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Abstract

Ensuring that Large Language Models (LLMs)001
return just responses which adhere to societal002
values is crucial for their broader application.003
Prior research has shown that LLMs often fail004
to perform satisfactorily on tasks requiring005
moral cognizance, such as ethics-based judg-006
ments. While current approaches have focused007
on fine-tuning LLMs with curated datasets to008
improve their capabilities on such tasks, choos-009
ing the optimal learning paradigm to enhance010
the ethical responses of LLMs remains an open011
research debate. In this work, we aim to ad-012
dress this fundamental question: can current013
learning paradigms enable LLMs to acquire014
sufficient moral reasoning capabilities? Draw-015
ing from distributional semantics theory and016
the pragmatic nature of moral discourse, our017
analysis indicates that performance improve-018
ments follow a mechanism similar to that of019
semantic-level tasks, and therefore remain af-020
fected by the pragmatic nature of morals latent021
in discourse, a phenomenon we name the prag-022
matic dilemma. We conclude that this prag-023
matic dilemma imposes significant limitations024
on the generalization ability of current learning025
paradigms, making it the primary bottleneck026
for moral reasoning acquisition in LLMs.027

Warning: examples in this paper may be offensive.028

1 Introduction029

Given the widespread usage of LLMs across all030

facets of society, enabling such models with moral031

reasoning capabilities has become a significant re-032

search goal. Though AI alignment (Bai et al., 2022)033

has become the de-facto method to align LLMs034

with human values, its effectiveness has been de-035

bated (Lin et al., 2023; Qi et al., 2024). One signif-036

icant complaint is that alignment with human pref-037

erence does not allow LLMs to achieve intrinsic038

alignment, resulting in various safety issues, e.g.,039

jailbreak attacks (Xie et al., 2023) and propagation040

of social biases to downstream tasks (Liu et al.,041

2024). However, enabling LLMs to develop moral 042

reasoning capabilities is a non-trivial task; it is both 043

a pragmatics-level task (Awad et al., 2022), as well 044

as philosophically challenging, due to debate over 045

the correct representation of human morals and 046

ethics (Zhi-Xuan et al., 2024). 047

Jiang et al. (2021) and Hendrycks et al. (2020) 048

represent pioneering efforts to enable LLMs to ac- 049

quire ethical judgment capabilities by fine-tuning 050

them on curated textual data that jointly depicts var- 051

ious moral situations alongside corresponding judg- 052

ments. Zhou et al. (2024) introduces an in-context 053

learning method to help LLMs perform moral rea- 054

soning, based on a top-down framework driven by 055

the Moral Foundation Theory (Anderson and An- 056

derson, 2007). Liu et al. (2023) introduce a social 057

sandbox wherein LLMs can learn how to be moral 058

through interactions. Tennant et al. (2024) pro- 059

pose a moral alignment framework to make LLM 060

agents behave morally through a newly designed 061

intrinsic moral reward function based on the Iter- 062

ated Prisoner’s Dilemma1. In addition to those 063

efforts proposing solutions, new benchmarks have 064

also been proposed (Forbes et al., 2020; Hendrycks 065

et al., 2020; Ren et al., 2024). 066

There are also several studies which highlight the 067

inefficiency of LLMs on tasks requiring moral rea- 068

soning. Talat et al. (2022) has criticized the Jiang 069

et al. (2021) work described above, because while 070

their intended goal was normative ethics, they in- 071

stead leveraged a bottom-up approach for learning 072

descriptive ethics (Vida et al., 2023; Fraser et al., 073

2022). Jin et al. (2022) empirically demonstrate 074

that the current learning paradigm for moral reason- 075

ing tasks relies on a large training dataset. Sap et al. 076

(2022) also show the failure of LLMs on social 077

intelligence tasks such as theory-of-mind. 078

In cognitive science, Mahowald et al. (2024) sug- 079

1https://en.wikipedia.org/wiki/Prisoner%27s_
dilemma
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gest that while LLMs excel in formal language080

