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Abstract: The pre-trained language model based on Transformers possesses exceptional general text-
understanding capabilities, empowering it to adeptly manage a variety of tasks. However, the topic
classification ability of the pre-trained language model will be seriously affected in the face of long
colloquial texts, expressions with similar semantics but completely different expressions, and text
errors caused by partial speech recognition. We propose a long-text topic classification method called
RQ-OSPTrans to effectively address these challenges. To this end, two parallel learning modules are
proposed to learn long texts, namely, the repeat question module and the overall semantic perception
module. The overall semantic perception module will conduct average pooling on the semantic
embeddings produced by BERT, in addition to multi-layer perceptron learning. The repeat question
module will learn the text-embedding matrix, extracting detailed clues for classification based on
words as fundamental elements. Comprehensive experiments demonstrate that RQ-OSPTrans can
achieve a generalization performance of 98.5% on the Chinese dataset THUCNews. Moreover,
RQ-OSPTrans can achieve state-of-the-art performance on the arXiv-10 dataset (84.4%) and has a
comparable performance with other state-of-the-art pre-trained models on the AG’s News dataset.
Finally, the results indicate that our method exhibits a superior performance compared with the
baseline methods on small-scale domain-specific datasets by validating RQ-OSPTrans on a specific
task scenario by using our custom-built dataset CCIPC.

Keywords: topic classification; residual connection; pre-trained model; Transformer

1. Introduction

The volume of textual data has experienced exponential growth with the extensive
application of information technology across various industries. These data encompass vast
textual information from diverse domains, including recorded speech data, news articles,
social media posts, academic papers, and more. Effectively classifying and organizing
textual data have become crucial tasks. Text classification facilitates the precise identification
of textual information, thereby enhancing text comprehension and enabling the provision
of more intelligent and personalized services across diverse application scenarios.

Topic classification, as a pivotal engineering task in natural language processing
(NLP), can rapidly and accurately discern the relevant textual theme. This task plays a
significant role in various application scenarios, such as educational assessments, sentiment
analysis, and public opinion monitoring. Conducting sentiment analysis on social media
aids businesses in understanding users’ attitudes and emotions toward their products or
services, facilitating adjustments in marketing strategies. Additionally, performing topic
classification in news reporting assists media organizations in swiftly comprehending the
trends of current events, thereby enhancing reporting efficiency.
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1.1. Challenges

Although machine-learning and deep-learning methods excel in text classification
tasks, their performance may be constrained by the window size and parameter gradients.
In some challenging scenarios (Figure 1), such as the same type of text with different
contents, transcription errors, and written and spoken expressions with the same meaning,
information that plays a crucial role in text classification is hidden in expressions with
less similarity. Accordingly, leveraging as many semantic associations as possible from
a holistic perspective of full-text data is essential in order to attain robust and highly
accurate predictions. In specific application domains, some pressing challenges remain to
be addressed. The challenges can be summarized into the following three aspects:

1. The presence of colloquial expressions and noise in real-time interactive texts such as
news interviews, teacher lectures, and conference interviews will cause interference
in semantic comprehension, and put forward higher requirements for the accuracy of
topic classification.

2. The same topic may have various expressions in different contexts, different sub-topics
of the same topic may vary greatly, and the text organization structure may show
subjectivity, thus increasing the complexity of the topic classification task.

3. Speech recognition systems have achieved excellent text transcription performance in
recent years, but, in the face of the situation described in Challenge 1, they may further
exacerbate the difficulty of comprehension of colloquial expressions in the spoken table
or recognizing the noise as text, which may affect the accuracy of topic classification.

Technology

Written expression Spoken expression

Challenge 1

Lx

The company's financial performance for the

last fiscal year was commendable, with a
notable increase in both revenue and profit
margins.

This achievement can be attributed to our
strategic initiatives aimed at enhancing
operational efficiency and expanding market
reach. (a)

last year! We saw a big jump in revenue and
profits.

I think it's because of all the cool stuff we did to
make things run smoother and reach more
customers.

—

(b)

Challenge 2

P99

P9
JuE
844

Electronic technology

5-inch HD New Product: Onda VX565HD Now
Discounted by 100 Yuan

Onda's HD MP4 New Product VX565HD,
which fully supports HD MP4 with rich
functions and powerful video capabilities, has
integrated practical OTG interconnection
features. It is reported that this 5.0-inch HD new
product VX565HD has been discounted by 100
yuan, with the latest price starting from 8GB/499

yuan. (©)

Agricultural technology

Transgenic rice pilot project imminent: Over a
hundred scholars oppose commercial
cultivation.

According to sources familiar with the matter,
transgenic rice will soon undergo commercial
pilot planting in Hubei and Shandong
provinces, as reported by journalists Wu Lihua
and Chen Yanpeng in Beijing for the Huaxia
Times.

Nonon AN

NN

(d)

Challenge 3

¢

Learning is a process that requires
long-term commitment, continuously
accumulating and enhancing one's
knowledge and abilities.

Along the journey of learning, it's
important to be explorative, daring to

Earning is a process that requires
long-term commitment, continuously
accumulating and enhancing one's
knowledge and abilities.

Along the journey of burning, it's
important to be explorative, daring to

—

challenge one's limits, and believing in
one's potential in order to progress
continuously.

challenge one's limits, and believing in
Speech recognition one's potential in order to progress
and continuously.
transcription (e)

Figure 1. Three challenges exist in text classification. (a,b) Written and spoken expressions with the
same meaning. (a) Written expression. (b) Spoken expression. (¢,d) Two paragraphs on the same
topic. (c) Electronics technology within the technology category. (d) Agricultural technology within
the technology category. (e) Error in speech recognition transcription.



Appl. Sci. 2024, 14, 4259

30f25

1.2. Observation and Insights

In this study, we identified two insights through observation to facilitate text classifi-
cation by leveraging the fusion of critical local contextual semantic and global semantic
information. First, crucial semantics determining text categories often manifest in differ-
ent positions across various text genres. For instance, Figure 1a,b depict that the critical
information determining the category attribution in news articles typically appears at the
beginning of paragraphs. Emphasizing the use of the initial paragraph information aids in
determining the text categories. Nonetheless, the distinctions between electronic technol-
ogy products and agricultural technology applications depicted in Figure 1a,b, respectively,
are significant, necessitating a further category differentiation. Figure 1d,e show that the
meanings conveyed in written and spoken expressions are roughly the same. In such cases,
genre classification based solely on the overall semantics poses significant challenges, as
discerning genre categories without a careful comprehension of each sentence becomes
difficult. Without integrating full-text semantics with sentence-level semantics to confirm
text categories in extensive samples, classification errors are prone to occur. Thus, confirm-
ing the approximate classification of texts through holistic semantic learning, combined
with fine-grained learning based on sentence-level associations, facilitates the accurate
prediction in samples with implicit nested label associations.

Second, when critical text keywords are erroneous or missing, correction can be
achieved by leveraging other semantic information within the entire text. This notion
suggests that, in long-text learning, individual keywords alone cannot determine the
overall semantics. Guiding classification with overall semantics can enhance accuracy.
For example, Figure 1c demonstrates that the first word guiding the overall semantics in
the original text is incorrectly recognized after being transcribed by a speech recognition
system. Upon reading the entire text, the existence of this error becomes apparent and does
not result in any difficulty in understanding the semantics.

