

EFFICIENT AND SCALABLE MARL FROM IMAGES BY TRUST-REGION AUTOENCODERS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-based multi-agent reinforcement learning (MARL) suffers from poor sample efficiency, limiting its practicality in real-world systems. Representation learning with auxiliary tasks can enhance efficiency; however, existing methods, including contrastive learning, often require the careful design of a similarity function and increase architectural complexity. In contrast, reconstruction-based methods that utilize autoencoders are simple and effective for representation learning, yet remain underexplored in MARL. We revisit this direction and identify unstable representation updates as a key challenge that limits its sample efficiency and stability in MARL. To address this challenge, we propose the Multi-agent Trust Region Variational Autoencoder (MA-TRVAE), which stabilizes latent representations by constraining updates within a trust region. Combined with a state-of-the-art MARL algorithm, MA-TRVAE improves sample efficiency, stability, and scalability in vision-based multi-agent control tasks. Experiments demonstrate that this simple approach not only outperforms prior vision-based MARL methods but also MARL algorithms trained with proprioceptive state. Furthermore, our method can scale up to more agents with only slight performance degradation, while being more computationally efficient than the underlying MARL algorithm.

1 INTRODUCTION

Recent advances in multi-agent reinforcement learning (MARL) have demonstrated its potential in sequential decision-making domains such as autonomous driving (Dinneweth et al., 2022), robotics (Orr & Dutta, 2023), and large-scale control (Ma et al., 2024), where multiple agents must learn to coordinate from partial and local observations. Nevertheless, MARL methods remain notoriously sample-inefficient, often requiring millions of interactions with the environment before converging to effective policies. This issue becomes even more pronounced in vision-based settings, making learning slower, less scalable, and far less practical for real-world systems, where cameras are a convenient and inexpensive way to perceive the environment.

The sample efficiency of reinforcement learning with visual input has been extensively studied for single-agent systems. The most popular strategy is to learn a good lower-dimensional representation of the high-dimensional input. This approach is based on the hypothesis: *learning a policy with a semantically meaningful low-dimensional representation of the visual input is significantly more sample efficient*. Different ways of obtaining such representations have been explored, including but not limited to (i) reconstruction-based representation learning (Yarats et al., 2021), (ii) contrastive learning

Figure 1: Episode reward vs. training time. We evaluate MA-TRVAE + MAPPO on a multi-agent quadcopter task, where four drones need to form a flock with ego-centric views. Masked attentive contrastive learning (MA2CL) is a state-of-the-art representation learning method on this benchmark, yet it shows an unstable performance. MA-TRVAE is more computationally efficient than MAPPO and 20% faster than MA2CL, with the final episodic reward even higher than MAPPO trained with proprioceptive state.

(Laskin et al., 2020; Stooke et al., 2021), and (iii) world models (Ha & Schmidhuber, 2018b; Hafner et al., 2019a; 2021; 2025).

In the MARL literature, Song et al. (2023) utilize contrastive learning and an attention module (Vaswani et al., 2017) to learn a representation that can capture temporal and agent-level information, while Feng et al. (2025) introduce a transition-informed framework to learn an attention-based world model that captures the dynamics of the multi-agent systems. While those previous works, which we discuss in more detail in appendix A, improve the sample efficiency of vision-based MARL by using a complex contrastive learning algorithm and attentive modules that scale quadratically with respect to input length, we tackle this challenge from a practical perspective: *how to design a method that is both simple and computationally efficient?* This leads us to reconstruction-based representation learning, which is simple to implement and computationally efficient as it uses convolutional neural networks (CNNs) (LeCun et al., 1989) that scale linearly with the image size. Moreover, it is a general method for representation learning from images. Unlike contrastive learning, it does not require designing positive and negative samples, nor a similarity function. Additionally, it does not rely on learning the underlying dynamic model of the system, which can be challenging for multi-agent systems that are only partially observable. Surprisingly, this approach is underexplored in MARL, to the best of our knowledge.

Following previous work in the single-agent setting (Yarats et al., 2021), we start by integrating *variational autoencoders* (VAEs) with *multi-agent proximal policy optimization* (MAPPO) (Yu et al., 2022) and confirm that looser constraints in the latent space of the VAE improve the stability and task performance for MARL, as it is observed in the single-agent case. However, a small constraint in the latent space can destabilize the representation update. That is, the representation of the same observation can change dramatically from one encoder update step to another, and the policy may perceive the same observation differently, thus harming sample efficiency. This issue is amplified in MARL, where observations from different agents are diverse.

On the other hand, trust region methods are widely applied in reinforcement learning since they improve the stability of the policy update (Schulman et al., 2015; 2017b). Instead of applying them to policy learning in MARL, as in prior work (Yu et al., 2022), we adapt them to representation learning to address the instability of representations, which arises from the lack of constraints in the latent space. To that end, we propose Multi-agent Trust Region VAE (MA-TRVAE), which constrains updates to keep new representations close to previous ones. Combined with MAPPO, we show that MA-TRVAE improves sample efficiency and stability across multiple vision-based control tasks, while being computationally more efficient than MAPPO and 20% faster than a state-of-the-art method. Furthermore, it even outperforms MAPPO with proprioceptive state for the final return as shown in figure 1. We then scale our methods to up to 7 agents and observe only a modest decline in performance, while state-of-the-art baseline methods degrade significantly.

In summary, our main contributions are (i) we study reconstruction-based representation learning in MARL and propose MA-TRVAE, a novel framework that adapts trust region methods to stabilize representation learning in multi-agent settings, (ii) we demonstrate that MA-TRVAE significantly improves sample efficiency and stability in vision-based MARL tasks, outperforming strong baselines including MAPPO with proprioceptive states for the final return, while being more computational efficient than MAPPO with visual input, and (iii) we show that MA-TRVAE scales effectively to larger numbers of agents, maintaining strong performance while competing methods degrade more rapidly.¹

2 PROBLEM SETTING AND BACKGROUND

This section defines the problem setting and provides the required background on MAPPO, which we use as our baseline algorithm, and representation learning.

2.1 PROBLEM SETTING

We consider a cooperative MARL setting with partial observability for each agent, which we model as a decentralized-partially observable Markov decision process (Dec-POMDP) (Oliehoek & Am-

¹See <https://sites.google.com/view/stablerepresentation> for videos of the experiments and code.

ato, 2016). A Dec-POMDP is defined as $\langle \mathcal{N}, \mathcal{O}, \mathcal{A}, R, P, \gamma \rangle$, where $\mathcal{N} = \{1, \dots, N\}$ is the finite set of N agents, $\mathcal{O} = \prod_{i=1}^N \mathcal{O}^i$ is the joint observation space, which is the Cartesian product of the local observation spaces $\mathcal{O}^i \subseteq \mathbb{R}^{H \times W \times C}$ (since we consider vision-based observation, where H, W, and C are height, width, and number of channels of the image), $\mathcal{A} = \prod_{i=1}^N \mathcal{A}^i$ is the joint action space, composed of the local action spaces $\mathcal{A}^i \subseteq \mathbb{R}^b$, $R : \mathcal{O} \times \mathcal{A} \rightarrow \mathbb{R}$ is the joint reward function, $P : \mathcal{O} \times \mathcal{A} \times \mathcal{O} \rightarrow [0, 1]$ is the state transition probability function, and $\gamma \in [0, 1]$ is the discount factor. At each time step $t \in \mathbb{N}$, each agent receives a local observation $\mathbf{o}_t^i \in \mathcal{O}^i$ and takes an action a_t^i according to its policy $\pi^i : \mathcal{O}^i \rightarrow \mathcal{A}^i$. The next set of observations \mathbf{o}_{t+1} is updated based on the transition probability function P , and the entire team receives a joint reward $R(\mathbf{o}_t, \mathbf{a}_t)$. The goal is to maximize the expected cumulative joint reward over a finite or infinite number of steps,

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t=0}^T \gamma^t R(\mathbf{o}_t, \mathbf{a}_t) \right]. \quad (1)$$

2.2 MAPPO

In MARL, a widely adopted framework to stabilize learning, which is also used by MAPPO, is centralized training with decentralized execution (CTDE), where agents have access to the global state and other agents' actions during training and use only local observations during execution. In such methods (Lowe et al., 2017; Rashid et al., 2018; Yu et al., 2022; Kuba et al., 2021), an encoder from the decentralized part of the algorithm, such as the actor in policy gradient methods, produces the observation representations, \mathbf{z}_t^i . Let g_ϕ denote the encoder parameterized by ϕ . Then, the observation representation can be expressed as $\mathbf{z}_t^i = g_\phi(\mathbf{o}_t^i)$. This latent variable is fed into either the policy network or the value network, which allows us to calculate the losses and backpropagate the gradients to optimize the networks.

