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Abstract

Community detection is a fundamental task in
network analysis. Learning underlying network
structures has brought deep insights into the un-
derstanding of complex systems. While many
methods have focused on clustering nodes into
blocks, few accounts for the fact that interactions
may exhibit edge-level clustering, which we call
categories. Real network data often arise via a
series of interactions. Interactions in complex
systems can often be clustered into different cate-
gories and node-level community structures that
depend on the category. In this paper, we in-
troduce a category-and-block edge exchangeable
model (CataBEEM) to study interaction networks
with joint latent interaction-level category and
node-level community structures. In particular,
the proposed method models the network from
the interaction process perspective and allows the
incorporation of prior knowledge from auxiliary
interaction-wise information. We derive an effi-
cient variational inference algorithm that can be
applied to networks consisting of millions of in-
teractions and provide the theoretical bound of
the misspecification rate. We demonstrate the ef-
fectiveness of our method in various simulation
settings and apply the method to TalkLife data, a
large-scale online peer-to-peer support network.
We show CataBEEM detects more temporally
consistent community structures and has better
predictions than other methods.

1. Introduction

Network data is everywhere in our daily life. TalkLife, for
example, is an online peer support network that focuses on
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mental health-related issues, where nodes represent users
and edges represent interactions among users. Another
example is gene co-expression networks where nodes rep-
resent genes and edges represent whether two genes are
co-expressed. Understanding network structures has be-
come an increasingly important research topic in sociology,
biology, and disciplines where the data can be represented
as graphs.

Real-world networks often arise from sequences of inter-
actions. Conventional approaches proceed by analyzing
constructed graphs via traditional statistical network anal-
ysis (Goldenberg et al., 2010; Newman, 2012) that takes
a node-centric perspective where the node is the statisti-
cal unit. Network data arising from interaction processes,
however, benefit from the frameworks where the interaction
is the statistical unit. Edge-exchangeable models (Crane
& Dempsey, 2018; Dempsey et al., 2021) are built specifi-
cally to analyze datasets coming from such complex inter-
action processes. Compared to conventional approaches,
edge-exchangeable models reflect the empirical properties
of sparsity and power-law degree distributions observed in
real-world network data. While edge exchangeable frame-
works are attractive, such models are inadequate to handle
latent interaction-level and node-level cluster structures.

In this paper, we focus on a fundamental problem in net-
work science — community detection. Communities are
groups of nodes that connect more closely with each other
than others in the graph. In social network data, for exam-
ple, communities can refer to user groups with common
interests (Bedi & Sharma, 2016). In the protein-protein in-
teraction networks, communities are likely to be functional
modules within the cell (Rives & Galitski, 2003; Chen &
Yuan, 2006). The basic task of community detection is to
partition nodes into blocks that are more densely connected.
Numerous methods have been proposed to address this prob-
lem, including stochastic block models (SBM) (Holland
et al., 1983) and its extensions (Airoldi et al., 2008; Karrer
& Newman, 2011), modularity-based algorithms such as the
Newman-Girvan modularity (Newman, 2016), as well as
other approaches (Su et al., 2022). These methods are based
on a node-centric perspective. Recent work by (Zhang &
Dempsey, 2022) addresses node-level community detection
within the edge exchangeability framework.
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Figure 1. (a) An example generative model with five nodes and three categories. The community structures (labeled by alphabet) are
different in different categories (labeled by color). The edge categories and node blocks are latent in the observed graph. (b) The
illustration of the algorithm based on the CataBEEM. The inputs are the observed graph and the optional edge prior information. The
algorithm infers the underlying interaction categories and the community structures in each category.

While much work has focused on the node-level block
structure, few methods focus on interaction-level cluster-
ing (Sewell, 2020). On the other hand, community be-
haviour of nodes can differ by different interaction clusters.
In email exchange network, for example, the potential re-
ceivers of an email are different given the theme is formal
and casual. In this paper we integrate interaction-level clus-
ter structure into the modeling of node-level clustering. To
our knowledge, there is no existing approach that jointly
models the interaction and node clusters. By analogy, nodes
cluster into communities, while interactions cluster into
what we term categories. Similar to communities, the cate-
gory of an interaction is latent. A series of interactions has
a corresponding series of latent categories that determine
the underlying network structure. In gene co-expression
networks, for example, categories can be tissue-specific ex-
pressions. In citation networks, categories can correspond
to research topics. Moreover, node-wise clustering behavior
may depend on the category. Figure 1a shows an illustration
of our proposed generative model.

A natural question is how learning interaction-level clusters
can help researchers go above and beyond node-level com-
munity structure. To answer this, consider a hypothetical
TalkLife user who is seeking peer support on the mental
health issue of depression from other users on the TalkLife
platform. In this instance, even if another user is very con-
nected (i.e., lots of prior interactions), they may not discuss
this particular issue and therefore it may be more helpful
for the platform to help find support from the group of users

who have posted on the issue of depression in the past. In
this example, the topic of discussion is the latent interaction-
level category. With this motivation in mind, we propose a
statistical model within the edge-exchangeability framework
that allows for joint latent interaction-level category and
node-level community structure. We call it category-and-
block edge exchangeable model (CataBEEM)'. Figure 1b
provides a high-level overview of the model.

The main contributions of this paper are as follows:

1. We propose a statistical model that integrates interaction-
level clustering (categories), with node-level clustering
(communities). Our model provides novel insights into
the network structure that can not be captured by prior ap-
proaches.

2. Our proposed model can incorporate auxiliary interaction-
level information through an interaction-wise prior that pro-
vides extra information for learning latent network structure.
In TalkLife, for example, post content is used to construct
a subjective prior over the latent categories. This prior in-
formation is shown to lead to empirical improvements in
performance.

3. We derive a scalable variational EM-based algorithm that
can be applied to networks consisting of millions of inter-
actions. To our knowledge, variational EM has never been
investigated in the community detection scenario where

The code of the corresponding algorithm can be found at:
https://github.com/YuhuaZzhangl995/CataBEEM
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latent categories are present.

4. We provide a theoretical bound on the mis-specification
rate of an approximate inference algorithm based on the
model, along with support from empirical simulation results.

2. Related Work

Community Detection in Network Data The fundamen-
tal task of community detection is to identify the latent labels
of each node in the network. We refer to (Fortunato, 2010;
Abbe, 2017) for comprehensive reviews on this topic. The
two popular approaches are model-based stochastic block
models (SBM) (Holland et al., 1983; Rohe et al., 2011;
Abbe et al., 2015), and modularity-based methods (Barber,
2007; Newman, 2016). We focus on SBMs, since it is more
relevant to our work.

The simplest version of the SBM assumes nodes within the
same block have the same probability of forming an edge
with other nodes, and within-block interactions are more
likely than between-block interactions. Many associated
methods have been proposed, such as the degree-corrected
SBM (DC-SBM) (Karrer & Newman, 2011; Ball et al.,
2011), which allows for degree heterogeneity; the mixed
membership model (MMSBM) (Airoldi et al., 2008) which
associates each unit of observation with multiple blocks
rather than a single one; and other extensions (Peixoto,
2014; Galhotra et al., 2018). Theoretical guarantees of
community detection have been well established (Rives &
Galitski, 2003; Zhao et al., 2012; Gao et al., 2018).

Recently, Graph Neural Network-based (GNN) community
detection methods have been proposed (Scarselli et al., 2008;
Kipf & Welling, 2016a;b), which learn network represen-
tations regarding each node as a discrete symbol. Many
GNN methods are not constructed from an underlying gen-
erative model, which makes this approach quite different
from model-based approaches such as SBMs. Methods have
also been proposed to bridge the gap between SBMs and
GNN-based methods (Mehta et al., 2019).

