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Abstract

Recently, large pretrained language models001
(LMs) have gained popularity. Training these002
models requires ever more computational re-003
sources and most of the existing models are004
trained on English text only. It is exceedingly005
expensive to train these models in other lan-006
guages. To alleviate this problem, we intro-007
duce a method – called WECHSEL – to trans-008
fer English models to new languages. We ex-009
change the tokenizer of the English model with010
a tokenizer in the target language and initialize011
token embeddings such that they are close to012
semantically similar English tokens by utiliz-013
ing multilingual static word embeddings cov-014
ering English and the target language. We use015
WECHSEL to transfer GPT-2 and RoBERTa016
models to 4 other languages (French, Ger-017
man, Chinese and Swahili). WECHSEL im-018
proves over a previously proposed method for019
cross-lingual parameter transfer and outper-020
forms models of comparable size trained from021
scratch in the target language with up to 64x022
less training effort. Our method makes train-023
ing large language models for new languages024
more accessible and less damaging to the envi-025
ronment. We make our code and models pub-026
licly available.027

1 Introduction028

Large LMs based on the Transformer architec-029

ture (Vaswani et al., 2017) have become increas-030

ingly popular since GPT (Radford et al., 2018)031

and BERT (Devlin et al., 2019) were introduced,032

prompting the creation of many large LMs pre-033

trained on English text (Yang et al., 2019; Clark034

et al., 2020; Lewis et al., 2020; Joshi et al., 2020;035

Ram et al., 2021). There is a tendency towards036

training larger and larger models (Brown et al.,037

2020; Fedus et al., 2021) while restricting focus038

to the English language. Recent work has called039

attention to the costs associated with training in-040

creasingly large LMs, including environmental cost041

and financial cost (Bender et al., 2021). If train- 042

ing large LMs for English is already costly, it is 043

prohibitively expensive to train new, similarly pow- 044

erful models to cover all other relevant languages. 045

One approach to address this issue is creating 046

massively multilingual models (Devlin et al., 2019; 047

Conneau et al., 2020; Xue et al., 2021) which are 048

trained on a concatenation of text in many different 049

languages. These models exhibit natural language 050

understanding capabilities in a wide variety of lan- 051

guages, but suffer from what Conneau et al. (2020) 052

call the curse of multilinguality: beyond a certain 053

number of languages in the training data, overall 054

performance decreases on monolingual as well as 055

cross-lingual tasks. Consistent with this finding, 056

Nozza et al. (2020) observe that monolingual LMs 057

often outperform massively multilingual models. 058

It is thus desirable to train monolingual models 059

in more languages. Training monolingual models 060

in non-English languages is commonly done by 061

training a new model with randomly initialized pa- 062

rameters (Antoun et al., 2020; Louis, 2020; Chan 063

et al., 2020; Martin et al., 2020). But to train a 064

model with capabilities comparable to that of an 065

English model in this way, presumably a similar 066

amount of compute to what was used to train the 067

English model would be required. 068

To address this issue, we introduce WECHSEL1, 069

a novel method to transfer monolingual language 070

models to a new language. WECHSEL uses multi- 071

lingual static word embeddings between the source 072

language and the target language to initialize model 073

parameters. We copy all inner (non-embedding) 074

parameters of the English model, exchange the tok- 075

enizer with a tokenizer for the target language and 076

instead of randomly initializing the token embed- 077

dings as done in prior work (de Vries and Nissim, 078

2021), we initialize token embeddings in the target 079

language such that they are close to semantically 080

1Word Embeddings Can Help initialize Subword Embed-
dings in a new Language.
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similar English tokens by mapping multilingual081

