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Abstract
Fine-tuning large language models (LLMs) for001
downstream tasks often leads to catastrophic002
forgetting, notably degrading the safety of orig-003
inally aligned models. While some existing004
methods attempt to restore safety by incorpo-005
rating additional safety data, the quality of such006
data typically falls short of that used in the007
original alignment process. Moreover, these008
high-quality safety datasets are generally in-009
accessible, making it difficult to fully recover010
the model’s original safety. We ask: How011
can we preserve safety while improving down-012
stream task performance without additional013
safety data? We show that simply merging014
the weights of pre- and post-fine-tuned models015
effectively mitigates safety degradation while016
enhancing performance. Experiments across017
different downstream tasks and models validate018
the method’s practicality and effectiveness.019

1 Introduction020

The rapid advancement and increasing accessibil-021

ity of Large Language Models (LLMs) necessi-022

tate a critical focus on aligning these technologies023

with human values, cultural norms, and trustwor-024

thiness (Huang et al., 2023). To address these025

challenges, researchers and developers have intro-026

duced safety techniques such as preference tun-027

ing (Ouyang et al., 2022; Rafailov et al., 2023;028

Grattafiori et al., 2024; OpenAI et al., 2024), aimed029

at preventing LLMs from generating harmful or030

inappropriate content. Many applications now031

leverage safety-aligned models as foundation mod-032

els—referred to as aligned models in this paper—to033

further customize for downstream tasks via super-034

vised fine-tuning (SFT) (Chung et al., 2024).035

However, recent studies (Yang et al., 2023; Qi036

et al., 2024; Zhan et al., 2024) highlight a critical037

challenge: fine-tuning aligned models can degrade038

their safety, even when using benign datasets. To039

address this issue, mainstream approaches often in-040

corporate additional safety data during fine-tuning041
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Step 2:
Combining Aligned and Fine-tuned Model

Step 1:
Downstream Task Fine-Tuning

Figure 1: Beyond standard SFT for downstream task
adaptation, we can effectively mitigates safety degrada-
tion by combining the aligned and the fine-tuned model.

(Qi et al., 2024; Bianchi et al., 2024). However, 042

since the original safety data used to align LLMs 043

are rarely available, surrogate data are typically 044

generated by other LLMs-raising concerns about 045

quality, and the potential for alignment drift. 046

In this paper, we demonstrate a simple yet ef- 047

fective method for improving downstream task per- 048

formance while mitigating safety degradation. As 049

illustrated in Figure 1, our approach consists of 050

two steps: (1) fine-tune the aligned model on the 051

downstream task, and (2) merge the aligned model 052

with the fine-tuned model. We evaluate this strat- 053

egy across various models and downstream tasks. 054

Experimental results show that this method con- 055

sistently enhances downstream task performance 056

while substantially preserving model safety, offer- 057

ing a simple and robust solution for fine-tuning 058

safety-aligned LLMs. Our key contributions are: 059

• We show that a simple merging strategy can 060

improve downstream task performance while 061

lowering the Attack Success Rate (ASR). 062

• We conduct extensive evaluations across three 063

LLMs, four downstream tasks, and two safety 064
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benchmarks, demonstrating the robustness of065

