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ABSTRACT

Large vision-language models (LVLMs) have demonstrated impressive perfor-
mance in various multimodal understanding and reasoning tasks. However, they
still struggle with object hallucinations, i.e., the claim of nonexistent objects in the
visual input. To address this challenge, we propose Chain-of-Region Verification
(CoReVe), a region-aware visual chain-of-verification method to mitigate object
hallucinations in LVLMs in a post-hoc manner. Motivated by how humans com-
prehend intricate visual information—often focusing on specific image regions
or details within a given sample—we elicit such region-level processing from
LVLMs and use it as a chaining cue to detect and mitigate object hallucinations.
Specifically, our CoReVe consists of six steps: initial response generation, en-
tity extraction, coordinate generation, region description, verification execution,
and final response generation. As a simple yet effective method, CoReVe can be
seamlessly integrated into various LVLMs in a training-free manner and without
relying on external detection models. Extensive experiments on four hallucination
benchmarks across four LVLMs demonstrate that CoReVe can significantly alle-
viate hallucinations in LVLMs. Code will be released to facilitate future research.

1 INTRODUCTION

Empowered by large language models (LLMs) (Brown et al., 2020; OpenAI, 2023; Dubey et al.,
2024; Team et al., 2024; Meta, 2025; Lu et al., 2024; Team et al., 2025), large vision-language mod-
els (LVLMs) (Alayrac et al., 2022; Li et al., 2022; Ye et al., 2023; Liu et al., 2023; Zhu et al., 2023;
Li et al., 2023a; Dai et al., 2023; Bai et al., 2023; Lu et al., 2024; Chen et al., 2024d) have made sig-
nificant strides, exhibiting impressive multimodal understanding and reasoning capabilities (Thrush
et al., 2022; Chen et al., 2024a; Kuckreja et al., 2024). Despite their remarkable advancements, exist-
ing LVLMs still suffer from object hallucinations—producing objects that do not exist in the given
image (see Figure 1(a)). This issue has been an Achilles’ heel that hinders the broader applications
of LVLMs in real-world scenarios.

To mitigate object hallucinations in LVLMs, existing works have primarily focused on three strate-
gies: (i) instruction fine-tuning (Ouyang et al., 2022; Liu et al., 2024a; Gunjal et al., 2024; Wang
et al., 2024; Lee et al., 2024), (ii) decoding process optimization (Huang et al., 2024; Leng et al.,
2024; Liu et al., 2024b), and (iii) integration of external expert models (Manakul et al., 2023; Kar
et al., 2024; Yin et al., 2024; Zhou et al., 2024b; Wu et al., 2024; Shi et al., 2025). These approaches
have achieved substantial progress in reducing hallucinations in LVLMs, laying important founda-
tions for improving their reliability. However, they inevitably have the following drawbacks: (i)
demands significant computational resources, (ii) requires access to internal model parameters, and
(iii) heavily relies on multiple external expert models.

Previous studies in LLMs focusing on text tasks have demonstrated that techniques such as chain-
of-thought (Wei et al., 2022; Dhuliawala et al., 2024) can effectively reduce LLM hallucinations,
leading to increased reliability of results by guiding them through a structured thought process. In
this paper, we are interested in investigating whether such a chaining process is helpful to alleviate
LVLM hallucinations. Unlike LLMs, which primarily process and interpret text, the key challenge
in LVLMs lies in how to comprehend and reason about the visual information presented in images.
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The image depicts a man standing on the back
of a yellow taxi, holding a clothesline with
clothes hanging on it. The taxi is driving down
a busy street, surrounded by other vehicles
such a car and a truck.

Provide the bounding box coordinates for the truck.


Please describe the image in detail.


[0.0, 0.41, 0.34, 0.76]


The yellow taxi cab is driving down the street. It
is located on the left side of the image, occupying
a significant portion of the frame.


Describe [0.0, 0.41, 0.34, 0.76] in the image in detail.


Hallucination!


There is no truck in the description...


(a)
 (b)


Figure 1: (a) An example of object hallucinations in LVLMs with the hallucinated object highlighted
in red. (b) By eliciting region-level processing from LVLMs and using it as a chaining cue, we can
detect and mitigate object hallucinations.

To tackle this challenge, we propose Chain-of-Region Verification (CoReVe), a training-free
method that can directly correct the hallucinations of LVLMs in a post-hoc manner. Our method
is inspired by how humans comprehend intricate visual information: we often focus on specific im-
age regions or details within a given sample. As illustrated in Figure 1(b), to elicit such region-level
processing from LVLMs, we first obtain the bounding box coordinates for the object of interest
by inquiring the LVLM. We then prompt the model to provide a detailed description of the region
based on the provided coordinates. Whether the region description contains the original object or
not serves as an indicator of a possible hallucination.

Specifically, our CoReVe performs six core steps: (1) Initial response generation generates the initial
response using the LVLM, given a query (i.e., a question and an image); (2) Entity extraction extracts
entities in the response; (3) Coordinate generation generates region coordinates for each entity; (4)
Region description describes each region with coordinates in detail; (5) Verification execution checks
whether the region descriptions contain the original entities to check for inconsistencies or mistakes;
and (6) Final response generation generates a revised response incorporating the verification results,
given the discovered inconsistencies.

We evaluate the effectiveness of CoReVe on several widely used hallucination benchmarks:
POPE (Li et al., 2023b) and MME (Fu et al., 2023) for closed VQA tasks, as well as
CHAIR (Rohrbach et al., 2018) and GPT-4o assisted evaluation for open-ended generation tasks.
Our extensive experiments across multiple advanced LVLMs demonstrate that CoReVe consistently
mitigates hallucinations in diverse evaluation settings.

Our main contributions are summarized as follows:

1) We introduce CoReVe, a region-aware visual chain-of-verification method to mitigate object hal-
lucinations in LVLMs. Our simple yet effective plug-and-play method can be seamlessly applied to
various LVLMs without requiring retraining or external detection models.

2) We contribute a comprehensive study on how to design visual prompts to better incorporate
the visual information into CoReVe, which has largely been ignored in existing language-centric
hallucination correction methods.

3) We conduct extensive experiments across multiple LVLMs and evaluation settings. CoReVe
achieves consistent and significant performance improvements, demonstrating its strong potential to
alleviate hallucinations. We also show that CoReVe achieves the best trade-off between performance
and test-time compute compared to prior state-of-the-art post-hoc correction work.

2 RELATED WORK

Large Vision-Language Models. Large language models (LLMs) (Brown et al., 2020) have trans-
formed the field of natural language processing, de-facto replacing other solutions for many tasks.
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Recent commercial models (OpenAI, 2023; Team et al., 2024) have achieved remarkable perfor-
mance across most text benchmarks, with open-weight solutions closely tracking their performance
with a delay of only few months (Dubey et al., 2024; Lu et al., 2024; Meta, 2025; Team et al.,
2025). Building on the success of these purely textual models, the community came up with ways
of interfacing them with visual encoders to allow the model to operate on multimodal inputs (e.g.,
image and text). Early examples of this category of models, called large vision-language models
(LVLMs) (Alayrac et al., 2022; Li et al., 2022), were highly successful in paving the way to train
truly multimodal language models like recent commercial models (Jaech et al., 2024; Team et al.,
2024). Building on top of open-weight models, open-source LVLMs have also been developed (Ye
et al., 2023; Liu et al., 2023; Zhu et al., 2023; Li et al., 2023a; Dai et al., 2023; Bai et al., 2023;
Lu et al., 2024; Chen et al., 2024d). All models share a similar architecture with a dedicated visual
encoder to transform images into a latent representation that can later be consumed by an LLM
together with an additional text input.