static word embeddings to subword embeddings.082

Embeddings take up roughly 31% of the param-083

eters of RoBERTa (Liu et al., 2019) and roughly084

33% of the parameters of GPT2 (Radford et al.,085

2019). Intuitively, semantically transferring embed-086

dings instead of randomly initializing one third of087

the model should result in improved performance.088

Our parameter transfer aims to provide an effective089

initialization in the target language, requiring sig-090

nificantly fewer training steps to reach high perfor-091

mance. As multilingual static word embeddings are092

available for many languages (Bojanowski et al.,093

2017), WECHSEL is widely applicable.094

We evaluate our method by transferring English095

RoBERTa and GPT-2 – as representative models of096

encoder and decoder language models respectively097

– to 4 new languages (French, German, Chinese098

and Swahili). We evaluate our RoBERTa mod-099

els by fine-tuning on Neural Entity Recognition100

(NER) and Natural Language Inference (NLI) tasks101

in the respective languages. Our GPT-2 models102

are evaluated by computing Language Modelling103

Perplexity (PPL) on a hold-out set. We compare104

WECHSEL initialization with randomly initialized105

models (denoted as FullRand) as well as a recently106

proposed method which only transfers the inner107

(non-embedding) parameters (denoted as TransIn-108

ner, de Vries and Nissim (2021)) under the same109

training conditions (around 4 days on a TPUv3-8).110

We also compare our model with models of compa-111

rable size trained from scratch under significantly112

larger training regimes, in particular CamemBERT113

(Martin et al., 2020) (French), GBERTBase (Chan114

et al., 2020) (German), and BERTBase-Chinese De-115

vlin et al. (2019) (Chinese). These models are116

trained on 6.4, 3.9, and 2 times more tokens, re-117

spectively. Results show that RoBERTa models118

initialized with WECHSEL outperform randomly119

initialized models by an average of 6.17% accuracy120

on NLI and 1.37% micro F1 score on NER, and121

models initialized with TransInner by an average122

of 0.9% accuracy and 0.5% micro F1 score on NLI123

and NER, respectively. GPT-2 models initialized124

with WECHSEL outperform randomly initialized125

models by an average 0.75 PPL and models ini-126

tialized with TransInner by an average 1.42 PPL.127

Our models already outperform GBERTBase and128

CamemBERT on average on downstream tasks af-129

ter 10% of training steps. Our contribution is sum-130

marized as follows.131

• We propose WECHSEL, a novel method for 132

transferring monolingual language models to 133

a new language by utilizing multilingual static 134

word embeddings between the source and the 135

target language. 136

• We show effective transfer of RoBERTa and 137

GPT-2 using WECHSEL to 4 different lan- 138

guages and high performance after minimal 139

training effort. 140

• We train more effective GPT-2 and RoBERTa 141

models for German, French, Chinese and 142

Swahili than previously published models un- 143

der a more efficient training setting. Our 144

code and models are publicily available at 145

https://github.com/anonymized. 146

In the following, we review related work in Sec- 147

tion 2. We then introduce the WECHSEL method 148

in Section 3, followed by explaining the experiment 149

setup in Section 4. We show and discuss results in 150

Section 5. 151

2 Related Work 152

Large Language Models. Training Language 153

Models is usually done in a self-supervised man- 154

ner i.e. deriving labels from the training text in- 155

stead of needing explicit annotations. One widely- 156

used optimization objective is Masked Language 157

Modelling (Devlin et al., 2019, MLM), where ran- 158

dom tokens in the input are masked (replaced by a 159

special [MASK] token), and the task is to predict 160

the original tokens. Another common objective is 161

Causal Language Modelling (CLM), where the task 162

is to predict the next token. These two objectives 163

highlight a fundamental distinction between lan- 164

guage models: models can be trained as encoders 165

(e.g. with MLM) or as decoders (e.g. with CLM). 166

Instead of words, the vocabulary of language 167

models usually consists of subwords. A subword 168

is a combination of characters below or at word- 169

level. Many recently proposed language models 170

use subword tokenization (Clark et al., 2020; Liu 171

et al., 2019; Devlin et al., 2019). WECHSEL can 172

be used for any model which (1) uses subword- 173

based tokenization and (2) learns an embedding for 174

each token. 175

Multilingual representations. There has been a 176

significant amount of work in creating multilingual 177

static word embeddings. Multilingual static word 178

embeddings can be created by learning static word 179
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embeddings from scratch using data in multiple180