our method in preserving model safety.066

2 Related Work067

2.1 Catastrophic Forgetting and Safety068

Degradation in LLMs069

LLMs are commonly aligned with human prefer-070

ences to ensure safety and reduce the likelihood of071

generating harmful content (Ouyang et al., 2022;072

Rafailov et al., 2023; Grattafiori et al., 2024; Ope-073

nAI et al., 2024). However, recent studies have074

shown that this safety alignment can be signif-075

icantly compromised after fine-tuning on down-076

stream tasks (Yang et al., 2023; Qi et al., 2024;077

Zhan et al., 2024). This degradation is often078

attributed to catastrophic forgetting (Kirkpatrick079

et al., 2017; Li and Lee, 2024; Luo et al., 2025),080

a well-known challenge in post-training scenarios081

where a model forgets previously acquired knowl-082

edge when adapting to new tasks.083

To mitigate this issue, prior work has explored084

augmenting fine-tuning with additional safety-085

aligned data (Qi et al., 2024; Bianchi et al., 2024;086

Zong et al., 2024), having LLMs generate training087

data themselves (Yang et al., 2024), or incorporat-088

ing regularization strategies during training (Huang089

et al., 2024c,d) and re-alignment methods after090

training (Huang et al., 2024b) . However, these091

methods either require synthesizing safety-related092

data, or incur significant computational costs.093

2.2 Model Merging094

Model merging combines multiple models into a095

single unified model. A straightforward approach is096

to average the weights of different models (Worts-097

man et al., 2022a), while variant techniques include098

SLERP (White, 2017) and DARE (Yu et al., 2024).099

Another line of work explores task vectors (Il-100

harco et al., 2023), typically computed as the dif-101

ference between a fine-tuned model and its base.102

These vectors enable composable transformations103

across tasks (Huang et al., 2024a; Su et al., 2024)104

and have been extended to construct “safety vec-105

tors” from separate safe or harmful models (Bhard-106

waj et al., 2024; Hazra et al., 2024; Yi et al., 2024;107

Hsu et al., 2024) to prevent safety degradation.108

However, these approaches often require access109

to external models or pre-alignment checkpoints,110

which are not always publicly available. In contrast,111

our method uses only standard fine-tuning models,112

making it widely applicable, and demonstrates that113

safety can be restored without extra safety data. 114

The proposed approach is similar to WiSE-FT 115

(Wortsman et al., 2022b), which also interpolates 116

between the base model and its fine-tuned variant. 117

However, WiSE-FT is applied to computer vision, 118

not LLMs, and is not aimed at preserving safety 119

alignment. 120

3 Methodology 121

Our method comprises just two stages: (1) fine- 122

tuning the aligned model on a target downstream 123

task, and (2) merging the original aligned model 124

with the fine-tuned model by interpolating their 125

weights. Despite its simplicity, this merging strat- 126

egy effectively mitigates the degradation in safety 127

commonly observed following fine-tuning, while 128

preserving performance on the target downstream 129

task, without requiring additional data. 130

Step 1: Supervised Fine-Tuning of the Large 131

Language Model We fine-tune the aligned 132

model with parameters θbase on a given task t, 133

resulting in a task-specific model θt. For each 134

task t, given an instruction xt and its correspond- 135

ing response yt, we minimize the negative log- 136

likelihood: 137

LFT = − log fθ(y
t | xt) (1) 138

where fθ denotes the language model parameter- 139

ized by θ. 140

Step 2: Merging the Fine-Tuned Model with the 141

Aligned Model After fine-tuning, we merge the 142

parameters of the aligned model (θbase) with those 143

of the fine-tuned model (θt) via linear interpolation: 144

θmerged = (1− λ)θbase + λθt (2) 145

Here, θmerged denotes the parameters of the merged 146

model, and λ ∈ [0, 1] controls the relative contri- 147

bution of the fine-tuned model. Eq. 2 is the formu- 148

lation for the native linear merging method; other 149

advanced merging methods can also be applied. 150

4 Experimental Setups 151

Downstream Tasks We conduct experiments on 152

four downstream tasks: reasoning, medical assis- 153

tance, code generation, and tool usage proficiency. 154

Reasoning is enhanced using Chain-of-Thought 155

data from the Flan V2 dataset (Longpre et al., 156

2023) and evaluated on the Big Bench Hard (BBH) 157

dataset (Suzgun et al., 2023). Medical assistance 158
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uses patient-doctor dialogues from the ChatDoctor159