competence, they struggle with functional language081

competence—an essential requirement for acquir-082

ing moral reasoning capabilities. More fundamen-083

tally, Bender and Koller (2020) and other studies in084

BERTology (Rogers et al., 2021), argue that Trans-085

formers cannot achieve true language acquisition,086

as it necessitates physical grounding and situated087

communicative intent (Beuls and Van Eecke, 2024),088

which extends beyond the distributional seman-089

tics captured by Transformers (Harris, 1954; Lenci090

et al., 2008; Boleda, 2020). Previous studies (Bona-091

giri et al., 2024; Zhang et al., 2023) demonstrate092

that LLMs do not have consistent moral or ethical093

orientations across various instances, which is con-094

trary to the moral consistency principle (Arvanitis095

and Kalliris, 2020). Appendix A.1 contains addi-096

tional related works and motivation pertaining to097

machine ethics.098

To address this debate, in this paper we pur-099

sue a deeper understanding of the mechanisms100

underlying current learning paradigms for moral101

reasoning acquisition. We argue that while exist-102

ing paradigms can improve LLMs’ performance103

on morality-related tasks, this enhancement: (1)104

primarily arises from distributional similarities be-105

tween seen and unseen ethical situations, and (2)106

faces challenges in generalization due to the inher-107

ently pragmatic nature of morality. We name this108

phenomenon as the pragmatic dilemma (Laverick,109

2010; Sap et al., 2022) of moral reasoning acquisi-110

tion, which arises from the inherent gap between111

the nature of distributional semantics in LLMs and112

the pragmatic nature of morality. Significant con-113

sequences of this pragmatic dilemma include poor114

generalization and a lack of intrinsic alignment.115

Specifically, we employ three fundamental tasks,116

Moral Foundations classification, rule of thumb117

generation, and ethical judgment prediction, as118

downstream evaluations of moral reasoning acqui-119

sition. We then compare their generalization char-120

acteristics with a representative semantics-driven121

task, sentiment analysis. Motivated by the distri-122

butional semantics hypothesis, we: (1) empirically123

show the generalization and convergence pitfalls124

of Moral Foundations classification; (2) given the125

characteristic of autoregressive language models,126

propose a Representational Likelihood Algorithm127

(RLA) to statistically correlate representational sim-128

ilarity between seen and unseen moral pragmatics129

with the prediction likelihood of unseen morals;130

and (3) using RLA, perform mechanistic analysis131

of LLM performance gains for unseen situations. 132

Section 2 introduces the prevalent learning 133

paradigm for moral reasoning acquisition and high- 134

lights the generalization challenges in fine-tuning 135

masked language models for moral foundation pre- 136

diction. Section 3 presents experimental results 137

across different learning paradigms, and Section 4 138

provides a detailed mechanistic analysis. Based on 139

our experimental results, we conclude that the prag- 140

matic dilemma blocks the effectiveness of current 141

learning paradigms. 142

2 Preliminary Background 143

In this section, we begin by introducing the bench- 144

marks and dataset annotation used in our study. We 145

then present the prevailing learning paradigm for 146

moral reasoning acquisition. Finally, we use the 147

Moral Foundations prediction task with a Masked 148

Language Model, specifically BERT (Devlin et al., 149

2019), as a case study, to illustrate the generaliza- 150

tion challenges of this task by drawing comparisons 151

to the semantics-level task of sentiment analysis. 152

2.1 Benchmark and Dataset Annotation 153

Situation: Reminding my coworker who crashed
into my car to pay to get it repaired.

Moral Foundation: Fairness.

Rule of Thumb (RoT): If you crash into someone’s car,
you should pay for their repairs.

(Ethical) Judgment: You should.

Table 1: Dataset Annotation. Given a moral situation de-
scribing a morality-relevant case, the corresponding Moral
Foundation, RoT, and Judgment are presented.

We employ two popular benchmarks: 154

MIC (Ziems et al., 2022) and SocialChem (Forbes 155

et al., 2020). Table 1 presents an overview 156

of the dataset annotations used across both 157

benchmarks. Given a moral situation, the Moral 158

Foundation (Haidt and Joseph, 2004; Haidt and 159

Graham, 2007) represents the underlying social 160

norm that the situation either adheres to or violates 161

(please refer to Table 8 for more details of Moral 162

Foundation Theory). The RoT (Rule of Thumb) 163

encapsulates a fundamental explanation of right 164

and wrong behavior, serving as a guidance for 165

the subsequent ethical judgment. The (Ethical) 166

Judgment then determines whether the given 167

situation is deemed acceptable or unacceptable. 168

While a single moral situation may be associated 169

with multiple moral foundations, this study focuses 170
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exclusively on cases where only one underlying171

moral foundation is present. In the MIC, each172

prompt-reply pair is treated as a distinct situation.173

2.2 Learning Paradigms174

Existing learning paradigms for moral reasoning175

acquisition generally fine-tune LLMs on curated176

textual data that depicts various moral situations177

alongside corresponding judgments or actions. In178

previous studies, ethical judgment prediction and179

RoT generation are the most popular tasks (Bona-180

giri et al., 2024; Ren et al., 2024; Hendrycks et al.,181

2020; Sorensen et al., 2024), and Moral Founda-182

tions classification is widely accepted in the area of183

computational social science (Johnson and Gold-184

wasser, 2018; Roy et al., 2021). Though there is no185

agreed-upon definition for moral reasoning acquisi-186

tion, we consider Moral Foundations classification,187

RoT generation, and ethical judgment prediction as188

three downstream tasks indicative of moral reason-189

ing capabilities. Although some studies incorporate190

interactive sandboxes or multi-round feedback into191

learning paradigms (Liu et al., 2023; Wang et al.,192

2024), Moral Foundations classification, RoT gen-193

eration, and ethical judgment prediction remain194

fundamental tasks, which when fine-tuned with195

LLMs form the preferred learning paradigms.196

Notations. We denote the moral situation as xs,197

the moral foundation as ym, the RoT as yr, and198

the judgment as yj . Assuming an LLM f is pa-199

rameterized by θ, RoT generation is formulated200

as yr = fθ(xs) and judgment prediction is repre-201

sented as yj = fθ(xs).202

Fine-tuning Strategies. Current learn-203

ing paradigms of moral reasoning acquisition204

which aim to maximize conditional probabilities205

Pθ(yr|xs) and Pθ(yj |xs), typically apply a self-206

supervised fine-tuning or a reinforcement learn-207

ing loss objective2. Given the causal relationships208

among moral foundations, RoT, and judgment,209

previous studies often integrate them into a uni-210

fied prediction task, such as yr = fθ(xs, ym) and211

yj = fθ(xs, ym, yr). During fine-tuning, the input212

for RoT generation can be xs with or without ym,213

while the input for ethical judgment prediction can214

be xs with or without ym and/or yr.215

2.3 Pitfalls of Generalization216

In this section, we use the Moral Foundations clas-217

sification task as an example to illustrate its gener-218

2Please note the choice of objective loss function does not
impact our conclusion.

alization pitfalls by comparing it to the semantics- 219

level task of sentiment analysis. We argue that in 220

moral classification tasks, there should be serious 221

generalization issues since the classification model 222

has to map semantically different situations into 223

the same moral foundation label. A direct conse- 224

quence is that an unseen situation is likely to be 225

predicted correctly only if a semantically similar 226

sample exists in the training set. This similarity 227

requirement is much stricter than that for the senti- 228

ment analysis task.