languages (Luong et al., 2015; Duong et al., 2016).181

Alternatively, multilinguality can be achieved by182

aligning existing monolingual word embeddings183

using a bilingual dictionary, so that the resulting184

embeddings share the same semantic space (Xing185

et al., 2015; Joulin et al., 2018). Recent studies186

improve this by reducing the need for bilingual data187

(or even requiring no bilingual data at all) (Artetxe188

et al., 2017, 2018; Lample et al., 2018).189

Besides multilingual static word embeddings,190

multilinguality is also relevant to contextualized191

representations. Multilingual contextualized repre-192

sentations can be learned through training a model193

on a concatenation of corpora in different lan-194

guages. Among such model are mBERT (Devlin195

et al., 2019), XLM-R (Conneau et al., 2020) and196

mT5 (Xue et al., 2021), which are trained on text197

in 104, 100 and 101 languages, respectively. As198

shown by Pires et al. (2019), a multilingual model199

such as mBERT can enable cross-lingual transfer200

by using task-specific annotations in one language201

to fine-tune the model for evaluation in another lan-202

guage. However, recent studies outline a number203

of problems with massively multilingual models.204

Wu and Dredze (2020) empirically show that in205

mBERT “the 30% languages with least pretraining206

resources perform worse than using no pretrained207

language model at all”. Conneau et al. (2020) re-208

port that beyond a certain number of languages in209

the training data, the overall performance decreases210

both on monolingual as well as cross-lingual tasks.211

These studies motivate our work on creating mono-212

lingual LMs for more languages.213

Cross-lingual transfer of monolingual LMs.214

Studies related to the cross-lingual transfer of215

monolingual language models can be divided into216

two categories:217

• Bilingualization of a monolingual LM is218

concerned with transferring a model to a219

new language while preserving capabilities220

in the original language. Artetxe et al. (2020)221

achieve this goal by replacing the tokenizer222

and relearning the token embeddings, while223

freezing other parameters. Such a model be-224

comes bilingual, since the initial tokenizer225

and embeddings can be used for tasks in the226

source language while the new tokenizer and227

embeddings can be used for tasks in the tar-228

get language. Thus, a model can be finetuned229

on annotated task data in the source language,230

then zero-shot transferred to the target lan- 231

guage. Tran (2020) follow a similar approach, 232

while instead of randomly initializing embed- 233

dings, they utilize static word embeddings to 234

initialize embeddings in the target language 235

close to semantically similar English tokens. 236

They then continue training the model on an 237

English text corpus as well as on the target lan- 238

guage in order to preserve model capabilities 239

in English. 240

• Creating a new monolingual LM in the tar- 241

get language is, in contrast, concerned with 242

creating a model in the target language with- 243

out the necessity to preserve its capabilities in 244

the source language. Zoph et al. (2016) and 245

Nguyen and Chiang (2017) show that cross- 246

lingually transferring a machine translation 247

model can improve performance, especially 248

for low-resource languages. They replace the 249

model tokenizer with a tokenizer for the target 250

language. Zoph et al. (2016) then use embed- 251

dings of random tokens in the original vocabu- 252

lary to initialize token embeddings in the new 253

vocabulary, while Nguyen and Chiang (2017) 254

improve on this by utilizing vocabulary over- 255

lap between the source and target language. 256

More recently, de Vries and Nissim (2021) fol- 257

low a similar approach to the one of Artetxe 258

et al. (2020) by transferring a GPT-2 model to 259

a new language. de Vries and Nissim (2021) 260

add an additional step, where they train the 261

entire model for some amount of steps to al- 262

low adapting to the target language beyond 263

the lexical level. We refer to the method of 264

de Vries and Nissim (2021) as TransInner and 265

consider it as a baseline in our experiments. 266

Our WECHSEL method belongs to the second 267

category. WECHSEL is an extension to the method 268

proposed by Tran (2020) with the goal of creating a 269

new monolingual LM instead of bilingualizing the 270

LM. This allows removing the constraints imposed 271

by the need to preserve capabilities in the source 272

language. In addition, we generalize the semantic 273

subword mapping done by Tran (2020) to consider 274

an arbitrary number of neighbors with an arbitrary 275

temperature. We are the first to show that a cross- 276

lingually transferred model can outperform mono- 277

lingual models which have been trained extensively 278

from scratch in the target language, while requiring 279

substantially less computational resources. 280
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Figure 1: Summary of our WECHSEL method. We
show inputs4, intermediate results� and outputs©.