dataset (Li et al., 2023). Code generation is trained160

on the MagiCoder dataset (Wei et al., 2024) and161

evaluated using the HumanEval benchmark (Chen162

et al., 2021). Tool usage proficiency leverages the163

OpenFunctions dataset (Patil et al., 2023) to im-164

prove API call generation. For medical assistance165

and tool usage proficiency, response similarity to166

reference answers is measured using BERTScore1167

(Zhang* et al., 2020). See Appendix A for addi-168

tional details on the downstream tasks.169

Safety Evaluation We assess safety using harm-170

ful instructions from the AdvBench (Chen et al.,171

2022) and HEx-PHI (Qi et al., 2024) datasets. Fol-172

lowing prior works that use safety classifiers to173

automatically detect harmful content (Xie et al.,174

2025; O’Brien et al., 2024), we adopt WildGuard175

(Han et al., 2024), a classifier shown to perform176

comparably to GPT-4 (OpenAI et al., 2024). We re-177

port the Attack Success Rate (ASR) as the primary178

evaluation metric. Details of the evaluation setup179

are provided in Appendix B.180

Large Language Models Our experiments in-181

volve several LLMs, including LLaMA-3-8B-182

Instruct (Grattafiori et al., 2024), Gemma-2-2B-183

It (Team et al., 2024), and Qwen2.5-7B-Instruct184

(Team, 2024), along with additional model sizes185

when noted. We use the instruct-tuned variants186

of all models, which are aligned with human pref-187

erences. Each model is fine-tuned on each down-188

stream task using LoRA (Hu et al., 2022) with three189

different random seeds. The reported downstream190

task performance and ASR are averaged across191

these three runs. Additional details of LLMs are192

provided in Appendix C.193

Baselines Unlike most existing methods aimed194

at mitigating safety degradation in LLMs after fine-195

tuning, our proposed approach requires neither ad-196

ditional data nor further training. Given the ab-197

sence of comparable safety alignment techniques,198

we evaluate our method’s efficacy in preserving199

the safety attributes of the originally aligned model200

post fine-tuning by benchmarking it against two201

prevalent regularization techniques: Dropout (Sri-202

vastava et al., 2014) and Weight Decay (Loshchilov203

and Hutter, 2019). Similar to our approach, these204

regularization methods do not necessitate extra data205

or further training. The hyperparameters for these206

1Embeddings extracted from the 40th layer of
microsoft/deberta-xlarge-mnli.

techniques are selected based on validation set per- 207

formance on downstream tasks. 208

Merging Methods In Section 5, we used Lin- 209

ear Merging, which combines models via direct 210

interpolation as defined in Eq. 2, as the merging 211

method. Two advanced merging methods—SLERP 212

and DARE—are also applied. Their results are pro- 213

vided in Appendix E. For all methods, we merge 214

each fine-tuned model with the aligned model using 215

an interpolation factor λ selected based on valida- 216

tion set performance. 217

5 Results 218

5.1 Can model merging mitigate safety 219

degradation after fine-tuning? 220

Figure 2 presents a Pareto analysis of task perfor- 221

mance and ASR on AdvBench across different 222

models and tasks. We observe that SFT consis- 223

tently leads to safety degradation, with higher ASR 224

across all settings compared to the original aligned 225

model. While Dropout and Weight Decay offer 226

slight improvements in ASR, they are generally in- 227

sufficient to restore the safety of the aligned model. 228

In contrast, the proposed approach consistently 229

achieves a better balance between performance 230

and safety. It often reduces ASR to levels near 231

that of the aligned model while maintaining—or 232

even improving—task performance. The smooth 233

Pareto fronts formed by merging indicate control- 234

lable trade-offs, making it an effective solution for 235

mitigating safety loss after fine-tuning. The results 236

on HEx-PHI and different merging methods are 237

provided in Appendix E. 238

5.2 How does model merging perform across 239

different model sizes? 240

Luo et al. (2025) noted that larger models may suf- 241

fer more from catastrophic forgetting. We extend 242

this analysis to safety degradation and evaluate how 243

model merging performs across different model 244

sizes. Figure 3 shows the average changes in per- 245

formance and ASR across all downstream tasks for 246

the Qwen2.5 and Gemma-2 model families, com- 247

paring SFT and the proposed approach against their 248

respective aligned models. Both methods improve 249

task performance, with larger models generally 250

achieving greater gains. However, safety degra- 251

dation shows no consistent trend: smaller Qwen 252

models degrade more, while larger Gemma mod- 253

els are more affected. This suggests that safety 254

degradation is not solely determined by model size. 255
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Figure 2: Pareto analysis of downstream task performance and ASR on AdvBench across different models and
tasks. Each dot represents a model configuration, with different hyperparameter settings (weight decay coefficient,
dropout rate, or merging interpolation coefficient) for the same method shown in the same color. For clarity,
we connect the dots of our method in ascending order of their coefficients. Dots with dark edges indicate the
best-performing models on the validation set for each method.

Figure 3: Performance and ASR change across model
sizes. This figure shows results for Qwen2.5 at 1.5B,
3B, and 7B (top), and Gemma-2 at 2B and 9B (bottom).

Figure 4: Accuracy of LLaMA-3 on IFEval.