In this paper, we use multi-agent proximal policy optimization (MAPPO) as the base MARL algorithm. MAPPO (Yu et al., 2022) is an extension of PPO to MARL. The representation encoder processes the observation of the agent, and the policy network generates an action based on the representation it produces. MAPPO updates the parameters using the aggregated trajectories of all agents collected from the current policy. At iteration $k + 1$, similar to equation 7, the policy parameters θ_{k+1} are optimized by maximizing the clipped objective,

$$J_\pi(\theta) = \sum_{i=1}^N \mathbb{E}_{\mathbf{o} \sim \mathcal{D}, \mathbf{a} \sim \pi_{\theta_k}} \left[\min \left(r_k(\theta) A_{\pi_{\theta_k}}(\mathbf{o}, \mathbf{a}), \text{clip}(r_k(\theta), 1 \pm \tau) A_{\pi_{\theta_k}}(\mathbf{o}, \mathbf{a}) \right) \right], \quad (2)$$

where $r_k(\theta) = \frac{\pi_\theta(a^i | \mathbf{o}^i)}{\pi_{\theta_k}(a^i | \mathbf{o}^i)}$, θ_k is the policy parameter at iteration k , and N denotes the number of agents. During training, MAPPO employs a centralized critic network, which uses the joint observation to estimate a value function, V_w . This centralized value function provides a more stable and informative advantage estimate for updating each agent's policy. The critic parameters are trained to minimize the temporal-difference error using aggregated trajectories from all the agents. The critic is updated separately using the objective

$$J_V(w) = - \sum_{i=1}^N \mathbb{E}_{\mathbf{o} \sim \mathcal{D}} \left[(V_w(\mathbf{o}_t) - \hat{R}_t)^2 \right], \quad (3)$$

where \hat{R}_t is the discounted reward.

2.3 RECONSTRUCTION-BASED REPRESENTATION LEARNING AND AUTOENCODERS

Reconstruction is a self-supervised learning method to learn low-dimensional representations from images. It utilizes an autoencoder, typically consisting of a convolutional encoder g_ϕ and a deconvolutional decoder f_ψ , to first map an image \mathbf{o} to a low-dimensional latent vector \mathbf{z} , then reconstruct the image \mathbf{o} from the latent vector \mathbf{z} . Early work uses a deterministic autoencoder (Hinton & Salakhutdinov, 2006; Vincent et al., 2008), where the latent vector \mathbf{z} is deterministic. Variational autoencoders (VAE) are introduced by (Kingma & Welling, 2013) and greatly improve the representation capacity. In VAEs, the latent vector \mathbf{z} is a random variable and we assume a posterior

162 distribution $q_\phi(z | o)$ over z given the observation o as well as a prior distribution $p(z)$ over z ,
 163 which normally is a standard multivariate Gaussian $\mathcal{N}(0, I)$. We can further encourage the disen-
 164 tanglement of the latent representation by setting a large constraint in the latent space using a β -VAE
 165 (Higgins et al., 2017), whose objective function is

$$167 \quad \mathcal{L}_{\beta\text{-VAE}}(\psi, \phi) = \mathbb{E}_{o \sim \mathcal{D}} \left[\mathbb{E}_{z \sim q_\phi(z|o)} [\log p_\psi(o | z)] - \beta D_{\text{KL}}(q_\phi(z | o) \| p(z)) \right], \quad (4)$$

168 where $\beta \in \mathbb{R}$ is a coefficient that controls the regularization on the latent space, i.e., the *Kullback-*
 169 *Leibler (KL)* divergence between the posterior and the prior. A larger β enforces more constraints
 170 and tends to disentangle the latent vector more. However, Yarats et al. (2021) show that a smaller β
 171 in equation 4 can improve the downstream single-agent RL performance when jointly training the
 172 autoencoder with an off-policy RL algorithm.

174 3 RECONSTRUCTION-BASED REPRESENTATION LEARNING FOR MARL

175 Following the work by (Yarats et al., 2021), we integrate a β -VAE with MAPPO and jointly optimize
 176 the autoencoder and MARL networks, including local actors and a shared critic. We specifically
 177 choose MAPPO over other off-policy MARL algorithms, such as MADDPG (Lowe et al., 2017),
 178 primarily for practical reasons. Although off-policy algorithms tend to be more sample-efficient
 179 by reusing samples from the replay buffer, their training cannot be as easily parallelized as on-
 180 policy algorithms like MAPPO, which enables the efficient use of computing resources and, in
 181 turn, results in better computational efficiency. We describe the detailed method in section 3.1
 182 and show its surprising effect on improving sample efficiency for vision-based multi-agent control
 183 tasks by simply reducing the regularization on the latent space of the β -VAE. Although this simple
 184 application of β -VAE already improves the sample efficiency of MAPPO by a large margin, we
 185 show in section 3.2 that representations learned from such a method are not stable across steps. This
 186 motivates the development of MA-TRVAE in section 4.

187 3.1 SURPRISING EFFECT OF β -VAE ON MARL

188 We evaluate the performance of MAPPO with β -VAE on two multi-agent quadcopter control tasks,
 189 with PID action setting as detailed in section 5. In these tasks, four agents must cooperate to achieve
 190 different goals using visual input.

191 We first pretrain a shared convolutional encoder g_ϕ and a deconvolutional decoder f_ψ using the ob-
 192 jective $\mathcal{L}_{\beta\text{-VAE}}$ given in equation 4 on trajectories collected under a random policy. Subsequently,
 193 the actor and centralized critic are trained for T steps with latent states z_t^i and $[z_t^1, \dots, z_t^N]$ respec-
 194 tively, where $z_t^i \sim g_\phi(o_t^i)$, while the encoder g_ϕ remains fixed. The resulting policy is then deployed
 195 to all agents and used to gather new trajectories. Using the trajectories collected from all agents with
 196 the current policy, the shared encoder g_ϕ is updated using gradients from the actor loss as given in
 197 equation 2, critic loss as given in equation 3, and the β -VAE loss as given in equation 4, unlike
 198 Yarats et al. (2021), who exclude the actor’s gradient when updating the encoder. We update the
 199 shared encoder after every policy update together with the decoder, since it is empirically shown by
 200 Yarats et al. (2021) that there is a positive correlation between the encoder updating frequency and
 201 the performance of the RL agent. This process of joint training of β -VAE and actor-critic network is
 202 repeated until convergence. Also, following the observation by Yarats et al. (2021) that a small value
 203 of β improves the stability and task performance, we conduct the experiment for varying β values
 204 and confirm that a less constrained latent space also enhances performance in MARL, as shown in
 205 figure 2.