Interaction-based Network Modeling. SBMs are based
on the assumption that the statistical units in the network
are the nodes. On the other hand, edge exchangeable mod-
els have been proposed where the statistical units are the
interactions (Crane & Dempsey, 2018). The key model-
ing assumption is that the observed interaction network is
a finite subsequence from an infinite sequence of interac-
tions. Denote the underlying population of nodes by P.
Then the network is constructed from an interaction process
Z : N — fin(P) which is a correspondence from natural
numbers and the finite multisets of 7. The most relevant
prior work in this direction is the incorporation of node-level
community structure into edge exchangeable models (Zhang
& Dempsey, 2022). These block edge-exchangeable models

(BEEMs) do not account for latent interaction-level cluster-
ing structure; moreover, the Gibbs-based inferential algo-
rithm provided is not scalable while the proposed variational
algorithm can scale to millions of interactions.

Variational Inference The inference of model parameters
relies on the variational method (Blei et al., 2017), which
has been used in community detection (Airoldi et al., 2008;
Yin et al., 2020). Theoretical and computational guarantees
of mean-field variational inference have been thoroughly
discussed (Zhang & Zhou, 2020).

3. Algorithm
3.1. Notations and Definitions

Categorized Interaction Process Let P represent the set
of nodes in the underlying population, and T be the total
number of categories. For clarity, here we consider 2-way
interactions (e.g., a sender and a single receiver). Define a
complete interaction process E°: N — [T] x P x P. Con-
sider the mth interaction, E¢(m) = (¢, 4, 7) indicates the
mth interaction is from category ¢, and involves node ¢ and
7. Each edge has an assigned category according to a distri-
bution parameterized by 7. Denote the category assignment
of interaction m by Z,,. Note that in the observed set of
interactions, the category labels are latent. Therefore, we
define the observed interaction process £: N — P x P.

Categorized Interaction Process with Block Structure
Let the number of blocks in each category be Ky, t € [T7].
Note here K; are different for different ¢s. The block struc-
ture is defined as the mapping: P — [K;], which is category
specific. Denote the block assignment of each node (sender
or receiver) in category ¢ as z., for x € P. In the observed
interaction process, {z%},c[7 are latent. Conditional on
the category Z,,, = t, the block that initiates the interaction
is determined by a distribution 7 (¢) over all blocks. The
block of the second unit in the interaction is determined by
a propensity matrix B, with entries in each row summing
to 1. This B; matrix is category specific. Denote the entry
of the matrix as B (b, V'), for t € [T], b, b’ € [Ky].

Edge Exchangeability The edge-labeled network is con-
structed from the interaction process by constructing equiva-
lence classes over node labels. Let S be a finite or countable
set. An edge-labeled network ) built from an interaction
process among elements in S — formally 7 : N — fin(.5)
where fin(.S) are finite multisets of S —is edge exchangeable
if Y7 =p Y for all finite permutations o : N — N, where
=p means equal in distribution. The definition states that
the probability of the network is invariant to the order in
which the interactions are observed. Edge exchangeability
provides a theoretical foundation for the proposed model
to guarantee empirical properties of sparsity and power-law
degree distribution in the generative models.
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Node Popularity To measure the frequency of a node
being observed, denote {f/, : t € [T],b € [K¢|} as the
propensity of observing node ¢ € P in category ¢ within
block b in the network. In our inferential algorithm, we
assume propensities form a conditional distribution given
category ¢ and block b sumup to 1, i.e..) . p fh =1

Notations in Observed Data Denote the observed inter-
action network as Yj,, where we observed a finite number
of edges. Denote the total number of edges as M. Let Py
represent the set of nodes in the observed graph. The total
number of observed nodes is N = |Py,|. Consider the
mith interaction in the observed graph. Denote s(m) as the
sender node, r(m) as the receiver node.

3.2. CataBEEM

Model Description The goal of this work is to infer the
underlying network structure. We start by providing network
formulation from the generative model perspective. For
illustrative purposes, we start with an arbitrary interaction
and then generalize it to the entire network.

Consider the mth interaction E(m) = (4, j) in the network.
For this specific interaction, the edge category Zz,,, selected
from a finite number of categories 7', is characterized by:

Zm ~ Multinomial(7)
The block assignment for node ¢ and node j is given by:
z{ ~ Multinomial (7 (t)); z; ~ Multinomial(By(b, -))

With the above information, the probability of observing
node ¢ and node j is given by:

s(m) =i|(z! = b, Z,, = t) o< Multinomial( fy,)

r(m) = ]\(z§ =¥, Z, = t) oc Multinomial( fy)
Combining the above, the probability observing interaction
E(m)is:

P(E(m) = (i,j)|z %, %, 7, f, B) =

T : Ky . Ky .
117 1T =@ £y T B:o.0)% £,
b=1

t=1 b'=1

Denote © = {z, z, 7, , f, B}. Consider all interactions in
the observed network, the likelihood of the complete model
is the product over all interactions:

T . Ky
P(Yy|©) = Hﬁ-tLt H oy (t) Er (0 Hf;bDegt(s)
t=1 b=1 s
K 1)
I B.o. o)™ T g 2o

b'=1 reR(s)

where L, is the number of interactions that have category t;
Ly (t) is the number of interactions that initiate from block b
and have category ¢; Wy (b, ') is the number of interactions
that are initiated from block b to &’ and have category t;
Deg (i) represents the degree of i € Pyy.

Hyperparameters For latent parameters 7, 7(t), and fy,
we specify distributions as follows:

7 ~ Dir(a); 7(t) ~ Dir(a); fip ~ Dir(yew)

where & is of dimension 7', and « is of dimension K. In
the observed ]\%raph, a finite number of nodes are observed,
such that Zn:l . = 1. Thus 4 is of dimension N. If
no prior information is provided, each entry in & can take
value of 7 each entry in a; can take value of %; and each

entry in vy can take the value of %

Aucxiliary interaction-level covariates can provide extra in-
formation about the underlying category structure, but edge
exchangeable models to date have not made use of this
additional data. A joint model that includes the auxiliary in-
formation can be computationally prohibitive. As a scalable
alternative, we incorporate these covariates through an edge-
wise prior a*. For each interaction m € [M], o, is a prior
distribution over 7' informed by the auxiliary interaction-
level covariates. We set the & to be the tuning parameter,
such that:

Fom ~ Dir(

ap,), Vm € [M] @)

1+«

The interpretation of ¢ is thus the confidence on the input
prior, with & being infinity means a complete trust of prior
information. Low trust in the prior information will shrink
it towards 0.

3.3. Inference

The above model brings latent parameters z, z, 7, 7 and
f, as well as model parameter B. Unfortunately, direct
maximization of Eq. (1) does not have a closed form and
Bayesian MCMC can be computationally prohibitive. Here,
we derive a variational EM algorithm as a scalable alter-
native to estimate the model and latent parameters. The
correspondence between variational parameters and latent
parameters are shown in Table 1. In the observed network
with M interactions and N unique nodes, we specify the
following mean-field approximation:

M
() = H 41 (Zi|¥) g2 (7[7) ga (m () |1")
=1 3)
I asGile)es(file)
ne{s(i),r(4)}

Given the above approximation, the inference algorithm can
be derived. Consider the evidence lower bound (ELBO) of
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Table 1. Correspondence between model parameters and desig-
nated distributions, variational parameters, and hyperparameters.