3 Methodology281

Given the tokenizer T s in the source language (with282

vocabulary Us), the corresponding token embed-283

dings Es and a tokenizer T t in the target language284

(with vocabulary Ut), our goal is to find a good285

initialization of the embeddings Et by using Es.286

To this end, we use existing bilingual word em-287

beddings, containing a set of words in the source288

and target language and their aligned vectors, as289

well as word frequency statistics. We denote the290

set of words in the source and target language as291

Vs and Vt respectively, and the aligned static word292

embeddings as W s and W t.293

First, independently for both languages, we com-294

pute static subword embeddings for tokens in the295

tokenizer vocabulary in the same semantic space296

as the static word embeddings (Section 3.1). This297

results in subword embeddings U s and U t for the298

source and target language, respectively. Next, we299

use U s and U t to compute semantic similarity of300

every subword in Us to every subword in Ut. Us-301

ing these semantic similarities, we initialize the302

embeddings in Et through an affine combination303

of embeddings in Es (Section 3.2). By applying304

WECHSEL, the vectors of Et are in the same se-305

mantic space as Es, where a subword in the tar-306

get language is semantically similar to its coun-307

terpart(s) in the source language. These steps are308

summarized in Figure 1 and explained in detail in309

the following.310

3.1 Word-to-Subword Embedding Mapping 311

The process of mapping word embeddings to sub- 312

word embeddings is done separately for source and 313

target languages. Given a tokenizer T (with vocab- 314

ulary U), word embeddings W , and word frequen- 315

cies f , the goal is to find subword embeddings U 316

for subwords in U using W . To this end, we apply 317

the tokenizer T to every word v in V resulting in 318

a set of subwords for each word. We define V(x) 319

as the set of words containing the subword x when 320

tokenized. The embedding ux of the subword x is 321

then defined as the average of the embeddings of 322

words in V(x), weighted by the word frequencies. 323

ux =

∑
v∈V(x) wv · fv∑

v∈V(x) fv
324

where wv is the embedding and fv is the frequency 325

of word v. Subwords which do not occur in any 326

word are initialized to zero. We implement this 327

method of word-to-subword mapping using a pro- 328

cedure we refer to as tokenize-flatten-reduce as 329

depicted in Figure 2. 330

3.2 Subword similarity-based Transfer 331

Applying the previous step to both source and tar- 332

get language results in the subword embeddings 333

U s and U t over the subword vocabularies Us and 334

Ut, respectively. Our aim is now to use these em- 335

beddings to find an effective transformation from 336

Es to Et. We first compute the cosine similarity 337

of every subword x ∈ Ut to every subword y ∈ Us, 338

denoted as sx,y. 339

sx,y =
ut
xu

s
y
T

‖ut
x‖‖us

y‖
340

We now exploit these similarities to initialize 341

embeddings in Et by an affine combination of em- 342

beddings in Es. Each subword embedding in Et 343

is defined as the weighted mean of the k nearest 344

embeddings in Es according to the similarity val- 345

ues. The weighting is done by a softmax of the 346

similarities with temperature τ . 347

etx =

∑
y∈Jx

exp (sx,y/τ) · esy∑
y′∈Jx

exp (sx,y′/τ)
348

where Jx is the set of k neighbouring subwords 349

in the source language. Subword embeddings for 350

which U t is zero are initialized from a random 351

normal distribution N (E[Es],Var[Es]). The in- 352

ner (non-embedding) parameters are simply copied 353

from the source model. 354
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Figure 2: Word-to-subword embedding mapping. First, tokenize all words in the word embeddings. Then flatten
the result by assigning the embeddings of the words in which it occured and their word frequencies to each subword.
Finally, reduce the embeddings assigned to each subword by taking their mean, weighted by word frequency.

4 Experiment Design355

We evaluate our method by transferring the En-356

glish RoBERTa model (Liu et al., 2019) and the357

English GPT-2 model (Radford et al., 2019) to a358

subset of the 7 languages proposed in Conneau et al.359

(2020) (French, German, Chinese and Swahili).360

Chinese allows evaluation of cross-lingual transfer361

to a strongly dissimilar language. Swahili serves to362

evaluate our method on a low-resource language.363

We use the pretrained models RoBERTaBase with364

125M parameters, and the small GPT-2 variant365

with 117M parameters provided by HuggingFace’s366

Transformers (Wolf et al., 2020) in all experiments.367

To ensure our method does not depend on ex-368

cessive amounts of data in the target language we369

restrict the amount of training data to subsets of370

4GiB from the OSCAR corpus (Ortiz Suárez et al.,371

2019) for all experiments for all languages, except372

Swahili. For Swahili, we use the 1.6GiB Swahili373

subset of the CC-100 corpus (Conneau et al., 2020).374

To obtain aligned word embeddings between the375

source and the target language we use monolin-376

gual fastText word embeddings2 (Bojanowski et al.,377

2017) and align them using the Orthogonal Pro-378

crustes method (Schönemann, 1966; Artetxe et al.,379

2016) with bilingual dictionaries from MUSE3380

(Conneau et al., 2017) for French, German and381

Chinese and a bilingual dictionary from FreeDict4382

(Bański and Wójtowicz, 2009) for Swahili. We383

use word frequency information provided as part of384

the fastText word vectors. We choose temperature385

τ = 0.1 and neighbors k = 10 for WECHSEL by386

conducting a grid search over initializations with387

varying k and τ using linear probes (Appendix A).388

2https://fasttext.cc
3https://github.com/facebookresearch/MUSE
4https://freedict.org