206 Interestingly, we see a large gap between different values of β , which is not observed in single-agent
 207 systems (Yarats et al., 2021). Specifically, MAPPO that employs a β -VAE with β values of 1 and
 208 0.1 performs substantially worse than MAPPO without representation learning, whereas MAPPO
 209 with smaller values of β yields a surprisingly large performance gain. This suggests that strong
 210 regularization on the latent space actually hurts the representation learning in multi-agent systems.
 211 We hypothesize that this effect arises from the heterogeneity of observations across agents. Unlike
 212 single-agent systems, where an agent receives a fixed view and global observation of the system,
 213 each agent in multi-agent systems perceives the environment partially from its own ego-centric view.
 214 The autoencoder must compress this diverse high-dimensional distribution of observations into a

216 low-dimensional latent space. When the latent space is over-regularized, it may lack the expressive
 217 capacity required to capture such complexity in the observation.
 218

219 Another trend we observe in figure 2 concerns training stability. Specifically, the variance of episodic
 220 rewards decreases as the value of β becomes smaller. This aligns with findings from single-agent
 221 systems (Yarats et al., 2021), which reported that the stochastic nature of a β -VAE damages the per-
 222 formance of the RL agent. Indeed, a stochastic representation introduces more variance for the un-
 223 derlying RL policy. However, when the latent space is more stochastic, namely, when $\beta = \{1, 0.1\}$,
 224 the variance in MARL agents’ performance is even smaller than with an extremely small β value,
 225 e.g., 10^{-7} . This seemingly contradictory observation motivates us to further investigate instability
 226 in MARL performance. In the next section, we show that the stochasticity in the representation is
 227 not the sole factor causing instability; weak constraints on the latent space also contribute to this
 228 issue.
 229

230
 231 Figure 2: Episode reward and posterior loss vs. training steps plot for flock and leader-follower
 232 tasks, with PID action setting, using different β values. We see that, as β decreases, the per-
 233 formance enhances. However, it leads to inconsistent representations, which can be observed from the
 234 increased posterior loss of vanilla VAE.
 235
 236
 237

238 3.2 INSTABILITY OF REPRESENTATIONS 239

240 We investigate another source of instability by understanding how the representation changes over
 241 steps. Recall that the encoder and actor-critic are updated alternately for each policy update step.
 242 This means that the representation used for policy learning changes between consecutive steps. If the
 243 latent space shifts drastically after an encoder update, the representation for the same observation can
 244 vary significantly. This undermines the sample efficiency of the underlying MARL agents, since the
 245 policy may perceive the same observation inconsistently and must remap them to the same optimal
 246 action. To study this effect, we track how the posterior of the latent vector z for a fixed observation
 247 changes across steps, and hypothesize that weaker constraints on the latent space should lead to a
 248 large posterior deviation between two successive steps.
 249

250 In figure 2, we plot the KL divergence between the posteriors of two successive steps for the same
 251 observation throughout training. When the value of β is large, the divergence is close to zero. This
 252 is expected, since the large value of β pushes the posterior towards $\mathcal{N}(0, I)$ strongly. By contrast,
 253 with weaker constraints (smaller β), the divergence grows faster, suggesting the representation for
 254 the same observation changes more across updates. Intuitively, this means that the representation
 255 of the same observation, instead of being concentrated in a close latent region, is more likely to
 256 scatter around the latent space. This investigation explains why the MARL agents’ performance is
 257 more stable when using a large value of β , as stronger constraints on the latent space mitigate the
 258 representation drift.
 259

260 Building on this discovery, a natural question arises: *can we further improve the stability of rep-
 261 resentations when using a small value of β ?* Achieving this should further enhance the sample
 262 efficiency of the MARL agents. This motivates the use of trust region optimization. We discuss in
 263 the next section how to adapt this technique to stabilize representation learning with a small value
 264 of β , while preserving the computational efficiency of the β -VAE.
 265

Figure 3: Schematic diagram of the proposed MA-TRVAE architecture. The dotted encoder boxes represent deep copies of a single shared encoder across agents. The parameter update paths are illustrative—in implementation, the encoder is shared and updated with the gradients from the reconstruction J_{TRVAE} , value function J_V , and policy J_π objectives as given in equation 6, equation 3, and equation 2 respectively.

4 TRUST-REGION AUTOENCODER FOR MARL

To enhance stability of representation in MARL, this section introduces the trust-region variational autoencoder for MARL, which we refer to as MA-TRVAE.

Trust region methods are widely used to regularize the policy update in RL. The same idea can be directly applied to representation learning in MARL, where we update the posterior of the latent after each policy update. Formally, the application of a trust region method can be defined as a constrained optimization problem given the objective function in equation 4,

$$\begin{aligned} & \max_{\psi, \phi} \mathcal{L}_{\beta-\text{VAE}} \\ \text{s.t. } & \mathbb{E}_t [D_{KL}(q_\phi(\mathbf{z}_t | \mathbf{o}_t) \| q_{\phi_{old}}(\mathbf{z}_t | \mathbf{o}_t))] \leq \delta, \end{aligned} \quad (5)$$

with constraint $\delta \in \mathbb{R}$, and $q_{\phi_{old}}$ the posterior inferred by the encoder from the previous step. Although both the objective function and the constraint are based on the expected value, which can be approximated by a Monte Carlo estimator using observations collected by agents, solving this constrained optimization problem requires optimization techniques beyond standard backpropagation. For example, TRPO (Schulman et al., 2015) relies on a conjugate gradient method, a second-order optimization approach. This additional complexity makes the implementation more challenging and the method itself more computationally demanding, both of which can hinder the application of MA-TRVAE. To avoid this, we instead enforce the trust region constraint by introducing a penalty term into the objective function of the β -VAE, yielding an unconstrained optimization problem with a surrogate

$$\begin{aligned} \mathcal{L}_{\text{TRVAE}} = & \mathbb{E}_{\mathbf{o}_t \sim \mathcal{D}} [\mathbb{E}_{\mathbf{z}_t \sim q_\phi(\mathbf{z}_t | \mathbf{o}_t)} [\log p_\psi(\mathbf{o}_t | \mathbf{z}_t)] \\ & - \beta_1 D_{KL}(q_\phi(\mathbf{z}_t | \mathbf{o}_t) \| p(\mathbf{z}_t)) \\ & - \beta_2 D_{KL}(q_\phi(\mathbf{z}_t | \mathbf{o}_t) \| q_{\phi_{old}}(\mathbf{z}_t | \mathbf{o}_t))], \end{aligned} \quad (6)$$

where $\beta_2 \in \mathbb{R}$ is a coefficient controlling the strength of the trust region penalty and β_1 corresponds to β in the original β -VAE. With this objective function, MA-TRVAE constrains the updates of the autoencoder within a trust region, while remaining computationally efficient and easy to implement with backpropagation. We summarize MA-TRVAE in figure 3.

324 **5 EXPERIMENTS**
 325

326 In this section, we describe the environment and experiments used to evaluate our proposed method.
 327 As we focus on vision-based observations, MARL environments that support such observations
 328 are needed, which are currently rare. Therefore, we consider the multi-agent quadcopter control
 329 (MAQC) (Panerati et al., 2021) environment for evaluating MA-TRVAE. Within this setting, we
 330 aim to verify three main hypotheses regarding MA-TRVAE: (i) Does the penalty term in equation 6
 331 mitigate representation drift and thereby improve sample efficiency? (ii) How well does the method
 332 scale with the number of agents? (iii) Is our method more computationally efficient compared to
 333 prior approaches? Additionally, we recognize the generality of the trust-region VAE introduced in
 334 equation 6 and conduct experiments to demonstrate its impact in single-agent systems. We refer
 335 interested readers to appendix G for results and discussion.

336 **5.1 EXPERIMENT SETUP AND BASELINES**
 337

338 **Multi-agent quadcopter control.** Each agent in the MAQC environment receives an RGBD video
 339 frame $\in \mathbb{R}^{64 \times 48 \times 4}$ as an observation. The observations are captured from a camera mounted on the
 340 drone toward the positive direction of the local x -axis. The MAQC environment also supports state-
 341 based observations, providing an observation vector that includes drones’ positions, quaternions,
 342 linear velocities, angular velocities, and motor speeds. The environment provides three action set-
 343 tings: PID, DYN, and RPM, arranged in order of increasing difficulty. The RPM action setting
 344 enables agents to directly command motor speeds. In contrast, in the DYN action setting, agents
 345 produce torque values that determine motor speeds. Finally, the PID mode enables agents to output
 346 control inputs to a PID controller, which then calculates the appropriate motor speeds. In this paper,
 347 we evaluate our work in two cooperative multi-agent tasks, `flock` and `leader-follower`, in
 348 PID, DYN, and RPM action settings with 4 agents, except for the scalability experiment. We run all
 349 `flock` experiments for 2 million training steps and run all `leader-follower` experiments for
 350 1 million training steps. More details about the tasks are provided in appendix C.