LATENT VARIATIONAL ~ VARIATIONAL  HYPER-
VARIABLE  DISTRIBUTION  PARAMETER  PARAMETER

Zi MULTINOMIAL Wi -

250 MULTINOMIAL by -

2l MULTINOMIAL Qﬁ"gi) -

m(t) DIRICHLET n o
T DIRICHLET n a
feo DIRICHLET Atb Vb

the observed network:

L(q,0) = E[log p(Yar, ©)] — Egflog ¢(©)]  (4)

The ELBO contains two terms. The first term is the expected
log joint distribution of the model. The second term is the
entropy of the variational distribution. The variational EM
algorithm can be implemented by iteratively updating the
variational parameters for latent variables and the model
parameters, which leads to the maximization of the ELBO,
as shown in Algorithm 1. The update formula of variational
parameters can be found in Appendix A.2. Given latent
parameters, the entries in B matrix can be updated as:

Mt t bt bt
Zi:l ql)s(z)wr(l) (bs(z)(br(l)
M Kt v
Dim okt Vi Yhay O Ohti

Bt(b, b/) =

The theoretical computational complexity of the algorithm is
O(MTK?). Note here the update of 1; are independent for
each ¢ € [M], and the update of ¢,, are independent for each
n € [N]. The optimization of the algorithm through parallel
computing is feasible here, which can greatly improve the
scalability of the algorithm. The time complexity of the
algorithm is discussed in Appendix A.9.

3.4. Consistency

In this section, we provide a theoretical guarantee that the
latent block labels can be recovered by maximizing the
likelihood shown in Equation 1. Conditional on the latent
category of each interaction being known, the misspecifica-
tion rate of latent block assignments in each category can be
bounded under certain conditions. Specifically, the misspec-
ification rate converges to O when we focus on high-degree
nodes.

Theorem 3.1. Assume the category of each interaction is
known. Let Yy obey the power-law degree assumption. Let
et : Py — [Ky] denote the current labeling of the non-
isolated nodes after observing My interactions in category
t. Assume K, = 2,Vt € [T). Let

Ny
1
= inf =) 1( #£p/2
i e W, D E A0

i=1

My,

Algorithm 1 Variational EM Algorithm
Input: observed graph Y}, with N unique nodes
Specify: T', K
Initialization: Variational parameters: ¥, ¢, 1, 7, A;
Model parameter: B; Hyperparameters: «, &, .
repeat
for i = 1to M do
fort =1t 7T do
Update 11[}7 ¢f (08 fl (d)a ﬁv m, /\7 B)
end for
end for
for n = 1to N do
fort =1toT do
for b = 1to K; do
Update ¢%: ¢% o< fo(t), ¢y, 1, X, B), if n is
sender; qut x f3(, ¢s, A, B), if n is receiver.
end for
end for
end for R
Update 77 7 o fa(th, @)
Update 7: 7 oc f5(t, ¢, @)
Update A: A fo(, b,7)
Update B matrix
until Converge

(See Appendix A.2 for the full updates formula on f; to fg)

denote the misclassification rate (under potential label
switching). As My — oo, for any u > % under certain
conditions on the current labeling provided in Appendix A.1
and the approximate updating rule we have

P[Mpy, > euP;] < exp [—eNiPyulogu]

where e is Euler’s number, u > 1/e is a constant, and
P, — > %2, aB(d,a + 1) exp(—dp?,;,/4) as My — oo
where [imin Is a constant depending on the current labeling.
Specifically, restricting the misclassification rate My, (Dpr)
to nodes of at least degree Dy, it is possible to construct a
sequence Dy, such that
lim P[Mny,(Dy) > €] =0, foralle> 0.
M;— 00

Remark 3.2. The proof of Theorem 3.1 relies on an approx-
imating update rule, which is not equal to the variational
inference update rule. While not equivalent, the two rules
have similar updates in our empirical studies.

3.5. Model Selection

So far, we have assumed the number of categories and the
number of blocks are known. In most real cases, these num-
bers are not given a priori and need to be decided. Since the
emphasis of the paper is not on proposing a novel model se-
lection model, we rely on the existing methods and suggest
potential strategies for model selection in our framework.



CataBEEM: Integrating Latent Interaction Categories in Node-wise Community Detection Models for Network Data

First, consider the selection of the number of blocks. We
focus on two strategies, the model selection based on the
maximal marginal posterior (Taddy, 2012), and the BIC cri-
teria (Burnham & Anderson, 2004; Yan, 2016). After fitting
a marginal model without considering latent categories, both
of these model selection criteria give an accurate estimate
of the number of blocks (Appendix A.3). In all scenarios
(including where the number of blocks is not the same in dif-
ferent categories), we find the community structures in each
category can be recovered by our algorithm after setting a
global value on the number of blocks.

The selection of the number of categories is case-dependent.
Use TalkLife data as an example. The auxiliary interaction-
wise prior knowledge is from the textual information in
posts and comments. In this case, we fit the Latent Dirichlet
Allocation (LDA) model (Blei et al., 2003) to the textual
data and get the topic distribution in each post-comment
pair. We assume the underlying topics in the LDA model
indicates the underlying categories. We select T based on
Jaccard Index (between-topic difference) and Coherence
(within-topic similarity) (Rehurek & Sojka, 2011; Roder
etal., 2015) (See Appendix A.6 for details).

4. Experiments on Synthetic Data

In this section, we demonstrate the effectiveness of the
method through simulations. Theorem 3.1 provides the
boundary on the misspecification rate of the algorithm. Em-
pirical results to support the conclusion are shown. We start
with the generative description of the simulation setup and
proceed to evaluating the performance of the algorithm in
different scenarios.

4.1. Simulation Set-up

The network data are generated by interaction to mimic
the real-world networks. For illustration purposes, suppose
m interactions Ef,,) have been observed along with the
block and category assignments. Consider a new interaction
Ep+1. Suppose 7, 7(t), ¥t € [T], and the propensity ma-
trix B are known a priori, such that the category of E,, 1
and the block assignments of the sender and receiver are
sampled according to 7y, 7p(t), and By (b, b).

Given the category of the interaction and the block assign-
ments of the nodes, the next step is to select the correspond-
ing sender and receiver nodes. However, a pre-specified fy
is unavailable due to the fact that the network is generated
by interaction, and the total number of nodes is a random
variable. We use the strategy described in the interaction-
framed network (Zhang & Dempsey, 2022) where the node
distribution follows a Pitman-Yor process (Pitman et al.,
2002). In this way, the sender node s(m + 1) can then be

drawn according to
P(s(m+1) = 8|Zmi1 =1, 2441y = b) ~ PYi(5,0)

where PYy, is the topic-block specific Pitman-Yor Process.
The intuition is the frequency of observing a node depends
on the observed degree as well as the network properties
(characterized by g and 6), We follow a similar procedure
to draw the receiver node r(m + 1).

The entire network can be generated by repeating the proce-
dures described above. We assume here nodes from different
blocks are non-overlapping in the simulation. But the same
node can appear in different categories.

4.2. Consistency

We evaluate the algorithm’s ability to recover the latent
labels in different simulation settings (See Appendix A.4 for
details). Experiments are repeated 20 times in each setting.
The L2 norm is used to evaluate the performance of the
inferential algorithm, which measures the distance between
the inferred labels and the truth. It is defined as:

M N

1 SR 1 v g
Lz = MZ(%—%‘)Q; L.= NZ(ZZ -2 )

i=1 n=1

where t* is the category node n contributes most (See Ap-
pendix A.5 for discussion of label switching). Figure 2a
shows the Lo norm of block assignments as a function of
the node degree cutoff. The degree cutoff means nodes used
to calculate the L2 norm have degrees greater or equal to
the thresholding value. In all settings, the uncertainty of the
inferred latent labels is high with the presence of low-degree
nodes. As the degree cutoff increases, the inferred labels
gradually converge to the truth, which is consistent with our
theoretical conclusion.

Consider the fact that the performance of the algorithm can
be affected by the block structure of the network and the
similarity of block structures in different categories. In Set-
tings 1 (Easy), 2 (Moderate), and 3 (Hard), the probability
of within-block connectivity decreases, and the similarity
of the block structure in different categories increases. The
convergence rate slows as the difficulty of the learning task
goes up. Besides, we also explore the performance of the
algorithm in the setting (Setting 5) with an increasing num-
ber of blocks and the number of categories, and the setting
(Setting 4) where the numbers of blocks are different in
different categories.