Key insight I: Overall semantics guide understanding

In specific texts, situations arise where critical keywords are missing or erroneous. At
such times, the overall semantics of the text are crucial for comprehension and are more
robust than word-level and sentence-level semantic learning (Figure 1c). Although various
methods exist for text learning, only the overall semantics can guide one’s understanding,
rectifying errors in word and sentence vectors that may disrupt classification due to internal
critical information errors.

Key insight II: Joint semantic learning is robust

We find that word vector semantic learning and overall semantic learning have advan-
tages in text feature learning. Accordingly, these two learning modes can serve as parallel
structures to assist each other in feature learning. We term this mechanism joint semantic
learning. When the sentence-level semantics and overall semantics coexist, extreme situa-
tions in text data can be addressed, as depicted in the three parts of Figure 1. In comparison
with CNN and RNN architectures, Transformers possess notable long-distance dependency
learning capabilities, rendering them suitable carriers for joint semantic learning.

In this section, we define three levels of semantic representation units—“overall
semantics of the text”, “word-level semantics”, and “sentence-level semantics”—and the
specific meanings and purpose of these three levels of units will be described in Section 3.

1.3. Contributions

In this work, we aim to address the three challenges mentioned above in the task of
categorizing topics. Inspired by the above two key insights, we propose a method based on
a residual-connected Transformer encoder and an overall semantic perception approach
named RQ-OSPTrans. Specifically, this method preserves a copy for the input of each layer
of the encoder, maximizing the retention of all features of the text sequence and allowing the
model to relearn to increase the stability in classification. The preserved copies serve as a
“re-questioning” of the previous round of learning results as the network deepens, requiring
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the model to more thoroughly relearn and provide classification predictions. Moreover,
with the aid of feature space normalization, this model maintains a stable distribution
of features in the input’s feature space, enhancing the precision of attention mechanism
learning and the determinism of feature partitioning in the multi-layer perceptron (MLP).
In the BERT [1] output structure, an overall semantic perception module based on the
global semantic pooling expression is applied to learn global semantic features from high-
dimensional data and guide the classification output. Finally, a A factor is introduced to
weigh the sum of the classification and guided outputs, combined with Softmax weights,
ensuring that the model’s output fully considers the capabilities of each learner and the
contribution of the different semantics to the classification.
The main contributions of this work can be summarized as follows:

1.  This work proposes a method based on a repeat question module and an overall
semantic perception approach named RQ-OSPTrans to address the challenges in
long-text classification with noise. The model achieves a more effective long-text
classification by combining non-adjacent sequence question repetition learning with
overall semantic perception.

2. This work establishes a dual-classification learning mechanism through parallel net-
works to compute the classification and guided outputs separately for annotating
labels on a given text segment. A semantic correction mechanism, amplified by
Softmax weights, is introduced to enhance the accuracy of identifying textual knowl-
edge points and detecting moral values through learning non-adjacent features in
long sequences.

3. RQ-OSPTrans is validated to be competent in Chinese text topic recognition and
derived semantic detection in most scenarios through extensive experiments on the
self-built datasets CIPCC, Chinese topic recognition datasets, and publicly available
English datasets. This mechanism performs at par with state-of-the-art methods in
English tasks.

The remaining sections of this paper are structured as follows: Section 2 introduces
related work, including deep-learning methods and pre-trained methods based on the
Transformer. Section 3 describes the detailed structure and network propagation logic of
RQ-OSPTrans, comprising word sequence embedding learning, repeat question modules,
and overall semantic perception modules. Section 4 details the dataset selection and
training results. Section 5 concludes our work.

2. Related Work

This work refers to many text classification methods, and, after systematically ob-
serving the methods from traditional methods to pre-trained models, we draw on the
computational mechanism of advanced models to build our models.

2.1. Traditional Methods for Text Classification

In previous research, problem transformation methods and adaptive techniques have
made a staged progress on this issue. Problem transformation methods, such as binary
relevance (BR) [2], classifier chains (CC) [3], and CLR [4], have basic text classification capa-
bilities, address multi-label classification by constructing binary classifiers for each label,
sequentially considering label classification, or transforming classification into a ranking
problem. Adaptive techniques utilize sophisticated machine-learning methods to directly
address associations between labels and imbalanced different classes. Algorithms, such
as Rank-SVM [5], address nonlinear issues but may not consider label interdependencies.
The CML [6] algorithm combines conditional random fields to handle label correlations in
multi-label classification.

Deep-learning methods have emerged as the mainstream approach for text classifica-
tion compared with question transformation methods and machine-learning approaches.
Existing deep-learning models can be categorized into several types: convolutional neural
network models (CNN, e.g., TextCNN [7] and DPCNN [8]), recurrent neural networks and
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their variants (recurrent neural network [RNN], e.g., RNN [9], LSTM [10], GRU [11], and
their bidirectional models), and joint network models (e.g., CNN-RNN [12]). All these
models achieved an impressive performance.

2.2. Text Classification Method Using Attention Mechanism and Joint Network

Although text classification methods based on CNN or RNN are highly effective,
incorporating the knowledge of the document structure into the model architecture can
achieve an improved representation. Yang et al. [13] proposed the hierarchical attention
network (HAN) in this context. HAN utilizes word-level and sentence-level attention
mechanisms. This mechanism enables the model to focus on crucial content within the
document, thereby better integrating the context to assign higher weights to keywords
and sentences, ultimately resulting in an excellent performance. You et al. [14] introduced
the Attention-XML model, which effectively leverages the most relevant multiple labels
from an extensive label set to annotate a given text. This approach efficiently addresses
the long-tail problem of labels, significantly improving the classification performance of
each label. Zeng et al. [15] proposed a multi-task multi-granularity attention network. By
combining coarse-grained classifiers and fine-grained classifiers, data with category inter-
sections are effectively learned. At the same time, the gradient control module controls the
gradient propagation of the two-level granular learner to suppress the interference caused
by irrelevant features, achieving a good classification performance. Related methods [16]
using a multi-head attention or connection attention mechanism achieved a great score in
recognition tasks.

In addition, the joint network method shows effectiveness in text classification tasks:
the architectures of CNNs, RNNSs, and attention networks can be combined to form joint
networks. In Zhou et al. [17], the CNN was utilized to extract a sequence of higher-
level phrase representations, which were subsequently fed into an LSTM to obtain the
sentence representation. Lai et al. [18] introduced TextRCNN, building upon the TextCNN
model. This model utilizes the RNN mechanism to capture sequential dependencies
and CNN to extract crucial local features. Zhou et al. [19] proposed BLSTM-2DCNN
based on TextRCNN, which utilizes BLSTM to capture long-term sentence dependencies
and 2D convolution with 2D max pooling operations to obtain the representation of the
entire sentence.

However, a certain distance limitation will always exist in handling the correlations
within text sequences, regardless of whether it is an attention or joint model due to the lack
of an effective learning mechanism for long-distance dependencies. The learning capability
of the model is always constrained by various factors, such as the window size, preceding
hierarchical representation, and model gradients.

2.3. Transformer Methods for Text Classification

Vaswani et al. [20] introduced the Transformer model, which made remarkable
progress in machine translation and language modeling tasks. This network, utilizing
an encoder—decoder structure, captures long-distance dependencies in non-adjacent se-
quences solely through attention mechanisms. Methods [21,22] based on the Transformer
also improved the classification performance on multiple datasets.