Situation: Kicking a kid out of his birthday party.

Situation: Not telling my mom I smoke weed.

Table 2: Situation Examples. Two moral situations with the
same underlying moral foundation of authority-subversion.

229
Our argument is driven by the gap between the 230

distributional semantics captured by neural lan- 231

guage models and the inherently pragmatic nature 232

of morality. For instance, Table 2 presents two 233

moral situations from the SocialChem benchmark; 234

they are semantically different (distributional se- 235

mantics) but the underlying moral foundations are 236

identical (pragmatics). If we force an MLM to map 237

these two situations into the same moral foundation 238

label, it would violate the captured distributional 239

semantics during pre-training. To illustrate how the 240

violation works, we refer to a semantics-level task 241

of sentiment analysis using the SST dataset from 242

the GLUE benchmark (Wang et al., 2018). 243

Experimental Settings for Classification. We 244

have two settings for the moral classification tasks: 245

classify moral situations to moral foundations and 246

classify RoTs to moral foundations. We use a fine- 247

tuning dataset with 7500 randomly sampled cases 248

and the bert-base-uncased3 model as the backbone 249

model. Beyond the backbone model, we insert a 250

fully-connected layer as the classifier layer. More 251

details about the hyperparameters setting is avail- 252

able in Appendix A.2. 253

Observations for Classification Performance. 254

Table 1 presents the classification performance on 255

both the training and development set. Compared 256

to the generalization behavior observed in SST 257

(rightmost figure), the moral foundation classifi- 258

cation tasks (first four figures) exhibit a signifi- 259

cant performance gap between the training set and 260

the development set. However, for MIC-RoT and 261

3https://huggingface.co/google-bert/
bert-base-uncased
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Figure 1: Training and Development Accuracy Over 10 Fine-tuning Epochs. The first four figures display results for moral
foundation classification tasks, while the rightmost figure shows the results for the SST benchmark.

SocialChem-RoT, because the training accuracy262

approaches 100% and converges after only several263

epochs, this suggests that task difficulty is not the264

primary cause of the observed generalization gap.265

The difference in classification performance be-266

tween Situation and RoT stems from the fact that267

RoT is constructed based on typical moral foun-268

dations, inherently conveying information about269

the corresponding moral foundation. However, the270

generalization gap between the training set and271

development set for all moral foundation classifi-272

cation settings is apparent. To further analyze the273

generalization pitfall in moral foundation classifi-274

cation, we examine the convergence behavior with275

respect to training dataset size. We use the curve276

of development accuracy in SST as a reference to277

highlight the convergence issue observed in moral278

foundation classification tasks.

Figure 2: Convergence Curve of Development Accuracy
for Considered Classification Tasks. Only the development
accuracy of SST increases with more training samples and
finally approaches 1.0.

279

Experimental Settings for Convergence. SST280

is a binary classification task. To ensure a fair281

comparison, we re-categorize the moral founda-282

tion labels for MIC and SocialChem to convert283

them into a binary classification task (details are284

in Appendix A.3). For each task setting, we incre-285

mentally increase the training set size from 1,000286

to 210,000 in steps of 2,000 and report the best per-287

formance on the development set at each training288

size setting. 289

Observations for Convergence. Figure 2 illus- 290

trates the curve of development accuracy across 291

all evaluated classification tasks. For SST, accu- 292

racy improves as the number of training samples 293

increases, eventually stabilizing and approaching 294

1.0. In contrast, the development accuracies for 295

moral foundation classification tasks show no im- 296

provement in SocialChem and only marginal gains 297

in MIC. We believe this disparity is due to the fact 298

that moral situations in SocialChem are generally 299

shorter than that of MIC. The convergence behavior 300

analysis again showcases the generalization pitfalls 301

of the moral foundation classification task. 302

In summary, we: (1) introduce the current learn- 303

ing paradigms for moral reasoning acquisition; and 304

(2) show the generalization pitfalls of the moral 305

foundation classification task (a pragmatics-level 306

task) by referring and comparing to the develop- 307

ment accuracy of a semantics-level task. 308

3 Fine-tuning for Moral Reasoning 309

Acquisition 310

In this section, we introduce fine-tuning strate- 311

gies and experimental results of existing learning 312

paradigms for moral reasoning acquisition, focus- 313

ing on the tasks of RoT generation and ethical judg- 314

ment prediction. 315

Experimental Settings. We take Mistral-7B4 316

and Llama3-8B5 as the backbone models and 317

leverage the LoRA method to fine-tune them 318

through a supervised fine-tuning loss. For each 319

benchmark, we employ two fine-tuning strategies 320

for RoT generation and four fine-tuning strate- 321

gies for ethical judgment prediction. For RoT 322

generation, we fine-tune LLMs: (1) to directly 323

4https://huggingface.co/mistralai/
Mistral-7B-v0.1

5https://huggingface.co/meta-llama/
Meta-Llama-3-8B-Instruct
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SocialChem BertScore Rouge1 Rouge2 RougeL MIC BertScore Rouge1 Rouge2 RougeL