Let 6 € [0,0.5] be the perturbation on the true block label
and interaction label, with § = 0 is the perfect initializa-
tion, and 6 = 0.5 being a completely random guess. We
experiment on the effect of initialization on the recovery of
block labels and category labels. Figure 2b shows inferred



CataBEEM: Integrating Latent Interaction Categories in Node-wise Community Detection Models for Network Data

block labels can be affected by the initialization. The fur-
ther the initial value deviates from the underlying truth, the
harder it is for the algorithm to identify the correct labels,
especially for low-degree nodes. Another interesting phe-
nomenon being observed is that a good initialization can be
more helpful when the block structures are more distinct in
different categories.

Figure 2c shows the recovery of category assignment in
different settings with different initialization strategies. The
conclusions are very similar to what’s been observed in the
recovery of the block labels. Both the initialization and
the difficulty of the learning task can have an effect on the
performance of the algorithm.

4.3. Auxiliary Interaction-wise Information

We have shown the consistency of the inferred block labels,
especially for high-degree nodes. On the other hand, dis-
crepancies exist between the inferred category labels and
the ground truth. We show in the following experiments
that edge-wise prior can provide extra information for the
algorithm to learn the correct label for each interaction.

Recall the hyperparameter design as shown in Eq. 2. We
experiment with different weights on the prior information.
The & is set to infinity, 1, and 0, which correspond to a com-
plete trust in the prior, down-weighting the prior by half,
and no trust in the prior information. Figure 2d shows the
L2 norm of the category labels in Setting 3 (Hard). Incor-
porating prior information for each interaction significantly
improves the correctness of the inferred categories labels,
especially in the situation where the initialization is poor. In
Figure 2e, we show the improvement in correct category as-
signments also helps improve the accuracy of learned block
assignments. The improvement also depends on the initial
values. Again the extra prior information benefits most in
scenarios with poor initialization.

S. Experiments on Real World Data
5.1. Overview of TalkLife Data and Experiment Design

TalkLife is an online peer-to-peer support network, where
users can post contents about their mental health concerns,
and/or comment on other users posts. We consider all posts
on TalkLife during the Year 2019, which leads to a network
of 4,236,829 interactions, and 199,257 users (Poster and
Commentator). We apply the proposed method to the Talk-
Life data. The interaction network can be constructed by
linking users who post and users who comment on the same
post. Each post consists of a poster and a set of commenta-
tors. To make model comparisons with other methods fair,
we split interactions between the same poster and each of
the commentators into a sequence of poster-commentator
pairs.

In this case, there are no ground truth labels for categories
or blocks in TalkLife. Therefore, we focus on stability of
the detected community structures over time as well as pre-
dictive capacity of the proposed model. The more persistent
detected community structures are over meaningful time
scales, the more helpful it is for the platform to identify the
user groups. With this in mind, we partition the data in a
consecutive time frame into two halves of comparable sizes,
e.g. similar time intervals. We fit the model in the first half
of the data (training) and evaluate the performance in the
second half of the data (testing). We experiment on data
partition of different time frame lengths, e.g., six months of
data or one month of data in each part. Note that the pres-
ence of new users and the drop-offs of old users will lead to
some unpredictable user behaviors. We exclude these users
to avoid this effect on model evaluation. Partitioning the
data into comparable sizes will give us the largest proportion
of user overlap.

5.2. Fit to Data

We select the number of underlying blocks based on the BIC
criteria as described in Section 3.5. To identify the number
of underlying categories, we apply the LDA model to the
annual textual data and identify the number of latent topics
(See Appendix A.6). We assume latent topics reflect latent
categories in our model, and the number of latent categories
is the same as the number of latent topics in LDA model.
The probability that each post-comment pair belongs to a
topic is used as the edge prior.

We apply the method to the monthly data and the half-year
data. The visualization of the detected community structures
are shown in Appendix A.7. While the inferred communities
reveal the social structures of users, we consider the tem-
poral stability of the detected communities. Note that the
blocks in different categories and in different time frames
do not have a one-to-one correspondence, and thus are not
directly comparable. To overcome this issue, we consider
the probability that an arbitrary pair of nodes s and j are in
the same block P, —, :

PZS:z,,. =

T
t=

Ky
Py (Lol
1 =1
where P* o« P!P! is the normalized posterior estimates
that node s and r are in an interaction of category t; 2!
and 2! are the posterior estimates of the block assignments..
To quantify the difference of inferred block structures at
different times, we use the Lo norm:

1
t t
L2 = N2 g ‘stl:zr - sz:zr|2
s,re€P

where P!'_, and P!>_, correspond to the estimates of

probability in the first and the second part of data (e.g., if ¢;
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Figure 2. Average L2 norm of block assignments in different settings (a) as a function of node degree, and (b) as a function of node degree
with different initialization status. (c) L2 norm of category allocations in different settings varied by different initialization status. (d)
Comparison of L2 norm of category allocation with different prior weights given different initialization status. (e) Average L2 norm of
block assignments as a function of node degrees with different prior weights.

Table 2. Comparison of the temporal stability of block structures.
The cataBEEM has lower Lo in all data sets, indicating a more
persistent block structure over time.

DATA SET Lo (CATABEEM) Ly (DC-SBM)

SIX MONTHS 0.48 0.70
MONTHLY (SD) 0.38 (0.059) 0.59 (0.075)

is January, then ¢5 is February). The rationale is that if the
block structures are persistent over time, the probability any
arbitrary pair of nodes belongs to the same block should not
change, which is reflected by the relatively small value of the
L5 norm. Results are shown in Table 2. There are limited
choices of well-implemented community detection methods
that can scale up to the size of the data. We compare the
results with DC-SBM. In all datasets, our method detects
more a stable community structure than the DC-SBM.

5.3. Prediction of Interactions

In this section, we demonstrate the potential translation of
the model fitting results into a predictive tool. Consider the
probability of observing a certain receiver given the sender.
For a specific sender s, we have P, :

T
Py Y Pt o fHBisl o flY

t=1

such that P, = 1. We calculate the P, |, in the training
data and evaluate the results based on the observed degree
in the testing data. It is expected that the higher the P,
(in training data), the more likely the receiver r is to be
observed, and the higher the observed degree in testing
data. We focus on the coverage probability of high degree
receivers (i.e. Deg(r|s) > d) of sender s in the testing
data: CP; = Zr,Dag(r\s)zd P, ;. Define the coverage
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Table 3. Coverage Ratio Probability (CRP) calculated by different methods. * indicates the highest value among all methods.

DATA SET CPRi3° (CATABEEM)  CPRip’ (DCSBM) CPRig° (E2) CPRi3° (DGLFRM)
SIX MONTHS 2.11% 2.09 2.06 !
JAN 2.84% 1.61 1.53 1.092
FEB 2.61% 2.27 2.22 1.079
MAR 2.22% 1.98 1.89 1.123
APR 1.81 1.94 1.91 1.098
May 2.77% 2.69 2.68 1.059
JuN 2.56% 1.02 2.54 1.081
JuL 2.27% 2.22 2.23 1.094
AUG 2.64* 2.33 2.28 1.071
SEP 1.61 1.75% 1.72 1.048
ocr 2.72% 2.48 2.42 1.090
Nov 2.78% 2.19 2.11 1.088

! NOT ENOUGH MEMORY WHEN APPLYING DGLFRM TO THE SIX-MONTH DATA.

probability ratio of sender s as:
CPj
(X7, Degryza Fres)

where P.c; = 1/N,|,. A higher coverage ratio indicates
the better chance the interaction between sender s and high-
degree receiver nodes of s being predicted. We calculate the
average C'PR of 100 highest degree senders in the testing
set, and set d = 10 for receivers, denoted as CPR})° (See
Appendix A.8 for comparisons in different settings). Re-
sults are shown in Table 2. All CPR}" values are greater
than 1, which indicates the effectiveness of cataBEEM to
predict high-degree receivers. We compare our method
with the original edge exchangeable model (e2), the DC-
SBM (Funke & Becker, 2019), as well as DGLFRM - a
GNN-based method (Mehta et al., 2019). In most cases (10
out of 12), our method has highest C PR13°.