Google Al proposed the pre-trained language representation model BERT, which
achieved bidirectional context encoding, improving the performance of downstream NLP
tasks. In 2019, Google introduced the XLNet [23] model, which combines the advantages
of the autoencoder and autoregressive models to further optimize the BERT model. XLNet
can utilize a bidirectional context while predicting the current word, addressing some of
the inconsistencies in pre-training and fine-tuning observed in BERT, and better capturing
bidirectional context information. In the same year, the RoBERTa model proposed by
Liu et al. [24] and the ALBERT model proposed by Lan [25] improved the performance
of the BERT model by adjusting the pre-training strategies and sharing the cross-layer
parameters. In 2020, the MacBERT model introduced by Yiming Cui [26] improved upon
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the RoBERTa model by using the masked language model (MLM) as a correction masking
strategy. Since then, improved models based on BERT have optimized the performance
of text classification tasks in multiple environments: I-BERT [27] uses integer operations
to quantify reasoning; Sentence-BERT [28] uses twin and triplet network structures to
derive semantically meaningful sentence embeddings, achieving a good performance on
sentence-to-sentence regression tasks; BinaryBERT [29] binarizes BERT parameters by quan-
tizing activations, pushing BERT quantization to the limit and reducing the model size by
24 times; CoBERT [30] is flexible by learning a consistent representation of self-attention
and integrates knowledge from the Transformer and LSTM to improve overall performance;
DistilBERT [31] uses knowledge distillation technology to compress the size of the BERT
model, maintaining performance while reducing the number of model parameters; and
TinyBERT [32] uses the teacher-student knowledge distillation strategy to compress the
BERT model to a smaller size, making the model more suitable for resource-constrained
environments. SpanBERT [33] modifies the pre-training task to predict contiguous seg-
ments (spans) of text rather than individual words to capture long-distance dependencies.
Wang et al. [34] introduced the DeepNet model, which improved the stability of the Trans-
former and successfully extended it to 1000 layers, surpassing the depth of previous
deep Transformers by an order of magnitude. The X-transformer model proposed by
Huey-Ing [35] in the same year focused on adjusting the sub-layers of the Transformer. The
X-transformer model aims to optimize the overall efficiency of the Transformer and achieve
a better performance by reducing the number of model parameters in the encoder and
decoder, modifying the Transformer architecture, and shortening the training time.

Sun et al. [36] presented a novel large-language-model (LLM) autoregressive architec-
ture called RetNet. This model introduces a multi-scale preservation mechanism to replace
multi-head attention, providing advantages in terms of parallel training, a low inference
cost, and an excellent performance. By contrast, other architectures, such as linear Trans-
former, recurrent network, and Transformer, could only simultaneously possess two out of
these three advantages. The unique characteristics of RetNet suggest that it could become a
powerful successor to the Transformer. Meanwhile, LLMs based on the Transformer have
made significant breakthroughs in text tasks. Models, such as the GPT [37] series, Qwen,
and ChatGLM [38], can complete topic classification tasks with minimal prompts.

In general, fine-tuning a large language model requires a large computational cost and
a large amount of data, the pre-trained model lacks the accuracy advantage of subdividing
tasks for general NLP tasks, and the deep-learning methods based on sequential models,
attention mechanisms, and joint networks still cannot handle long-distance non-adjacent
text dependencies well, and lack the mechanism to fully learn such classified cues and
guide feature extraction with the extracted cues. Combined with the above features and
problems, this work uses a pre-trained language model to represent the text, divides the
representation results into three-level semantic representations and inputs them into the
upper-layer network, uses a “repeated questioning” mechanism to guide the subsequent
feature extraction of high-weight clues, and, finally, combines the overall semantic learning
and weight amplification to improve the accuracy of topic classification.

3. Proposed Method

The pipeline of the RQ-OSPTrans model is presented in Figure 2. The approach
leverages the non-adjacent sequence association learning capability of the Transformer
encoder to identify the most significant parts in word sequence embeddings contributing to
the classification. Additionally, this model breaks through the dependence on hierarchical
semantic perception for long-text semantic learning, achieving more effective long-sequence
text classification.
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Figure 2. RQ-OSPTrans model structure. In the figure, the **" in “Tanh(*)” represents the weight
matrix of the input.

The overall architecture of RQ-OSPTrans consists of three parts: BERT word embed-
ding learning, repeat question learning, and overall semantic perception. With regard to

a word sequence S with an arbitrary number of characters S = {sl, 82 -+ + SMpuiding }, RQ-

OSPTrans inputs these parts into the BERT word embedding learning module to extract sen-
tence feature states pooler € RMened and word vector representations L € RMpading*Menbed
In a word sequence S, each of them, s;, represents a word-level semantics vector, as well
as the elements in L. S represents the sentence-level semantics and pooler represents the
overall semantics of the text. In other words, the sentence-level semantic representation
and the overall semantic representation of each piece of text will be used as model inputs
to implement the key insights in Section 1.2, holistic semantic learning guided classifi-
cation and joint semantic learning, to extract key clues. Thereafter, the repeat question
learning module further extracts the implicit associated features of the text, introducing a
masking mechanism and residual connections to enhance feature integrity during propaga-
tion and obtaining the classification output Output , of the text sequence. Subsequently,
RQ-OSPTrans uses the global feature state pooler, introducing a multi-layer feedforward
network with layer normalization to perceive the overall semantics of the sequence, obtain-
ing the guiding output Output,,, ;.. using ReLU activation. Finally, the weighted average
of the two types of outputs is calculated to obtain the final prediction output.

3.1. Word Sequence Embedding

In the word sequence embedding of the text, BERT demonstrates a superior word-level
and paragraph-level feature representation performance compared with Glove [39] and
Word2Vec [40]. This peculiarity aligns well with the requirements of the word embedding
learning module in RQ-OSPTrans, making BERT the chosen core component for this module.
After learning through multiple layers of the Transformer encoder, it outputs the last hidden
state of the text sequence as the semantic word embedding matrix:

A= [p(H), p(Hy), .., p(Hy)], M
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where H;,i € [1,2,3,...,n] represents the hidden state of the word, and ¢(H;) denotes
the computation function in the BERT model. This model then passes through a linear
layer with Tanh activation and uses average pooling to aggregate all word features into a
sentence semantic feature vector pooler,,;:

Aj
Xi = W, 2)
j <7
pooler L[szh(xl), Tanh(xyz),..., Tanh(xy,)]. 3)

t =
o Mpadding

Here, we pool each sentence-level semantic representation matrix A evenly in its text
length, and fairly consider the semantic representation of each word while ensuring the
word embedding dimension, and the semantic capture degree depends on all the dimen-
sions and sentence lengths represented by the word embedding vector of each paragraph,
so as to ensure that the overall semantic matrix captures the semantic information of all
words. The Tanh activation function is used for nonlinear mapping:

eX —e™*

Tanh(x) = oyl 4)

We uniformly expand the semantic matrix of word embeddings to the length of
Mpaading to enhance the effectiveness of word vector masking and residual connections.
With regard to shorter sentences, we fill the missing parts with zeros. Meanwhile, we
truncate the longer sentences to the length of M,44ine- Finally, this module adds posi-
tional association features to the semantic matrix using positional information embedding
from the Transformer based on the word embedding semantic matrix output by BERT,
completing the output of this module.

