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Abstract

Contextual bandit algorithms are useful in personalized online decision-making.
However, many applications such as personalized medicine and online advertising
require the utilization of individual-specific information for effective learning,
while user’s data should remain private from the server due to privacy concerns.
This motivates the introduction of local differential privacy (LDP), a stringent
notion in privacy, to contextual bandits. In this paper, we design LDP algorithms
for stochastic generalized linear bandits to achieve the same regret bound as in
non-privacy settings. Our main idea is to develop a stochastic gradient-based
estimator and update mechanism to ensure LDP. We then exploit the flexibility of
stochastic gradient descent (SGD), whose theoretical guarantee for bandit problems
is rarely explored, in dealing with generalized linear bandits. We also develop an
estimator and update mechanism based on Ordinary Least Square (OLS) for linear
bandits. Finally, we conduct experiments with both simulation and real-world
datasets to demonstrate the consistently superb performance of our algorithms
under LDP constraints with reasonably small parameters (ε, δ) to ensure strong
privacy protection.

1 Introduction

Contextual bandit algorithms have received extensive attention for their efficacy for online decision
making in many applications such as recommendation system, clinic trials, and online advertisement
[7, 35, 24]. Despite their success in many applications, intensive utilization of user-specific informa-
tion, especially in privacy-sensitive domains such as clinical trials and e-commerce promotions, raises
concerns about data privacy protection. Differential privacy, as a provable protection against identifi-
cation from attackers [18, 19], has been put forth as a competitive candidate for a formal definition of
privacy and has received considerable attention from both academic research [33, 17, 43, 36, 8] and
industry adoption [20, 12, 37]. While increasing attention has been paid to bandit algorithms with
joint differential privacy [34, 9], we introduce in this paper a more stringent notion, local differential
privacy (LDP), in which users even distrust the server collecting the data, to contextual bandits.
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In contextual bandit, at each time round t with individual-specific context Xt, the decision maker can
take an action at from a finite set (arms) to receive a reward randomly generated from the distribution
depending on the context Xt and the chosen arm through its parameter θ?at which is not unknown
to the decision maker. We use the standard notion of expected regret to measure the difference
between expected rewards obtained by the action at and the best achievable expected reward in this
round. While several papers consider the adversarial setting (i.e., Xt can be arbitrary determined in
each round), this paper considers the stochastic contextual case where Xt is generated i.i.d. from
a distribution PX . The goal is to maximize the rewards accumulated over the time horizon. An
algorithm achieves LDP guarantee if every user involved in this algorithm is guaranteed that anyone
else can only access her context (and related information such as the arm chosen and the reward) with
limited advantage over a random guess. Recently there is an emerging steam of works combining
LDP and bandit. [6, 29, 10] consider the LDP contextual-free bandit and design algorithms to
achieve the same regret as in the non-privacy setting. For contextual bandits, [44] considers the
adversarial setting. Despite their pioneering work, their regret bounds O(T 3/4) leave a gap from the
corresponding non-privacy results O(T 1/2), which is conjectured to be inevitable. A natural question
arises: can we close this gap for stochastic contextual bandits? In this paper, we design several
algorithms and show that they can achieve the same regret rate in terms of T as in the non-private
settings.

If we don’t assume any structure on the arms’ parameters, the above formulation is referred to as
multi-parameter contextual bandits. If we impose structural assumptions such as all arms share
the same parameter (see Section 2.2 for details), then the formulation is referred to as single-
parameter contextual bandits. Although multi-parameter and single-parameter settings can be shown
to be equivalent, they need independent analysis and design of algorithms because of their distinct
properties based on different modeling assumptions (e.g., [27]). In this paper, we consider the privacy
guarantee in both settings. In fact, multi-parameter setting is more difficult since we need to estimate
the parameters for all K arms with sufficient accuracy to make good decisions. However, privacy
protection also requires protecting the information about which arm is pulled in each round. Such
a requirement hinders the identification of optimal arm and may incur considerable regret in the
decision process. A proper balance between privacy protection and estimation accuracy is the key to
design algorithms with desired performance guarantee in this setting.