rot .777 .229 .096 .213 rot .768 .175 .077 .168
moral-rot .836 .416 .205 .401 moral-rot .826 .393 .192 .379

judg .7240 .230 .137 .230 judg .671 .071 .000 .071
moral-judg .7632 .464 .346 .464 moral-judg .762 .314 .000 .314

rot-judg .7626 .464 .346 .464 rot-judg .660 .061 .000 .061
moral-rot-judg .7628 .463 .345 .463 moral-rot-judg .761 .306 .000 .306

Table 3: Performance of Fine-tuned Mistral Model Across Various Fine-tuning Strategies for Each Benchmark, with the
best strategy highlighted in bold. For both tasks, introducing more information, e.g., moral foundation, in the fine-tuning
process would improve the performance. The moral-rot achieves the optimal performance for both SocialChem and MIC.
The moral-judg and moral-judg are the best strategy for SocialChem and MIC respectively, in terms of the judgment prediction
task. Additional results for Llama3 are availabe in Table 7.

generate RoT according to the given situation324

(rot) and (2) first generate the moral foundation,325

then the RoT (moral-rot). For Judgment Pre-326

diction, we fine-tune LLMs to: (1) directly pre-327

dict judgment (judg) , and (2) firstly generate the328

moral foundation and/or RoT then the judgment329

(moral-judg, rot-judg and moral-rot-judg).330

The prompting format and LoRA fine-tuning set-331

tings are available in Appendix A.4. We consider332

10000 samples with only one underlying moral333

foundation for analytical convenience. In the pro-334

cess of fine-tuning, we take the check point with335

the least loss on the development set, and report336

its performance on the test set. During inference,337

we prompt fine-tuned LLMs to first generate inter-338

mediate predictions before producing the final RoT339

or ethical judgment, following the same prompt-340

ing strategy used during fine-tuning. For example,341

in the moral-rot strategy, LLMs are instructed342

to first predict the moral foundation based on the343

given situation and subsequently generate the RoT344

using both the situation and the predicted moral345

foundation. Following Ziems et al. (2022), we re-346

port the performance of the BertScore (Zhang et al.,347

2019), Rouge-1, Rouge-2, and Rouge-L metrics.348

RoT generation and ethical judgment predic-349

tion align with the core capabilities essential for350

morality-related scenarios and serve as prototypi-351

cal formats for moral reasoning. By incorporating352

moral foundations into RoT generation, we aim to353

guide LLMs to first identify the moral foundation354

associated with a given situation, thereby improv-355

ing the quality of the generated RoT. RoTs serve356

as instances of evidence and explanation for ethi-357

cal judgments, aligning with previous studies that358

seek to enhance LLMs’ social intelligence through359

social interaction environments (Liu et al., 2023;360

Wang et al., 2024).361

Main Results. Table 3 and Table 7 present362

fine-tuning results for Mistral and Llama3, respec- 363

tively6. As shown in Table 3, introducing moral 364

foundations in fine-tuning enhances performance 365

across all experimental settings. However, incor- 366

porating RoT information along into the ethical 367

judgment prediction task has a negative impact to 368

the MIC benchmark. We hypothesize that this is 369

because judgments are significantly shorter than 370

RoTs, and the added complexity of RoTs would 371

introduce challenges for fine-tuning. 372

4 Mechanistic Analysis 373

In the previous sections, we introduced preliminary 374

studies regarding the generalization pitfalls of the 375

moral foundations classification task (Section 2), 376

and the performance of fine-tuning LLMs for two 377

moral reasoning tasks (Section 3). In this section, 378

we: (1) propose the Representational Likelihood 379

Algorithm (RLA) which can uncover supportive 380

training samples for a given test sample; (2) explore 381

the characteristics of supportive training samples, 382

demonstrating that the introduction of additional in- 383

formation to enhance generalization aligns with the 384

generalization mechanism of the semantics-level 385

task; (3) showcase that the pragmatic dilemma still 386

holds even though fine-tuned LLMs perform better 387

in RoT generation and ethical judgment prediction. 388

Motivation. Our study builds on the representa- 389

tional learning nature of LLMs and the widely ac- 390

cepted principle in generalization theory that a well- 391

trained machine learning model can generalize ef- 392

fectively when the training and test set distributions 393

are closely aligned in the feature space (Zhou et al., 394

2022; Hupkes et al., 2022). Since neural language 395

models capture distributional semantics, represen- 396

tational similarity can be interpreted as equivalent 397

6Note that this paper does not aim to achieve state-of-
the-art performance but rather to investigate the underlying
mechanisms behind these performance gains.
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to distributional similarity. Recall from Section 2398