We train tokenizers in the target languages using a 389

vocabulary size of 50k tokens and byte-level BPE 390

(Radford et al., 2019). After applying WECHSEL, 391

we continue training RoBERTa on the MLM objec- 392

tive and GPT-2 on the CLM objective. We compare 393

against two baseline methods. 394

• Randomly initializing Et while transferring 395

all other parameters from the English model 396

as in de Vries and Nissim (2021). After train- 397

ing only embeddings for a fixed amount of 398

steps while freezing other parameters, the en- 399

tire model is trained for the remaining steps. 400

We refer to this method as TransInner. 401

• Training from scratch in the target language, 402

as is commonly done when training BERT- 403

like or GPT-like models in a new language 404

(Antoun et al., 2020; Louis, 2020; Chan et al., 405

2020; Martin et al., 2020). We refer to this 406

method as FullRand. 407

All models are trained for 250k steps with the 408

same hyperparameters across all languages (re- 409

ported in Appendix B). Training one model takes 410

around 4 days on a TPUv3-8. For WECHSEL 411

and FullRand we use a learning rate (LR) schedule 412

with linear warmup from zero to peak LR for the 413

first 10% of steps, then linear decay to zero. For 414

TransInner we perform two warmup phases from 415

zero to peak LR, once for the first 10% of steps 416

for training embeddings only, then again for the 417

remaining steps while training the entire models. 418

5 Results 419

We show results for RoBERTa on two downstream 420

tasks (NLI, NER) and for GPT-2 (CLM). The per- 421

formance of our models throughout training is 422

shown in Figure 3. 423
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Lang Model Score@0 Score@25k Score@250k Score (more training)
NLI NER Avg NLI NER Avg NLI NER Avg NLI NER Avg

French

WECHSEL-RoBERTa 78.25 87.43 82.84 81.86 90.07 85.96 82.55 90.80 86.68 - - -
TransInner-RoBERTa 60.86 69.57 65.21 65.49 83.82 74.66 81.75 90.34 86.04 - - -
FullRand-RoBERTa 55.71 70.79 63.25 69.02 84.24 76.63 75.28 89.30 82.29 - - -
CamemBERT - - - - - - - - - 80.88 90.26 85.57
XLM-RBase - - - - - - - - - 79.25 89.48 84.37

German

WECHSEL-RoBERTa 77.00 84.70 80.85 80.71 89.09 84.90 82.04 89.72 85.88 - - -
TransInner-RoBERTa 58.51 65.23 61.87 64.78 82.05 73.42 80.75 89.30 85.02 - - -
FullRand-RoBERTa 54.82 66.84 60.83 68.02 81.53 74.77 75.48 88.36 81.92 - - -
GBERTBase - - - - - - - - - 78.64 89.46 84.05
XLM-RBase - - - - - - - - - 78.58 88.76 83.67

Chinese

WECHSEL-RoBERTa 62.75 72.87 67.81 77.07 78.03 77.55 77.99 80.65 79.32 - - -
TransInner-RoBERTa 46.95 69.06 58.01 52.96 73.35 63.16 76.99 80.00 78.49 - - -
FullRand-RoBERTa 44.24 57.95 51.09 58.34 64.84 61.59 71.38 78.35 74.86 - - -
BERTBase-Chinese - - - - - - - - - 76.55 82.05 79.30
XLM-RBase - - - - - - - - - 76.41 78.36 77.38

Swahili

WECHSEL-RoBERTa 60.14 75.42 67.78 74.04 87.79 80.92 74.58 87.66 81.12 - - -
TransInner-RoBERTa 54.67 64.46 59.56 58.85 80.27 69.56 74.10 87.05 80.57 - - -
FullRand-RoBERTa 50.59 62.35 56.47 63.79 83.49 73.64 70.34 87.34 78.84 - - -
XLM-RBase - - - - - - - - - 69.18 87.37 78.28

Table 1: Results from fine-tuning RoBERTa models. We report accuracy for NLI on XNLI and micro F1 score for
NER on WikiANN. Results are averaged over 3 runs. We report scores before training (Score@0), after 10% of
steps (Score@25k) and after training (Score@250k). We also report results from fine-tuning prior monolingual
models and XLM–R (Score (more training)) which are trained on more tokens than our models (c.f. Section
5.3). For each language, the best results in every column are indicated with underlines. The overall best results,
including the comparison with prior monolingual models of comparable size, are shown in bold.