351 **Baselines.** We compare MA-TRVAE (with $\beta_1 = 10^{-7}$ and $\beta_2 = 10^{-6}$) to different versions of
 352 MAPPO (Yu et al., 2022): (i) the standard MAPPO algorithm, to demonstrate the performance
 353 gains through the VAE with trust-region, (ii) MAPPO with a vanilla VAE ($\beta = 10^{-7}$) (Kingma &
 354 Welling, 2022; Higgins et al., 2017), to investigate the impact of the trust-region itself, (iii) MAPPO
 355 with deterministic AE, which improves sample efficiency in single-agent systems (Yarats et al.,
 356 2021), (iv) MAPPO with state observations, which we call MAPPO(TrueState), and (v) MAPPO
 357 with masked attentive contrastive learning (MA2CL) (Song et al., 2023), which has reported state-
 358 of-the-art performance in the MAQC environment. For each algorithm and task, we independently
 359 run five experiments with random seeds to obtain the mean and standard deviation of various eval-
 360 uation metrics, such as episode rewards and posterior loss. The hyperparameters are kept consistent
 361 with those used in the original papers for a fair comparison, and remaining the same across all
 362 experiments. More details about the hyperparameters can be found in appendix E.

363 **5.2 RESULTS AND DISCUSSION**
 364

365 Having introduced the environment and baselines, we now verify the three hypotheses.

366 **Stability of representation.** We conduct an empirical study to show the effectiveness of the trust-
 367 region constraint in stabilizing the representation learning. The empirical study is conducted in
 368 both `flock` and `leader-follower` tasks, with PID action setting, to ensure consistency with
 369 the empirical study presented in section 3. As shown in figure 4, when a trust-region constraint
 370 is introduced to the loss function, the consistency in representations across the training steps is
 371 improved.

372 **Sample efficiency and stability.** To verify that the improved stability in representations translates
 373 into higher sample efficiency and stability in MARL, we evaluate the mean and standard deviations
 374 of the episode reward. From figure 5 and table 1, we first of all observe that MA-TRVAE outperforms
 375 all baselines in terms of mean episode reward across all tasks and action settings, even MAPPO with
 376 true states. Moreover, the variance is the lowest in five out of six cases. These results show that MA-
 377 TRVAE can reliably learn high-performing policies, making a case for the increased stability through
 the trust-region approach. Moreover, in terms of sample efficiency, we observe that only MAPPO

388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: Posterior loss vs. training steps plot for flock and leader-follower tasks, with PID action setting, comparing vanilla VAE and MA-TRVAE. We see that, by introducing a trust-region constraint, representations are becoming stable, which can be observed from the decreasing posterior loss throughout training.

Figure 5: Episode reward vs. training steps for flock and leader-follower tasks, with PID, DYN, and RPM action settings. We can observe that MA-TRVAE is performing better compared to other baselines in terms of better sample efficiency, stability, and low variance. It should be noted that from left to right, the difficulty of the task increases, which makes other algorithms unstable.

with true states shows a faster performance increase. This is natural, as in that case, no learning of a lower-dimensional representation is required. Nevertheless, the results show a significant gain in sample efficiency through MA-TRVAE compared to all baselines that learn from visual input. Thus, through these experiments, we can verify the first hypothesis. To further evaluate the stability of MA-TRVAE, we provide additional experiments with noisy observations in appendix F.3.

Scalability. Next, we evaluate MA-TRVAE with 5, 6, and 7 agents to investigate its scalability. As shown in figure 6, MA-TRVAE maintains strong performance while remaining sample-efficient and stable compared to all baselines. Notably, MA2CL suffers a substantial performance drop when scaling from 4 to 5 agents (see the first column in figure 5 and 6), whereas other reconstruction-based methods show only minor changes. As the number of agents increases further, MA-TRVAE exhibits only a slight decline in performance, while the other reconstruction-based baselines degrade significantly, showing the effectiveness of our trust region regularization. These results (more can be found in appendix F.2) verify the second hypothesis, demonstrating the potential of MA-TRVAE for large-scale multi-agent control tasks with vision-based observations.

Computational efficiency. Lastly, we conduct experiments to understand how fast MA-TRVAE trains compared to the baselines. These experiments are performed in both flock and leader-follower tasks, with PID action setting on the same hardware configuration (see details in appendix E). We plot the episodic return against the running time for each method in figure 1 (complete results can be found in appendix F.1). As MA-TRVAE employs a simple reconstruc-

432 Table 1: Mean and standard deviation of the final episode reward. *MA-TRVAE outperforms the*
 433 *baselines in all tasks and settings.*

	MAPPO+TRVAE	MAPPO+AE	MAPPO+VAE	MAPPO+MA2CL	MAPPO	MAPPO (TrueState)
Flock-PID	-13.73 ± 0.96	-16.02 ± 2.47	-18.45 ± 3.09	-52.71 ± 10.00	-55.25 ± 2.80	-22.90 ± 0.96
Flock-DYN	-74.69 ± 3.10	-101.39 ± 25.01	-93.24 ± 13.27	-121.24 ± 4.82	-89.10 ± 7.55	-101.34 ± 3.30
Flock-RPM	-69.70 ± 4.03	-100.45 ± 12.34	-111.07 ± 24.49	-135.82 ± 20.11	-117.96 ± 10.68	-118.62 ± 23.27
Leader-PID	-1.81 ± 0.09	-2.09 ± 0.20	-2.18 ± 0.29	-8.24 ± 1.79	-9.62 ± 0.82	-3.24 ± 0.17
Leader-DYN	-14.09 ± 1.49	-16.85 ± 2.73	-14.69 ± 1.16	-20.91 ± 2.93	-16.01 ± 0.45	-15.42 ± 1.10
Leader-RPM	-14.10 ± 0.57	-36.63 ± 7.24	-30.04 ± 8.98	-79.59 ± 34.91	-27.51 ± 2.52	-18.63 ± 2.28

451 Figure 6: Episode reward vs. training steps for flock formation task, with PID action setting, for
 452 increasing number of agents. *We can observe that MA-TRVAE scales well with the number of agents,*
 453 *with a stable learning curve, outperforming the baselines*

454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758

486 REFERENCES
487

488 Joris Dinneweth, Abderrahmane Boubezoul, René Mandiau, and Stéphane Espié. Multi-agent rein-
489 forcement learning for autonomous vehicles: A survey. *Autonomous Intelligent Systems*, 2(1):27,
490 2022.

491 Mingxiao Feng, Yaodong Yang, Wengang Zhou, and Houqiang Li. Timar: Transition-informed
492 representation for sample-efficient multi-agent reinforcement learning. *Neural Networks*, 184:
493 107081, 2025. ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2024.107081>.

494 David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In *Ad-*
495 *vances in Neural Information Processing Systems*, NIPS'18, pp. 2455–2467, Red Hook, NY,
496 USA, 2018a.

497 David Ha and Jürgen Schmidhuber. World models. *arXiv preprint arXiv:1803.10122*, 2018b.

498 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learn-
499 ing behaviors by latent imagination. In *International Conference on Learning Representations*,
500 2019a.

501 Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
502 Davidson. Learning latent dynamics for planning from pixels, June 2019b. URL <http://arxiv.org/abs/1811.04551> [cs].

503 Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
504 discrete world models. In *International Conference on Learning Representations*, 2021.

505 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
506 through world models. *Nature*, pp. 1–7, 2025.

507 Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
508 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
509 constrained variational framework. In *International Conference on Learning Representations*,
510 2017.

511 Irina Higgins, Arka Pal, Andrei A. Rusu, Loic Matthey, Christopher P. Burgess, Alexander Pritzel,
512 Matthew Botvinick, Charles Blundell, and Alexander Lerchner. DARLA: Improving Zero-Shot
513 Transfer in Reinforcement Learning, June 2018. URL <http://arxiv.org/abs/1707.08475> [stat].

514 Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
515 networks. *Science*, 313(5786):504–507, 2006.

516 Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
517 *International Conference on Machine Learning*, pp. 267–274, 2002.

518 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint
519 arXiv:1312.6114*, 2013.

520 Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL <https://arxiv.org/abs/1312.6114>.

521 Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
522 Yang. Trust region policy optimisation in multi-agent reinforcement learning. In *International
523 Conference on Learning Representations*, 2021.

524 Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zajac, Olivier Bachem, Lasse Espeholt, Car-
525 los Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research foot-
526 ball: A novel reinforcement learning environment. In *AAAI Conference on Artificial Intelligence*,
527 pp. 4501–4510, 2020.