Hallucination in LVLMs. In the context of LVLMs, “hallucinations” (Rohrbach et al., 2018) refer
to the generation of textual content that is inconsistent with, or entirely disconnected from, the pro-
vided visual information. This can manifest in various ways, including the description of nonexistent
objects in an image (object hallucination), the attribution of incorrect properties or characteristics
to existing objects (attribute hallucination), or the misinterpretation of relationships and interactions
between visual elements. This has been a field of intense research with the publication of several
benchmarks to be able to measure the ability of models not to hallucinate (Li et al., 2023b; Fu et al.,
2023; Wang et al., 2023; Xu et al., 2024; Lovenia et al., 2024; Chen et al., 2024b; Sun et al., 2024).

Several methods have been proposed to mitigate hallucinations in LVLMs. These can be broadly
categorized in: (i) methods relying on careful instruction tuning (Ouyang et al., 2022) to try to
teach the model not to make facts up (Liu et al., 2024a; Gunjal et al., 2024; Wang et al., 2024;
Lee et al., 2024; Zhou et al., 2024a; Yu et al., 2025), (ii) methods proposing customized decoding
strategies to mitigate the likelihood of hallucinations (Huang et al., 2024; Leng et al., 2024; Chen
et al., 2024c; Liu et al., 2024b), (iii) methods relying on the integration of additional encoders to
mitigate hallucinations (Kar et al., 2024; Shi et al., 2025), and (iv) methods relying on expert models
to detect, verify and possibly fix hallucinations in a self-criticism loop (Manakul et al., 2023; Yin
et al., 2024; Zhou et al., 2024b; Wu et al., 2024), similar to a chain-of-thought loop (Wei et al., 2022).
Among the four strategies, the last one has been most successful. We follow a similar path and rely
on a visually guided chain-of-region verification to reduce hallucinations. Crucially, our chain is
truly multimodal, relying on feeding different versions of the same image at different stages of the
verification pipeline in a visual chain-of-thought manner (Rose et al., 2023; Zhang et al., 2024).

3 CHAIN-OF-REGION VERIFICATION

Our chain-of-region verification (CoReVe) is a training-free post-hoc correction method to mitigate
object hallucinations in LVLMs. The overall pipeline of CoReVe is illustrated in Figure 2. It contains
six stages: initial response generation, entity extraction, coordinate generation, region description,
verification execution, and final response generation. We detail each stage as follows.

Stage 1: Initial Response Generation. Given a query (i.e., a question and an image), we generate
the initial response using the LVLM. This first stage also serves as the baseline we wish to improve in
our experiments, i.e., we will directly compare this baseline response with our final verified response.
Typically, such initial generations are prone to hallucinations. Our CoReVe attempts to identify and
correct these hallucinations, as described in the following stages.

Stage 2: Entity Extraction. Based on the initial response generated from the LVLM, we extract
candidate entities in this stage for subsequent querying and checking, which are typically the objects
mentioned in the response. Specifically, following Wu et al. (2024), we adopt an LLM (i.e., GPT-
3.51) to complete this task for simplicity and versatility.2 We denote the set of extracted entities
as E = {ei}, i = 1, ..., N , where N is the number of candidate entities. We provide the detailed
prompt we use in Appendix C.1.

1https://platform.openai.com/docs/models/gpt-3.5-turbo
2Note that we use GPT-3.5 here for a fair comparison with previous methods. In Section 4.4, we show that

CoReVe can still achieve decent results without relying on any other models.
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The image depicts a small, cluttered
kitchen with a wooden floor. The
kitchen is equipped with a sink, an
oven, and a stove. There are various
items scattered around the kitchen,
including a knife, a spoon, and a bowl.
In addition to the kitchen appliances,
there are several bottles and cups
scattered throughout the room. A pair
of scissors is also visible on the
countertop. The overall scene gives the
impression of a busy, lived-in space.

Please describe the image in detail.


kitchen, floor, sink, oven, stove, knife, 
spoon, bowl, bottle, cup, scissors, ...

Assume the image width and height are
normalized to [0, 1]. Locate the scissors
and return its bounding box in the format
[x_min, y_min, x_max, y_max], where
[x_min, y_min] is the top-left corner and
[x_max, y_max] is the bottom-right
corner of the bounding box. Output only
the four numbers in a single list. Do not
include any explanation or extra text.


[0.76, 0.5, 0.99, 0.87]


Describe [0.76, 0.5, 0.99, 0.87] 

in the image in detail.


The image features a green plastic
bucket placed on the floor next to a
sink. The bucket is positioned near the
right side of the sink, and it appears to
be filled with some items.
<multiple region descriptions continue>
...

The image depicts a small, cluttered
kitchen with a wooden floor. The
kitchen is equipped with a sink, an
oven, and a stove. There are various
items scattered around the kitchen,
including a knife. In addition to the
kitchen appliances, there are several
bottles and cups scattered throughout
the room. The overall scene gives the
impression of a busy, lived-in space.

kitchen (Yes), floor (Yes), sink (Yes), 
oven (Yes), stove (Yes), knife (Yes), 
spoon (No), bowl (No), bottle (Yes), 
cup (Yes), scissors (No), ...

Stage 1: Initial Response Generation Stage 2: Entity Extraction

Stage 3: Coordinate Generation

Stage 4: Region Description Stage 5: Verification Execution

Stage 6: Final Response Generation

Figure 2: Overview of our CoReVe pipeline. CoReVe consists of six stages to mitigate object hal-
lucinations: initial response generation, entity extraction, coordinate generation, region description,
verification execution, and final response generation.

Stage 3: Coordinate Generation. The primary stage in our CoReVe pipeline involves eliciting
region-level knowledge from LVLMs for verification. To achieve this, we prompt the LVLM to
provide the position of each extracted entity in the image, using the form of bounding box coor-
dinates. Specifically, given the query image, we prompt the LVLM with the following instruction
template: “Assume the image width and height are normalized to [0, 1]. Locate the {entity} and
return its bounding box in the format [x min, y min, x max, y max], where [x min, y min] is the
top-left corner and [x max, y max] is the bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any explanation or extra text.” This instruction allows
us to obtain the bounding box coordinates for each entity ei from the LVLM. Note that the bounding
box coordinates generated in this stage can be inaccurate, i.e., the regions do not necessarily contain
the entities due to nonexistence. In the subsequent stages, we will use this as a cue for region-level
verification.

Stage 4: Region Description. Let R = {ri}, i = 1, ..., N denote the set of generated region coor-
dinates. In this stage, we aim for region-level verification questions conditioned on R. Specifically,
we prompt the LVLM to describe each specific region in the image independently, using the fol-
lowing template: “Describe {coordinate} in the image in detail.”, where {coordinate} is one of the
ri ∈ R. We repeat this step multiple times for each region to produce a set of diverse answers,
which proves to be beneficial for performance improvements, as shown in the experimental section.