5.1 Transferring RoBERTa424

We evaluate WECHSEL-RoBERTa by fine-tuning425

on XNLI (Conneau et al., 2018), and on the bal-426

anced train-dev-test split of WikiANN (Rahimi427

et al., 2019; Pan et al., 2017) to evaluate NLI428

and NER performance, respectively. The hyper-429

parameters used for fine-tuning are reported in Ap-430

pendix B.431

Table 1 reports the evaluation results on432

RoBERTa. As shown, models initialized with433

WECHSEL outperform models trained from434

scratch and models initialized with TransInner435

across all languages. Surprisingly, close related-436

ness of the source and target language is not nec-437

essary to achieve effective transfer, as e.g. on NLI438

WECHSEL improves by 7.27%, 6.57%, 6.61%439

and 4.23% absolute accuracy over models trained440

from scratch for French, German, Chinese and441

Swahili, respectively.442

Next, we compare WECHSEL-RoBERTa to443

monolingual models CamemBERT (Martin et al.,444

2020) (French), GBERTBase (Chan et al., 2020)445

(German), and BERTBase-Chinese (Devlin et al.,446

2019) (Chinese), and to fine-tuning XLM-RBase447

(Artetxe et al., 2020) in the target language. To448

the best of our knowledge there is no monolin-449

gual model available for Swahili. We observe a450

consistent improvement over XLM-RBase by an av-451

erage 3.43% accuracy for NLI and 1.21% micro F1 452

score for NER. For NLI, we improve over the prior 453

monolingual models by 1.67%, 3.4% and 1.44% 454

absolute accuracy for French, German and Chinese, 455

respectively and even outperform prior monolin- 456

gual models after 10% of our training steps. For 457

NER, we observe a less marked improvement over 458

monolingual models with 0.54% and 0.26% abso- 459

lute micro F1 score improvement for French and 460

German, respectively. For Chinese, the monolin- 461

gual model BERTBase-Chinese still outperforms 462

our method by 1.4% absolute micro F1 score. We 463

suspect that the discrepancy between NLI and NER 464

is due to the limited training corpus size (4GiB), 465

while a larger corpus can potentially improve NER 466

as more named entities appear (Martin et al., 2020). 467

5.2 Transferring GPT-2 468

GPT-2 is evaluated by Perplexity (PPL) on a hold- 469

out set from the same corpus on which the model 470

was trained on (OSCAR for French, German and 471

Chinese; CC-100 for Swahili). Results are shown 472

in Table 2. Consistent with results for WECHSEL- 473

RoBERTa, the GPT-2 models trained with WECH- 474

SEL outperform the models trained from scratch 475

and the models trained with TransInner across all 476

languages. 477

For the language modeling task, we observe 478

stronger dependence on similarity of the source to 479
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Figure 3: Test scores over training steps from fine-tuning RoBERTa models on NLI (using XNLI) and NER (using
WikiANN). Perplexity on the hold-out set over training steps of GPT-2 models. We evaluate every 12.5k steps.

Lang Model PPL@0 PPL@25k PPL@250k

French
WECHSEL-GPT2 2.3e+3 23.45 19.70
TransInner-GPT2 1.4e+5 67.97 20.13
FullRand-GPT2 5.9e+4 25.99 20.47

German
WECHSEL-GPT2 5.0e+3 34.46 26.82
TransInner-GPT2 1.5e+5 121.67 27.76
FullRand-GPT2 5.8e+4 37.29 27.63

Chinese
WECHSEL-GPT2 2.5e+4 72.11 52.07
TransInner-GPT2 1.5e+5 231.05 56.17
FullRand-GPT2 5.8e+4 69.29 52.98

Swahili
WECHSEL-GPT2 1.5e+5 13.03 10.06
TransInner-GPT2 1.4e+5 42.95 10.28
FullRand-GPT2 5.8e+4 13.22 10.58

Table 2: Results of training GPT2 models. We report
Perplexity before training (PPL@0), after 10% of steps
(PPL@25k) and after training (PPL@250k).