CPRS =

5.4. Other Data

We compare our method with other methods in two ad-
ditional datasets, which include the Cora citation net-
works (McCallum et al., 2000) and Pubmed citation net-
works (Sen et al., 2008). The Cora citation network is
composed of 2,708 documents, and 5,278 interactions. The
Pubmed data is composed of 19,717 papers, and 44,324
interactions. The coverage probability ratio is calculated to
evaluate the performance of different methods. Results and
additional details of model fitting can be found at Appendix
A.10.

6. Conclusion

In this paper, we integrate edge-level clustering into com-
munity detection within the edge exchangeability frame-
work. The highlights of our proposed method are: (1) the
identification of block structures under different categories;

(2) the incorporation of the auxiliary interaction-wise prior
knowledge; and (3) the scalability of the algorithm, which
can handle networks of millions of interactions. We pro-
vide the theoretical boundary of node misspecification rate
and supportive evidence from synthetic experiments. We
demonstrate the method and compare it with several other
methods using the TalkLife data. Our method detects more
temporally stable community structures and gives better
predictions than alternative methods such as DC-SBMs.
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A. Appendix
A.1. Proof of Theorem 3.1

We follow a similar proof logic as shown in (Zhang & Dempsey, 2022). Suppose the ground truth category label of edge
is known. Consider an arbitrary category ¢t € [T]. Given initial labeling e; : Py; — [K}] of all observed nodes in the
network Y§, in category ¢, our goal is to show the misclassification rate (accounting for label switching) is bounded after a
single iteration of an updating algorithm that approximately maximizes the likelihood given initial labeling. Specifically, we
will show the misclassification rate decays rapidly and is therefore small for high-degree nodes.

Conditional on the model parameters ©, the likelihood of observing the interaction networks that composed of edges in
category t is given by:

P(Y},1©) = Hm, Lb“)HfS Degs(2) H By(b, )@ T g0 )

b'=1 reR(s)

Assumption A.1. In the proof below, we consider the setting where K; = 2, a = By(1,1) = B;(2,2), b = B(1,2) =
By(2,1), f} = f&, Vo € Par, b, b’ € [Ky], m1(t) = ma(t), and a > b. We call this a balanced setting since the likelihood
of initiating an interaction and propensity of observing an arbitrary node are the same across different blocks.

Directed Graph Setting Note in the cataBEEM we consider sender and receiver nodes independently, which fit into the
directed graph assumptions by definition. Consider node i as the sender node. Under Assumption A.1, the difference of log
likelihood of assigning node to block 1 and block 2 is:

li,l — li72 = (loga — 10g b) (Degt(i, 1) — Degt(i, 2))

where Deg, (i, 1) and Deg, (i, 2) refer to the degree of node i being connected to node in block 1 and block 2 under label e;.
Consider node ¢ as the receiver will give us a similar expression:

lin = liz = (loga —logb)(Degy(1,i) — Degy(2,))

For simplicity, denote Degy(i,1) and Deg,(i,2) as the degree of node i being connected to nodes from block 1 and 2
correspondingly, regardless of the direction. A mis-specification can happen if either the sender or the receiver are not
correctly labeled. Therefore, a natural updating rule is: e} = 1 if Degy(i,1) > Degq(i,2). Let ;(e;) for j € Py such that
&i(e;) = —1ifel = 1and &;(e;) = 1if ¢} = 2. Then define

= ZDt(iJ)fj(et)

where Dy (i, j) is the number of interactions (¢, j) in Y},. Then the updating rule leads to correct specification of the node
(i.e., the assigned label ei = 1 equals the true label z{ = 1) if ¢; < 0. Thus bounding the probability of misclassifying
node 7 is equivalent to bounding P(e; > 0). Let {.J1 } be the set of nodes that match to the truth under e;, and {.J2} be the
set of nodes that do not match to the truth under e;, we have:

E(ei) = —Degu(i) Z ft1+b Z ft27b Z ftzfa Z ftl

je{J1} je{J2} Jje{J1} je{J2}
=-Deg:(i) [a| > = D fi|-v| D th- D fh
Jje{J1} je{J2} Jje{J1} je{J2}

Let v, = > en %, € [0,1] denote the weighted fraction of nodes that are correctly specified and note that 3 jes £+
>jegafiy =1 Let 2 == a(2y1 — 1) = b(2y2 — 1) then

Var(e;) = 4Degy(i)[u1,2(1 — p1,2)] < Degq(i)

12
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Recall ¢; = >, Dy(i, j)&;(e:) which consists of independent random variables with mean 1 and variance bound by 1. Then,
by Bernstein’s inequality, we have

2

Pe; >E(¢;)+c) <exp| — - 6

(6> B(e) +0) < o (- 5555 ) ©®

for any ¢ > 0. Note the Bernstein inequality requires ¢ = —E(¢;) = Deg.(i)p1,2 to be greater or equal to 0, and thus

t1,2 > 0. When considering node ¢ in block 2, this implies a positivity condition 12 1 > 0. We use the same set of design
on 7, as in the original paper, which states that:

Assumption A.2 (Positivity). Assume (a) v, € (1/2,1] for b = 1,2, i.e., the weighted fraction of nodes that are correctly
specified is greater than 1/2; and (b) that {71, 2} satisfy

Ymin + Ymax

9 - 1) - (2’Ymax - 1) >0 @)

H12 A f21 = fimin = 2+ @ (2

where Ymin = Y1 A\ Y2 and Ymax = V1 V V2.

Assumption A.2(b) guarantees positivity of both j1 o and ps 1 which is necessary for the labelling e, to guarantee a bound
via Bernstein’s inequality.

Lemma A.3. For eachi € Py, given Deg,(i) and propensities { ftib}, then under Assumption A.1 and A.2 we have

Degt (Z)lufmn >

P(e; > 0) < exp < 1

Bounding misclassification rate. The misclassification rate under label e; is:

Ny
1 _
My,(e) = inf  — > 1fe} = pl2!
. (€r) P K= K] N i=1 o

where p’ indicates the potential label switching. Let N (£(e¢)) = Zf\il 1(e; > 0). Then the misspecification rate is bounded

by :
N(&(er))

My, (er) < N,

®)

The inequality is due to treating the ambiguous case €; = 0 as an error. To bound the RHS of Eq 8, we assume node degree
follows the Yule-Simon distribution parameterized by « such that the following Lemma from (Zhang & Dempsey, 2022)
can be hold:

Lemma A.4. Given the degree sequence { Deg:(i)}icp,, and propensities { ftjb} then

Ny s
1 a.s.
Pri= =Y Ple > 0) " Y aB(d.a+ 1) exp(—djidy, /4)
t d=1

Bounding the RHS of (8). We next show N%N (&(et)) is bounded. The proof relies on the following Lemma 5 from (Zhang
& Dempsey, 2022; Amini et al., 2013):

Lemma A.5. For independent Bernoulli R.V. X;, i € [n]| and any u > é, where e is the Eular’s number,
. 1 n n
pP (X > eu— ZE(XJ) < exp <—e (Z IE(XZ)> ulogu)
n
i=1 i=1

Note that 1(¢; > 0) is a Bernoulli random variable. Given { f{,}, 1(¢; > 0) are independent random variables for i € Py;.
Then by Lemma A.5:

P L\lfN(f(et)) > euPt] < exp (—eNiPulogu)
¢

which guarantees that as M; — oo the misclassification rate can be bounded by u - e - P;. By Lemma A.4, P, converges to a
constant. Now consider the high-degree nodes:

13
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Lemma A.6. Let NP denote the set of nodes with degree greater than D. Then define

ND
Pp= ND ZP (€ >0) = C' Y aB(d,a+ 1) exp(=diiy,i,)/4)
=1 d>D

where C,, = Zd>D aB(d,a+ 1) < 1. Then one can construct a sequence Dy, such that as My — oo, Pp,, — 0, and
NtD M Pp,, — 00. Any such sequence guarantees

M;— o0

lim P (N}M N(E(er)) > o) — 0.