3.2. Repeat Question Module

Similar to the ViT [41] model, we consider a Transformer encoder as a Transformer
layer. The repeat question learning module consists of M, similar layers with residual
connections (Figure 3). In the attention part, we utilize nonlinear scaled dot-product
attention. The attention score input comprises the key and value from the input. We scale
each attention score by the input dimension M.y, with the scaling factor being m

Here, a Tanh activation function is applied to project the attention scores into the nonlinear
range of (—1, 1), with the aim of fitting the nonlinear sequence space and separate positive
and negative feature weights. This approach helps in reducing the amplification effect of
scores for ineffective blocks on the total weight when the input dimension is large, assigning
higher weights to effective blocks in the Softmax classification output. The attention score
and attention algorithm are shown as follows:

AttentionScore(Q,K) = Tanh(Q X KT), (5)

(6)

Attention (Q,K,V) = Softmax <Att€ntzon5core(Q,K) ) v

\/2 Membed

In the first and second layers, an auxiliary masking mechanism is applied for the
attention weights of the multi-head attention mechanism. This mechanism helps each
attention head to focus on text sequence blocks with high attention scores while minimizing
weight waste on ineffective words as much as possible. After obtaining Q x K7, this
mechanism masks elements below the threshold f = 0.5 in the attention score matrix
AttentionScore. Elements with values lower than the threshold f = 0.5 are masked to
Xypin = 1072:

Xij  Xij = f

Vx;; € AttentionScore, x;; = {10—9 else 7
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In the subsequent layers, this masking mechanism is removed. The encoder network
layers can fully learn from the input while passing a copy of the input to the next layer. The
predictions of the current layer are additively fused with the input copy of this layer.
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Figure 3. Residual connection structure of deep RQ-OSPTrans.

In this work, M,,;.4 is projected to dimensions Query,, Key,, and Valuey,, serving as
the input for h attention learners. Nonlinear dot-product scaling attention is applied to each
attention learner, allowing the model to focus on feature information in various subspaces
of the sequence samples. The granularity of feature extraction is finer compared with a
single self-attention mechanism. This module employs a multi-head attention mechanism
with h attention heads, where Query, = Key, = Value, = M,ypeq/h, requiring the
word embedding dimension from Section 3.1 to be evenly distributed across h subspaces.
The joint feature learning matrix, denoted as Wi,y € R™mbed *Mpadding | jg utilized for this
purpose. The computation process of the multi-head attention mechanism is as follows.
Here, we refer to the output of this part as Att,y;.

MultiHead Attention(Q,K, V) = W]&m(concat[headl, head,, ..., heady))

8
where head; = Attention(Query,, Key,, Valuey,);. ®

After the attention network, a scaled MLP with a residual connection to the attention
input is introduced. The scaling perceptron maps the output of the attention network to
a high-dimensional space of dimension cls;;,, and performs the first linear partitioning.
Thereafter, the dimension of the matrix mapped by the first-dimension increment is flipped
and mapped back to the original dimension M,,;,;, with a ReLU activation function
inserted in the middle of the scaling perception for linear feature correction.

The presence of bias terms in the linear mapping operation affects the feature space dis-
tribution of the information. Accordingly, a layer normalization mechanism is established
to address this issue. This mechanism calculates the mean and variance of each dimension
of the input matrix based on the sample features, stabilizing the data distribution during
forward propagation and the gradient during backward propagation. Layer normalization
is more suitable for handling long data compared with batch normalization. Normalization
focuses on individual sample feature spaces rather than the sentence length and batch
size, stabilizing the feature space. The input dimension here is M,;,;.4, and the dimension
after incrementing is clsgj;,; = 4 X Meppeq. Considering the integrity of the module, we will
introduce the computational logic of this module in Section 3.3.

A residual additive connection is utilized in the repeat question learning module
(Figure 3). This approach concatenates the input of the previous layer onto the output of the
current layer, prompting the Transformer encoder to focus on every element of the input
information. During the forward propagation, this mechanism strengthens the perception
of the classification results, similar to prompting the model to confirm the classification
answer under repeated questioning, reducing the oscillation caused by the randomness
of the weight matrix. Assuming that TransOut,; represents the output of the current layer,
Out, represents the output of the original Transformer layer, the model retains a copy of
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this output denoted as TransOutg,,, , while A serves as the guiding factor for the next layer.
The formula for the residual connection in the next layer’s output is as follows:

Outy = Attoyr + LayerNorm(MLP(Attout)), 9)
O =0 A (0]
Trans utd+1 B utd+1 + + Zi Z] AttentionScorel-/]- Trﬂ]’ls utdcopy' (10)
Membed

At the heart of the repetition mechanism lies Equation (10). In a multi-layer Trans-
former encoder stack, the output of the pre-sequence network layer will affect the learning
of the subsequent network, which may lead to a decrease in classification performance
since a very small number of classification cues occupy a large attention score and cause
the subsequent network to focus only on these parts. Therefore, it is a way to improve
the performance by promoting the model to learn more categorical cues and correct the
error of the weight allocation of the pre-order network in the subsequent network, and the
“repeated questioning” mechanism proposed by us is derived from the attention informa-
tion contained in the attention score matrix. First, we look at all the attention scores of a
text as a whole and sum all the semantically allocated attention values. Secondly, to avoid
overfitting the model by focusing on only a few key cues in multiple rounds of questioning,
we use the word embedding dimension to smooth the attention value. After that, the
output amplification weight is calculated with the help of the guide factor A to scale the
results of the previous round of attention learning, and the additive combination with the
results of this round of learning is completed to complete a repeated question learning.

3.3. Overall Semantic Perception

Considering the BERT model output pooler ,;, the Tanh activation function has been
introduced, which brings nonlinear mapping. Here, in addition to applying the ReLU
activation function between the two scaling layers, another ReLU linear correction is
applied after completing the perception machine calculation. This connection retains only
positive numbers as guiding elements for the classification output and sets the rest of the
elements to zero, achieving the calculation of the MLP output:

pooler,,,, = avg_pooling(Tanh(W x X + b)), (11)
MLP,,; = ReLU(WlT x pooler,,, + bl), (12)
MLP,,0 = LuyerNorm( ReLU(WZT X MLP,y + bz) ) (13)

In each feature sample X € RMemed, the perception matrices are Wy € R¢Sdim>*Menbed
and W, € R%Saim*Membed . A nonlinear improvement using the Mish activation function [42]
is applied in this part to adapt the output feature distribution to the complex feature space
of nonlinear activation, mapping the complex feature space to a distribution with minimal
gradients. The algorithm for the Mish activation function is as follows:

f(x) = x-Tanh(¢(x)), where ¢(x)=In(1+e"). (14)

In the computation of the multi-layer perceptron, the layer norm calculates the mean
Xy and variance 0y of the features for each sample. The computation method is as follows:

— 1 M
X, = : embed X, (15)
f Membed Zl:o l

M _
f Membed -1 .
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The layer norm will normalize the output of the perceptron based on the X7f and
standard deviation o:

i No YK
Vx € MLP,,;,, LN = ——, (17)
of
Xleader — [LN],LNz,...,LNn]. (18)
The outputs of the learning modules are calculated separately as follows:
Output, = Mish (TransOuthepth), (19)
Output, ., = Mish(Xjeader)- (20)

Both outputs are based on the feature space of a sequence of statements as the value
set. Normalized feature vectors are calculated based on the feature mean and feature
standard deviation.