that we highlighted the generalization pitfalls of the399

moral foundation classification task. We argue that400

similar pitfalls should also exist for RoT generation401

and ethical judgment prediction. Our hypothesis402

is that for a given test sample, the LLM can gen-403

eralize effectively only if highly similar training404

samples have been adequately learned during fine-405

tuning. To test this hypothesis, we propose a novel406

algorithm to identify the training samples most con-407

ducive to the generalization of a given test sample408

within the representation space.409

4.1 Representational Likelihood Algorithm410

Motivated by the representation similarity hypoth-411

esis in domain generalization (Ben-David et al.,412

2006), we present our method for identifying train-413

ing samples that contribute to the prediction of a414

given test sample. We refer to these training sam-415

ples as generalization-supportive samples7. Our416

goal is to correlate representational similarity with417

LLM predictions, and then leverage this correlation418

to characterize the generalization mechanism of the419

considered morality acquisition tasks.420

Assume that a fine-tuned LLM fθ has been421

trained on the training set Dtrain, where each sample422

is represented as x = [xs, ym, yr, yj ], following the423

annotation introduced in Section 2.2. We denote424

training samples as x ∼ Dtrain and test samples as425

x′ ∼ Dtest. The hidden states of fθ are denoted by426

Hθ(·), and the conditional likelihood of a given in-427

put and output is represented as Pθ(·|·). Denote the428

cosine similarity function as cos(·). Algorithm 1429

presents our proposed Representational Likelihood430

Algorithm (RLA) by taking the judg fine-tuning431

strategy (yj = fθ(xs)) as an instance. Specifically,432

1. For each test case, we randomly sample N433

samples X from the training set (line 3).434

2. For each training sample xt in the sampled set435

X , we calculate the similarity score St which436

comprises the: (1) cosine similarity between437

two hidden states Hθ(x
t
s) and Hθ(x

′
s) (line438

5) measuring the representational similarity,439

and (2) likelihood, the conditional probabil-440

ity Pθ(x
t
j |xts) measuring how good fθ fits xt441

(line 5). With this design, only those training442

samples that have been fitted well by fθ would443

be considered in the process of measuring rep-444

resentational similarity.445

7In this paper, we use generalization-supportive and sup-
portive interchangeably.

Algorithm 1 RLA for Judgment Prediction

1: Initialize r = 0, d = {}
2: for each sample x′ in Dtest do
3: Sampling N cases from Dtrain as

X = [x1, x2, · · · , xN ]
4: for each xt in X do

5: St =

representational similarity︷ ︸︸ ︷
cos(Hθ(x

t
s),Hθ(x

′
s)) ·

likelihood︷ ︸︸ ︷
Pθ(x

t
j |xts)

6: d[St] = Pθ(x
t
j |x

′
s)︸ ︷︷ ︸

prediction
7: end for
8: Sort d by key in ascending order, return the

value list as V
9: if MEAN(V[: N

2 ]) < MEAN(V[N2 :]) then
10: r++
11: end if
12: end for
13: return r

#Dtest

3. Compute the conditional probability of the 446

training sample’s judgment given the test 447

case’s situation (line 6). 448

4. If fθ becomes increasingly likely to assign 449

xt’s judgment xtj to x′s as their representa- 450

tional similarity increases, then we can corre- 451

late representational similarity and prediction 452

(lines 8-10). 453

In our experiments, we utilize the hidden states 454

from the 15th layer onward of the final token as 455

the representation and compute the average cosine 456

similarity across these layers to obtain the represen- 457

tational similarity score. This is because previous 458

studies (Geva et al., 2023; Liu et al., 2024) indicate 459

that the LLMs considered in this paper generally 460

exhibit differences in the hidden state space from 461

the 15th layer onward. Table 4 presents the re-

Mistral Llama3

Socialchem-rot .920 .924

Socialchem-judg .998 .996

MIC-rot .926 .912

MIC-judg .990 .971

Table 4: Experimental results for the simulation task show
that all values exceed 0.9, indicating a strong correlation be-
tween representational similarity and prediction.

462
sults of two baseline fine-tuning strategies, rot and 463

judg, evaluated across various benchmarks and 464

LLM models. As shown, all experimental results 465
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exceed 0.9, particularly the judg fine-tuning strat-466

egy which is very close to 1.0, demonstrating that467

there exists correlation between representational468

similarity and prediction. In other words, for a469

given test sample, generalization-supportive train-470

ing samples can be identified by assessing their471

representational similarity.472

4.2 Interpretation of Generalization473

Building on the method for identifying474

generalization-supportive training samples from475

Section 4.1, this section interprets the generaliza-476

tion mechanism of the examined morality-relevant477

tasks by analyzing the characteristics of these478

supportive training samples8.479

For each test sample, we collect the top-10480

generalization-supportive training samples with the481

most highest similarity score St. However, the sim-482

ilarity score St is a high-level metric capturing the483

statistical correlation between representational sim-484

ilarity and predictions, making it insufficient for485

directly interpreting the underlying reasons for per-486

formance gains. To have an in-depth analysis, we487

investigate (i) the cosine similarity of hidden states488

between the test sample’s moral situation and the489

training sample’s moral situation; (ii) the BertScore490

between the train sample’s situation and the test491

sample’s situation. Figure 3 present these two an-492

alytical perspectives on the top 10 generalization-493

supportive training samples for the fine-tuned Mis-494

tral model across two benchmarks.495

By zooming into the left four subfigures496

in Figure 3, introducing moral foundation or497

RoT in the fine-tuning process can decrease the498

representational similarity, particularly the opti-499

mal fine-tuning strategies, e.g., moral-rot and500

moral-judg, lead to lower representational sim-501

ilarities than that of the baseline strategy (rot and502

judg). This phenomenon aligns with our hypothe-503

sis that generalization in moral reasoning acquisi-504

tion tasks requires a high degree of representational505

similarity between test and training samples.506

By referring to the curve of SST that also faces a507

lower representational similarity, we can conclude508

that additional information of moral foundation or509

RoT would alleviate the generalization pitfall of510

the baseline strategy that necessitates much simi-511

lar training samples to generalize. This is rather512

natural since those fine-tuning strategies not only513

8In this section, we provide a detailed analysis only for
the fine-tuned Mistral, while the analysis for the fine-tuned
Llama3 is presented in Appendix A.5.