From approximating updates to variational inference Note that all above derivation relies on the approximating update
rule that el = 1if Deg, (i, 1) > Degq(i,2). Consider the variational update for latent parameter ¢! for node i € Py (either
sender or receiver). Assume A}, = A}, Vb, b’ € [K,] and are known. With some algebra, it can be shown that:

log ¢j; — log ¢j, = Z( 1, — ¢15)(log a — log b)
J
where j € P, are the nodes that have interaction with node 7. As a comparison:

lir —li2 = (Dege(i, 1) — Dege(i,2))(log a — log b)

There’s a correspondence between ) _ ¢, and Deg,(i,1); > ¢J, and Deg,(i,2). The difference is that variational
inference updates allow the uncertalnty in the block a551gnments This will introduce more variance as compared to the
approximating update rules which only allows binary values. The vairance depends on the node degrees and the current
block labeling status in the variational inference.

A.2. Algorithm Derivation

We provide a complete derivation of the variational inference algorithm in the section. Consider the ELBO as shown in Eq.3.
The expectation of log of joint likelihood is:

T K, T M
Ey[logp(Yar, © logHHHP (i) = blmo(8)) P2y = bim(8)] + Egllog [T [ Pla(t)le’
t=1b=1i=1 t=1s(i),i=1
(a) (b)
T K, T M
logHHHP DIf, 2 2)P(r@)|f, z, 2)] + E4] logHHP i = t|7t)]
t=1b=11i=1 t=1i=1
(c) (d)
T K, T K, K
logHPﬂa +Eylog [T [T P(fotlvee)) + Eq logHHHHP4 ()| B, (i), (i), 2, 2)]
t=1b=1 t=1b=1b'=1i=1

(e) () (9)

Next, consider the entropy:

E,[log ()] = Eq[log q(|n)] — Eqllog q(2[¢)] — Eqllog q(f|N)] — Eqllog q(2[)] — Bq[log q(7]7)]
(1) 2) 3) (4) (5)

Write out each term in its explicit form gives us:

14



CataBEEM: Integrating Latent Interaction Categories in Node-wise Community Detection Models for Network Data

T K, M T K, K,
(a) = Z Z ¥; Zt(i) [W(n™) — Z )]+ Z Z Z {0 'r( 4 ‘I’(Z )]
t=1 b=1 i=1 b=1 t=1 b=1 i=1 b=1

= -y T, a'?) -1y _ L L3, a'’) atb_1
(b) = S(i);_l ; Eq[log Hb F(Oétb) 1;[ my(t) ] = s(i);_l ;10{; Hb F(atb) + ; Eq[log (1) ]

I
M=
1

log () a') =Y "logI'(a™) + ) (o = [T(H") = ¥ (> "))
b b b

b

M F(Zt &t) _a 1 M ~t ~t
= Byllog mrG 17 ] = llogT(3_a") Zlogr )+ (@ =) - v 7))

N
HHIOg n lrytb H )\n Yn—

n 1 n=1

N

N
=" logT(> ) — Z log T(vj) + > (v — DIT(AG,) — Z Ay
t b =

n=1 n=1 n=1

M
g) - Z Z Z Z Eq [IOg Bt(b, b’)Zs(i)t,:b@i(i):b/]
t b b

g

= 3Byl Mtb)) [Tmor w1y
:glogr ;n —;Mgr (™) +§<n —1)[\If(ntb)—\1f(§b:ntb)}
ZZZ«W ) log 620, +;;;¢’% log ¢1
:ijzt]logr(ZA Zlogl" AR) +Z (AR, — D[TAY) — Z)\
=Z;wﬁlogwf

(5) = logFZ Zlogr )+ > @ = D) - v i)
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Maximize the above equation regarding each latent parameter leads to the following updates:
W} o< expf{[¥ Zn }Xexp{z e m™) = e (> 0"}
b
N
X eXP{Z ¢s( ) (Abe) — Z Ape)]} % eXP{Z ¢’r(z ) - ‘I’(Z Ap)}
n=1

K K
xexp{y >~ ol ol log By(b, 1)}

b=1b'=1

M M N
Slocexpl D wHPE) U ny xexp{ Y WGP T A}
n=1

1=1,s(i)=s b i=1,s(i)=s

M K
xexp{ Y Y il log By(b, 1)}

i=1,s(1)=s b'=1

R M N M K /
o ocexpl Y wIUOL) — RN xexp{ D > il log Bi(b,b)}

i=1,r(i)=r n=1 i=1,r(i)=rb/=1
M
=t t ~1
i=1

Zw oo +

bt = Z ¢¢Z€)+ Z U) r(z)‘|‘7tb

i=1,s(i)= i=1,r(i)=n

where W is the digamma function. Note that by definition we need to normalize ¢, v, such that: ), g{)it =13, QASg,t =1,

and ), 1/3@ = 1. Note here ’(/AJtL corresponds to f1, (ﬁ’;t corresponds to fs, (ﬁ?t corresponds to f3, 7i* corresponds to f4, 7]
corresponds to f5, and A}, corresponds to fe in Algorithm 1.

A.3. Model Selection

We experiment on the model selection criteria mentioned in Section 3.5 using synthetic data. We simulate three datasets
according to the steps as described in Section 4.1. We assume the Pitman-Yor process parameters are the same in all datasets.
That is 5 = 0.5 and 6 = 5. Specifically, we have:

Dataset 1: The network contains 1000 interactions. Let 7' = 2 and K = 4. Assume 71 = 7o = 0.5; m1(1) = mo(1) =
m3(2) = m4(2) = 0.45, while 71 (2) = m2(2) = mw3(1) = m4(1) = 0.05. The propensity matrix B is:

0.9 0.03 0.03 0.03
0.03 0.9 0.03 0.03
0.03 0.03 09 0.03
0.03 0.03 0.03 0.9

Bt = ,Vt S [2]

Dataset 2: The network contains 2000 interactions. Let 7' = 2 and K = 8. Assume 7 = 7 = 0.5; w1 (1) = mo(1) =
m3(1) = m4(1) = w5(2) = m6(2) = m7(2) = 7s(2) = 0.45, while 71 (2) = m2(2) = m3(2) = m4(2) = 75(1) = 7w6(1) =
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m7(1) = mg(1) = 0.05. The propensity matrix B is:

(0.8 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
0.03 0.8 0.03 0.03 0.03 0.03 0.03 0.03
0.03 0.03 0.8 0.03 0.03 0.03 0.03 0.03
B — 0.03 0.03 0.03 0.8 0.03 0.03 0.03 0.03 e
/ 0.03 0.03 0.03 0.03 0.8 0.03 0.03 0.03]’
0.03 0.03 0.03 0.03 0.03 08 0.03 0.03
0.03 0.03 0.03 0.03 0.03 0.03 0.8 0.03

10.03 0.03 0.03 0.03 0.03 0.03 0.03 0.8 ]

Dataset 3: The network contains 1000 interactions. Let T=2 and K=4. Assume 7; = 75 = 0.5; m1(1) = m2(1) = 0.45,
m3(1) = m4(1) = 0.05, while 7 (2) = m2(2) = 0.5, m3(2) = m4(2) = 0. The propensity matrix takes the value:

0.9 0.03 0.03 0.03 09 01 0 O
B, = 0.03 0.9 0.03 0.03 By — 01 09 0 0
0.03 0.03 0.9 0.03]" 0 0 1 0
0.03 0.03 0.03 0.9 0 0 01

We repeat the simulation steps 20 times in each dataset. First consider the marginal posterior maximization, we fit the
BEEM model (Zhang & Dempsey, 2022) to the simulated datasets over a range of K, and calculate the marginal likelihood
based on posterior estimates of the BEEM. The average log-likelihood are shown in Figure 3(a)(b)(c). In all datasets, the
average marginal likelihood maximizes at the true value of K.