Result Regret Context Parameter β-Margin

Theorem 10 [44] Õ(T 3/4/ε) Adversary Both No Margin
Theorem 3.1 Õ(T 1/2/ε) Stochastic Single No Margin
Theorem 3.3 O(log T/ε2) Stochastic Single β = 1

Theorem 3.3 Õ(T
1−β
2 /ε1+β) Stochastic Single 0 ≤ β < 1

Theorem 4.1 O((log T/ε)2) Stochastic Multiple β = 1

Theorem 4.1 Õ(T
1−β
2 /ε1+β) Stochastic Multiple 0 < β < 1

Table 1: Summary of our main results in (ε, δ)-LDP, where Õ(·) omits poly-logarithmic factors.

Contributions. We organize our results for various settings in Table 1. Our main contributions can
be summarized as follows:

1. We develop a framework for implementing LDP algorithms by integrating greedy algorithms with
a private OLS estimator for linear bandits and a private SGD estimator for generalized linear bandits.
We prove that our algorithms achieve regret bound matching the corresponding non-privacy results.

2. In the multi-parameter setting, to ensure the privacy of the arm pulled in each round, we design a
novel LDP strategy by simultaneously updating all the arms with synthetic information instead of
releasing the pulled arm. By conducting such synthetic updates for unselected arms, we protect the
information of the pulled arm from being identified by the server or other users. This is at the cost of
corrupting the estimation of the un-selected arms. To deal with this issue, we design an elimination
method that is only based on data collected during a short warm up period. We show that such a
mechanism can be combined with the OLS and SGD estimators to achieve the desired performance
guarantees.
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3. We introduce the SGD estimator to bandit algorithms to tackle generalized linear reward structure.
To the best of our knowledge, few papers have ever considered SGD-based bandit algorithms.
Theoretical regret bounds are established in [13] by combining SGD and Thompson Sampling, while
most of the others are limited to empirical studies [7, 32]. We establish such theoretical regret bounds
for SGD-based bandit algorithms. Our private SGD estimator for bandits is highly computationally
efficient, and more importantly, greatly simplifies the data processing mechanism for LDP guarantee.

2 Preliminaries

Notations. We start by fixing some notations that will be used throughout this paper. For a positive
integer n, [n] denotes the set {1, · · · , n}. |A| denotes the cardinality of the set A. ‖·‖2 is Euclidean
norm. W (i, j) denotes the element in the i-th row and j-th column of matrix W . We write W > 0
if the matrix W is symmetric and positive definite. We denote Id as the d-dimensional identity
matrix. Let ⊗ denote the Kronecker product. Let Bdr denote the d-dimensional ball with radius
r and Sd−1r denotes the (d − 1)-dimensional sphere for the ball. Given a set A, Unif(A) denote
the uniform distribution over A. For a tuple (Zi,j)i≤N,j≤M and 1 ≤ k1 < k2 ≤ M , we denote
Zi,k1:k2 = (Zi,k1 , · · · , Zi,k2). We adopt the standard asymptotic notations: for two non-negative
sequences {an} and {bn}, {an} = O({bn}) iff lim supn→∞ an/bn < ∞, an = Ω(bn) iff bn =

O(an), an = Θ(bn) iff an = O(bn) and bn = O(an). We also write Õ(·), Ω̃(·) and Θ̃(·) to denote
the respective meanings within multiplicative logarithmic factors in n.

2.1 Local Differential Privacy

Definition 2.1 (Local differential privacy). We say a (randomized) mechanism M : X → Z is
(ε, δ)-LDP, if for every x 6= x′ ∈ X and any measurable set C ⊂ Z we have

P (M(x) ∈ C) ≤ eεP (M(x′) ∈ C) + δ.

When δ = 0, we simply denote ε-LDP.