the target language than for downstream tasks such480

as NLI or NER. For French and German, WECH-481

SEL is consistently better than TransInner and Full-482

Rand throughout the entire training. For Chinese,483

a decrease in perplexity towards the end of training484

causes WECHSEL to surpass training from scratch.485

5.3 Effect of training effort 486

To highlight the improvement in training efficiency 487

of WECHSEL as oppposed to prior monolingual 488

models, we consider the total number of tokens 489

the model has encountered in the target language, 490

computed as the product of batch size × sequence 491

length × train steps (shown in Table 3). We ex- 492

pect FullRand-RoBERTa to approach performance 493

of the respective prior monolingual models when 494

trained on the same amount of tokens5. This 495

allows quantifying the difference in training ef- 496

fort required to achieve good performance with 497

WECHSEL as opposed to training from scratch. 498

For French, WECHSEL-RoBERTa outperforms 499

CamemBERT after 10% of training, reducing train- 500

ing effort by 64x. For German, WECHSEL- 501

RoBERTa outperforms GBERTBase after 10% of 502

training steps, reducing training effort by 39x. 503

For Chinese, WECHSEL-RoBERTa outperforms 504

BERTBase-Chinese on NLI, but does not outper- 505

form BERTBase-Chinese on NER. 506

5It would presumably be slightly worse because we restrict
training corpus size to 4GiB.
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Model Tokens trained on Factor
WECHSEL-RoBERTa 65.5B 1.0x
TransInner-RoBERTa 65.5B 1.0x
FullRand-RoBERTa 65.5B 1.0x
CamemBERT 419.4B 6.4x
GBERTBase 255.6B 3.9x
BERTBase-Chinese 131.1B 2.0x

Table 3: Tokens trained on in the target language be-
tween our models and previous monolingual models.

5.4 Additional Analyses507

To qualitatively assess how well subword tokens508

can be mapped between the source and the target509

language, we show a random sample of tokens510

in the target language and their most similar En-511

glish tokens (according to WECHSEL) for each lan-512

guage (Appendix C). We also consider using fast-513

Text subword information as an alternative way to514

map word to subword embeddings (Appendix D).515

5.4.1 Relearning embeddings516

To quantitatively evaluate the mapping resulting517

from WECHSEL we conduct an additional experi-518

ment where we keep all non-embedding parameters519

frozen and only train the embeddings. The better520

the initialization, the less improvement would be521

possible with more training. We conduct this ex-522

periment for French as most similiar language to523

English and Chinese as most dissimilar language524

and train GPT-2 models. Hyperparameters match525

the ones of our main experiments, except that we526

train for 75k steps only. We observe a strong de-527

crease in Perplexity from training, indicating that528

our mapping is far from optimal. Especially early529

merges in the BPE vocabulary (i.e. common to-530

kens) change compared to their initial value. Fu-531

ture work could investigate improving the mapping532

done by WECHSEL under this metric. Additional533

information is shown in Appendix E.534

5.4.2 Is freezing necessary?535

Previous work using the TransInner method freezes536

non-embedding parameters for a fixed amount of537

steps before training the entire model (de Vries538

and Nissim, 2021). This is done to prevent catas-539

trophic forgetting at the beginning of training. To540

evaluate if freezing non-embedding parameters is541

still necessary with our method, we conduct an542

additional experiment. We train a model with543

WECHSEL and a model with TransInner without544

freezing any parameters, and the same models with545

freezing of non-embedding parameters for the first546

10% of steps. We again match hyperparameters of547
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Figure 4: Comparison of German GPT-2 models
trained with WECHSEL and TransInner between freez-
ing non-embedding parameters at the start and not
freezing any parameters.

the main experiments but train for 75k steps only. 548

We train a German GPT-2 model and conjecture 549

that the same result will hold for other languages 550

and model types. Results are shown in Figure 4. 551

We conclude that freezing is necessary when us- 552

ing TransInner, but there is no need for freezing 553

when using WECHSEL (in fact, freezing slightly 554

decreases performance). 555

6 Conclusion 556

We introduce WECHSEL, an effective method to 557

transfer monolingual language models to new lan- 558

guages. WECHSEL exploits multilingual static 559

word embeddings to compute an effective initial- 560

ization of subword embeddings in the target lan- 561

guage. Experiments on transferring representative 562

transformers-based encoder and decoder language 563

models from English to French, German, Chinese 564

and Swahili show that the transferred RoBERTa 565

and GPT-2 models are more efficient than strong 566

baselines, and outperform prior monolingual mod- 567

els that have been trained for a significantly longer 568

time. WECHSEL facilitates the creation of effec- 569

tive monolingual LMs in new languages in low 570

resource and computationally-limited settings. Our 571

work provides further evidence towards the hypoth- 572

esis by Artetxe et al. (2020) that deep monolingual 573

language models learn some abstractions that gen- 574

eralize across languages. 575
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A Grid search over k and τ837