Nonetheless, the proposed approach consistently256

mitigates safety degradation across different scales.257

5.3 Can model merging help preserve other 258

capabilities of the aligned model? 259

While our method mitigates safety degradation, we 260

also investigate whether it preserves other capa- 261

bilities of the aligned model that are lost due to 262

catastrophic forgetting. Since we fine-tune instruct- 263

tuned variants, we evaluate whether instruction- 264

following ability is retained. Figure 4 shows 265

the performance of LLaMA-3-8B-Instruct on the 266

instruction-following benchmark IFEval (Zhou 267

et al., 2023). Both prompt and instruction accuracy 268

decline after fine-tuning, with the largest drops ob- 269

served in the reasoning and medical tasks. The pro- 270

posed approach substantially restores performance 271

to the level of the aligned model, indicating that 272

merging can also preserve instruction adherence. 273

6 Conclusion 274

We present a simple yet effective method to ad- 275

dress the safety degradation that often occurs when 276

adapting LLMs to downstream tasks, without re- 277

quiring additional safety data or auxiliary mod- 278

els. The method also preserves capabilities such 279

as instruction-following, making it a practical and 280

scalable solution for adapting LLMs to new tasks. 281
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7 Limitations282

Task and Model Selection In our experiments,283

we evaluate only on benign data from four task do-284

mains: reasoning, medical assistance, code gener-285

ation, and tool-using proficiency. Other important286

areas such as law, finance, or multilingual tasks287

remain unexplored. While Section 5 shows the288

effectiveness of our method on the selected down-289

stream tasks, its generalizability to other domains,290

languages, or datasets that may contain harmful291

content remains an open question. Additionally,292

we evaluate models with sizes ranging from 1.5B293

to 9B across three model families. The effective-294

ness of our approach on larger models or different295

model architectures warrants further investigation.296

Safety Classifier for Safety Evaluation Due to297

the high computational and financial cost of human-298

aligned safety evaluation methods such as LLM-299

as-Judge (Chiang and Lee, 2023; Liu et al., 2023),300

which require using large proprietary models like301

GPT-4 (OpenAI et al., 2024), we instead adopt302

WildGuard (Han et al., 2024), a lightweight open-303

source safety classifier. WildGuard is shown to per-304

form competitively with GPT-4 on multiple safety305

detection tasks and offers a reproducible, low-cost306

alternative suitable for large-scale evaluations.307

However, this classifier-based approach has sev-308

eral limitations. First, WildGuard may struggle309

with complex or subtle harmful instructions, poten-310

tially leading to both false positives and false neg-311

atives. Second, it provides only binary or coarse-312

grained outputs (e.g., “harmful” or “safe”), with-313

out offering finer distinctions such as the category314

of harm, the severity of the risk, or whether the315

model’s refusal was appropriate or evasive.316

Consequently, while WildGuard enables effi-317

cient and scalable evaluation, it constrains the depth318

of our safety analysis. Future work could incorpo-319

rate more fine-grained multi-label safety classifiers,320

adversarial evaluation pipelines, or hybrid setups321

involving human or LLM-as-Judge verification to322

better capture the nuanced impact of model merg-323

ing on safety behavior.324

Jailbreak Attacks Our work focuses on safety325

degradation that arises from fine-tuning aligned326

LLMs on benign tasks, which we consider a case327

of catastrophic forgetting. As such, we evaluate328

whether models produce harmful outputs when di-329

rectly prompted with harmful instructions, rather330

than testing resistance to specific jailbreak strate-331

gies. We do not include jailbreak-style attacks (Xu 332

et al., 2024) in our evaluation due to two reasons: 333

(1) Our primary goal is to study alignment loss 334

under standard fine-tuning, not adversarial robust- 335

ness; and (2) jailbreak evaluations typically require 336

separate prompting strategies and adversarial in- 337

struction crafting pipelines, which are beyond the 338

scope of this study. Future work can extend our 339

framework to examine the impact of merging on 340

robustness against jailbreak attacks. 341

8 Ethics Statement 342

While our method effectively addresses safety 343

degradation in aligned LLMs without requiring ad- 344

ditional safety data, our approach relies on merging 345

pre- and post-fine-tuned models to preserve safety, 346

which may inadvertently inherit any latent biases 347

or unsafe behaviors that are still presented in the 348

base model. Further investigation is needed to ex- 349

plore the impact of these inherited biases in the 350

base model. 351
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per question, and report Pass@10 as our evaluation978