We now present some tools that will be useful for our analysis.
Lemma 2.1 (Gaussian Mechanism [16, 19]). For any f : X → Rn, let σε,δ = 1

ε supx,x′∈X ‖f(x)−
f(x′)‖2

√
2 ln(1.25/δ). The Gaussian mechanism, which adds random noise independently drawn

from distribution N (0, σ2
ε,δIn) to each output of f , ensures (ε, δ)-LDP.

Besides the Gaussian mechanism, we also use the following privacy mechanism for bounded vectors.

Lemma 2.2 (Privacy Mechanism for l2-ball [14]). For anyR > 0, let rε,d = R

√
π

2

eε + 1

eε − 1

dΓ(d+1
2 )

Γ(d2 + 1)

where Γ is the Gamma function. For any x ∈ BdR, consider the mechanism Ψε,R : BdR → Sd−1rε,d
of

generating Zx as the follows. First, generate a random vector X̃ = (2b− 1)x where b is a Bernoulli
random variable with success probability 1

2 + ‖x‖2
2R . Next, generate random vector Zx via

Zx ∼
{

Unif{z ∈ Rd : zT X̃ > 0, ‖z‖2 = rε,d} with probability eε/(1 + eε),
Unif{z ∈ Rd : zT X̃ ≤ 0, ‖z‖2 = rε,d} with probability 1/(1 + eε).

Then Ψε,R is ε-LDP and E[Ψε,R(x)] = x.

Lemma 2.3 (Post-Processing property [19]). If M : X → Y is (ε, δ)-LDP and f : Y → Z is a fixed
map, then f ◦M : X → Z is (ε, δ)-LDP.
Lemma 2.4 (Composition property [19]). If M1 : X → Z1 is (ε1, δ1)-LDP and M2 : X → Z2 is
(ε2, δ2)-LDP, then M = (M1,M2) : X → Z1 ×Z2 is (ε1 + ε2, δ1 + δ2)-LDP.

2.2 Local Differential Privacy in Bandit

We consider contextual bandits with LDP guarantee in the context of the user-server communication
protocol described in Figure 1. The user in round t with context Xt ∈ Rd receives (processed)
historical information St−1 from the server, and chooses an action at ∈ [K] to obtain a random
reward rt = v(Xt, at) + εt . Define Ft as the filtration of all historical information up to time
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t, i.e., Ft = σ(X1, · · · , Xt, ε1, · · · , εt−1), and we require εt is bounded and E[εt|Ft] = 0. Then
the user processes the tuple (Xt, rt) by some mechanism ψ with LDP guarantee and send the
processed information Zt = ψ(Xt, rt) to the server. After receiving Zt, the server updates the
historical information St to get St+1. We consider the generalized linear bandits by allowing
v(Xt, at) = µ(XT

t θ
?
at), where µ : R→ R is a link function and θ?i ∈ Rd is the underlying parameter

of the i-th arm. For a fix time t, we denote a∗t = arg maxi∈[K] µ(XT
t θ

?
i ). The regret over time

horizon T is Reg(T ) =
∑T
t=1

(
µ(XT

t θ
?
a∗t

)− µ(XT
t θ

?
at)
)

. If we don’t assume any structure on
{θ?i }i∈[K], we refer it as the multi-parameter setting. We also consider d-dimensional single-param
setting by assuming θ?i = ei⊗θ? for some θ? ∈ Rd where {ei}i∈[K] is canonical basis of RK . In this
case, xt,i ∈ Rd is the i-th segment of Xt ∈ RdK and XT

t θ
?
i = xTt,iθ

?, so choosing arm i becomes
choosing the i-th segment xt,i of the context.