3.4. Softmax Weight Correction and Loss Function

In our study, two modules are designed to compute the final model classification,
handling the processing and loss calculation for the two classification results (Figure 1).
During the training phase, the long-sequence repeat question learning module and the
overall semantic perception module are treated as two independent classifiers. These
modules will compute losses Loss s and Lossje,g.r for the classification and guidance
outputs, respectively. Considering the structure and inputs of the two classifiers, we
introduce a guiding factor A for computing the final output loss. Our output loss function
is expressed by the following formula:

Loss = LosS.js + A * L0SS)pqder- (21)

The design of the loss function aims to leverage the most prominent correlated se-
quence in the overall semantically reinforced context to contribute to the final classification.
These two losses will collaboratively influence the backpropagation process. In either side
of the classifier, considering each other’s loss serves as the optimization basis to enhance
the model’s performance.

Similar to the design of the loss function, the final output of the model is a weighted
average result from both classifiers. The sum of the weights is not directly used as the
denominator here. In the two types of outputs Output_,, and Output,,, ,,., the probabilities
for each classification are computed using Softmax. The total classification result of both
classifiers is weighted and summed according to the guiding factor. The average operation
is then performed across the classifier dimension for the final output Logits:

1
Logits = z(softmax(Outputds) + A-softmax(Output,,q,,))- (22)

Next, this work performs a second averaging operation on Output, and Logits to
enhance the contribution of classification learning to the overall classification result and
focus on optimizing the long-sequence repeat question feature learning module. This
operation effectively combines the second amplification of Logits after an amplification by
the guiding factor, resulting in the total weight amplification for each feature sample:

erii A
\V/ xl' € Outputds, Wxi == Z W / <2 + 1) . (23)
]

The output after the second amplification is obtained as Output:

Logits + Output g

Output = >

(24)
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4. Experiment

The experimental platform is a workstation with Ubuntu 20.04 operating system,
equipped with two Nvidia RTX A6000 GPUs, an Intel 13th generation i9 CPU, 96 GB
of GPU memory, and 128 GB of RAM. The platform runs PyTorch 2.0.1 deep-learning
framework with Cuda 11.7 parallel computing platform, and it is utilized with Python 3.9.

4.1. Datasets

With regard to the task of topic recognition in Chinese text classification, this work
chooses the THUCNews dataset [43] to evaluate topic identification and detection of long-
text features. THUCNews is a news-themed dataset, where most of the texts are long. The
utilized version of the dataset for this work includes 10 evenly distributed classification
topics, totaling 50,000 news articles covering categories such as real estate, education, tech-
nology, stocks, and finance. The samples for each category are sourced from various media
outlets on the Internet, and the reporting styles, language logic, and discourse structure
for the same topic exhibit significant differences. The texts from live reporting contain a
substantial number of colloquial expressions and noise, making it a major challenge to
differentiate between topics within complex data combinations. This work selects the AG’s
News [44] and arXiv-10 [45] datasets for the English text classification tasks. The AG’s
News dataset comprises four news topics, with 120,000 training samples and 7600 testing
samples. The arXiv-10 dataset consists of abstracts and titles from 100,000 scientific papers
retrieved from arXiv, covering 10 categories evenly distributed, including subcategories,
such as computer science, physics, and mathematics. In our experiments, the dataset is
divided into 80,000 training samples and 20,000 testing samples, with each sample’s title
and abstract combined into a single text. The labels of the two English subject classification
datasets were evenly distributed.

On this basis, this work establishes the CIPCC dataset for nurturing elements by
extensively collecting classroom discourse texts from the affiliated institution. This dataset
is selected from actual classroom teacher lecture materials and exhibits significant features
of teaching knowledge points. The language of this dataset is Chinese. Each sample in
the dataset includes a specific engineering knowledge point topic. The dataset primarily
consists of four classification topics, with over 4000 expert-certified labels for nurturing
elements. The biggest challenge of this dataset lies in the uneven distribution of labels. For
instance, the “science and innovation literacy” label has 1714 samples, while the “value
pursuit” label has 277 samples. The “Humanistic accomplishment” label has 1259 samples
and the “Social responsibility” label has 943 samples. Accordingly, we randomly sampled
each label using the same proportion to construct the training and testing sets, with a split
ratio of 0.8. Detailed information about the CIPCC dataset is described in Table 1; the
descriptive information of all datasets selected in this work is summarized in Table 2:

Table 1. Information on exemplary nurturing elements from the CIPCC dataset.

Text ID Course Category Label Text Length
001 Engineering Science and innovation literacy 152
002 Engineering Science and innovation literacy 82
003 Engineering Humanistic accomplishment 54
004 Engineering Social responsibility 97
005 Engineering Value pursuit 114

Table 2. Data statistics settings for comparative experiments.

Dataset Domain Avg-Length Number of Labels  Label Distribution
THUCNews News 357 10 uniform
AG’s News News 342 4 uniform

arXiv-10 Academic 488 10 uniform

CCIPC Education 117 4 unbalanced




Appl. Sci. 2024, 14, 4259

13 of 25

For CCIPC datasets, we agree on the following abbreviations: “SIL” represents “Sci-
ence and innovation literacy”, “HA” represents “Humanistic accomplishment”, “SR” rep-
resents “Social responsibility”, and “VR” represents “Value pursuit”.

4.2. Hyperparameter Settings

The pre-trained BERT model used in this work is sourced from the BERT-base model
in the Hugging Face library. (In English dataset, the pre-trained BERT model is at https:
/ /huggingface.co/google-bert/bert-base-uncased, accessed on 14 May 2024. In Chinese
dataset, the pre-trained BERT model is at https:/ /huggingface.co/google-bert/bert-base-
chinese, accessed on 14 May 2024) The hidden layer dimension is set to M,,;.4 = 768, and
Mgepsn = 12 Transformer encoder blocks are used with residual connections. The model
utilizes a multi-head attention mechanism with i1 = 8. When determining the optimal
sentence length, our approach involves assessing the average length of text within the
dataset. Adjustments for the Chinese datasets will be implemented to align with this
average length. Meanwhile, we will adopt the nearest power of two to the average length
for the English datasets for padding. During training, key hyperparameters are carefully
tuned to optimize model performance. Initially, the learning rate is set to 5 x 1074, and
the cross-entropy loss function is utilized. The learning rate is dynamically adjusted based
on the final prediction loss, with a patience of three, facilitating improved convergence
toward the optimal solution. Additionally, a dropout probability of 0.5 is consistently
applied to the perceptron layer to mitigate overfitting. Gradient optimization uses the
Adam optimizer [46], incorporating a weight decay of 0.01 and a warm-up ratio of 0.05.
Control over the training process is exerted through the number of epochs, with a maximum
tolerance for the loss function’s patience set to epoch_patience = 4. Finally, the best model
is saved and evaluated on the validation set post-training.