metric. During evaluation, we prepend the instruc-979

tion: "Complete the following code and return only980

the completed code, without any explanations or981

additional text." to enforce that the model generates982

only executable code.983

Tool Using Proficiency Due to the smaller size984

of the OpenFunctions dataset (Patil et al., 2023), we985

split its full training set into training and validation986

subsets using a 9:1 ratio to enhance the model’s987

API call generation capabilities. The model is eval-988

uated on the full OpenFunctions test set, with per-989

formance measured using BERTScore to compute990

the similarity between the reference responses and991

the model outputs. We report the F1 score as our992

evaluation metric. During evaluation, we prepend993

the instruction: "Complete the following code and994

return only the completed code, without any expla-995

nations or additional text." to ensure that the model996

generates only executable function calls.997

Instruction Following To assess whether998

instruction-following ability is preserved after999

fine-tuning, we evaluate models on IFEval (Zhou1000

et al., 2023), a benchmark specifically designed1001

to test instruction adherence. We use the official1002

IFEval evaluation set and report both prompt1003

and instruction accuracy. Since our models are1004

fine-tuned from instruct-tuned variants, this1005

evaluation helps determine whether merging1006

can recover instruction-following capabilities1007

degraded during task-specific fine-tuning. We use1008

lm-evaluation-harness (Gao et al., 2024) as1009

the code base for this evaluation.1010

B Safety Dataset and Classifier1011

B.1 Safety Dataset1012

AdvBench (Chen et al., 2022) is a set of 5201013

harmful behaviors formulated as instructions. The1014

goal of these instructions is to identify a single1015

attack string that causes the model to generate re-1016

sponses compliant with the instruction across as1017

many harmful behaviors as possible.1018

HEx-PHI (Qi et al., 2024) is a dataset containing1019

330 harmful instructions designed to evaluate the1020

harmfulness of LLMs. It includes 30 examples for1021

each of 11 prohibited categories, which are derived1022

from a combination of OpenAI’s usage policies1023

and Meta’s Llama 2 acceptable use policy. These1024

categories are:1025

1. Illegal Activity 1026

2. Child Abuse Content 1027

3. Hate / Harassment / Violence 1028

4. Malware 1029

5. Physical Harm 1030

6. Economic Harm 1031

7. Fraud / Deception 1032

8. Adult Content 1033

9. Political Campaigning 1034

10. Privacy Violation Activity 1035

11. Tailored Financial Advice 1036

B.2 Safety Classifier 1037

WildGuard (Han et al., 2024) is an open, one-stop 1038

moderation model that achieves three goals: 1) 1039

Detection of harm in user prompts, 2) Detection of 1040

harm in LLM responses, and 3) Refusal evaluation 1041

of LLM responses. Comprehensive evaluations on 1042

WildGuardTest (Han et al., 2024) and ten existing 1043

public benchmarks that are shown in Han et al. 1044

(2024) demonstrate that WildGuard outperforms 1045

the strongest existing open-source baselines in F1 1046

scores and matches GPT-4 across various tasks. 1047

When evaluating the responses generated by 1048

LLMs to harmful instructions, we apply the recom- 1049

mended settings, such as the instruction format and 1050

decoding strategy of WildGuard2. After evaluation, 1051

WildGuard outputs the response in the following 1052

format: 1053

Harmful request: yes/no
Response refusal: yes/no
Harmful response: yes/no

1054

We then parse the result of the harmful response. 1055

If the result cannot be parsed, we count it as a miss. 1056

Our final ASR is calculated as follows: 1057

ASR =
Nyes

Ntotal −Nmiss
1058

where Nyes is the number of harmful responses 1059

classified as "yes", Ntotal is the total number of 1060

responses, and Nmiss is the number of responses 1061

that failed to be parsed. In our experiments, Nmiss 1062

is usually less than 3 for all tested models across 1063

both safety datasets. 1064

2https://huggingface.co/allenai/wildguard
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C Experimental Detail1065

C.1 Prompt Template1066

For aligned models, we directly apply their own1067

prompt templates during the training and infer-1068

ence phases. For fine-tuned models, we apply the1069

prompt templates of their respective aligned mod-1070

els.1071

For the Llama-3 family, we use the following1072

prompt template with a system prompt: You are a1073

helpful assistant. for the tasks of reasoning,1074

code generation, and tool usage proficiency:1075

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

You are a helpful assistant.<|eot_id|>

<|start_header_id|>user<|end_header_id|>

{Instruction}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

{Response}

1076

For the medical assistance task, we use another1077

prompt provided in the ChatDoctor dataset (Li1078

et al., 2023) as the system prompt. Hence, the1079

prompt is as follows:1080

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

If you are a doctor, please answer the medical
questions based on the patient's description.<|eot_id|>