User Side

Server Side · · · · · ·

· · · · · ·
Xt

rt

Zt

Xt+1

rt+1

Zt+1

St St+1 St+2

at ψt at+1 ψt+1

ϕt ϕt+1

Figure 1: User-server communication protocol

In the rest of paper, we always assume that ‖θ?i ‖2 ≤ 1,∀i ∈ [K], the reward is bounded by cr and the
Euclidean norm of the context is bounded by CB , our analysis can be easily generalized to the case
where εt and the context follow sub-gaussian distributions. In fact, when the context and noise are
subgaussian, it is guaranteed by the subgaussian concentration that there are at least T −O(log T )
users have contexts and rewards bounded by C1,T , C2,T with overwhelming probability, so we can
still use above LDP mechanisms to protect their privacy. For users whose contexts and reward are
out of range C1,T , C2,T , they can send a private version of (0, 0) vector so that there is no privacy
leakage. We also impose regularize assumptions on the link function, which are common in previous
work [44, 31, 39] and the corresponding family contains a lot of commonly-use model, e.g., linear
model, logistic model.
Assumption 1. The link function µ is continuously differentiable, Lipschitz and there exists some
ζ > 0 such that infx∈[−CB ,CB ] µ

′(x) = ζ > 0.

3 Single-Parameter Setting

In this section, we develop a LDP contextual bandit framework (Algorithm 1) by combining statistical
estimation and privacy mechanisms in the single-param bandit setting to achieve optimal regret bound
in various cases. We use an abstract privacy mechanism ψ in (1) and estimator ϕ in (2) to allow the
plug-in of various components.

3.1 Privacy Guarantee

For the linear case where the link function µ(x) = x, we can use the following ordinary least square
(OLS) estimator. Let with σε,δ = 2

√
2 ln(1.25/δ)/ε. Define Mt = xt,atx

T
t,at + Wt where Wt is

a random matrix with Wt(i, j) ∼ N (0, 4C2
Bσ

2
ε,δ) and Wt(j, i) = Wt(i, j), and ut = rtxt,at + ξt

where ξt is a random vector following distribution N (0, C2
Bc

2
rσ

2
ε,δId). The OLS privacy mechanism

and the corresponding estimator are

ψOLSt (xt,at , rt; θ̂t−1) = (Mt, ut), (3)

ϕOLSt (Z1, . . . , Zt; θ̂t−1) =
( t∑
i=1

Mi + c̃
√
tI
)−1 t∑

i=1

ui, (4)

where c̃ > 0 is to be determined. We have the following LDP guarantee using the Gaussian
mechanism (Lemma 2.1) and post-processing (Lemma 2.3).
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Algorithm 1: LDP Single-parameter Contextual Bandit
Input: Time horizon T ; Privacy Level ε, δ.

1 Initialization: Setting θ̂0 = 0.
2 for t← 1 to T do
3 User side:
4 Receive θ̂t−1 from the server.
5 Pull arm at = argmaxa∈[K]x

T
t,aθ̂t−1 and receive rt.

6 Generate Zt by
Zt = ψt(xt,at , rt; θ̂t−1). (1)

7 Server side:
8 Receive Zt from the user.
9 Update the estimation via

θ̂t = ϕt(Z1, . . . , Zt; θ̂t−1). (2)

10 end

Proposition 3.1. Algorithm 1 with the private OLS update mechanism ψOLSt and estimator ϕOLSt is
(ε, δ)-LDP for ε ∈ (0, 1].

For the general link function µ, its non-linearity adds to the difficulty in terms of both privacy-
preserving and bandits. To estimate parameters in generalized linear bandits, one common approach
to use a maximum likelihood estimator (MLE) at each step. In contrast to OLS solution, MLE does
not have a close form solution with simple sufficient statistics in general. Thus, solving an MLE
optimization procedure requires using all the previous data points and conducting costly operations
at each round, resulting in time complexity and memory usage increasing with time. Instead, we
use a one-step stochastic gradient approximation to incrementally update the estimator with the new
observation at each round. To obtain a LDP version of this approximation, we use the LDP l2-ball
mechanism in Lemma 2.2.