528 Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in reinforcement learning.
529 In *International Joint Conference on Neural Networks*, pp. 1–8, July 2010. doi: 10.1109/IJCNN.
530 2010.5596468. URL <https://ieeexplore.ieee.org/document/5596468>. ISSN:
531 2161-4407.

540 Sascha Lange, Martin Riedmiller, and Arne Voigtländer. Autonomous reinforcement learning
 541 on raw visual input data in a real world application. In *International Joint Conference on*
 542 *Neural Networks*, pp. 1–8, June 2012. doi: 10.1109/IJCNN.2012.6252823. URL <https://ieeexplore.ieee.org/document/6252823>. ISSN: 2161-4407.

544 Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
 545 for reinforcement learning. In *International Conference on Machine Learning*, pp. 5639–
 546 5650, 2020.

548 Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
 549 bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
 550 *Neural Computation*, 1(4):541–551, 1989.

551 Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-
 552 critic: Deep reinforcement learning with a latent variable model, October 2020. URL <http://arxiv.org/abs/1907.00953> [cs].

553 Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
 554 critic for mixed cooperative-competitive environments. In *Advances in Neural Information Pro-
 555 cessing Systems*, 2017.

556 Chengdong Ma, Aming Li, Yali Du, Hao Dong, and Yaodong Yang. Efficient and scalable reinforce-
 557 ment learning for large-scale network control. *Nature Machine Intelligence*, 6(9):1006–1020,
 558 2024.

559 Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
 560 reinforcement learning with imagined goals, December 2018. URL <http://arxiv.org/abs/1807.04742> [cs].

561 Frans A. Oliehoek and Christopher Amato. *A Concise Introduction to Decentralized POMDPs*.
 562 Springer Publishing Company, Incorporated, 1st edition, 2016. ISBN 3319289276.

563 James Orr and Ayan Dutta. Multi-agent deep reinforcement learning for multi-robot applications:
 564 A survey. *Sensors*, 23(7):3625, 2023.

565 Jacopo Panerati, Hehui Zheng, SiQi Zhou, James Xu, Amanda Prorok, and Angela P. Schoellig.
 566 Learning to fly—a gym environment with pybullet physics for reinforcement learning of multi-
 567 agent quadcopter control. In *IEEE/RSJ International Conference on Intelligent Robots and Sys-
 568 tems*, pp. 7512–7519, 2021. doi: 10.1109/IROS51168.2021.9635857.

569 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
 570 Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
 571 ment learning. In *International Conference on Machine Learning*, pp. 4295–4304, 2018.

572 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 573 policy optimization. In *International Conference on Machine Learning*, pp. 1889–1897, 2015.

574 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 575 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017a.

576 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 577 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017b.

578 Wenling Shang, Lasse Espeholt, Anton Raichuk, and Tim Salimans. Agent-centric representations
 579 for multi-agent reinforcement learning, 2021.

580 Haolin Song, Mingxiao Feng, Wengang Zhou, and Houqiang Li. Ma2cl:masked attentive contrastive
 581 learning for multi-agent reinforcement learning. In *International Joint Conference on Artificial
 582 Intelligence*, pp. 4226–4234, 2023.

583 Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
 584 from reinforcement learning. In *International Conference on Machine Learning*, pp. 9870–9879,
 585 2021.

594 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
595 den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Ried-
596 miller. Deepmind control suite, 2018.

597

598 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
599 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
600 *mation Processing Systems*, 2017.

601 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
602 composing robust features with denoising autoencoders. In *International Conference on Machine*
603 *learning*, pp. 1096–1103, 2008.

604

605 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
606 Multi-agent reinforcement learning is a sequence modeling problem. In *Advances in Neural*
607 *Information Processing Systems*, pp. 16509–16521, 2022.

608 Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improv-
609 ing sample efficiency in model-free reinforcement learning from images. In *AAAI Conference on*
610 *Artificial Intelligence*, pp. 10674–10681, 2021.

611 Chao Yu, Akash Velu, Eugene Vinitksy, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
612 The surprising effectiveness of PPO in cooperative multi-agent games. In *Advances in Neural*
613 *Information Processing Systems Datasets and Benchmarks Track*, 2022.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A EXTENDED RELATED WORK
649

650 **MARL.** MARL extends reinforcement learning to environments with multiple interacting agents,
651 where objectives can be cooperative, competitive, or a combination of both. A straightforward strat-
652 egy is to train agents independently, but such methods suffer from non-stationarity because each
653 agent’s policy updates alter the effective environment dynamics. To mitigate this issue, *centralized*
654 *training with decentralized execution* (CTDE) has become the dominant paradigm. In CTDE, a
655 centralized critic utilizes global state information during training, whereas decentralized actors rely
656 solely on local observations during execution. Lowe et al. (2017) introduced this framework for
657 continuous control by extending deterministic policy gradients with a centralized critic, known as
658 the *multi-agent deep deterministic policy gradient* (MADDPG). This paradigm has since become the
659 foundation for subsequent methods. Policy-gradient-based extensions of CTDE have proven partic-
660 ularly effective. Yu et al. (2022) adapted PPO to the multi-agent setting with a centralized value
661 function, achieving stable and scalable performance in cooperative settings, known as multi-agent
662 proximal policy optimization (MAPPO). Building on this, Kuba et al. (2021) extends trust-region
663 methods to heterogeneous agents called heterogeneous-agent trust-region policy optimization (HAT-
664 PRO) and heterogeneous-agent proximal policy optimization (HAPPO), which provides theoretical
665 guarantees of monotonic policy improvement under CTDE and enhances sample efficiency. Value
666 decomposition offers an alternative approach to coordination and credit assignment by factorizing
667 a global action-value function into per-agent utilities. Rashid et al. (2018) introduce such a method
668 called QMIX, which factorizes a global action-value function into per-agent utilities via a mono-
669 tonic mixing network, enabling effective coordination in cooperative settings while maintaining
670 scalability. More recently, transformer-based architectures have been proposed to capture temporal
671 and inter-agent dependencies better. Wen et al. (2022) propose multi-agent transformer (MAT) that
672 treats agents and their trajectories as sequences, applying self-attention to model interactions and
673 dynamics. This approach offers expressive joint representations and has demonstrated enhanced
674 performance, though at the expense of increased computational complexity. Together, these meth-
675 ods represent the major algorithmic families that have shaped MARL in recent years. While they
676 have advanced the state of the art, challenges remain in scalability, sample efficiency, and robustness
677 in high-dimensional and partially observable environments, motivating the exploration of comple-
678 mentary directions such as representation learning.

679 **Representation learning in RL and MARL.** Early approaches to representation learning for
680 model-free RL in the single-agent case apply deep autoencoders to learn feature spaces (Lange
681 & Riedmiller, 2010; Lange et al., 2012), but lack scalability in complex environments and require
682 expert knowledge. Subsequent methods leverage VAEs (Kingma & Welling, 2022) for this task,
683 where the RL agent learns policies using the latent representation as inputs (Higgins et al., 2018;
684 Nair et al., 2018). Yarats et al. (2021) then identify that the stochasticity of VAEs damages the RL
685 agent performance and propose to use a deterministic autoencoder. Their method, dubbed SAC+AE,
686 was reported as achieving state-of-the-art performance at the time. Apart from reconstruction-based
687 approaches, Laskin et al. (2020) and Stooke et al. (2021) leverage contrastive learning, but rely on
688 designing a similarity function as well as positive and negative samples. Model-based approaches
689 leveraging the VAE are based on world models (Ha & Schmidhuber, 2018a), which proved too
690 complex due to several auxiliary losses (Hafner et al., 2019b)(Lee et al., 2020). In the multi-agent
691 domain, Shang et al. (2021) combine a cross-agent attention module with an unsupervised trajectory
692 prediction task. Song et al. (2023) introduce a masked attentive contrastive learning framework that
693 reconstructs masked agent observations in the latent space using an attentive model and contrastive
694 loss. This approach enables agents to leverage inter-agent correlations, leading to improvements in
695 existing MARL algorithms. Building on this, Feng et al. (2025) use a attention-based world-model
696 approach with a self-supervised learning objective. While these approaches show promise, they
697 either lack generality, impose high computational demands, or introduce considerable complexity.
698 This motivates the need for simpler methods, that are both computationally efficient and scalable, a
699 gap that we address in this work.