Next, we consider the BIC criteria. This time, we fit the DC-SBM to the simulated datasets over a range of K values, and
calculate the BIC based on (Yan, 2016):

2
BIC = —In P(Yy|©) + K? InO(N?)

The results are shown in Figure 3(d)(e)(f). The average BIC maximizes at the true value in dataset 1 and 3. In dataset 2, the
BIC are very similar over a range of K values. Note that BIC has a wider range of variation over the repeats. On the other
hand, methods that are suitable to BIC criteria such as DC-SBM are much more computationally efficient.

Figure 3(g) shows the Lo norm of block assignments as a function of degree cutoff. In particular, the algorithm is able to
recover the true labels in the scenario when a global K is given but the number of blocks are different in different categories.

A.4. Simulation Details

We follow the generative process as described in Section 4.1 to simulate the network data. We assume the interactions have
equal probability to be from any of the category ¢ in all settings. That is, for an arbitrary interaction 4, 7! = 1/T,Vt € [T.
We set parameters in the Pitman-Yor process as § = 0.5 and # = 5 in all categories and blocks. Specifically, we have:

Setting 1: The network contains 1,000 interactions. Let T=2 and K=4. Assume 71(1) = mo(1) = m3(2) = m4(2) = 0.5,
while m1(2) = m3(2) = 73(1) = m4(1) = 0. That is, nodes from block 1 and 2 only involve category 1; nodes from block 3
and 4 involve only in category 2. We further assume the propensity matrix takes the value:

09 01 0 0
01 09 0 0
Bi=10% 0 o9 01| "€l

0 0 01 09

Setting 2: The network contains 1,000 interactions. Let T=2 and K=4. Assume 7 (1) = m3(1) = m3(2) = m4(2) = 0.4,
while 71 (2) = m2(2) = m3(1) = m4(1) = 0.1. The propensity matrix takes the value:

0.8 0.07 0.07 0.07
0.07 0.8 0.07 0.07
0.07 0.07 0.8 0.07
0.07 0.07 0.07 0.8

B, = vt € [2]
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Setting 3: The network contains 1,000 interactions. Let T=2 and K=4. Assume 7 (1) = m3(1) = m3(2) = m4(2) = 0.3,
while 71 (2) = m2(2) = m3(1) = m4(1) = 0.2. The propensity matrix takes the value:

04 02 02 02
02 04 02 02
Be=109 02 04 02| "€

02 02 02 04

Setting 4: The network contains 4,000 interactions. Let T=4 and K=16. Assume 71 (1) = m2(1) = m3(1) = m4(1) = 0.25,
while 75(2) = m(2) = m7(2) = ws(2) = 0.25, m9(3) = m10(3) = m11(3) = m12(3) = 0.25, and m13(4) = m4(4) =
m15(4) = m6(4) = 0.25. That is, nodes from block 1, 2, 3, and 4 only involve category 1; nodes from block 3, 6, 7, and 8
involve only in category 2, nodes from block 9, 10, 11, and 12 only involve category 3; nodes from block 13, 14, 15, and 16
involve only in category 4. Assume a block diagonal structure of the propensity matrix, such that:

0.9 0.3 0.03 0.03 B(sub) 0 0 0
003 09 003 003 ., | 0O  B(sub) 0 0
Blsub) = 1003 003 09 00305 =] o 0 B(su) o |7t
0.03 0.03 0.03 0.9 0 0 0  B(sub)

Setting 5: The network contains 1,000 interactions. Let T=2 and K=4. Assume 71 (1) = mo(1) = m3(1) = m4(1) = 0.25,
while 71 (2) = m2(2) = 0.5, m3(2) = 74(2) = 0. The propensity matrix takes the value:

0.9 0.03 0.03 0.03 09 01 0 O
By — 0.03 0.9 0.03 0.03 By — 01 09 0 O
0.03 0.03 09 0.03|° 0 0 1 0
0.03 0.03 0.03 0.9 0 0 01

A.5. Discussion on Label Switching in Simulated Data

In this paper, label switching refers to the category labels and the block labels. First consider the category labels on
interactions. We use the following strategy to match the inferred labels with the ground truth:

M
ar min — Zi— 2;)2
gpt:[T]H[T] M Z( )

This will give us the matching p, that minimize the distance between the inferred category labels and the truth. Conditional
on the category being matched, the block labels in each category can be matched according to:

1
3 _ t _ 5t)\2
arg pg:[éfﬁlﬁw N > (- 2

n=1

This will give us the matching p} that minimize the distance between the inferred block labels and the truth in each category.

A.6. Exploratory Data Analysis and Model Selection in TalkLife Data

Figure 4 shows the degree distribution for posts in (a) annual data, (b) six months data, and (c) one month data (e.g. January).
The power-law degree distribution is apparent in the overall network data of Year 2019, as well as in the two subsets of the
annual data. This fit into the underlying assumption of our model.

Regarding the selection of the number of underlying blocks K. We utilize the BIC criteria as mentioned in Section 3.5.
We apply DC-SBM to the TalkLife data. Figure 5 shows the BIC curve in different datasets. We pick the K if it gives the
maximal BIC in each dataset, as shown in Table 7.

Next, we consider the selection of the number of underlying categories 7'. In TalkLife data, we assume the underlying
topics indicates the categories. Therefore, we focus on the textual data. The distribution of the word count in each of the
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post-comment pair are shown in Figure 6. Note that the text exchange between users are mainly in the form of short snippets.
The average length of word count in the post-comment pairs is 17. The left skewed distribution also indicates this fact. We
apply the LDA model to the texts from all post-comment pairs in Year 2019. We assume the text exchange between the
poster and the commentator in a single post is one document when fitting the LDA model.

Before running the LDA model, we clean the textual data based on the following steps. We first remove the numbers, urls,
stopping words, and other special characters from the corpora. Next, we filter out words whose lengths are less than 3.
Followed by the step to lemmatize and stem the words. We feed the LDA model with the cleaned dataset.

Next, we consider the selection of topic 7. The selection is based on the Jaccard Index and the coherence score. Jaccard
Index is used to measure the similarity between two sets. In this example, each topic is composed of a set of words. Denote
the set of word as T3, Vt € [T*], where T is an arbitrary number that is set to be the number of topics in LDA model for

now. Jaccard Index is defined as:
|Ti1 N Tiol

T U Tio|

The average value of Jaccard Index over all pair-wise topic combinations can be used to measure the between-topic difference.
Meanwhile, we consider the coherence score, which is defined as:

Tl = VELE2 € [T7]

N—-1
2 . P(w;,w;)
= =i+ 1V PMI(w;,w;); PMI(w;,w;) = log —— =
C NN 1) ; Z] T+ (wi, wj); (wi, w;) = log P(w;)P(w;)

The average coherence score measures the co-occurence rate of words, which can be used to measure the within topic
similarity. We select the number of topics as the one that maximize the within topic similarity and the between topic
difference. The value is given when the difference between the coherence score and the Jaccard Index is maximized, as
shown in Figure 7. Note here due to the computational concern, the number of topics is limited to be less or equal to 10.
With this restriction, the number of topic is selected as T' = 6. A visualization of the word distribution in each topic is
shown in Figure 8.