Figure 3: Top-10 generalization-supportive training samples
analysis for fine-tuned Mistral with the SocialChem (upper
two rows) and MIC (bottom two rows) benchmark.

capture the information of situations but also moral 514

foundations and/or RoTs, newly introduced infor- 515

mation would impact the characteristics of the rep- 516

resentation space. 517

Additionally, we can observe decreased 518

BertScore in the right four sub-figures, except for 519

RoT generation in the MIC benchmark, where 520

the BertScore for moral-rot remains close to 521

that of the baseline rot strategy. A decrease in 522

BertScore suggests that the additional information 523

reduces reliance on generalization-supportive 524

training samples with high distributional similarity 525

to the test sample. Due to the association between 526

distributional similarity and representational 527

similarity in LLMs, those two observations are 528

aligned. It is not surprising that the performance 529

gain arises from the generalization mechanism 530

analogical to that of semantics-level tasks. A 531

natural question is does the incorporation of 532

moral foundations or RoT alleviate the pragmatic 533

dilemma of current learning paradigms in moral 534

reasoning acquisition? 535
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Figure 4: Ratio of generalization-supportive training sit-
uations with the same underlying moral foudation as the
test situation. Upper two subfigures are for SocialChem
and the bottom sub-figures are for MIC. Top-50 situa-
tions are available in Appendix A.6.

An extreme case for the vanishment of the prag-536

matic dilemma is: for a given test situation, top-10537

generalization-supportive training moral situations538

should have the same underlying moral founda-539

tions as the test moral situation. Therefore, we540

compute the ratio of the top-10 supportive training541

moral situations that share the same moral foun-542

dations as the test moral situation. Notably, we543

take the term training/test moral situation, for MIC544

and SocialChem, instead of training/test samples545

to emphasize that our analysis exactly focuses on546

moral situations. For reference, we include SST547

and consider the sentiment label when calculating548

the ratio for SST.549

Figure 4 presents the results for this ratio. In-550

terestingly, even for SST, which can be viewed as551

a binary classification task, only half of the sup-552

portive training samples share the same sentiment553

label as their corresponding test samples. For both554

RoT generation and ethical judgment prediction,555

the optimal fine-tuning strategies (moral-rot and556

moral-judg) align with the baseline fine-tuning557

strategies (rot and judg), except for moral-judg558

on the SocialChem benchmark. We believe this ex-559

ception arises because the textual length of moral560

situations in SocialChem is relatively short, am-561

plifying the influence of ethical judgment during562

fine-tuning. On the other hand, we calculate the563

average conditional likelihoods of the top-10 sup-564

portive training situations, and note the optimal565

fine-tuning strategy does help LLMs fit training566

samples. These observations suggest that LLMs567

consider moral situations and additional informa-568

tion together to generalize, but still operate primar-569

ily within the realm of semantics.570

Recall that, in Section 2, we demonstrate that the571

SocialChem MIC

rot .389 .659
moral-rot .418 .738

judg .992 .770
moral-judg .997 .835

Table 5: The average conditional likelihoods of top-10
generalization-supportive training samples.

generalization and convergence behavior of moral 572

foundation classification is different from SST due 573

to the pragmatic delimma. Similarly, we also argue 574

that the pragmatic nature of morality would be 575

more negative to the language modeling capability 576

of LLMs than that from SST. Figure 5 presents the 577

perplexity evaluation results, acquired through the 578

OpenWebText datset (Gokaslan et al., 2019), of 579

Mistral models fine-tuned with different strategies. 580

It is obvious that morality-relevant tasks introduce 581

more perplexity than SST.

Figure 5: Perplexity for Mistral. Baseline indicates the Per-
plexity of the LLMs without any fine-tuning.

582
In summary, while the optimal fine-tuning strate- 583

gies improve performance on both tasks, this im- 584

provement remains within the realm of distribu- 585

tional semantics, and the pragmatic dilemma per- 586

sists. 587

5 Conclusion 588

In this paper, we answered the question can current 589

learning paradigms enable LLMs to acquire moral 590

reasoning? Based on distributional semantics and 591

the pragmatic nature of morality, we demonstrate 592

that (1) the pragmatic dilemma of LLMs make 593

them inefficient in moral reasoning acquisition 594

tasks; (2) the improved performance still stems 595

from the realm of distributional semantics; (3) the 596

current learning paradigm for moral reasoning ac- 597

quisition impairs LLMs’ language modeling capa- 598

bility more than semantics-level tasks. We con- 599

clude that the pragmatic dilemma is the primary 600

bottleneck for moral reasoning acquisition. Please 601

refer to Appendix A.7 for more dicussions. 602

8



Limitations603

In this draft, we focus only on moral situations with604

a single underlying moral foundation. However, in605

real-world scenarios, moral situations often involve606

multiple moral foundations, which we leave for607

future research. Additionally, while the tasks con-608

sidered in this paper reflect fundamental aspects609

of moral reasoning, a deeper analysis of how the610

pragmatic dilemma manifests in recently proposed611

social sandbox systems would be a valuable direc-612

tion for future study.613
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A Appendix 879