700 **Trust region optimization in RL.** Trust region methods are a common tool used in RL to bound
701 the size of policy updates. Kakade & Langford (2002) first introduce this idea into RL by forming a
702 constrained optimization problem and prove a monotonic improvement guarantee for policy update.
703 While their method is based on mixing policies, Schulman et al. (2015) introduce *trust-region policy*
704 *optimization* (TRPO) that extend their method to non-linear stochastic policies, which enables the
705 use of neural networks for solving high-dimensional control tasks. TRPO enforces the trust region

constraint by constraining the *Kullback-Leibler (KL) divergence* between the old policy and the new one. Despite its theoretical rigor, TRPO uses second-order optimization to enforce the constraint and hence scales poorly. Schulman et al. (2017a) later introduce *proximal policy optimization* (PPO) to overcome this issue by forming the trust region optimization as an unconstrained optimization problem. This allows for efficient first-order optimizations and better sample efficiency.

B TRUST REGION OPTIMIZATION

Trust region methods optimize an objective function by restricting the step size of updates so that the new solution does not deviate drastically from the previous one. This is typically achieved by enforcing a constraint in the optimization process or adding a penalty term to the objective function. When it comes to policy optimization, while TRPO implements the idea by solving a constrained optimization problem, which proved to be computationally costly, PPO chooses the latter approach by adding a clip penalty to the objective function as a surrogate to optimize

$$L^{clip}(\theta) = \mathbb{E}_t \left[\min \left(r_t(\theta) \hat{A}_t, \text{clip}(r_t(\theta), 1 \pm \tau) \hat{A}_t \right) \right], \quad (7)$$

where $r_t(\theta) = \frac{\pi_\theta(a_t|o_t)}{\pi_{\theta_{old}}(a_t|o_t)}$ is the ratio between the new policy $\pi_\theta(a_t|o_t)$ and the old one $\pi_{\theta_{old}}(a_t|o_t)$, and \hat{A}_t is the advantage function that estimating how much the current policy is better than average. The clip operator trims the input value to keep it within the interval $[1 - \tau, 1 + \tau]$, where τ is the clip parameter. Alternatively, one can add a KL penalty as another surrogate objective

$$L^{KL}(\theta) = \mathbb{E}_t \left[r_t(\theta) \hat{A}_t - \beta D_{KL}(\pi_{\theta_{old}}(\cdot|o_t) \parallel \pi_\theta(\cdot|o_t)) \right], \quad (8)$$

where $D_{KL}(\pi_{\theta_{old}}(\cdot|o_t) \parallel \pi_\theta(\cdot|o_t))$ is the KL divergence between the old policy and the new one, and β is a coefficient controlling the range of the policy update.

C ADDITIONAL DETAILS OF THE MULTI-AGENT ENVIRONMENT

Figure 7: Multi-agent tasks

In this section, we briefly describe the two multi-agent tasks, named flock and leader-follower, in MAQC. Let $\mathbf{x}_i = (x_i, y_i, z_i)$ be the position coordinates, r_i be the individual reward of i -th agent, and $R = \sum_{i=1}^N r_i$ be the team reward.

- **Flock:** In the flock scenario of MAQC, the objective is for the first agent to keep its position as close as possible to a predefined location (e.g., p). The individual reward for the first agent is

$$r_1 = -\|\mathbf{p} - \mathbf{x}_1\|_2^2. \quad (9)$$

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

The individual rewards for the remaining agents are determined by their ability to track the latitude of the preceding agent. The reward is defined as

$$r_i = -(y_i - y_{i-1})^2, \quad (10)$$

for $i = 2, 3, \dots, N$. That is, all drones need to follow the first drone in a line. Figure 7a shows the flock formation task captured during the MARL training.

- **Leader-follower:** In the leader-follower scenario of MAQC, the goal is to train the follower drones to track the leader drone. The leader drone is expected to keep its position as close as possible to a predefined location. The individual reward for the leader drone is

$$r_1 = -\|\mathbf{p} - \mathbf{x}_1\|_2^2. \quad (11)$$

The individual rewards for the follower drones are determined by their ability to track the position of the leader drone. The reward is defined as

$$r_i = -\frac{1}{N}\|\mathbf{x}_i - \mathbf{x}_1\|_2^2, \quad (12)$$

for $i = 2, 3, \dots, N$. That is, all drones need to keep close to the leader drone. figure 7b shows the leader-follower task captured during the MARL training.

D DETAILS OF MA-TRVAE

In this section, we include a detailed algorithm of our proposed method (i.e., MA-TRVAE combined with MAPPO). The end-to-end training process of the framework is outlined in Algorithm 1, which is heavily based on MAPPO. Also, our code is mainly based on the MAPPO implementation.²

Algorithm 1 MA-TRVAE for MAPPO

```

Initialize encoder  $\phi$ , decoder  $\psi$ , dummy encoder  $\phi_{\text{old}}$ , actor  $\theta$ , critic  $w$ , data buffer  $\mathcal{D}$ 
for each episode do
    for each timestep  $t = 1$  to  $T$  do
        for each agent  $i = 1$  to  $N$  do
            Observe  $o_t^i$ , encode  $z_t^i = g_\phi(o_t^i)$ 
            Sample action  $a_t^i \sim \pi_\theta(a|z_t^i)$ 
        end for
        Execute joint action  $a_t$ , store transition in  $\mathcal{D}$ 
    end for
    for each mini-batch from  $\mathcal{D}$  do
        for each agent  $i$  do
            Encode latent  $(\mu^i, \sigma^i)$ , reparametrize  $z_t^i$ 
            Reconstruct  $\hat{o}_t^i$ , compute  $\mathcal{L}_{\text{TR-VAE}}, \mathcal{L}_{\text{actor}}^i$ 
        end for
        Compute critic loss  $\mathcal{L}_{\text{critic}}$  using global latent state  $[z_t^1, \dots, z_t^N]$ 
        Update  $\theta, w$  with PPO
        Update  $\phi, \psi$  with  $\mathcal{L}_{\text{TR-VAE}}$ 
    end for
    Update  $\phi_{\text{old}} \leftarrow \phi$ 
end for

```

E HYPERPARAMETERS

Table 2 contains the common hyperparameters used for this paper. Table 3 shows the hyperparameters used for each algorithm in the experiment. For training the MARL agents and conducting other experiments, we utilized a cluster equipped with an A100 GPU and 80 GB of memory.

²<https://github.com/marlbenchmark/on-policy>

810
811
812 Table 2: Common hyperparameters used for all methods.
813
814
815
816
817
818

Hyper-parameters	Value	Hyper-parameters	Value
γ	0.99	optim eps	1e-6
max grad norm	0.5	gain	0.01
hidden layer dim	64	entropy coef	0.01
use huber loss	True	rollout threads	20
episode length	200	batch size	4000
stacked frames	1	training threads	16

819
820 Table 3: Hyperparameters used for MA-TRVAE, VAE, AE, MA2CL, and MAPPO.
821
822

Parameters \ Algorithm	MA-TRVAE	MA-VAE	MA-AE	MA2CL	MAPPO
critic lr	5e-3	5e-3	5e-3	5e-3	5e-3
actor lr	5e-4	5e-4	5e-4	5e-4	5e-4
ppo epochs	5	5	5	5	5
ppo clip	0.2	0.2	0.2	0.2	0.2
num mini-batch	4	4	4	4	4
num hidden layer	2	2	2	2	2
λ	/	/	1e-06	/	/
β_1	1e-07	1e-07	/	/	/
β_2	1e-06	/	/	/	/

833
834 F ADDITIONAL RESULTS835
836 This section contains the results of additional experiments we conducted for this paper.837
838 F.1 COMPUTATIONAL EFFICIENCY839
840 The results of the computational efficiency test, performed in both the flock formation and leader-
841 follower tasks with the PID action setting, are shown in figure 8. We can see similar results as we
842 saw in section 5.2.854
855 Figure 8: Episode reward vs. training time for flock formation tasks, with PID action setting. We can
856 see that MA-TRVAE trains faster than the MA2CL, with a better performance. The black dashed line
857 represents the final episodic reward achieved by the MAPPO algorithm trained with proprioceptive
858 state, which is also outperformed by MA-TRVAE.860
861 F.2 SCALABILITY EXPERIMENT862
863 The results of the scalability test performed in the leader-follower task with PID action setting are
864 shown in figure 9. Similar to the results obtained from the flock formation experiment as shown in
865 section 5.2, we can see that MA-TRVAE scales better when compared to other baselines.