<|start_header_id|>user<|end_header_id|>

{Instruction}<|eot_id|>

<|start_header_id|>assistant<|end_header_id|>

{Response}

1081

The prompt for Gemma2 for the tasks of reason-1082

ing, code generation, and tool usage proficiency is1083

shown below:1084

<bos><start_of_turn>user
You are a helpful assistant.{Instruction}<end_of_turn>
<start_of_turn>model
{Response}

1085

The prompt for the medical assistance task is as1086

follows:1087

<bos><start_of_turn>user
If you are a doctor, please answer the medical
questions based on the patient's description.
{Instruction}<end_of_turn>
<start_of_turn>model
{Response}

1088

The prompt for Qwen2.5 for the tasks of reason-1089

ing, code generation, and tool usage proficiency is1090

shown below:1091

<|im_start|>system
You are a helpful assistant.
<|im_end|>
<|im_start|>user
{Instruction}
<|im_end|>
<|im_start|>assistant
{Response}

1092

The prompt for the medical assistance task is as 1093

follows: 1094

<|im_start|>system
If you are a doctor, please answer the medical
questions based on the patient's description.
<|im_end|>
<|im_start|>user
{Instruction}
<|im_end|>
<|im_start|>assistant
{Response}

1095

C.2 Fine-tuning 1096

For all tasks, we fine-tune three model instances 1097

using different random seeds: 42, 1024, and 48763. 1098

We employ LoRA with r = 8 and α = 16 for all 1099

linear layers, utilizing the AdamW optimizer with 1100

a learning rate of 1 × 10−4 and a cosine learning 1101

rate scheduler. We use a batch size of 8 and train 1102

for 3 epochs. All models are trained on either an 1103

RTX A6000 GPU or an RTX 6000 Ada Generation 1104

GPU using LLaMA-Factory (Zheng et al., 2024) 1105

as the codebase. 1106

Although we initially fine-tuned each task for 3 1107

epochs, we observed stronger model performance 1108

at an earlier stage. Consequently, unless explicitly 1109

stated otherwise, we report model training after 500 1110

steps for reasoning, medical assistance, and code 1111

generation, and after 200 steps for tool usage profi- 1112

ciency due to the smaller size of the OpenFunctions 1113

training set. 1114

C.3 Baseline Methods 1115

We evaluate dropout rates in the range of 0.1 to 1116

0.5, and weight decay coefficients also from 0.1 to 1117

0.5. The optimal hyperparameters for each tech- 1118

nique are selected based on performance on the 1119

downstream tasks validation set. 1120

C.4 Inference 1121

We use greedy decoding to ensure result consis- 1122

tency, except for the HumanEval benchmark. For 1123

HumanEval, we apply sampling-based decoding 1124

with a temperature of 0.6, top_p of 0.9, top_k of 1125

50, and a repetition penalty of 1.2. To accelerate 1126

the inference process, we utilize the vLLM engine 1127

(Kwon et al., 2023) for model inference. 1128
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D Model Merging1129