ψSGDt (xt,at , rt; θ̂t−1) = Ψε,R

((
µ(xTt,at θ̂t−1)− rt

)
xt,at

)
, (5)

ϕSGDt (Z1, . . . , Zt; θ̂t−1) = θ̂t−1 − ηtψSGDt . (6)

where ηt > 0 is the stepsize to be determined and R = 2crCB . Similarly, we can prove the following
LDP guarrantee using the l2-ball mechanism Lemma 2.2 and post-processing Lemma 2.3.

Proposition 3.2. Algorithm 1 with the private SGD update mechanism ψSGDt and estimator ϕSGDt
is ε-LDP.

3.2 Regret Analysis

To derive the regret bound of our framework, we need the following assumptions on the marginal
distribution PX of the stochastic contexts {xt,a}a∈[K].

Assumption 2. There exists some κu > 0 such that λmax(Σa) ≤ κu
d where Σa is the covariance

matrix of PX and λmax(Σa) is the largest eigenvalues of Σa.

Assumption 3. For every ‖u‖2 = 1, denote a∗ = arg maxa∈[K] x
T
t,au, there exist some κl > 0, p∗ >

0 such that Pu((xT v)2 > κl/d) ≥ p∗ holds for any u, v ∈ Sd−11 , where Pu(·) is the distribution of
xt,a∗ .

Similar assumptions are common in the analysis of single-parameter contextual bandits, e.g. [13, 22],
and our conditions contain a wide range of distributions, including sub-gaussian with bounded density.
See appendix A for discussion. Now we can show that our framework indeed achieves optimal regret
bound.

Theorem 3.1. Under Assumptions 2 and 3, with the choice of c̃ = 2σε,δ(4
√
d + 2 log(2T/α)) in

(4), Algorithm 1 with OLS mechanism ψOLSt and estimator ϕOLSt achieve the following regret with
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probability at least 1− α for some constant C,

Reg(T ) ≤ C
√
T (CB(σε,δ + σε)d

√
(d+ log(T/α)) log(KT/α)

κlp∗
+ o(1))

Under Assumptions 1–3, with the choice of ηt = c′d/(κlζp∗t) for some c′ > 1 in (6), Algorithm 1
with SGD mechanism ψSGDt and estimator ϕSGDt achieves the following regret with probability at
least 1− α for some constant C,

Reg(T ) ≤ C
√
T (
rε,d
√
d

ζκlp∗
log log(T/α) + o(1)).

with o(1) means some factor that turns to 0 as T →∞.

In the algorithm we shift the sample covariance matrix by c̃
√
t to ensure the positive-definiteness of

the noise matrix as in [34]. Such a shift guarantee the estimation accuracy in the early stage. Note
that the optimal worst-case regret bound in the non-privacy case is Õ(T 1/2), our results show that we
can achieve the same regret bound as in the non-privacy case in terms of time T . In fact, we can show
a Ω(
√
T/ε) lower bound in this setting even when K = 2, which verified our optimal dependence on

both T and ε.
Theorem 3.2. For θ ∈ Rd and an algorithm π, we denote E[Regπ(T ; θ)] the expectation regret of
π when the underlying parameter is θ. When K = 2 and xt,a ∼ N (0, Id/d) are independent over
a ∈ [K], we have for any possible ε-LDP algorithm π, supθ?:‖θ?‖2≤1 E[Regπ(T ; θ?)] = Ω(

√
T/ε).

Given the best known O(T 3/4) regret bound of adversarial contextual LDP bandit in [44], our
O(
√
T/ε) result points out a possible gap between stochastic contextual bandits and adversarial

contextual bandits under the LDP constriant.