To better instruct the LVLM to focus on local regions, we also explore several ways to provide the
image content to the LVLM. Specifically, for each entity ei, we consider the following forms of
image prompts: (i) the original image, (ii) the image overlaid with the bounding box coordinates ri,
and (iii) a crop from the original image using the bounding box coordinates ri. In (ii), we further
investigate different shapes, colors, and sizes of visual prompts to draw on top of the image. We will
show the effects of different design choices in the experimental section.

Stage 5: Verification Execution. After obtaining the region descriptions, the next stage is to verify
whether they contain the original entities to assess if any hallucinations exist. Specifically, for each
entity ei, given the region descriptions Ai = {ai,j}, j = 1, ..., L, where L is the number of sampled
answers, we prompt the LLM L times to check whether each ai,j contains ei and respond with “Yes”
or “No”. We then map the “Yes-No” response into a binary verification score vi,j , where “Yes” is
equal to 1 and “No” is equal to 0. The final averaged verification score V for entity ei is formulated
as follows:

V (ei) =
1

L

L∑
j=1

vi,j . (1)

A lower V (ei) indicates that the entity is likely to be hallucinated. Thus, V (ei) serves as an indicator
for hallucination detection. We determine whether the entity is hallucinated by setting a threshold
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Table 1: Results on POPE. We report both accuracy and F1 score. Results for LogicCheckGPT
are reproduced by us using the official code. Numbers for other methods are taken from Wu et al.
(2024). The best results are in bold.

Model Method Adversarial Popular Random Average

Acc F1 Acc F1 Acc F1 Acc F1

mPLUG-Owl

Vanilla 50.67 66.81 51.67 67.26 55.33 68.98 52.56 67.68
LRV-Instruction 59.67 69.21 68.33 74.11 74.33 77.94 67.44 73.75
SelfCheck 66.67 74.09 72.00 77.29 70.66 75.82 69.78 75.73
LURE 76.33 76.72 79.67 78.75 81.33 80.95 79.11 78.81
LogicCheckGPT 81.00 81.19 84.00 83.89 90.00 89.44 85.00 84.84
CoReVe (ours) 83.67 83.93 85.67 85.71 91.67 91.35 87.00 87.00

MiniGPT-4

Vanilla 72.67 75.88 78.33 79.87 84.33 84.59 78.44 80.11
LRV-Instruction 74.00 71.11 80.33 78.70 81.67 80.97 78.67 76.93
SelfCheck 73.00 72.72 76.67 75.86 76.00 73.53 75.22 74.04
LURE 77.67 79.14 80.67 80.67 83.67 84.14 80.67 81.29
LogicCheckGPT 80.67 78.99 82.67 80.30 84.67 82.71 82.67 80.67
CoReVe (ours) 83.33 82.64 88.00 86.76 86.33 84.98 85.89 84.79

LLaVA-1.5

Vanilla 83.33 84.84 84.67 85.89 93.00 93.02 87.00 87.92
SelfCheck 88.67 88.27 88.67 88.59 90.33 89.53 89.22 88.80
LURE 85.33 86.25 87.00 87.05 89.67 89.70 87.33 87.67
LogicCheckGPT 89.33 89.40 91.00 90.79 92.67 92.25 91.00 90.81
CoReVe (ours) 88.67 88.36 92.00 91.72 94.00 93.67 91.56 91.25

Qwen2.5-VL
Vanilla 85.67 83.65 86.33 84.29 86.67 84.62 86.22 84.19
LogicCheckGPT 87.00 85.50 86.67 84.96 87.33 85.71 87.00 85.39
CoReVe (ours) 87.33 86.13 87.67 86.35 89.00 88.00 88.00 86.83

τ ∈ [0, 1], where V (ei) < τ means that entity ei is hallucinated. The prompt we use in this stage is
detailed in Appendix C.2.

Stage 6: Final Response Generation. After identifying the hallucinated entities, the final stage is
to generate the improved response that takes verification into account. Specifically, we prompt the
LLM to revise the initial response based on the verification results in Stage 5. The detailed prompt
is listed in Appendix C.3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines. We build our CoReVe upon several popular open-source LVLMs, including mPLUG-
Owl (mplug-owl-llama-7b) (Ye et al., 2023), LLaVA (llava-v1.5-7b) (Liu et al., 2023), MiniGPT-4
(vicuna-13b) (Zhu et al., 2023), and Qwen2.5-VL (qwen2.5-vl-7b-instruct) (Bai et al., 2025). We
refer to the base LVLMs as vanilla. In addition, we also compare CoReVe with other advanced hal-
lucination mitigation methods, including LRV-Instruction (Liu et al., 2024a), SelfCheckGPT (Man-
akul et al., 2023), LURE (Zhou et al., 2024b), and LogicCheckGPT (Wu et al., 2024). Due to limited
space, we provide more implementation details in Appendix A.

Benchmarks. We evaluate our CoReVe on several widely used hallucination benchmarks, including
POPE (Li et al., 2023b), MME (Fu et al., 2023), CHAIR (Rohrbach et al., 2018), and GPT-4o
assisted evaluation. Specifically, POPE and MME are VQA-based benchmarks with binary “Yes-
or-No” questions. CHAIR is a captioning-based benchmark, and GPT-4o assisted evaluation is an
open-ended image description benchmark. More benchmark details are provided in Appendix B.

4.2 MAIN RESULTS

Results on POPE. Table 1 presents our results on the POPE benchmark. CoReVe consistently out-
performs each LVLM by significant margins regardless of settings. For example, mPLUG-Owl only
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Figure 3: Trade-off between performance and test-time compute. The vanilla model is LLaVA-
v1.5-7B. We report both accuracy and F1 score averaged across the three splits of POPE. The com-
putational cost is represented as the time (seconds) per query, measured on a single 48GB NVIDIA
L40S GPU. CoReVe is more efficient than LogicCheckGPT, always achieving the same performance
with less computational cost.

Table 2: Results on MME existence subset.
We report both accuracy and accuracy+. Re-
sults for LogicCheckGPT are reproduced by
us using the official code. Numbers for other
methods are taken from Wu et al. (2024).
The best results are in bold.

Model Method Acc Acc+

mPLUG-Owl

Vanilla 65.00 35.00
LRV-Instruction 83.33 66.67
SelfCheck 85.00 73.33
LURE 80.00 60.00
LogicCheckGPT 95.00 90.00
CoReVe (ours) 96.67 93.33

MiniGPT-4

Vanilla 78.33 56.67
LRV-Instruction 83.33 66.67
SelfCheck 80.00 60.00
LURE 85.00 70.00
LogicCheckGPT 86.67 73.33
CoReVe (ours) 88.33 76.67

LLaVA-1.5

Vanilla 96.67 93.33
SelfCheck 96.67 93.33
LURE 93.33 86.67
LogicCheckGPT 96.67 93.33
CoReVe (ours) 98.33 96.67

Qwen2.5-VL
Vanilla 95.00 90.00
LogicCheckGPT 95.00 90.00
CoReVe (ours) 98.33 96.67

Table 3: Results on CHAIR. We report CHAIRS,
CHAIRI, and F1 score. Results for LogicCheckGPT
are reproduced by us. The best results are in bold.