4.3. Comparative Methods

In this work, we selected several advanced pre-trained models and deep-learning
models that have achieved excellent results in topic classification to demonstrate that our
method can outperform and achieve better performance than these two types of models.
All pre-trained models are from https://huggingface.co/, accessed on 14 May 2024.

e  HAN [13]: Encodes through the three-level composition in the document and finally
performs weighted averaging on the sentence-level representations to obtain the
representation of the entire document. This method aggregates multi-layer features
through weighted aggregation.

e SHGCN [47]: The model extracts entities and word nodes through the graph network,
uses BERT to learn word vector representation, and uses BiLSTM to strengthen word-
level weights, and combines this weight with document features to predict sample
classification. Related methods [48,49] also improve classification performance on
multiple datasets.

e KFE-CNN [50]: The vector representation of text is enhanced by expanding the
semantic information of key features and converted into binary vectors for input into
the CNN model, which effectively compresses the size of the model while improving
the interpretability of the model, while achieving good performance.

e BTCDC [51]: Use CNN to obtain semantic features at different levels under the
full-text test drive and combine the attention mechanism to strengthen the weight
of local features, and then fuse global features and local features to achieve good
classification performance.

e BERT [1]: Generates word representations through bidirectional context encoding,
is applicable to various NLP tasks, and combines encoder attention scores to guide
understanding in natural language understanding.


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/google-bert/bert-base-chinese
https://huggingface.co/
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e  ALBERT [25]: An improvement on BERT that reduces the parameter count, enhances
the training efficiency, and achieves good text-understanding capabilities through
parameter sharing and cross-layer parameter sharing to reduce model size.

e RoBERTa [24]: An optimized version of BERT that improves performance through a
larger dataset and longer training time. This model removes the NSP task and achieves
good performance with larger batches and longer sequence lengths.

e  XLNet [23]: Uses a PLM to integrate the advantages of regression language model and
autoencoding language model methods, demonstrating excellent ability to capture
document-level context correlation information.

e  MacBERT [26]: Improves BERT with a dynamic masking mechanism, generating a
new masking pattern for each input sequence. This model applies a full-word masking
strategy in Chinese tasks, achieving better performance than BERT.

e RBT6 [26]: Adopts a training strategy consistent with RoBERTa but retains fewer
Transformer layers. This model achieves text understanding with fewer parameters
and a shorter model compared with large pre-trained models.

e ERNIE [52]: A knowledge-enhanced pre-trained model that integrates knowledge
graphs and text information. This model enhances representations with entity and
relationship embeddings, demonstrating outstanding performance in tasks involving
domain knowledge.

e ELECTRA [53]: Has some similarities with generative adversarial networks. The
generator is a smaller MLM model with the goal of recovering masked words. The
discriminator only outputs a binary label indicating “replacement” without specifying
the actual word, making training more efficient. After pre-training, this work retains
only the discriminator for fine-tuning downstream tasks.

e  GPT-2 [54]: A deep-learning model based on the Transformer architecture. This model
can directly learn feature representations from raw text through end-to-end learning,
avoiding cumbersome feature engineering. The multi-head attention mechanism and
large-scale self-supervised pre-training of the model enable it to effectively capture
semantic information and quickly adapt to different domains and tasks through fine-
tuning, demonstrating outstanding performance and flexibility in text classification tasks.

4.4. Experimental Results and Analysis

The performance data of the baseline model in the comparison experiment were
directly derived from the corresponding references. To reflect the real performance, we
fine-tuned the model on the datasets to which the baseline model belonged and recorded
the fine-tuned classification performance on those datasets that were not experimented
with. The performance of the RQ-OSPTrans model on the four datasets is the mean of
the 5-fold cross-validation results of the three random initialization parameters to ensure
that the model performance is not affected by the random initialization parameters. In the
following sections, we will use accuracy metrics to measure the performance of the model.
The best performance and the corresponding model name are indicated in bold.

4.4.1. Result on the THUCNews Dataset

This work conducts experiments on the THUCNews dataset using a comparative
approach, and the experimental results are shown in Table 3. The results demonstrate that
RQ-OSPTrans achieves a performance improvement of 0.1% on the test set and 0.4% on the
validation set compared with the baseline pre-trained model with the best performance
on the test set. Further performance improvement becomes significantly challenging
due to the dataset already achieving high accuracy. In comparison with the BERT word
vector loader used in this work, the performance improvement on the test set is 0.1% and
1.1% on the validation set, indicating that the method proposed in this work optimizes
the output of BERT, achieving superior performance in Chinese tasks. In contrast to the
BERT word embedding learning module, RoBERTa, MacBERT, and RBT6 achieve better
generalization performance on the validation set, demonstrating that the mask mechanism
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adapted to input significantly improves performance. Meanwhile, the BILSTM structure of
the hierarchical attention network does not exhibit superior performance to the Transformer
encoder on this task, falling short of the bidirectional attention sequence learning structure
in BERT, proving that stacked Transformer encoder modules have significant advantages
in long-text learning. RQ-OSPTrans achieves a generalization accuracy of 98.5% compared
to previous models on this dataset, indicating that the residual-connected Transformer
encoder structure can fully learn the parts of the text that make significant contributions to
classifying topics, capturing long-distance semantic correlations.

Table 3. Performance comparison of RQ-OSPTrans and state-of-the-art pre-trained models on THUC-
News dataset.

Models Mpagding Test Dev
HAN [13] 88.7 90.1
BERT [1] 97.6 97.4
ALBERT [25] 97.6 97.9
RoBERTa [24] 97.5 97.9
RBT6 [26] 97.3 98.1
ERNIE [52] 148 96.8 98.0
GPT-2 [54] 97.4 97.5
ELECTRA [53] 97.5 97.9
MacBERT [26] 97.5 98.0
XLNet [23] 97.0 97.4
KFE-CNN [50] 97.8 97.8
BTCDC [51] 95.2 95.2
RQ-OSPTrans (ours) 97.7 98.5

4.4.2. Result on the AG’s News Dataset

We also conduct comparative experiments with baseline pre-trained models on the
AG’s News dataset, and the results are shown in Table 4. Considering the length of the
dataset text, the tokenizer’s expansion length is set to 256 here to avoid numerous zero
elements in the word vectors. When changing the language of the topic recognition task,
our method still achieves an accuracy of 94.8%. ELECTRA improves the performance of the
discriminator during iterative “replacement” by recovering words from the full-scale scale
during training for discrimination, enabling it to identify correct semantics and achieve
excellent performance. This approach is similar to the “repeated questioning” mechanism
in our method on the parameter level, proving the importance of key semantic weight
information in improving the accuracy of long-text classification. Our method fully learns
key semantic weight in multi-layer residual stacking, demonstrating the effectiveness of
this approach. In comparison with BERT series models, our method achieves a minimum
performance improvement of 1.2% in accuracy and a 2.5% improvement over BERT, demon-
strating that our two parallel learning modules significantly optimize pre-training weights
for this task, effectively learning and extracting weight features in the bidirectional attention
mechanism, and demonstrating higher performance in long-term dependency semantic
correlation. Overall, RQ-OSPTrans performs exceptionally well among all methods listed
in Table 4, demonstrating that our model can further learn implicit semantic information
and subtle discriminative representations in long texts based on pre-trained models.
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Table 4. Performance comparison of RQ-OSPTrans and state-of-the-art pre-trained models on the
AG’s News dataset.