A.7. Community Structures in TalkLife

We construct the relationship matrix between users in TalkLife data based on the estimates of the parameters. Consider two

users in the network s and 7. The probability of observing an interaction between them in category ¢ based on the posterior
- =,/

estimates is given by: 2! B, 2! . The visualization of the example relationship matrices are shown in Figure 9, Figure 10,

Figure 11, and Figure 12.

A.8. Coverage Probability Rate in Different Settings

In Table 2, we only provide the average value of the L, norm. Complete results is shown in Table 7. In addition, we consider
the coverage probability rate in different settings that correspond to different cutoffs on the receivers’ degrees, and different
cutoffs on the senders’ degrees. We experiment on setting receiver nodes’ degree cutoff to be 5 and 20 (Table 8), and
selecting the sender nodes based on the degree cutoff, e.g. Deg(s) > 200 and Deg(s) > 500 (Table 9). In all settings, our
method gives the highest C' PR in most datasets.

A.9. Time Complexity of the Algorithms

The theoretical computational complexity is O(m), where m is the total number of interactions in the network. Shown in
Table 4 is the computational time as a function of number of interactions in synthetic data. All experiments are conducted
on Intel(R) Xeon(R) Platinum 8176 CPU at 2.10GHz.

We also compare the CataBEEM with (1) DGLFRM — a SBM-based GNN model; and (2) LSEC — model-based edge
clustering in two real-world datasets. Results are summarized in Table 5
A.10. Additional Real-world Data

In addition to the TalkLife data, we include two more data sets to compare the performance of different methods. Namely,
the Cora citation networks and the Pubmed citation networks. The Cora citation network is composed of 2,708 documents,
and 5,278 interactions. The Pubmed dataset is composed of 19,717 papers, and 44,324 interactions. We apply all methods in
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Table 4. Time complexity of the algorithm. Experiments are repeated 20 times in each setting.
INTERACTIONS AVERAGE TIME IN SEC

1,000 24.55 (6.62)

5,000 29.40 (12.50)
10,000 40.80 (17.45)
50,000 136.70 (28.09)
100,000 232.85(63.21)

Table 5. Comparison of time complexity (sec) of different algorithms in real world datasets.

CORA PUBMED
CATABEEM 459 865
DGLFRM 174 9,366
LSEC 660 52,524

comparison to both datasets. The coverage probability ratio is calculated to evaluate the performance of different methods.
In Cora data, we randomly split the interactions into two parts. We calculate the probability certain paper being cited in
the first half of the data, and evaluate the results in the second half of the data. Due to the fact that papers being cited
by the same paper do not overlap in the two parts of the Cora data, and that the network is very sparse, we consider the
coverage probability of all papers being cited in the second half of the data given the paper has cited more than 20 papers.
For instance, consider a specific paper s* (the degree of which is greater than 20), we calculate P(r|s*) for all potential
papers in the citation network based on the first half of data. Denote the set of papers cited by s* in the second half of data
as R,the coverage probability of s* is then defined as ) | P(r|s*). Similar process is done on Pubmed data. Results are

shown in Table 6.

Table 6. Coverage Probability Ratio of different algorithms in Cora and Topmed data.

DATA CATABEEM DC-SBM E2 DGLFRM
CORA 3.87 1.00 1.02 0.96
PUBMED 2.21 2.75 2.75 1.61

A.11. Supplementary Figures and Tables
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Table 7. Number of underlying blocks and L2 norms of block labels in different time frames.

DATA SET K Lo (CATABEEM) Lo (DC-SBM)
SIX MONTHS 2 0.48 0.70
JAN 4 0.42 0.61
FEB 2 0.47 0.71
MAR 6 0.34 0.52
APR 4 0.42 0.61
MAY 2 0.48 0.70
JUN 4 0.39 0.61
JuL 4 0.39 0.61
AUG 6 0.33 0.52
SEP 6 0.34 0.53
OocT 4 0.39 0.61
Nov 8 0.29 0.47

Table 8. Coverage Ratio Probability (CRP) calculated by different methods in different settings with varying receiver degree cutoffs. *
indicates the highest value among all methods.

DATA SET CPRL® CPR3® CPR:® CPR33° CPR3S° CPR3S°

(CATABEEM) (SBM) (E2) (CATABEEM) (SBM) (E2)

SIX MONTHS 2.12 2.48% 2.47 2.39% 2.34 2.28
JAN 1.97% 1.72 1.78 3.22% 1.82 1.61
FEB 2.21% 2.18 2.16 3.12% 2.48 2.43
MAR 2.02% 1.94 1.90 2.20% 2.09 2.0
APR 1.83 2.02 2.04% 2.0 2.07* 2.02
MaAy 1.94 2.08%* 2.07 2.90% 2.60 2.69
JUN 2.19% 1.02 2.17 2.96% 1.01 2.75
JuL 2.11 2.27% 2.23 1.90 2.62% 2.57
AUG 2.80% 2.11 2.09 2.93* 2.22 2.14
SEP 1.79 1.82% 1.81 2.59% 2.08 2.06
oct 2.55% 2.19 2.16 2.13 2.38% 2.34
Nov 2.15% 2.10 2.11 4.95% 2.82 2.68

Table 9. Coverage Ratio Probability (CRP) calculated by different methods in different settings with varying sender degree cutoffs. *
indicates the highest value among all methods.

DATA SET CPRR200 CPRR20  opRR200 CPRP CPREY  cPRRY

(CATABEEM) (SBM) (E2) (CATABEEM) (SBM) (E2)

S1X MONTHS 2.32% 1.68 1.65 2.23 2.39 2.40%*
JAN 3.75% 1.72 1.64 2.89% 2.08 2.04
FEB 2.76% 2.43 2.38 3.05% 2.61 2.59
MAR 2.31% 2.03 1.92 1.96 2.46%* 2.42
APR 1.78 1.92% 1.88 2.58% 2.33 2.29
MAY 2.33 2.61 2.62% 2.79% 2.48 2.46
JUN 2.57%* 1.01 2.39 2.03% 1.00 2.02
JuL 2.22 2.42% 2.38 1.96 2.65 2.66*
AUG 3.16* 2.21 2.13 3.08* 2.29 2.24
SEP 1.71 1.77% 1.73 1.65 2.50% 2.44
ocT 2.85% 2.48 2.42 2.69% 2.68 2.62
Nov 2.95% 2.23 2.16 3.45% 2.71 2.63
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Figure 3. (a)(b)(c) The average marginal log-likelihood given by posterior estimates from BEEM that corresponds to datasetl, dataset2,
and dataset3. (d)(e)(f) The average BIC given by the estimates from DC-SBM that corresponds to dataset1, dataset2, and dataset3. The

black line is the mean value, and the grey area is the confidence interval. The underlying truth is indicated by the red vertical line. (g) L2
norm of block assignments as a function of degree cutoff in dataset 1, 2, and 3.
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Figure 4. Node degree distribution in TalkLife data that corresponds to (a) annual data; (b) six months data; (c) one month data.
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Figure 5. BIC curve after applying to DC-SBM to (a) Jan to Jun, (b) January, (c) February, (d) March, (e) April, (f) May, (g) June, (h) July,
(i) August, (j) September, (k) October, (1) November data.
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Figure 7. Jaccard Index (blue) and Coherence Score (orange) as a function of number of topics.
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Figure 8. Visualization of the words’ weight in each topic and their overall frequency in the corpora.
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Figure 9. Inferred Community Structures in six months (Jan-Jun) data. x-axis and y-axis are ordered by block labels.
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(a)

Figure 10. Inferred Community Structures in June data. x-axis and y-axis are ordered by block labels.
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(d) (e) 1)

Figure 11. Inferred Community Structures in March data. x-axis and y-axis are ordered by block labels.
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Figure 12. Inferred Community Structures in November data. x-axis and y-axis are ordered by block labels.
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