Model Method CHAIRS ↓ CHAIRI ↓ F1 ↑

mPLUG-Owl
Vanilla 88.0 32.1 60.1
LogicCheckGPT 70.0 25.9 61.4
CoReVe (ours) 64.0 21.7 64.3

MiniGPT-4
Vanilla 46.0 13.0 66.0
LogicCheckGPT 44.0 12.9 66.4
CoReVe (ours) 34.0 9.2 67.1

LLaVA-1.5
Vanilla 52.0 16.2 73.2
LogicCheckGPT 38.0 11.5 74.8
CoReVe (ours) 30.0 8.7 77.5

Qwen2.5-VL
Vanilla 42.0 8.3 73.0
LogicCheckGPT 40.0 8.2 73.6
CoReVe (ours) 30.0 6.9 74.4

Table 4: Results on GPT-4o assisted evaluation.
We report both accuracy and relevancy scores. The
best results are in bold.

Model Method Acc Rel

mPLUG-Owl Vanilla 4.78 7.94
CoReVe (ours) 6.91 8.41

MiniGPT-4 Vanilla 5.69 8.62
CoReVe (ours) 7.24 8.90

LLaVA-1.5 Vanilla 6.48 8.91
CoReVe (ours) 7.48 9.03

Qwen2.5-VL Vanilla 8.35 9.65
CoReVe (ours) 8.76 9.72

achieves an average of 52.56% accuracy and 67.68% F1 score across the three splits. By incorpo-
rating CoReVe, mPLUG-Owl can achieve +34.44% accuracy and +19.32% F1 score improvements.
For MiniGPT-4, CoReVe yields +7.45% accuracy and +4.68% F1 score gains. When building upon
a stronger LLaVA-1.5 (Qwen2.5-VL), we still observe +4.56% (+1.78%) and +3.33% (+2.64%)
improvements on accuracy and F1 score, respectively. This demonstrates the effectiveness and the
generality of our method.

To further demonstrate the superiority of CoReVe, we analyze the trade-off between performance
and test-time compute. As shown in Figure 3, compared with the prior state of the art, i.e., Logic-
CheckGPT, our CoReVe can always achieve the same performance with less computational cost. It
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Table 5: Ablations for CoReVe on POPE. The baseline LVLM is LLaVA-v1.5-7B. We report
both accuracy and F1 score averaged across the three splits. Unless otherwise specified, the default
settings are: (a) the number of sampled answers is 7, (b) the hallucination threshold is 0.1, (c) the
image prompt is the image overlaid with the bounding box, (d) the shape of the bounding box is
rectangle, (e) the color of the bounding box is red, and (f) the size of the bounding box is 1 pixel.
The default entry is marked in gray .

(a) Number of answers. A mod-
erate increase in the number of
sampled answers performs better.

L Acc F1

- 87.00 87.92

3 88.34 87.41
5 89.56 89.06
7 91.56 91.25
9 90.67 90.49

(b) Hallucination threshold. A
lower threshold works the best.

τ Acc F1

- 87.00 87.92

0.1 91.56 91.25
0.2 88.78 87.79
0.3 87.00 85.51
0.4 87.67 86.44

(c) Image prompt. Drawing the
bounding box on the image leads
to more gains.

Type Acc F1

- 87.00 87.92

original 89.67 89.36
overlaid 91.56 91.25
cropped 83.89 81.53

(d) Bounding box shape. A rect-
angular shape is more effective.

Shape Acc F1

- 87.00 87.92

rectangle 91.56 91.25
incircle 90.11 89.87

circumcircle 89.56 89.39

(e) Bounding box color. A red
color yields better performance.

Color Acc F1

- 87.00 87.92

red 91.56 91.25
green 90.22 89.89
blue 90.11 89.68
white 90.67 90.40

(f) Bounding box size. Using a
1-pixel size is enough.

Size Acc F1

- 87.00 87.92

1 91.56 91.25
2 90.00 89.62
3 89.55 89.15
4 89.34 88.90

is worth noting that it takes at least 19 seconds per query for LogicCheckGPT to start to surpass the
performance of the vanilla model, whereas ours only takes around 13 seconds. This demonstrates
the efficiency of our method.

Results on MME Existence Subset. We also evaluate our method on the MME existence sub-
set, focusing on the object existence hallucination. The results are shown in Table 2. Again, our
CoReVe consistently outperforms each LVLM by clear margins. Specificaly, we achieve +31.67%
accuracy, +58.33% accuracy+ gains for mPLUG-Owl, +10.00% accuracy, +20.00% accuracy+ gains
for MiniGPT-4, +1.66% accuracy, +3.34% accuracy+ gains for LLaVA-1.5, and +3.33% accuracy,
+6.67% accuracy+ gains for Qwen2.5-VL, respectively. Note that LLaVA-1.5 and Qwen2.5-VL al-
ready achieve very strong performances under this benchmark. Nevertheless, our CoReVe can still
improve upon them.

Results on CHAIR. Apart from binary “Yes-or-No” questions in POPE and MME, we further eval-
uate our method on CHAIR, which is a more challenging hallucination benchmark as it involves
multiple objects in the captions. As shown in Table 3, our CoReVe significantly reduces the CHAIR
hallucination scores for all LVLMs, while also improving their F1 scores. In addition, our CoReVe
also surpasses LogicCheckGPT, setting a new state of the art in this more challenging benchmark.

Results on GPT-4o Assisted Evaluation. Going beyond CHAIR, we employ GPT-4o for more
comprehensive open-ended evaluation. The results are shown in Table 4. Our CoReVe provides
more accurate responses on all LVLMs while also enhancing the relevancy of the generated descrip-
tions. Given that the visual understanding and language logic capabilities of GPT-4o have already
reached a human level, it can more comprehensively assess the benefits brought by our method.

4.3 ABLATION STUDY

We ablate our CoReVe using LLaVA-v1.5-7B as the default LVLM on the POPE benchmark. Several
intriguing properties are observed.

Sampled Answer Numbers. We first study the effect of the number of sampled answers L per
region in the region description stage. As shown in Table 5a, sampling three answers per region has
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Table 6: Effect of using the LVLM alone.
The vanilla LVLM is LLaVA-v1.5-7B. We
report both accuracy and F1 score averaged
across the three splits of POPE. CoReVe can
handle all stages using the LVLM alone.

Method Acc F1

Vanilla 87.00 87.92

LogicCheckGPT (w/ GPT) 91.00 90.81
CoReVe (w/ GPT) 91.56 91.25

LogicCheckGPT (w/o GPT) 83.33 81.01
CoReVe (w/o GPT) 89.89 89.11

Table 7: Effect of using ground truth
bounding boxes. The vanilla LVLM
is LLaVA-v1.5-7B. We report CHAIRS,
CHAIRI, and F1 score on CHAIR. More ac-
curate bounding boxes are beneficial for truly
existent objects but not applicable to halluci-
nated (i.e., nonexistent) ones.

Method CHAIRS ↓ CHAIRI ↓ F1 ↑
Vanilla 52.0 16.2 73.2
CoReVe (default) 30.0 8.7 77.5
CoReVe (w/ GT) 24.0 7.0 76.7

already yielded +1.34% accuracy gains. Increasing the number of sampled answers further improves
the performance. It makes sense as generating more answers tends to increase the diversity of region
descriptions, which is helpful for the subsequent verification stage. The best performance is achieved
by setting L = 7. The performance tends to saturate when L is increased further.