A.1 Additional Related Works 880

Machine ethics (Anderson and Anderson, 2011; 881

Tolmeijer et al., 2020; Nath and Sahu, 2020; Allen 882

et al., 2006) has been a long-standing research 883

topic for hardware and software systems, with the 884

aim of maximizing their benefits while minimiz- 885

ing societal risks. Recently, we have witnessed 886

the progress of Artificial Intelligence (AI), partic- 887

ularly that associated with Large Language Mod- 888

els (LLMs), changing the world. Ensuring LLMs 889

will acquire an understanding of ethics to prevent 890

them from making harmful decisions has become a 891

serious research problem for both academia and 892

industry. Dating back to the 1940s, the Three 893

Laws of Robotics (Asimov, 1941) were proposed 894

to ensure that robots do not cause harm to hu- 895

mans. Since then, machine ethics has been ex- 896

plored by researchers in philosophy, psychology, 897

and cognitive science. However, it remains a sig- 898

nificant challenge for AI, as even coherent and 899

diverse language generation poses difficulties. The 900

widespread deployment of LLMs opens the door 901

for AI researchers to pursue ethics acquisition due 902

to their strong semantic modeling capability. 903

Numerous studies have attempted to evaluate the 904

moral and ethical orientations encoded in LLMs 905

through empirical experiments. Bonagiri et al. 906

(2024) demonstrates that model performance and 907

moral consistency are independent of one another, 908

while Abdulhai et al. (2023) investigates whether 909

LLMs exhibit biases toward specific moral prin- 910

ciples. Scherrer et al. (2024) proposes a statisti- 911

cal method to assess the moral values encoded in 912

LLMs, and Zhang et al. (2023) introduces a met- 913

ric to determine whether LLMs understand ethical 914

values both in terms of “knowing what” and “know- 915

ing why.” Collectively, these studies highlight that 916

LLMs lack consistent moral or ethical orientations 917

across different scenarios. Enabling LLMs to ac- 918

quire ethical values is a formidable challenge, not 919

only because ethical AI operates at the level of 920

pragmatics (Awad et al., 2022), but also due to the 921

11
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philosophical complexities surrounding the proper922

representation of human ethics (Zhi-Xuan et al.,923

2024). Progress has been made, albeit only par-924

tially.925

A.2 Hyperparameters for the Bert Classifier926

Hyperparameters are available in Table 6.

Hyperparameters Setting

Optimizer AdamW
Adam β1 0.9
Adam β2 0.98
Adam ϵ 1e-3

Learning rate for BERT 5e-5
Learning rate for classifier layer 1e-2

Maximum training epochs 10
Weight decay 0.01

Batch size 32
Seed 1,2,3,4,5

Table 6: Hyperparameter Settings for the AdamW Opti-
mizer.

927

A.3 Re-categorization of Moral Foundation928

Labels929

For MIC, we label samples with the moral foun-930

dation of Care as 0, and those with the foun-931

dations of Fairness, Liberty, Authority, and Loy-932

alty as 1. For SocialChem, samples classified933

under Loyalty-Betrayal are labeled as 0, while934

those falling under Fairness-Cheating, Care-Harm,935

Sanctity-Degradation, and Authority-Subversion936

are labeled as 1.937

A.4 Experimental Settings for Fine-tuning938

Prompting format moral-rot-judgment

Situation: {#SITUATION}
Moral Foundation: {#MORAL_FOUNDATION}
Rule of Thumb: {#RoT}
Ethical Judgment: {#judgment}

LoRA hyperparameters
rank: 64
lora alpha: 16
lora dropout: 0.1
target modules: q_proj, k_proj, v_proj, o_proj
batch size: 16
learning rate: 5e-5