The bounds given above are problem-independent, which do not dependent on the underlying
parameters. If we consider an additional assumption that there is a gap between the optimal arm and
the rest, which is usually the case when the number of contexts is small, then we can obtain sharper
bounds than the problem-independent ones in Theorems 3.1.
Assumption 4 ((γ, β)-margin condition). We say PX satisfies the (γ, β)-strong margin condition
with γ > 0, 0 < β ≤ 1, if for 4t := µ(xTt,a∗t θ

?) − maxj 6=a∗t µ(xTt,jθ
?) and h ∈ [0, b] with some

positive constant b, we have P[4t ≤ h] ≤ γhβ .
Theorem 3.3. Under Assumptions 2–4 with the same choice of c̃ in Theorems 3.1, Algorithm 1 with
OLS mechanism ψOLSt and estimator ϕOLSt achieves the following regret with probability at least
1− α for some constant C,

Reg(T ) ≤ C ·


γCB log T [(

CBd(CBσε + σε,δ)
√
d+ log(T/α)

κlp∗
)2 + oβ,γ(1)], β = 1,

γCB
1− β

T
1−β
2 [(

CBd(CBσε + σε,δ)
√
d+ log(T/α)

κlp∗
)1+β + oβ,γ(1)], 0 ≤ β < 1.

Under Assumptions 1–4 and with the same choice of ηt in Theorems 3.1, Algorithm 1 with SGD
mechanism ψSGDt and estimator ϕSGDt achieves the following regret with probability at least 1− α
for some constant C,

Reg(T ) ≤ C ·


γLCB log T [(

rε,dLdCB
√

log(log(T )/α)

ζκlp∗
)2 + oβ,γ(1)], β = 1,

γLCB
1− β

T
1−β
2 [(

rε,dLdCB
√

log(log(T )/α)

ζκlp∗
)1+β + oβ,γ(1)], 0 ≤ β < 1.

with oβ,γ(1) being a factor depending on β, γ that converges to 0 as T →∞.

Unlike in the worst-case bound, it is more challenge to establish corresponding lower under the margin
condition. A possible roadmap to show the Ω(log T/ε2) lower bound is to follow the argument in
[21]: Their argument uses the Van-Tree inequality to bound the mean squared estimation error from
below for each time to show the Ω(log T ) bound in non-private setting. To consider the influence of
private noise, it is possible to combine the LDP-version Van-Tree inequality in [2] with the above
argument to get Ω(log T/ε2) bound.
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4 Multi-parameter Setting

In this section, we present our LDP framework for the multiple parameter setting. Compared with the
single parameter setting, this framework introduces three non-trivial components to match classical
regret bounds while still guarantee LDP: warm up, synthetic update and elimination.

Algorithm 2: LDP Multi-parameter Contextual Bandit
Input: Time horizon T ; Warm up period length s0; Privacy Level ε, δ.

1 Initialization: Setting θ̂0,i = 0, i ∈ [K].
2 for t← 1 to Ks0 do
3 User side:
4 Receiving θ̂t−1,1:K from the server.
5 Pulling arm at := (t mod K) + 1 and receive rt.
6 Generate and update Zt,i = 1{at = i}ψt(Xt, rt; θ̂t−1,i), i ∈ [K] to the server.
7 Server side:
8 Receive the update Zt,1:K from the user.
9 Re-estimate parameters via θ̂t,i := ϕt(Z1,i, . . . , Zt,i),∀i ∈ [K].

10 end
11 for t← Ks0 + 1 to T do
12 User side:
13 Receive θ̂t−1,1:K from the server.
14 Determine a subset K̂t of [K] by setting

K̂t := {a ∈ [K] : XT
t θ̂Ks0,a > max

a∈[K]
XT
t θ̂Ks0,a −

h

2
} (7)

15 Pulling arm at := argmaxa∈K̂tµ(XT
t θ̂t−1,a) and receive rt.

16 Generating information for all arms {Zi,t}i∈[K] by setting

Zi,t =

{
ψt(Xt, rt; θ̂t−1,i) if at = i,

ψt(0, 0; θ̂t−1,i) otherwise.

17 Server side:
18 Receive the update {Zi,t}i∈[K] from the user.
19 Re-estimate parameters via

θ̂t,i := ϕt(Z1,i, . . . , Zt,i).