Hallucination Threshold. We then study the effect of the hallucination threshold τ in the verifica-
tion execution stage. The results are shown in Table 5b. The model already reaches its performance
peak by setting τ = 0.1. We observe a noticeable performance drop when continuing to increase the
threshold. A higher threshold tends to misclassify a large number of existent objects as nonexistent,
thus causing a drastic increase in false negatives.

Image Prompt Type. Table 5c studies the types of image prompts to use in the region description
stage. The results demonstrate that using the image content overlaid with the generated bounding
box leads to better performance than using the original image. Apart from the text prompt, using
such a visual prompt better instructs the model to focus on the region of interest when producing
answers. Another naı̈ve way to utilize the local information is to crop the image with the gener-
ated bounding box coordinates. However, we observe that simply cropping the image significantly
degrades the performance due to the loss of the image context.

Bounding Box Shape. Given the bounding box coordinates, how to draw the shape on top of
the image is worth exploring. We consider three possible shapes with the provided coordinates:
rectangle, incircle, and circumcircle. As shown in Table 5d, all shapes can significantly surpass the
baseline, where a standard rectangular shape is the most effective choice.

Bounding Box Color. We compare different bounding box colors to draw in Table 5e. All examined
colors outperform the baseline by a clear margin, demonstrating the robustness of our method. A
red color stands out and yields the best performance. This phenomenon could be related to the
distribution of the datasets used to train the model.

Bounding Box Size. Table 5e ablates the effect of the bounding box size to draw on the image. The
results indicate that using a 1-pixel size is enough to achieve the best performance. A larger size
tends to decrease the performance as it may potentially obscure the content presented in the image.

4.4 FURTHER ANALYSIS

Effect of Using the LVLM Alone. In our default setting, we adopt an LLM (e.g., GPT-3.5) to
facilitate the stages that only involve processing the generated text, i.e., entity extraction, verification
execution, and final response generation. This raises the question of whether the LVLM itself can
perform all the stages, given that an expert model may not always be available in practice. We
verify this using LLaVA-v1.5-7B. The results on POPE are shown in Table 6. Using the model
alone can also surpass the vanilla model by a clear margin, improving the accuracy by 2.89%,
indicating that GPT is not indispensable in CoReVe. In contrast, without the help of an LLM, the
performance of LogicCheckGPT degrades significantly, even underperforming the vanilla model.
We attribute this to LogicCheckGPT’s heavy reliance on GPT to construct the logical closed loop
(e.g., attribute-to-object inquiring). This further demonstrates the promise of our method in reducing
hallucinations without relying on any other models. We also investigate the failure cases of using
the model itself and find that most errors arise from entity extraction and consistency checking.
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Vanilla: Yes, there is a handbag in the
image, and it is placed on the table next to
the pizza.

Question: Is there a handbag in the image?


CoReVe: No, there is no handbag in the
image. The table is shown next to the pizza.

Q: Assume the image width and height are normalized to [0, 1]. Locate
the handbag  and return its bounding box in the format [x_min, y_min,
x_max, y_max], where [x_min, y_min] is the top-left corner and [x_max,
y_max] is the bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any explanation or extra text.


Q: Describe [0.58, 0.18, 0.9, 0.42] in the image in detail.

A: [0.58, 0.18, 0.9, 0.42]

A: (1) In the image, a woman is cutting a pizza with a knife and fork.
(2) A girl is using a knife to cut a pizza into pieces. The pizza is sitting on
a dining table while the girl's bare hand is also visible handling a slice of
pizza. The girl is focused on her task, with the pizza in front of her and her
slice taken from the middle.
(3)  In the image, a woman is sitting down and is about to eat a slice of
pizza with her hands. She is using a knife and fork to cut a slice from the
pizza placed on the table.

Verification Score

handbag: 0.00

Input Image

Result:
Hallucination!


Question: Please describe the image in detail.


Q: Assume the image width and height are normalized to [0, 1]. Locate
the backpack  and return its bounding box in the format [x_min, y_min,
x_max, y_max], where [x_min, y_min] is the top-left corner and [x_max,
y_max] is the bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any explanation or extra text.


Q: Describe [0.1, 0.26, 0.34, 0.65] in the image in detail.

A: [0.1, 0.26, 0.34, 0.65]

A: (1) The person in the image is wearing a blue and white outfit and is
holding ski poles.
(2)  A man in a blue ski jacket wearing skis, appears to be in the lead
during a cross-country skiing race. He is skiing through the snow and
looking ahead, possibly anticipating the course or the finish line.
(3) The first skier in the image is wearing a blue outfit, which includes a
white jacket and a pair of tights. He is focused on the race and looking
uphill. In his hand, he has a pair of skis, which he's using to race. The
scene depicts one of the many skiers in the race near a forest.

Verification Score

backpack: 0.00

Input Image

Result:
Hallucination!


Vanilla: The image captures a group of people
skiing down a snow-covered slope. The skiers
are wearing various skiing gear, including
backpacks and hats. One of the skiers is
wearing a backpack on the left side of the
slope, while another skier has a backpack on
the right side. Additionally, a hat can be seen
on one of the skiers in the middle of the group.

CoReVe: The image captures a group of
people skiing down a snow-covered
slope. The skiers are wearing various skiing
gear, including hats. One of the skiers is
wearing a hat on the left side of the slope,
while another skier has a hat on the right side.
Additionally, a hat can be seen on one of the
skiers in the middle of the group.

(a) Yes-or-No Question
 (b) Open-Ended Question


Figure 4: Example results of CoReVe for LLaVA-1.5. The hallucinated objects are highlighted
in red. We sample three region descriptions per examinee to produce a set of diverse answers for
verification. More examples are provided in Appendix D.

These errors primarily originate from inherent limitations within the model and prompt design. We
expect that a better design of prompts may further unlock the potential of using the model itself for
hallucination mitigation. We leave it for future work.

Effect of Using Ground Truth Bounding Boxes. Our CoReVe relies on the LVLM itself to gener-
ate bounding box coordinates. It is interesting to ask: what if such bounding boxes for objects are
already available and perfect? We investigate this on the CHAIR benchmark, considering it is more
open-ended and contains multiple objects in the images and captions. Specifically, we use ground
truth annotations from the COCO 2014 validation set (Lin et al., 2014). For each query, after ex-
tracting candidate objects from the initial response, we replace the bounding boxes generated by the
LVLM with ground truth ones for those truly existent objects in the image, while keeping all other
procedures unchanged. The results are shown in Table 7. Using ground truth bounding boxes fur-
ther reduces CHAIR hallucination scores, with a slight decrease in the F1 score. This indicates that
more accurate localization benefits truly existent objects. However, ground truth bounding boxes
are, of course, not available for nonexistent objects. Thus, we still have to rely on pseudo bounding
boxes from the LVLM for verification. We expect that the performance of CoReVe can be further
improved when LVLMs get better at localizing objects.