Models Mpadding Test
HAN [13] 91.1
BERT [1] 92.3

ALBERT [25] 90.3
RoBERTa [24] 92.3
ELECTRA [53] 256 94.3
GPT-2 [54] 93.5
RBT6 [26] 93.2
MacBERT [26] 93.6
SHGCN [47] 88.3
RQ-OSPTrans (ours) 94.8

4.4.3. Result on the arXiv-10 Dataset

Accordingly, RQ-OSPTrans is compared with the baseline models on the arXiv-10
dataset, which has text lengths similar to those of the THUCNews dataset. The results
are shown in Table 5. Here, the tokenizer’s expansion length is set to 512. On the non-
pre-trained models, RQ-OSPTrans exhibits a significant performance improvement of 5.0%
compared with the self-learning Transformer framework Protoformer [45] on this task.
In Transformer pre-trained models, BERT’s bidirectional attention mechanism shows a
significant advantage on this task, indicating its excellent capability to learn long-term
dependency semantic relationships within sequences of length 512. Nevertheless, our
RQ-OSPTrans still achieves a performance improvement of 1.0% on the test set. A possi-
ble explanation is that the language expression in the arXiv-10 dataset is more rigorous
compared with that in THUCNews, where simpler models may already sufficiently learn
semantic features. By contrast, RQ-OSPTrans exhibits sensitivity to the learned sequence
length. We will conduct an ablation study on sequence length in Section 4.5.

Table 5. Performance comparison of RQ-OSPTrans and the baseline models on the arXiv-10 dataset.

Model Mpadding Test
HAN [13] 74.6
BERT [1] 83.4

ALBERT [25] 80.5
RoBERTa [24] 77.9
ELECTRA [53] 512 83.2
GPT-2 [54] 829
RBT6 [26] 79.5
MacBERT [26] 81.7
Protoformer [45] 79.4
RQ-OSPTrans (ours) 84.4

4.4.4. Result on the CCIPC Dataset

Comparative experiments were conducted based on the CCIPC dataset proposed
in this work. The results are presented in Table 6. The experimental results show that
RQ-OSPTrans achieves an accuracy of 82.7% on the test set, significantly higher than
those of other models. RQ-OSPTrans demonstrates better performance compared with the
traditional HAN model, indicating the advantages of the pre-trained language models.
BERT and ALBERT, as representative pre-trained language models, also achieved decent
performance on this task, but 1.5% and 3.8% gaps remain compared with RQ-OSPTrans.
Models, such as RoBERTa, RBT6, and ERNIE, exhibit relatively lower accuracy on the test
set, which may be due to their insufficient capability to learn semantic information from
text containing numerous colloquial expressions and noise. ELECTRA and MacBERT still
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fall short of RQ-OSPTrans. By contrast, XLNet performs the worst on the test set. Our
RQ-OSPTrans model is better able to capture semantic information from text with the
introduction of a residual-connected Transformer structure and further enhances perfor-
mance on various pre-trained language models. Overall, the experimental results further
validate the effectiveness and superiority of our proposed RQ-OSPTrans model in text
topic recognition tasks. RQ-OSPTrans not only significantly outperforms other pre-trained
language models in terms of performance but also demonstrates strong generalization
capabilities, making it suitable for various types of text data.

Table 6. Performance comparison of RQ-OSPTrans and the baseline models on the CCIPC dataset.

Model Mpadding Test
HAN [13] 79.9
BERT [1] 81.2

ALBERT [25] 78.9
RoBERTa [24] 63.8
RBT6 [26] 150 77.8
ERNIE [52] 69.5
ELECTRA [53] 79.5
GPT-2 [54] 77.8
MacBERT [26] 78.9
XLNet [19] 60.6
RQ-OSPTrans (ours) 82.7

Compared with other comparison experiments, the label distribution of the CCIPC
dataset is uneven. To better illustrate the improvement of RQ-OSPTrans over the baseline
model, we compare the classification performance of the top five performing models in
Table 6 on each label in this dataset, and the results are shown in Table 7. Here, we populate
the header with an abbreviated representation of the dataset label. Experimental results
show that the accuracy of our proposed method in the four categories is higher than that of
other baseline models. From the overall analysis of the experimental data, the classification
performance on the “SIL” label is the best, while the classification performance on the “VP”
label is the worst. The direct cause of this result is the uneven distribution of labels: the
“SIL” label has more than 1700 pieces of data, while the “VP” label has only 277 samples,
and this huge difference in data volume makes it easier for the model parameters to fit the
classification cues and weights of the “SIL” label, and the classification cues of the “VP”
label may be ignored as unimportant information in repeated questions or masked in the
auxiliary masking mechanism. In this case, one possible explanation for the performance
improvement of the model is that the overall semantic awareness module does not reduce
the pooling weight of the text due to the lack of data volume, so that the module can still
learn the semantic information of the data with a small sample size, and can still improve
the performance of the pre-trained model with an accuracy rate of 1-8%.

Table 7. The classification performance of the top five CCIPC accuracy models on each category label
of the dataset.

Model Rank SIL HA SR VP
RQ-OSPTrans (ours) 1 0.95 0.66 0.50 0.48
BERT [1] 2 0.95 0.64 0.50 0.45
HAN [13] 3 0.94 0.63 0.49 0.45
ELECTRA [53] 4 0.93 0.63 0.49 0.45
MacBERT [26] 5 0.94 0.62 0.48 0.37
ALBERT [25] 5 0.92 0.64 0.45 0.40
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4.5. Confusion Matrix Analysis

The confusion matrix reflects the extent to which an algorithm incorrectly predicts
similar categories. In this experiment, three datasets, namely, THUCNews, AG’s News,
and arXiv-10, were selected to evaluate our method. The values on the main diagonal of
the confusion matrix represent the prediction probability in the corresponding category
(Figure 4). The darker the color, the higher the prediction probability. The true labels are on
the y-axis, and the predicted labels are on the x-axis. We select the top three performance
models on each dataset to draw the confusion matrix. The performance of the RQ-OSPTrans
method on the corresponding dataset is located at the first of each row (Figure 4a,d,g). The
baseline model will show higher prediction confusion on the Society and Education classes
in the THUCNews dataset compared with our method. On the AG’s News dataset, the
confused categories are concentrated in “Business” and “Technology” categories. The RQ-
OSPTrans’s prediction confusion level in these two categories is equivalent to ELECTRA
and better than MacBERT. The performance of the top three performance models on
the arXiv-10 dataset is relatively close. In the two categories of “cs” and “eess”, similar
prediction confusion appears on the class labels. However, the prediction confusion of
this method on the “quant-ph” and “stat” categories is better than the baseline model, and
RQ-OSPTrans also has better classification accuracy on the “hep-th” category.
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Figure 4. Confusion matrix diagram of the top three models in THUCNews, AG’s News, and arXiv-10
dataset performance. (a—c) Confusion matrix diagram of the top three model performance in the
THUCNews dataset. (a) RQ-OSPTrans in the THUCNews dataset confusion matrix. (b) Confusion
matrix of RBT6 in the THUCNews dataset. (c) Confusion matrix of MacBERT in the THUCNews
dataset. (d-f) Confusion matrix diagram of the top three model performance in the AG’s News
dataset. (d) Confusion matrix of RQ-OSPTrans in the AG’s News dataset. (e) Confusion matrix
of ELECTRA in the AG’s News dataset. (f) Confusion matrix of GPT-2 in the AG’s News dataset.
(g-i) Confusion matrix diagram of the top three model performance in the arXiv-10 dataset. (g) Con-
fusion matrix of RQ-OSPTrans in the arXiv-10 dataset. (h) Confusion matrix of BERT in the arXiv-10
dataset. (i) Confusion matrix of ELECTRA in the arXiv-10 dataset. astro-ph: Astrophysics. cond-mat:
Condensed matter. cs: Computer Science. eess: Electrical engineering and systems science. hep-ph:
High-energy physics—phenomenology. hep-th: High-energy physics—theory. math: Mathematics.
physics: Physics. quant-ph: Quantum physics. stat: Statistics.