20 end

Warm up. In the warm up stage, all arms are given equal opportunities to be explored for a
preliminary estimation of their parameters. Such estimation does not aim for the accuracy to select
the optimal arm with high probability. Instead, we only need accuracy at the level of ruling out the
substantially inferior arms. Thus, this stage only needs O(log T ) steps.

Since the actions in this stage are independent of the contexts, there is no need to protect the pulled
arm. However, we still need to protect the contexts by using a privacy mechanism similar in the
single-parameter setting.

Synthetic update. After the warm up, we need to make decisions based on the contexts to achieve
vanishing regret. In order to obtain the privacy guarantee, we introduce our synthetic update mecha-
nism. Although in each time only one arm is pulled, we create synthetic data for all unselected arms.
In this way, the server receives synthetic feedback about all arms, regardless of whether it is selected
or not, and thus cannot figure out which one is selected.

Another method to provide LDP protection for the selected arm is to ensure the action at satisfies
LDP. However, the regret will grow linearly, as shown in [34].
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Elimination. We use the information obtained during warm up to exclude obviously inferior arms.
Such a method has been applied in [5] to guarantee a certain kind of independence of the information
in each round. However, we use this method for a different purpose. The necessity of such an
elimination strategy comes from protecting privacy in the multi-parameter setting. Although we
have obtained an estimation to a certain level of accuracy in the warm up stage, our knowledge on
un-selected arms will be gradually corrupted by the noise incurred in the synthetic update in each
round. Such corruption will make us fail to distinguish arms that are possibly optimal from the surely
sub-optimal ones. To avoid corruption, we may need to pick the sub-optimal arms frequently but this
will result in large regret. That is why we use the warm up information to eliminate the arms with
extremely poor performance as in (7).

4.1 Privacy Guarantee

The OLS/SGD mechanisms and estimators are the same as (3)–(6) in the single-parameter setting. To
prevent the server from distinguishing the selected arm from the other K − 1 arms, a straightforward
idea is to use (ε/K, δ/K)-LDP mechanism for the synthetic update by composition property in
lemma 2.4. However, we can prove that our algorithm can still achieve the same LDP guarantee with
a much less stringent privacy mechanism, say (ε/2, δ/2)-LDP, in Propositions 4.1 and 4.2.
Proposition 4.1. Algorithm 2 with the private OLS update mechanism ψOLSt and estimator ϕOLSt is
(ε, δ)-LDP.
Proposition 4.2. Algorithm 2 with the private SGD update mechanism ψSGDt and estimator ϕSGDt
is ε-LDP.

4.2 Regret Analysis

Assumption 5 (Diversity condition). Let Kopt and Ksub be a partition of [K] such that for any
i ∈ Ksub, µ(XT θi) < maxj 6=i µ(XT θj) − hsub for some hsub > 0 and every X ∈ X . For any
i ∈ Kopt define the set Ui := {X : µ(XT θi) > maxj 6=i µ(XT θj)}. There exists κl > 0, p′ > 0
such that for all i ∈ Kopt and unit vector v,P((vTX)21{X ∈ Ui} ≥ κl/Kopt) > p′.
Assumption 6 ((γ, β)-margin condition). This is almost identical to Assumption 4 except that we
replace4t with4t := µ(XT

t θa∗t )−maxj 6=a∗t µ(XT
t θj).

In our algorithm, diversity condition guarantees that conditioning on the arm i is pulled, the distribu-
tion of Xt still can provide enough information about θi. We would remark here that we need no
longer any deterministic gap in the definition of Ui, which weakens the assumption made in [4],[5].
Now we are in the suited position to present our theoretical guarantee of the algorithm.

Theorem 4.1. Under Assumptions 1, 5 and 6, with the choice of c̃ = 2σε/2,δ/2(4
√
d+2 log(2TK/α))

in (4), s0 = C ·K(
CBσε + σε,δ

min{λ0, h}p′κl
)2(d + log(TK/α)) and h = hsub, λ0 = (2γLCB)−1(

p′

2
)1/β ,

Algorithm 2 with OLS mechanism ψOLSt and estimator ϕOLSt achieve the following regret with
probability at least 1− α for some constant C,

Reg(T ) ≤ γCCB
[(KCB(CBσε + σε,δ)

√
d+ log((TK)/α)

κlp′
)1+β

+ ohsub,β,γ(1)
]
·


log T, β = 1,

T
1−β
2

1− β
, 0 < β < 1.