Qualitative Examples. We present two representative examples covering two types of questions:
(a) yes-or-no, and (b) open-ended, using LLaVA-v1.5-7B as an exemplar LVLM. As shown in Fig-
ure 4, CoReVe successfully detects the hallucinated objects “handbag” and “backpack”—both as-
signed a verification score of 0.00—and corrects the initial responses accordingly. By applying
chain-of-region verification, we make the hallucination mitigation process more interpretable—the
self-generated bounding boxes help explain how hallucinations occur. For instance, when asked
to localize “handbag” and “backpack”, the LVLM instead outputs regions corresponding to “hand”
and “skier”, respectively, which commonly co-occur in similar visual contexts. When prompted
with the image containing the bounding boxes, the LVLM tends to refocus on the regions of interest,
where “handbag” and “backpack” no longer appear. Such a process cannot be simply achieved by
external object detection models or manual annotations—we cannot provide bounding boxes for the
hallucinated objects as they do not exist. This further demonstrates the superiority of our method.

5 CONCLUSION

In this work, we have introduced CoReVe, a visual chain-of-verification method that triggers region-
level processing from LVLMs themselves to mitigate their own hallucinations. CoReVe mimics how
humans comprehend intricate visual information by delving into details in specific image regions.
Our method can be seamlessly applied to various LVLMs without retraining or relying on external
detection models. Extensive experiments on POPE, MME, CHAIR, and GPT-4o assisted evalua-
tion demonstrate the superiority of our method in both performance and efficiency. We hope our
explorations can pave the way for more efficient, reliable, and interpretable hallucination mitigation.
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ETHICS STATEMENT

This work addresses the critical object hallucination issue to enhance the reliability and trustwor-
thiness of LVLMs. The proposed method reduces the risks of misinformation and biased content,
which advances the responsible development of artificial intelligence (AI) systems and promotes
greater public trust in AI technologies.

REPRODUCIBILITY STATEMENT

We provide detailed hyperparameter specifications for our experiments in the main text (Section 4)
and the supplementary material (Appendices A–C) to ensure reproducibility. We will release the
code to the research community for reproducible research.
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A MORE IMPLEMENTATION DETAILS

We conduct our experiments using an NVIDIA L40S GPU (48GB) and an AMD EPYC 7702 CPU.
All implementations are based on the PyTorch framework (Paszke et al., 2019), incorporating com-
ponents from the HuggingFace Transformers library (Wolf et al., 2019). Unless otherwise specified,
we maintain the default hyperparameter settings for all LVLMs. Specifically, we set the number of
sampled answers L = 7 for region description, and the hallucination threshold τ = 0.1 for verifi-
cation execution. We adopt the image overlaid with the bounding box as the visual prompt, where
the shape of the bounding box is a rectangle, the color of the bounding box is red, and the size of
the bounding box is 1 pixel. In addition, we employ GPT-3.5 Turbo (gpt-3.5-turbo-0125) as the
default LLM to help process the generated text for entity extraction, verification execution, and final
response generation.

Note that we employ GPT-3.5 only for a fair comparison with the prior state of the art, i.e., Log-
icCheckGPT (Wu et al., 2024). We have shown in the main text that our CoReVe can still achieve
promising results without relying on any external models, which cannot be achieved by previous
methods. It is also worth mentioning that using the same hyperparameters across different LVLMs
can be suboptimal. Nevertheless, CoReVe outperforms each baseline regardless of models, tasks,
and settings.

B MORE BENCHMARK DETAILS

B.1 POPE

POPE (Li et al., 2023b) is a hallucination evaluation benchmark designed in the VQA paradigm.
Specifically, it evaluates hallucinations by querying LVLMs with the questions in the form of “Is
there a/an <object> in the image?”, where <object> is selected from three differ-
ent types of splits: random, popular, and adversarial. For the “random” split, objects are taken
randomly from the entire dataset. For the “popular” split, objects are chosen from the most frequent
object list. For the “adversarial” split, objects that are highly related to the image objects are selected.
We conduct our evaluation on the COCO 2014 validation set (Lin et al., 2014). Following Wu et al.
(2024), for each split, we sample 50 images and 6 questions for each image, resulting in a total of
300 questions that are evenly distributed between positive and negative samples (50%-50%). We
evaluate the final performance using both accuracy and F1 score.

B.2 MME

MME (Fu et al., 2023) is a VQA-based benchmark for evaluating the perceptual and cognitive capa-
bilities of LVLMs across a wide range of subtasks. Following Wu et al. (2024), we use the existence
subset for object-level hallucination evaluation. Specifically, similar to POPE, MME consists of two
binary “Yes-or-No” questions for each image in the subset. We adopt accuracy and accuracy+ as the
evaluation metrics. The former is calculated based on each question, while the latter is calculated
based on each image, requiring both questions to be answered correctly.

B.3 CHAIR

Apart from binary “Yes-or-No” questions, we adopt CHAIR (Rohrbach et al., 2018) to evaluate
hallucinations in the image captioning task. Specifically, CHAIR operates by computing the pro-
portion of all objects mentioned in the caption that do not exist in the ground-truth annotations.
CHAIR comprises two main metrics, including CHAIRI and CHAIRS that assess instance-level and
sentence-level hallucinations, respectively. They are formulated as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

,

CHAIRS =
|{captions w/ hallucinated objects}|

|{all captions}|
,

(2)

where lower values indicate fewer hallucinations. Besides, we also consider the F1 score to assess
the richness and the accuracy of the generated captions.
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Table 8: Prompt template for entity extraction. {In-context examples} are in-context examples
for better instruction. {Input sentence} is the output from the initial response generation stage.

System prompt
You are a language assistant that helps to extract information from given sentences.

Prompt
You are given a sentence, extract the entities within the sentence for me.

[Task]
Your task is to extract the common objects and summarize them as general categories without repetition,
merging essentially similar objects. Avoid extracting abstract or non-specific entities. Extract entity in the
singular form. Output all the extracted types of items in one line and separate each object type with a period.
If there is nothing to output, then output a single “None”. DO NOT RESPOND WITH ANYTHING ELSE.

Here are examples:
{In-context examples}

Now complete the following:

[Sentence]
{Input sentence}

[Response]

Table 9: Prompt template for verification execution. {Input statement} is the output from the
region description stage. {object} is the entity to be verified based on the statement.

System prompt
You are a language assistant that helps to answer the question according to instructions.

Prompt
You are given a statement and a question.

[Task]
Your task is to answer the question based on the statement. The statement is about some objects. The question
is to ask whether some specific object exists.
1. Your response should be limited to one of the following two choices: “Yes”/“No”.
2. Note that instances of a certain category can also belong to its super-categories. For example, a baseball is
a subclass of the sports ball.
3. Note that the table is equivalent to the dining table here.
4. DO NOT RESPOND WITH ANYTHING ELSE.

[Response Format]
Yes/No

Now complete the following:

[Statement]
{Input statement}

[Question]
Is there a {object} in the statement?

[Response]

B.4 GPT-4O ASSISTED EVALUATION

To further evaluate the effectiveness of our method in image description tasks, we go beyond CHAIR
metrics and adopt GPT-4o for open-ended evaluation. Specifically, following the common proto-
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Table 10: Prompt template for final response generation. {In-context examples} are in-context
examples for better instruction. {Input query} is the question asked by the user. {Input passage} is
the initial response to be corrected. {Input information} is the supplementary information from the
verification execution stage.