4.6. Ablation Study

We conducted an ablation study on RQ-OSPTrans, focusing on the specific task carried
out on the THUCNews dataset.

(1) Influence of the activation function of the feature output layer on the output classification:

The output layer activation function is the first layer in the network to participate
in backpropagation. The choice of function determines whether complex features can
be mapped to a specific space and divided. In this study, experiments were conducted
on the THUCNews dataset by using different prototypes and compositions of activation
functions combined with Mish activation. The experimental objects include ReLU, Tanh,
Mish, Mish&Tanh, and Mish&ReLU functions (functions on both sides of “&” activate
Output,, and Output,, ,,.; no “&” indicates the same mapping for both output types).

The experimental results are shown in Figure 5. In the third section, we introduced
the sources of the two types of outputs. The learning process to obtain Output , is more
complex compared with Output;,, ;... The Mish function can balance the distribution dif-
ferences between the two output types while retaining nonlinearity, demonstrating the
best performance. By contrast, ReLU can only retain positive weights, neglecting neg-
ative ones, resulting in ineffective attenuation of irrelevant information during output
weight amplification and suboptimal performance, highlighting the importance of nonlin-
ear mapping in the output. However, excessive nonlinear activations will bring greater
classification difficulty. The result of the comparison of the classification performance
of Mish, Mish&Tanh, and Tanh activation functions indicates that the accuracy of Tanh
activation for Output , is lower than that using the Mish activation function, indicating
that balanced nonlinear mapping results in superior performance. Therefore, RQ-OSPTrans
determines the structure of using the same nonlinear mapping for both output types as the
optimal choice.
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Figure 5. Ablation study on the activation functions in the feature output layer. (a) Study on the
THUCNews dataset. (b) Study on the arXiv-10 dataset.
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Influence of maximum sequence length on classification:

We conducted comparative experiments by setting several maximum sequence lengths
that have efficiently performed in other text classification tasks. The experimental results
are shown in Figure 6.
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Figure 6. Influence of maximum sequence length on classification performance. The accuracy is
computed for the test and validation sets on the THUCNews dataset and is computed for test set
on the arXiv-10 dataset, ranging from 256 to a maximum length of 512 with an interval of 64 tokens.
(a) Study on the THUCNews dataset. (b) Study on the arXiv-10 dataset.

Our model is more suitable for shorter text extensions (Figure 6a). Considering the
structure of the text, merging news headlines and news content into one text frequently
results in only half of the information of the news article being fully included in sequences
of 256 and 384 tokens, increasing the ambiguity in the model’s understanding of headlines.
The model’s classification ability improves by 0.3% for 384 tokens compared with 256 tokens
and by 0.3% for 448 tokens compared with 384 tokens as the maximum sequence length
increases. This result demonstrates that longer sequence lengths enable the tokenizer to
encode richer textual information, aiding the model in fully learning long-term semantic
relationships. However, padding more zero elements at the end of the text introduces
noise and interferes with text learning with the increase in the sequence length. The
accuracy decreases by 0.1% with the addition of 64 encoding positions, confirming the
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above conclusion. The accuracy with a maximum sentence length of 256 is only 0.03% lower
compared with a maximum sentence length of 320, while it differs by 0.2% compared with
a maximum sentence length of 384 (Figure 6b). The results from the THUCNews dataset
demonstrate that gradually increasing the sentence length enables the model to learn richer
semantics, building upon the text titles. However, at a sentence length of 448, complete
semantic errors in segmentation occurred with further increase in text length. Considering
the text structure of arXiv-10, a possible reason is that, at a length of 448 characters, the
conclusion part in the abstract is segmented, resulting in incomplete dependence between
the title and the full text. This phenomenon results in a decrease in accuracy by 0.7%
compared with 320 characters. Finally, extending the sentence length to 512 allows the
learning sequence to include the entire text, enabling the model to fully learn the overall
semantics and detailed classification clues in the samples. This mechanism yields the best
performance among all sentence length strategies, achieving an accuracy of 84.4%.

(3) Influence of residual connection depth on classification:

We conducted comparative experiments on two datasets by setting six groups of
residual connection depths, with depth increasing by increments of two layers. The
experimental results are shown in Figure 7.

Experimental result
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Figure 7. Residual connection depth and its influence on classification performance. (a) Study on
the THUCNews dataset. The performance metrics include accuracy on the test and validation sets
(b) Study on the arXiv-10 dataset. The performance metrics include accuracy on the test set.

The experimental results indicate that the chosen residual connection depth performs
best across samples in two different languages and styles. In Figure 7a, the performance at
depths 12 and 16 significantly outperforms other residual connection depths. Moreover,
in the comparison between these two depths, the validation accuracy remains consis-
tent between 16 layers and 12 layers. However, the model with 12 layers demonstrates
advantages in terms of test set accuracy and F1 score over the larger-parameter model
with 16 layers. Additionally, the RQ-OSPTrans with 16 layers occupies 67 GB of GPU
memory. Meanwhile, the model with 12 layers requires only 51 GB of GPU memory un-
der the same batch size conditions. Overall, the Transformer encoder with 12 layers of
residual connections can sufficiently learn classification clues in repeated questioning and
achieve satisfactory performance without the need for further parameter expansion to learn
long-range semantics.

In Figure 7b, increasing the depth of residual connections is no longer an improvement
method. The RQ-OSPTrans with 16 layers exhibits significant performance degradation
compared with the model with 12 layers, indicating that a depth of 12 layers can balance
the model parameters and classification performance. Considering all depth selections
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across the two datasets, a depth of 12 layers can balance accuracy, model parameter size, F1
score, and other metrics. This condition enables the model to grasp long-range semantic
correlations and classification clues in 12 repetitions of questioning, proving that our choice
is the optimal strategy.

5. Conclusions

The work proposes a text classification method, RQ-OSPTrans, based on the residual-
connected Transformer encoder and parallel networks to address the challenge of accurately
identifying topics in long texts containing colloquial expressions and noise. The experi-
mental results demonstrate that our method achieves outstanding performance in topic
recognition for texts longer than or equal to 256 tokens. Specifically, we achieve valida-
tion accuracies of 98.5%, 94.8%, and 84.4% on the THUCNews, AG’s News, and arXiv-10
datasets, respectively. These results indicate a significant performance improvement over
state-of-the-art pre-trained models in Chinese tasks, while also demonstrating competitive-
ness in English tasks. However, an important part of RQ-OSPTrans’ capabilities comes from
pre-trained models, which results in it being more computationally expensive than deep-
learning models for other topic classification tasks. In future research, we aim to endow
RQ-OSPTrans with multimodal recognition capabilities by adjusting the input-embedding
module and improving the accuracy of the domain dataset. One possible approach is to
replace the BERT model with the backbone network of the Swin-transformers family, so
that RQ-OSPTrans can improve some domain-specific classification problems on image
classification tasks, such as the CUB-2011-200 bird fine-grained classification task. This
strategy may allow RQ-OSPTrans to be used as an auxiliary model for LLMs, revealing the
emergent power that can be brought about by high computational costs. In addition, we
will also try to continue to train RQ-OSPTrans on automatic review application data such
as social media speech dataset and sentiment analysis dataset, and explore the performance
improvement of multiple text classification tasks under the same computing cost, so as to
improve the data review efficiency of related industries.
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