D.1 Merging Methods1130

Linear Merging Linear Merging involves di-1131

rectly combining the weights of the aligned model1132

and the fine-tuned model by interpolating their pa-1133

rameters. Specifically, the weights of the merged1134

model are calculated as a weighted average of1135

the base and fine-tuned models’ weights, follow-1136

ing Equation 2. This method is straightforward1137

and computationally efficient, making it a popular1138

choice for basic model integration.1139

SLERP Spherical Linear Interpolation (SLERP)1140

(White, 2017) is an advanced merging technique1141

that interpolates between model weights on a hy-1142

persphere, ensuring a smoother and more natural1143

transition between the models. Unlike Linear Merg-1144

ing, SLERP accounts for the angular relationship1145

between weight vectors, which aim to better pre-1146

serve the aligned model’s features while effectively1147

integrating the fine-tuned model’s task-specific en-1148

hancements.1149

DARE Drop and Rescale (DARE) (Yu et al.,1150

2024) is a method used to prepare models for merg-1151

ing techniques such as Linear Merging. It operates1152

by randomly dropping parameters according to a1153

specified drop rate and rescaling the remaining pa-1154

rameters. This process helps reduce the number1155

of redundant and potentially interfering parameters1156

among multiple models.1157

D.2 Model Merging Implementation1158

We adopt MergeKit (Goddard et al., 2024) as our1159

implementation framework and only vary the in-1160

terpolation factor λ. For Linear Merging, we test1161

λ values in the range 0.1, 0.2, . . . , 0.9 with a step1162

size of 0.1. For SLERP and DARE, we use the1163

same range of λ values and follow their respective1164

default configurations in MergeKit—specifically,1165

the default dot product threshold for SLERP and1166

the default drop rate for DARE.1167

E More Results1168

E.1 Comparison of Different Methods1169

In Section 5.1, we demonstrate that Linear Merg-1170

ing consistently achieves a better trade-off be-1171

tween performance and safety when evaluated on1172

various downstream tasks and AdvBench. Fig-1173

ure 5 further confirms this trend on the HEx-PHI1174

benchmark, where Linear Merging yields favorable 1175

Pareto fronts across different models and tasks. 1176

To better reflect practical usage scenarios, we 1177

additionally report results based on the best- 1178

performing model (on the validation set of each 1179

task) within each method category—including 1180

Weight Decay, Dropout, Linear Merging, DARE, 1181

and SLERP. These results are summarized in Ta- 1182

ble 1, providing a fair comparison of each method’s 1183

effectiveness under optimal conditions. We use val- 1184

idation set performance for model selection, as it is 1185

commonly available during deployment and serves 1186

as a realistic basis for method comparison. 1187

In Table 1, even when each method is allowed 1188

to select its best-performing checkpoint, merging- 1189

based approaches still exhibit strong capability in 1190

recovering the safety of the fine-tuned model, often 1191

outperforming regularization-based methods such 1192

as Dropout and Weight Decay. This suggests that 1193

model merging is not only effective but also practi- 1194

cal for mitigating safety degradation in real-world 1195

settings, even without access to additional safety 1196

data. 1197

E.2 Which safety category suffers the most 1198

from safety degradation? 1199

In this section, we investigate which categories in 1200

HEx-PHI are most affected by safety degradation. 1201

All categories are listed in Appendix B.1. 1202

As observed in Section 5.1, LLaMA-3-8B- 1203

Instruct and Qwen2.5-7B-Instruct exhibit the most 1204

severe degradation on the Reasoning and Medi- 1205

cal Assistance tasks. Therefore, we analyze their 1206

responses on the HEx-PHI benchmark to further 1207

understand which safety categories are most im- 1208

pacted. 1209

The category distributions are shown in Figure 6. 1210

For LLaMA-3-8B-Instruct, the aligned model only 1211

generates harmful responses in categories 4 (Mal- 1212

ware), 9 (Political Campaigning), and 10 (Privacy 1213

Violation Activity). After fine-tuning, however, 1214

harmful responses increase across all categories, 1215

with categories 4, 7 (Fraud/Deception), and 9 ex- 1216

hibiting the most significant growth in both tasks. 1217

This demonstrates that safety degradation extends 1218

to fine-grained category levels, making it difficult 1219

to address safety concerns solely by modifying the 1220

model prior to fine-tuning, as fine-tuning may in- 1221

troduce new safety issues during downstream task 1222

adaption. 1223

Qwen2.5-7B-Instruct shows a slightly differ- 1224

ent trend. Its aligned model generates harmful 1225
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Figure 5: Pareto analysis of downstream task performance and safety across different models and tasks. We
present the trade-off between performance and attack success rate (ASR) on HEx-PHI when applying weight decay,
dropout, and Linear Merging.

LLaMA-3-8B-Instruct (Reasoning) LLaMA-3-8B-Instruct (Medical Assistance)

Qwen2.5-7B-Instruct (Reasoning) Qwen2.5-7B-Instruct (Medical Assistance)

Figure 6: Safety degradation across categories in the HEx-PHI benchmark. ASR distributions over 11 harmful
categories for LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct on the Reasoning and Medical Assistance tasks.

responses across more categories compared to1226

LLaMA-3-8B-Instruct, and fine-tuning further ag-1227

gravate these issues. However, a similar pattern is1228

that both models generate a large number of harm- 1229

ful responses in categories 7 and 9 . This suggests 1230

that certain categories may be particularly vulner- 1231
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Table 1: Performance and ASR on the downstream task. We compare different merging methods with SFT and
baselines. Merging often improves downstream task performance while retaining safety. Bold indicates the best
score per metric (excluding Aligned).