Figure 9: Episodic reward vs. training step plot for the leader-follower task with PID action setting, where the number of agents has been varied from five to seven. *We can observe that MA-TRVAE scales well with the number of agents, with a stable learning curve, outperforming the baselines*

F.3 EXPERIMENT WITH NOISY OBSERVATIONS

In the real world, sensors mounted on physical agents are often subject to various noise sources, such as illumination changes, motion blur, occlusion, or sensor artifacts. Therefore, a robust multi-agent learning framework must not only perform well under clear observations but also retain performance when faced with degraded visual input. **This experiment investigates the empirical robustness of MA-TRVAE framework, when agents are trained under additive Gaussian noisy observation conditions.** This experiment is designed in two different ways, as follows, based on how the noise is added.

- **Shared noise:** A single random Gaussian noise distribution is sampled for each timestep and added uniformly to all agents' observations,

$$\tilde{o}_t^i = o_t^i + \xi, \quad \xi \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}). \quad (13)$$

This simulates environment-level noise, such as lighting shifts or global occlusions, that affect all agents identically. The experiment is performed by taking $\sigma = 10$.

- **Agent-specific noise:** Each agent receives the random Gaussian noise independently with different standard deviations,

$$\tilde{o}_t^i = o_t^i + \xi_i, \quad \xi_i \sim \mathcal{N}(\mathbf{0}, \sigma_i^2 \mathbf{I}). \quad (14)$$

This setting simulates localized sensor noise, which will be different for the agents. The experiment is performed by taking $\sigma_1 = 10$, $\sigma_2 = 5$, $\sigma_3 = 2$, $\sigma_4 = 5$.

These noisy observations \tilde{o}_t^i are passed to the shared encoder g_ϕ , which learns latent representations $z_t^i = g_\phi(\tilde{o}_t^i)$. The rest of the training pipeline remains the same. This experiment is conducted in the flock formation task with the PID action setting as mentioned in section 5.1, over two million training steps. The number of agents is set to four. In figure 10, it can be observed that, MA-TRVAE outperforms other autoencoder based methods, **showing a better empirical robustness under additive Gaussian noise.**

G PERFORMANCE OF TRUST-REGION AUTOENCODER IN SINGLE-AGENT RL

While MA-TRVAE has most potential in the multi-agent domain, it is similarly applicable in single-agent environments and provides similar benefits. To validate that proposition, we provide results from single-agent experiments. It is noteworthy that the underlying RL algorithm is different in the single-agent case than in the multi-agent case. In the latter, the algorithm is based on PPO, an on-policy algorithm, whereas in the former, the RL algorithm is soft actor-critic (SAC), an off-policy algorithm. The reason for this is that we want to evaluate the performance of TRVAE in the single-agent environment against a well-established and fair baseline (Yarats et al., 2021), which uses SAC as the base RL algorithm. Additionally, this can show the generality of TRVAE as it can be applied to both on-policy and off-policy RL algorithms.

Figure 10: Episodic reward vs. training step plot for the flock formation task with PID action setting, where noise is added to the observations. *We can observe that MA-TRVAE scales well with the number of agents, with a stable learning curve, outperforming the baselines*

Figure 11: Episodic returns for the SAC+TRVAE compared against SAC+AE (Yarats et al., 2021) and a vanilla VAE. The figure shows that the trust-region method achieves similar or better performance across all environments. Furthermore, TRVAE improves the variance of the runs.

G.1 EXPERIMENTS AND SETUP

We evaluate the performance of our method in the single-agent domain (named SAC+TRVAE) against the performance of SAC+AE (Yarats et al., 2021) and a vanilla VAE. For the purposes of the single-agent evaluation, we consider eight different continuous control tasks from the DeepMind control suite (Tassa et al., 2018), specifically `finger_spin`, `reacher_easy`, `ball_in_cup_catch`, `cartpole_swingup`, `walker_walk`, `walker_run`, `cheetah_run`, and `hopper_stand`. We run the algorithms with the same 5 random seeds for each environment, with $\beta_1 = 10^{-7}$ for all experiments.

The setup of these experiments follows the setup and implementation of (Yarats et al., 2021), available on their GitHub page. Their repository did not include an implementation of a VAE, so we modified their code to include an implementation of a VAE and the trust-region optimization.

Figure 12: Posterior (trust-region) losses for TRVAE and vanilla VAE across environments. We observe that the posterior loss of the vanilla VAE is significantly higher than the trust-region method. We also see that with a higher β_2 value, the posterior loss is smaller. Smaller posterior losses imply more consistent representations between iterations.

G.2 RESULTS

G.2.1 STABILITY AND SAMPLE EFFICIENCY

The results in figure 11 illustrate both the improved performance of the RL agent with the TRVAE over both the vanilla VAE as well as SAC+AE. In `ball_in_cup_catch`, the gains in episodic returns are negligible. However, the variance is improved with the trust-region method, though a single run with $\beta_2 = 10^{-4}$ had some instability. In `cartpole_swingup`, both the vanilla VAE and SAC+TRVAE outperform SAC+AE (a result inconsistent with Yarats et al. (2021)). Gains in performance are negligible (as with `ball_in_cup_catch`), but the variance of SAC+TRVAE is better. In `cheetah_run`, all methods show similar performance, where SAC+TRVAE slightly outperforms SAC+AE and the vanilla VAE. The variance is again lowest with the trust-region. SAC+TRVAE shows the most impressive gains in `finger_spin` in terms of episodic returns and variance when compared with a vanilla VAE and SAC+AE. In one environment (`hopper_stand`), SAC+AE failed to learn effectively, whereas SAC+TRVAE shows impressive performance, as well as lower variance, compared to its vanilla counterpart. In `reacher_easy`, SAC+TRVAE outperforms other methods with several hyperparameter settings. This environment does exhibit high variance in all methods; however, the trust-region method is the most stable. In `walker_walk`, all methods showed some instability, where singular runs had bizarre dips in performance. However, on average, SAC+TRVAE has the least variance with gains in performance over SAC+AE. Interestingly, the VAE also beats SAC+AE (once again inconsistent with the original paper). In `walker_run` SAC+TRVAE has the best sample efficiency, but across $2 \cdot 10^6$ steps shows similar performance to the vanilla VAE (though with less variance), once more beating SAC+AE. In summary, our experiments demonstrate an increase in sample efficiency across all environments in which the algorithms were evaluated. SAC+TRVAE method exhibits the lowest variance (i.e., better stability) and improved performance in some. Interestingly, some of our findings on the performance of SAC+AE are inconsistent with those presented in the original paper.

G.2.2 CONSISTENCY OF REPRESENTATIONS

The posterior loss can be loosely utilized as a proxy for the representation drift, i.e., the higher the loss, the more the representations change between iterations. The posterior loss is the trust-region term of the TRVAE, which is to say we measure the consistency of representation by the KL divergence between the posterior distributions of successive encoders when encoding the *current*

1026 *observations*. This measurement is done by maintaining a frozen copy of the encoder parameters
 1027 from the previous step, encoding the current observations using both sets of parameters, and then
 1028 measuring the KL divergence of the resulting distributions. figure 12 illustrates the posterior losses
 1029 for the environments. We observe that the posterior loss of the vanilla β -VAE is the highest, as there
 1030 is nothing to explicitly constrain the posterior distributions between update steps. Further, we see
 1031 that the higher the β_2 value (i.e., the stronger the constraint on the latent update), the smaller the
 1032 posterior loss. In `ball_in_cup_catch` we observe a spike in the posterior loss with $\beta_2 = 10^{-4}$.
 1033 However, across steps, the posterior loss is smaller. The explanation for the spike is unknown, but it
 1034 may be due to numerical instability or a random coincidence, as we also observe such spikes with
 1035 the VAE.
 1036