939

A.5 Mechanistic Analysis to Fine-tuned940

Llama3941

Table 6 introduces the fine-tuning results for the942

Llama3 model. Different from Mistral, introduc-943

ing additional information of the moral founda- 944

tions and RoT do not always contribute to bet- 945

ter performance. For the SocialChem benchmark, 946

the baseline fine-tuning strategy outperforms other 947

strategies, albeit by a very narrow margin. This 948

aligns with the generalization mechanism illus- 949

trated in Figure 6. Unlike Mistral, the introduction 950

of moral foundations and RoT does not reduce co- 951

sine similarity or BertScore. Figure 11 shows the 952

ratio of the same moral foundation among top 10 953

generalization-supportive training moral situations, 954

and the behavior of Llama3 is the same as Mistral. 955

In summary, the pragmatic dilemma still persists 956

for the Llama3 model and is even worse than that 957

of the Mistral model. 958

A.6 Top-50 959

In Figure 4, we show only 10 generalization- 960

supportive samples. Here, we demonstrate that 961

the characteristics of all top-50 generalization- 962

supportive training samples are closely aligned 963

with those of the top 10 reported in that figure. 964

Mistral-SocialChem-RoT:[0.138, 0.16, 0.221, 965

0.193, 0.189, 0.185, 0.21, 0.193, 0.17, 0.178, 0.18, 966

0.176, 0.181, 0.191, 0.187, 0.157, 0.161, 0.145, 967

0.163, 0.133, 0.15, 0.181, 0.152, 0.162, 0.18, 0.163, 968

0.173, 0.16, 0.158, 0.186, 0.176, 0.178, 0.17, 0.185, 969

0.171, 0.169, 0.165, 0.194, 0.191, 0.173, 0.19, 970

0.173, 0.188, 0.192, 0.188, 0.195, 0.189, 0.19, 971

0.195, 0.17] with mean value of 0.17636 972

Mistral-Socialchem-MoralRoT: [0.051, 0.243, 973

0.238, 0.214, 0.079, 0.245, 0.244, 0.244, 0.241, 974

0.216, 0.072, 0.133, 0.204, 0.276, 0.137, 0.179, 975

0.178, 0.115, 0.049, 0.151, 0.152, 0.16, 0.089, 976

0.048, 0.186, 0.141, 0.126, 0.137, 0.146, 0.047, 977

0.045, 0.041, 0.122, 0.156, 0.143, 0.084, 0.237, 978

0.232, 0.135, 0.099, 0.09, 0.207, 0.371, 0.169, 0.23, 979

0.127, 0.093, 0.199, 0.164, 0.163] with mean of 980

0.15696 981

A.7 Discussion 982

Generalization remains a significant challenge in 983

the acquisition of moral reasoning, and no optimal 984

solution has yet been identified. Recently, Jiang 985

et al. (2025) proposed a hybrid approach that com- 986

bines bottom-up and top-down methods. However, 987

their method still relies on a substantial number 988

of training samples. Bergen et al. (2016) demon- 989

strated that pragmatic reasoning can be approxi- 990

mated through semantic inferences, highlighting a 991

linguistic foundation for this connection. Neverthe- 992

less, how to formally structure a semantic inference 993
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SocialChem BertScore Rouge1 Rouge2 RougeL MIC BertScore Rouge1 Rouge2 RougeL

rot .8222 .358 .151 .343 rot .814 .365 .152 .332
moral-rot .8217 .356 .152 .340 moral-rot .818 .365 .168 .352

judg .759 .440 .313 .440 judg .684 .109 .000 .109
moral-judg .757 .411 .285 .411 moral-judg .751 .254 .000 .254

rot-judg .755 .400 .264 .400 rot-judg .660 .061 .000 .061
moral-rot-judg .752 .370 .248 .370 moral-rot-judg .762 .314 .000 .314

Table 7: Performance of Fine-tuned Llama3 Model Across Various Fine-tuning Strategies for Each Benchmark. The best fine-
tuning strategy is highlighted in bold and the second best strategy is underlined. For MIC, incorporating additional information,
such as moral foundations, during fine-tuning enhances performance; however, this effect is not observed for SocialChem.

(a) RoT Generation for Socialchem (b) Ethical Judgment Prediction for SocialChem

(c) RoT Generation for MIC (d) Ethical Judgment Prediction for MIC

Figure 6: Top-10 Generalization-Supportive Training Samples Analysis for Fine-tuned Llama3 Through the Introduced Fine-
tuning Strategies.

framework for moral reasoning remains an open994

question. One promising direction is to ground995

such a framework in the human moral decision-996

making process. Kumar and Jurgens (2025) in-997

troduced the first benchmark in the NLP commu-998

nity focused on how humans make moral decisions.999

Their benchmark is based on an intuitionist model:1000

participants are first asked to make a moral judg-1001

ment and then provide an explanation for their1002

decision. This type of annotation presents chal-1003

lenges for LLMs, as human explanations are ex-1004

pressed in free-text form and often lack enough1005

situated semantic information (Sap et al., 2022).1006

Despite these difficulties, the benchmark offers a1007

valuable opportunity for exploring methods that1008

aim to derive semantic inferences from human ra-1009

tionales—potentially bridging the gap in pragmatic1010

moral reasoning.1011
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Figure 7: RoT in SocialChem Figure 8: Ethical Judgment
Prediction in SocialChem Figure 9: RoT in MIC Figure 10: Ethical Judgment

Prediction in MIC

Figure 11: Same Moral Ratio for Fine-tuned Llama3.

Moral Foundation Branches Brief Description

Care
Harm

Demonstrates care, generosity, compassion, and empathy,
while showing sensitivity to others’ suffering and upholding the principle of avoiding harm.

Fairness
Cheating

Encompasses fairness, justice, reciprocity, altruism, rights,
autonomy, equality, proportionality, and the rejection of cheating.

Loyalty
Betrayal

Emphasizes group affiliation, solidarity, patriotism,
and self-sacrifice, while prohibiting betrayal.

Authority
Subversion

Upholding social roles, respecting authority and
traditions, valuing leadership, and prohibiting rebellion.

Purity (Sanctity)
Degradation

Reverence for the sacred, purity, religious principles guiding life,
and prohibitions against violating the sacred.

Table 8: Brief Descriptions of the Moral Foundations. Each foundation has two aspects representing positive and
negative perspectives of that moral foundation branch. Please refer to Atari et al. (2023) for the most up-to-date list
of moral foundations and their descriptions.
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