Task Method
LLaMA-3-8B-Instruct Gemma-2-2B-It Qwen2.5-7B-Instruct

Perf. ↑ AdvBench ↓ HEx-PHI ↓ Perf. ↑ AdvBench ↓ HEx-PHI ↓ Perf. ↑ AdvBench ↓ HEx-PHI ↓

Reasoning

Aligned 61.30 0 1.22 28.98 0.5769 0 24.16 0.3846 9.0909

SFT 67.84 4.25 12.41 39.16 0.3846 0.505 65.94 2.4359 17.8788
Weight Decay 67.85 15.3846 30.7071 39.41 0.1923 0.7071 65.92 3.782 20.404

Dropout 67.83 16.7949 35.9596 39.89 0.9615 0.7071 66.45 4.4872 24.5455
Linear 69.23 0.64 6.3833 40.07 0.0641 0 66.96 1.0256 12.3232
DARE 68.64 1.2821 5.6566 40.01 0.0961 0 66.89 1.0897 12.2222
SLERP 68.68 1.2179 5.8586 40.05 0.2564 0 66.73 0.9615 13.0303

Medical Assistance

Aligned 0.5242 0 1.22 0.5151 0.5769 0 0.5271 0.3846 9.0909

SFT 0.5711 30.0567 38.8467 0.5254 1.4103 1.9192 0.5751 0.7692 12.4243
Weight Decay 0.574 23.3333 32.2222 0.5594 2.3718 7.4747 0.5631 0.5769 8.2828

Dropout 0.5744 22.3077 31.4141 0.5632 3.5898 7.0707 0.5226 0.7051 7.6768
Linear 0.5738 0.3233 4.06 0.5243 1.1538 1.2121 0.5721 0.4487 11.1111
DARE 0.5758 5.6067 23.4067 0.5248 1.1538 1.2121 0.5724 0.2564 11.5152
SLERP 0.5789 5.7633 24.2627 0.5243 1.1538 1.5151 0.5729 0.3205 11.7172

Code Generation

Aligned 71.63 0 1.22 51.96 0.5769 0 85.89 0.3846 9.0909

SFT 74.19 2.2533 11.6667 52.63 2.7564 5.7576 88.06 0.641 7.9798
Weight Decay 73.47 1.6667 8.0808 53.20 2.4359 6.9697 88.08 0.7051 13.7374

Dropout 73.64 1.7308 8.2828 53.17 2.9487 5.9596 87.70 0.8333 11.5152
Linear 75.32 0.7067 4.27 53.04 1.7308 3.0303 89.37 0.3205 7.8788
DARE 74.46 0.641 4.6465 53.09 1.859 3.7374 89.64 0.5128 7.0707
SLERP 75.01 0.7051 4.3434 53.07 1.6667 3.2323 89.39 0.3205 8.1818

Tool Using Proficiency

Aligned 0.8979 0 1.22 0.728 0.5769 0 0.9357 0.3846 9.0909

SFT 0.8989 0.8333 3.45 0.8802 0.641 0.101 0.9369 0.5769 8.0808
Weight Decay 0.9282 1.4103 3.2223 0.8838 0.7692 0.303 0.9177 0.5769 8.4849

Dropout 0.9269 0.8333 1.9192 0.8865 0.8333 0.404 0.9514 0.7692 10.9091
Linear 0.9266 0.77 2.4367 0.8793 0.641 0.202 0.9489 0.1282 9.3939
DARE 0.9251 0.4487 1.2121 0.8793 0.641 0.202 0.149 0.0641 9.3939
SLERP 0.9266 0.4487 1.7172 0.8802 0.641 0.101 0.9152 0.1282 9.1919

able to safety degradation during task adaptation,1232

regardless of model architecture and downstream1233

task.1234

After applying different merging methods, most1235

harmful categories show a reduction in the num-1236

ber of harmful responses. However, the degree of1237

improvement varies across merging strategies and1238

tasks. For instance, Linear Merging performs best1239

on LLaMA-3-8B-Instruct but not on Qwen2.5-7B-1240

Instruct, and some categories do not benefit from1241

merging at all. This indicates that no single method1242

universally outperforms others in preserving safety1243

across all harmful categories.1244
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