System prompt
You are a language assistant that helps to refine a passage according to instructions.

Prompt
You are given a query, a passage and supplementary information.

[Task]
You are required to correct and output the refined passage in a fluent and natural style, following these rules:
1. Correct the sentences in the passage if they are inconsistent with the supplementary information. Remove
the objects that are confirmed to not exist in the supplementary information.
2. Do not modify correct sentences and introduce additional information.
3. When giving refined passage, also pay attention to the given query. The refined passage should be a
reasonable answer to the query.
4. Note the dining table is equivalent to the table.
Output only the corrected passage, without introducing extra contents.

Here are examples:
{In-context examples}

Now complete the following:

[Query]
{Input query}

[Passage]
{Input passage}

[Supplementary Information]
{Input information}

[Response]

col (Liu et al., 2024a; Yin et al., 2024; Wu et al., 2024), we sample 500 images from the COCO
2014 validation set and ask the model to generate detailed descriptions. Afterward, we prompt GPT-
4o to score the original response and our response based on the instruction and the image. GPT-4o
evaluation takes into account two dimensions: Accuracy and Relevancy. More detailed prompt
construction is provided in Section C.4.

C PROMPT TEMPLATES

In this section, we provide the detailed prompt templates used in the following stages: entity ex-
traction, verification execution, and final response generation. In addition, we provide the detailed
prompt template used for GPT-4o assisted evaluation.

C.1 ENTITY EXTRACTION

The prompt template for entity extraction is detailed in Table 8.

C.2 VERIFICATION EXECUTION

The prompt template for verification execution is detailed in Table 9.
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Table 11: Prompt template for GPT-4o assisted evaluation. {Response of Assistant 1} and
{Response of Assistant 2} are the initial response and the final response, respectively.

System prompt
You are required to score the performance of two AI assistants in describing a given image.

Prompt
You should pay extra attention to the hallucination, which refers to the part of descriptions that are inconsistent
with the image content, such as claiming the existence of something not present in the image or describing
incorrectly in terms of the counts, positions, or colors of objects in the image. Please rate the responses of the
assistants on a scale of 1 to 10, where a higher score indicates better performance, according to the following
criteria:
1: Accuracy: whether the response is accurate with respect to the image content. Responses with fewer
hallucinations should be given higher scores.
2: Relevancy: whether the response directly follows the instruction.
Please output the scores for each criterion, containing only two values indicating the scores for Assistant 1 and
2, respectively. The two scores are separated by a space. Following the scores, please provide an explanation of
your evaluation, avoiding any potential bias and ensuring that the order in which the responses were presented
does not affect your judgment.

[Assistant 1]
{Response of Assistant 1}
[End of Assistant 1]

[Assistant 2]
{Response of Assistant 2}
[End of Assistant 2]

Output format:

Accuracy: <Scores of the two answers>
Reason:

Relevancy: <Scores of the two answers>
Reason:

C.3 FINAL RESPONSE GENERATION

The prompt template for final response generation is detailed in Table 10.

C.4 GPT-4O ASSISTED EVALUATION

The prompt template for GPT-4o assisted evaluation is detailed in Table 11.

D MORE QUALITATIVE RESULTS

In this section, we present more qualitative results, including two types of questions: (i) yes-or-
no questions, and (ii) open-ended questions. We use LLaVA-v1.5-7B as an exemplar LVLM for
visualization.

D.1 YES-OR-NO QUESTIONS

Figure 5 provides more examples with two yes-or-no questions: “Is there a handbag in the image?”
and “Is there a truck in the image?”. Our CoReVe assigns a verification score of 0.67 to the exis-
tent object ‘handbag” and 0.00 to the hallucinated object “truck”, respectively. Since the score for
“truck” is lower than our pre-defined threshold of 0.1, CoReVe effectively identifies the “truck” as
the hallucinated object and corrects the initial response accordingly.

For existent objects, the bounding box coordinates generated from the LVLM provide a rough lo-
cation for them, which better instructs the LVLM to focus on specific image regions before gen-
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Question: Is there a handbag in the image?


Q: Assume the image width and height are normalized to [0, 1]. Locate the handbag and return its bounding box in
the format [x_min, y_min, x_max, y_max], where [x_min, y_min] is the top-left corner and [x_max, y_max] is the
bottom-right corner of the bounding box. Output only the four numbers in a single list. Do not include any
explanation or extra text.


Q: Describe [0.38, 0.4, 0.52, 0.7] in the image in detail.

A: [0.38, 0.4, 0.52, 0.7]

A: (1) The woman in the image is wearing a white shirt and carrying a black umbrella. She is walking down the
street, possibly with another person. The umbrella is open, providing protection from the elements. The woman is
also carrying a handbag, which is visible as she walks. The scene captures a typical day in an urban environment,
with people going about their daily activities.
(2) The woman in the image is walking on a city street holding an umbrella. She is carrying a white purse while
walking down the busy city street. She appears to be navigating her way along the street, possibly engaging in a
conversation with another person or simply enjoying her surroundings.
(3) In the image, two women are crossing the street at a crosswalk, each holding an umbrella. The woman on the
left is wearing a white sweater, while the woman on the right is standing next to her, both engaged in their task.
The scene is sunny, and the women are using umbrellas to protect themselves from the sunlight.

Q: Assume the image width and height are normalized to [0, 1]. Locate the truck and return its bounding box in the
format [x_min, y_min, x_max, y_max], where [x_min, y_min] is the top-left corner and [x_max, y_max] is the
bottom-right corner of the bounding box. Output only the four numbers in a single list. Do not include any
explanation or extra text.

A: [0.64, 0.4, 0.86, 0.55]

Q: Describe [0.64, 0.4, 0.86, 0.55] in the image in detail.

A: (1) The white car in the image is parked on the side of the road. It is a compact vehicle, and it is positioned near
the curb. The car is parked in front of a building.
(2) In the image, a grey van is parked on the street. The van is located next to a pedestrian crossing and is visible
on the right side of the scene.
(3) In the image, there is a white van parked at a street corner. This van is located in front of the woman walking
under an umbrella. The woman walking beside the van is wearing a white shirt and has her umbrella open,
shielding herself from the sun. The scene is a typical street ambiance, depicting everyday life with vehicles,
pedestrians, and shade provided by the umbrella.

Verification Score




handbag: 0.67    truck: 0.00

Input Image

Chain-of-Region Verification

Vanilla: Yes, there is a handbag in the image, and it is being carried by one of the women walking across the street.

CoReVe: Yes, there is a handbag in the image. It is being carried by one of the women walking across the street.

Question: Is there a truck in the image?


Vanilla: Yes, there is a truck in the image, and the two women are walking across the street in front of it.

CoReVe: No, there is no truck in the image. The two women are walking across the street.

Figure 5: Example results of CoReVe for yes-or-no questions. The vanilla LVLM is LLaVA-
v1.5-7B. The existent objects are highlighted in blue, while the hallucinated objects are highlighted
in red. We sample three region descriptions per examinee to produce a set of diverse answers for
verification.

erating the final answer. For nonexistent objects, the generated bounding box coordinates are still
meaningful—they explain how the LVLM hallucinates to some extent. For example, when asked to
provide the bounding box coordinates for the “truck”, the LVLM actually outputs the location of a
car in the background. This indicates that the LVLM mistakes the “car” for a “truck”. After being
prompted with the image containing the bounding box, the LVLM tends to refocus on the region of
interest, where the “truck” no longer appears. This process also makes the response from the LVLM
more interpretable, as it provides cues about how the model derives its final answer.

