPU hours
respectively. The video VAE requires 2,000 GPU hours. The ablation study has a total cost
of 10,000 GPU hours, and the evaluation consumes 1,000 GPU hours.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have clear filters in place for privacy, inappropriate and harmful content
for both image and video data.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Visual generation has a broad impact on society. On one hand, video generation
models significantly improve production efficiency. On the other hand, we closely monitor
the potential societal risks related to the misuse of information by models trained on the data
we use. We have filtered the harmful and copyrighted data in our training dataset

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

» If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: First, our training data will undergo strict filtering, and we will ensure rigorous
verification before open-sourcing to check for any obvious issues like harmful visual content.
After open-sourcing, we will provide a model that includes a default safeguards model to
filter any unsuitable generated content.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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13.

14.

15.

Justification: In the paper, we specify the sources of the open-source data used and provide
proper citations. Regarding the code, we will acknowledge the relevant contributors on our
GitHub repository when we make it publicly available.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In the appendix, we will provide more visual samples with details. All these
materials will be anonymized. The code is our proprietary property, and the data collection
is compliant.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We use LLM for writing and formatting
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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