1037 It is noteworthy that a minimal posterior loss is not necessarily desirable. Too strong of a constraint
 1038 on the latent update hurts the performance of the RL agent. Intuitively, the strong constraint could
 1039 weaken exploration due to a lack of diversity in the representations, thereby hurting performance.
 1040

1041 An alternative method for measuring representation drift is to compare the KL divergence in the
 1042 posteriors of the current and previous autoencoders when encoding the same observation at each
 1043 timestep. That method maintains invariance in the object of encoding by always encoding the same
 1044 (e.g., initial) observations. Intuitively, this could provide a more accurate view of the consistency
 1045 of representation by having the encoder parameters be the only change. However, empirically, both
 1046 methods yield similar results.
 1047

H ADDITIONAL RESULTS

1048 In this section, we provide additional results to address the reviewers' concerns. We will integrate
 1049 these results into the main paper in the final version of the paper.
 1050

H.1 RESULTS IN MULTI-AGENT MUJOCO

1051 In this section, we show experiment results for Multi-agent Mujoco with state-based observation.
 1052 We compare MA-TRVAE against MAPPO and MAPPO + MA2CL with the hyperparameters found
 1053 in the MA2CL paper (Song et al., 2023). Due to the limited time, we use the same β_1 and β_2
 1054 values we used in the MAQC environment for MA-TRVAE and keep the other MAPPO-related
 1055 hyperparameters identical to the MAPPO baseline. We emphasize that there are most likely better
 1056 β_2 values for MA-TRVAE with state-based observations.
 1057

1058 We test MA-TRVAE in five Multi-agent Mujoco domains: 3x1 Hopper, 6x1 Half_cheetah, 6x1
 1059 Walker, 8x1 Ant and 10x2 Swimmer. We show results in Fig. 13. Even though MA-TRVAE is
 1060 not designed for state-based observations, it outperforms MAPPO and MAPPO + MA2CL by a
 1061 large margin in higher-dimensional domains (6x1 Half_cheetah, 6x1 Walker, 8x1 Ant and 10x2
 1062 Swimmer). While it shows slightly worse performance on the lower-dimensional task (3x1 Hopper),
 1063 we observe lower training variance. This shows that reconstruction-based representation learning is
 1064 an effective method for state-based MARL.
 1065

H.2 RESULTS IN GOOGLE RESEARCH FOOTBALL

1066 In this section, we show results for the Google Research Football (GRF) benchmark (Kurach et al.,
 1067 2020) with visual observation. In this benchmark, each agent receives RGB frames that contain
 1068 global information about the environment and controls a player with a high-level action space (moving
 1069 in different directions, passing, shooting, etc.). Since the observation is not local, it does not
 1070 fit the decentralized POMDP setting. However, this is the closest setting we could find to test our
 1071 method. We compare MA-TRVAE with MAPPO and MAPPO + MA2CL.
 1072

1073 We observe from Fig. 14 that MA-TRVAE outperforms MAPPO after 2.5 M steps and converges
 1074 to a similar reward as MA2CL. We did not observe less variance from MA-TRVAE. This is likely
 1075 caused by the lack of hyperparameter search for TRVAE in this environment. Due to limited time
 1076 and computing resources, we prioritize fine-tuning the hyperparameters of the underlying MAPPO
 1077 rather than those of TRVAE, since the baseline MAPPO does not learn with the hyperparameters
 1078 from the MAQC benchmark.
 1079

Figure 13: Results on the state-based multi-agent Mujoco. Experiments are conducted in the hopper, half-cheetah, walker, swimmer and ant domains. MA-TRVAE outperforms the baselines by a large margin in higher-dimensional tasks. The result for MA2CL after 2M in walker domain is missing since we run out of computing resource.

Figure 14: Results on the GRF benchmark.

The key changed hyperparameters are the number of PPO epochs and the number of mini-batches. This results in 30 updates to the actor, critic, and VAE parameters per rollout. In MAQC, this number is 20. However, we use the same hyperparameters from MAQC for TRVAE, which likely causes a suboptimal representation learning in GRF. Additionally, as stated before, there is a large difference in the observations between the two environments, so we expect that the same hyperparameters for TRVAE would not lead to good performance. This can be observed from the loss curve of MA-TRVAE (see Fig. 15). We found that the total TRVAE loss and reconstruction loss drop much faster than the curve shown in the MAQC environment (see Fig. 16), suggesting a high learning rate for TRVAE. Also, we observe that the trust-region loss is larger than that in MAQC. This suggests we need a larger β_2 .

Lastly, we want to stress that the observation in GRF makes the representation learning in this benchmark similar to the single-agent tasks we showed in Section G, where the observation contains global information and does not change from one agent to another. This potentially mitigate the benefit of having TRVAE, since the observation is less diverse and more static. We can understand this from how the pixels changes from one step to another. Since the observation for GRF is the screenshot of the whole screen, these changed pixels are positions of players and balls, which only covers a small

1159 fraction of total pixels. And because every agent share the same global observation, the input to the
1160 TRVAE is multiple identical frames, which likely results in an overfitting for reconstruction (this
1161 can explain why it has a extremely low reconstruction error in Fig. 15) instead of learning a good
1162 representation.

H.3 ABLATION STUDY

1165 In this section, we show the results of an ablation study on β_2 to show the effect of the trust-region
1166 constraint strength. We conduct experiments on the flock formation task with a PID action setting.
1167 We vary β_2 from 1×10^{-1} to 1×10^{-8} and keep the other hyperparameters the same.

1168 Fig. 17 shows the performance of MA-TRVAE with different β_2 values. It is clearly visible that a
1169 large β_2 leads to more stable training but poorer performance, while a smaller β_2 leads to less stable
1170 training but better performance. This is attributed to either under- or over-constrained representations.
1171 While a large β_2 makes the representation more stable, it leads to poor exploration in the latent
1172 space, as the representation distribution is forced to remain close to the previous one. On the other
1173 hand, a small β_2 allows more exploration in the latent space and tends to show better performance
1174 for MARL. We do not include the performance of $\beta_2 = 1e - 1$, since it does not show any sign of
1175 learning.

H.4 COMPARISON TO MAT

1177 In this section, we compare our method to MAT (Wen et al., 2022) as MAPPO + MA2CL performs
1178 significantly worse than reported, and MAT could be a more reliable SOTA method to compare
1180 against. To show the full comparison, we include MAPPO + MA2CL. Nevertheless, we would
1181 emphasize this comparison might not be fair, since MAT uses a high-capacity transformer for the
1182 encoder, while MA-TRVAE uses a small CNN.

1183 In Fig. 18, we show results of MAT in 2 MAQC tasks with 3 different action settings (see section 5.1
1184 lines 343 to 346 for the difference between action settings). We observe that MA-TRVAE performs
1185 better than MAT in both flock formation and leader-follower task with PID action mode, while
1186 slightly worse than MAT with the other two lower-level action settings. In the flock formation
1187 task with DYN action setting, MAT additionally converges to a higher reward than MA-TRVAE.

1200 Figure 17: Ablation study for β_2 values. Large β_2 values lead to more stable yet poor performance,
 1201 while small ones tend to be more unstable but perform better.

1204 However, we observe MA-TRVAE consistently shows a lower variance than MAT, thanks to the
 1205 stable representation learning.

1206 We next conduct a scaling-up experiment for MAT in the flock formation task with PID action
 1207 setting. The results are shown in Fig. 19. Similar to MAPPO + MA2CL, we observe that MAT's
 1208 performance degrades as the number of controlled agents increases, and it shows the largest variance
 1209 among all methods. While MA-TRVAE maintains a rather stable performance when scaling up the
 1210 number of agents.

1227 Figure 18: Comparison to MAT in MAQC tasks. MA-TRVAE performs better than MAT in both
 1228 MAQC tasks with PID action setting. For the other action settings, MA-TRVAE shows a slightly
 1229 worse performance than MAT except flock formation with DYN action setting. In addition, MA-
 1230 TRVAE shows a consistently lower variance in all experiments, thanks to the stable representation
 1231 learning.

1273 **Figure 19: Scaling-up comparison to MAT. MAT shows a performance drop and the largest variance**
 1274 *among all methods, when scaling up the number of agents. On the contrary, MA-TRVAE maintains*
 1275 *a similar performance and the lowest training variance.*

1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295