D.2 OPEN-ENDED QUESTIONS

Figure 6 provides more examples with an open-ended question: “Please describe the image in de-
tail.” As the length of the generated response increases, the LVLM tends to hallucinate more nonex-
istent objects, causing a more severe hallucination issue. Nevertheless, our CoReVe successfully
detects the hallucinated objects “chair”, “potted plants”, “clock”, and “vase”, all of which have a
verification score of 0.00.
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Question: Please describe the image in detail.


Vanilla: The image features a unique art installation in a museum setting. The centerpiece of the display is a toilet, which is painted with a floral design and has a wooden seat. The toilet is placed
on a wooden stand, and it appears to be the main focus of the exhibit. 
In addition to the toilet, there are several other objects in the scene. A bench is located on the right side of the toilet, and a chair can be seen in the background. There are also two potted plants,
one on the left side and the other on the right side of the toilet. A clock is mounted on the wall above the toilet, and a vase is placed on the left side of the scene.

CoReVe: The image features a unique art installation in a museum setting. The centerpiece of the display is a toilet, which is painted with a floral design and has a wooden seat. The toilet is placed
on a wooden stand, and it appears to be the main focus of the exhibit. In addition to the toilet, there are several other objects in the scene. A bench is located on the right side of the toilet.

Q: Assume the image width and height are normalized to
[0, 1]. Locate the chair and return its bounding box in the
format [x_min, y_min, x_max, y_max], where [x_min,
y_min] is the top-left corner and [x_max, y_max] is the
bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any
explanation or extra text.


Q: Describe [0.54, 0.24, 0.87, 0.48] in the image in detail.

A: [0.54, 0.24, 0.87, 0.48]

A:  (1) The wooden bench in the image is located in the
middle of the room, surrounded by paintings. It is
positioned between two green poles, which are likely part
of the display. The bench appears to be a part of the art
exhibit, possibly serving as a seating area for visitors to
rest and appreciate the artwork. The bench is situated in
front of a toilet, which is an unusual and unexpected
element in the scene.
(2) The bench in the image is made of wood and is placed
in a museum setting. It looks like a long and narrow pew,
with a seat of the bench that is placed towards the right
side of the scene. The bench is located on a carpeted floor,
emphasizing its placement within a well-maintained and
controlled environment such as a museum. The bench
seems to be a common seating element found in
museums, making it easy for visitors to rest or move
between exhibits.
(3) To the right side of the image, a bench can be seen
near the back wall. This bench is situated beneath a small
window with wood siding, adding warmth and detail to
the room. The bench occupies most of the available space
under the window and runs horizontally around the entire
length of the wood slat window, providing a comfortable
seating area perfect for relaxation.

Q: Assume the image width and height are normalized to
[0, 1]. Locate the  potted plants  and return its bounding
box in the format [x_min, y_min, x_max, y_max], where
[x_min, y_min] is the top-left corner and [x_max, y_max]
is the bottom-right corner of the bounding box. Output
only the four numbers in a single list. Do not include any
explanation or extra text.

A: [0.17, 0.0, 0.26, 0.12]

Q: Describe [0.17, 0.0, 0.26, 0.12] in the image in detail.

A: (1) The image features a painting on the wall, which is
located above the toilet. The painting is a part of the art
display in the room.
(2) The rectangular picture with blue frame is displayed in
the background.
(3) This is a picture on wood.

Q: Assume the image width and height are normalized to
[0, 1]. Locate the clock and return its bounding box in the
format [x_min, y_min, x_max, y_max], where [x_min,
y_min] is the top-left corner and [x_max, y_max] is the
bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any
explanation or extra text.

A: [0.36, 0.13, 0.55, 0.48]

Q: Describe [0.36, 0.13, 0.55, 0.48] in the image in detail.

A:  (1)  The image features a large toilet with a wooden
seat and a wooden lid. The toilet is placed on a wooden
stand, and it is surrounded by a few other wooden items.
The toilet is positioned in the center of the scene, and it
appears to be the main focus of the image. The wooden
stand and the toilet's design give it a unique and artistic
appearance, making it stand out in the room.
(2) In the image, there is a long pipe with a circular end
that is attached to the green posts. The green posts have a
metal-like appearance and a curved shape. These posts
surround not only the toilet at the center of the image, but
also extend around the frame, creating a visually
interesting and unique display. The curved structure
surrounding the toilet gives it the appearance of being
contained securely within the space.
(3)  The art piece features an old toilet as the object of
display. To create a unique, artistic statement, an organ
pipe is attached to the toilet bowl, adding an unexpected
and intriguing element to the composition. The setup is a
black box that includes a green wall, creating a
captivating contrast between the toilet and the
surrounding environment. This creative arrangement of
items is displayed in a museum, serving as a thought-
provoking exhibit for visitors.

Q: Assume the image width and height are normalized to
[0, 1]. Locate the vase and return its bounding box in the
format [x_min, y_min, x_max, y_max], where [x_min,
y_min] is the top-left corner and [x_max, y_max] is the
bottom-right corner of the bounding box. Output only the
four numbers in a single list. Do not include any
explanation or extra text.

A: [0.36, 0.13, 0.54, 0.49]

Q: Describe [0.36, 0.13, 0.54, 0.49] in the image in detail.

A:  (1)  The image features a large toilet with a wooden
seat and a wooden lid. The toilet is placed on a wooden
stand, and it is surrounded by a few other items. There is
a saxophone leaning against the toilet, and a bench is
located nearby. The scene appears to be a display or an art
installation, as the toilet is placed in a room with a few
other objects.
(2) The wooden pipe, which is a stand for the odd toilet-
shaped urinal, is made of wood and features a handle on
the top. It provides support and security for placing the
toilet-shaped urinal and makes it convenient for use. Its
design enhances the overall aesthetic and functionality of
the display in this unique setting.
(3) The object standing next to the toilet is a cello or a
large trombone made of wood. It appears to be a display
or even a prop for staging artworks, such as portraying the
creative interpretation of a toilet with a musical
instrument as a form of expression. The cello, which is an
instrument belonging to the string family, is connected to
the toilet seat by a wire or chord, further emphasizing the
relationship between music and everyday objects.

Verification Score




chair: 0.00    potted plants: 0.00    clock: 0.00    vase: 0.00

Input Image

Chain-of-Region Verification

Figure 6: Example results of CoReVe for open-ended questions. The vanilla LVLM is LLaVA-
v1.5-7B. The hallucinated objects are highlighted in red. We sample three region descriptions per
examinee to produce a set of diverse answers for verification.

Similar to the cases of yes-or-no questions, such a chain-of-region verification further enhances the
interpretability of the hallucination mitigation process. More specifically, with the aid of the gen-
erated bounding boxes and region descriptions, one can easily understand that the LVLM misiden-
tifies the bench as a “chair”, the painting as “potted plants”, the musical-instrument-shaped pipe
as a “clock” or a “vase”, respectively. Based on this information, the LVLM can finally correct its
initially hallucinated response.
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