Under Assumptions 1, 5 and 6, with the choice of step-size

ηt := (1{t≤Ks0}((t mod K) + 1) + 1{t>Ks0}(t− (K − 1)s0))−1Kopt(ζκlp
′)−1c′

for any c′ ≥ 1 and h = hsub, Algorithm 2 with SGD mechanism ψSGDt and estimator ϕSGDt achieve
the following regret with probability at least 1− α for some constant C,

Reg(T ) ≤ γLCCB
[(Krε,dLCB√log((TK log T )/α)

ζκlp′
)1+β

+ ohsub,β,γ(1)
]
·


log T, β = 1,

T
1−β
2

1− β
, 0 < β < 1.

Theorem 4.1 recovers the non-privacy bound in [5] under similar condition up to a logarithmic factor.
Notice that unlike Theorem 3.3 in the single-parameter case, we cannot establish the regret when

8



β = 0. The reason is that in our analysis, we need the probability of 4t > h vanish as h → 0 to
guarantee the estimation error for θi, i ∈ Kopt converges. The corresponding theoretical result in this
setting when β = 0 is left as an open question.

5 Experiment

To the best of our knowledge, the contextual bandit algorithms with LDP guarantee has only been
studied by [44], who propose a variant of LinUCB algorithm for linear bandits and a variant of
Generalized Linear Online-to-confidence-set Conversion (GLOC) framework [23] for generalized
linear bandits. We refer their methods as LDP-UCB and LDP-GLOC. We call our method LDP-OLS
if we plug in the OLS mechanism and estimator into Algorithms 1 and 2, and LDP-SGD if we plug
in the SGD ones. We evaluate all the four methods on two different privacy levels ε = 0.5 and 1 in
synthetic datasets, which are industry standards. For example, Apple uses ε = 4 in their projects on
Emojis and Safari usage [38]. Similar choices of the privacy parameter ε can be found in [3, 20].
We also demonstrate the efficacy of our algorithms with real data on Auto Lending2 in Appendix G.
For the sake of comparison, the learning step parameter for LDP-GLOC and LDP-SGD are tuned
in the same way.3. The first and second columns in Figure 4 are for single-param and multi-param
settings, respectively, which are simulation studies on linear bandits. The context is generated from
Unif(Sd−11 ) at each round.

In conclusion, our methods significantly outperform existing ones in all settings consistently. LDP-
SGD achieves better performance under more strigent privacy requirements.
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Figure 2: We perform 10 replications for each case and plot the mean and 0.5 standard deviation of
their regrets.

2On-Line Auto Lending dataset CRPM-12-001 provided by Columbia University https://www8.gsb.
columbia.edu/cprm/research/datasets, and has been used in the study of contextual bandits by [26, 11].

3The source code to reproduce all the results is available at the GitHub repo liangzp/LDP-Bandit.
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6 Conclusion

In this paper, we propose LDP contextual bandit frameworks in both single-parameter and multi-
parameter settings with flexibility to deal generalized linear reward structure, and establish theoretical
guarantee of our algorithms based on the frameworks. Our algorithms are highly efficient and have
superior empirical performance. There are still some open questions to be explored. Whether our
regret bounds are optimal in terms of ε in the multi-parameter setting is still unknown. It will be
interesting to explore estimators and mechanisms beyond the private OLS and SGD ones to study the
optimality in terms of ε. Moreover, whether there is a fundamental limit in adversarial contextual
bandit under LDP constraints is still an open question. It also remains an open question to analyze
the regret bound in the multi-parameter setting when β = 0 in the margin condition.
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