To choose number of neighbors k and temperature838

τ for WECHSEL we conduct a grid search over839

linear probes of models with different initializa-840

tion shown in Table 7. For RoBERTa, we compute841

scores on NLI (using XNLI) and POS tagging (us-842

ing the French, German and Chinese GSD corpora843

in Universal Dependencies) using linear probes of844

the last hidden state. We probe on NLI by taking845

a concatenation of the mean of all token represen-846

tations in the premise with the mean of all token847

representations in the hypothesis. We probe on848

POS tagging by taking the mean of all token rep-849

resentations belonging to each word. For GPT2,850

we compute language modelling Perplexity on the851

hold-out set also used to evaluate performance of852

the trained models.853

B Hyperparameters854

Hyperparameters used to fine-tune RoBERTa on855

downstream tasks are shown in Table 4. Hyperpa-856

rameters used to train models in our main experi- 857

ments are shown in Table 5. 858

Parameter NLI NER
peak learning rate 2e-5 2e-5
batch size 128 32
sequence length 128 128
Adam ε 1e-8 1e-8
Adam β1 0.9 0.9
Adam β2 0.999 0.999
train epochs 2 10
warmup 10% of steps 10% of steps
warmup schedule linear linear
LR decay linear to zero linear to zero

Table 4: Hyperparameters used to fine-tune RoBERTa
models on NLI (XNLI) and NER (WikiANN).

Parameter RoBERTa GPT2
peak learning rate 1e-4 5e-4
batch size 512 512
sequence length 512 512
weight decay 0.01 0.01
Adam ε 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
train steps 250k 250k

Table 5: Hyperparameters of the models transferred
from RoBERTa and GPT2.

C Qualitative subword correspondence 859

We show a small random sample of tokens in the 860

target language and their closest English token (ac- 861

cording to WECHSEL) in Table 6. 862

D Using fastText subword information 863

As an alternative to our tokenize-flatten-reduce pro- 864

cedure (Figure 2) for mapping word embeddings 865

to subword embeddings, one could also use fast- 866

Text vectors to generate embeddings for out-of- 867

vocabulary words by decomposing them into n- 868

grams (Bojanowski et al., 2017) and treating sub- 869

words as out-of-vocabulary words. We compare 870

this option to WECHSEL at varying values for tem- 871

perature τ and neighbors k (Table 8). We find that 872

this does not improve performance compared to 873

our initial method, so we choose not to use sub- 874

word information so as to not restrict applicability 875

of WECHSEL to word embeddings where subword 876

information is available. 877
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Lang Target Token Closest English Token

French

héritage legacy
tremp soaked

épiscop bishop
scandaleux udicrous

vertig astonishing
enregistrer rec

sucrés sweets
Emmanuel Emmanuel
entourage confid
secrétariat ariat

German

machen ize
mit with

Sprichwort proverb
erischen Austrian
minuten utes

Haustechnik umbing
dringen urgent

verfeinern refine
umgebung vironments
ternehmen irms

Chinese

到处 everywhere
巧合 coinc
第三 third
杂交 recomb
利来 chnology
政务 Govern
石 stone

喊麦 sing
中海 iterranean
张某 defendant

Swahili

shirikishe ive
Harusi Marriage
pesile ery
tihani graduate

changi ool
kuugua ingestion
kuzidi acclaim
vipigo Trouble

dhamiri conscience
aliposimama Slowly

Table 6: Samples of tokens in each language and the
corresponding closest tokens from the English vocabu-
lary according to WECHSEL.

E Relearning embeddings878

We show performance throughout training of GPT-879

2 models in French and Chinese where all non-880

embedding parameters are frozen in Figure 5. Sim-881

ilarity of token embeddings after training to their882

initialization is shown in Figure 6.883

Lang Model k τ
Scores

NLI POS LM

French
WECHSEL@0

1 1 57.0 84.5 4.1e+5
10 0.1 59.2 86.2 2.6e+5
10 1 58.1 84.7 5.8e+5
50 0.1 55.9 84.8 3.0e+6
50 1 53.7 80.5 1.0e+7

FullRand@0 - - 46.3 60.6 5.7e+6
CamemBERT - - 63.5 93.6 -

German
WECHSEL@0

1 1 54.1 71.7 9.2e+5
10 0.1 57.8 76.5 5.6e+5
10 1 56.8 75.0 1.1e+6
50 0.1 54.2 75.1 1.9e+7
50 1 51.8 70.8 7.6e+7

FullRand@0 - - 44.5 49.1 6.2e+6
GBERTBase - - 63.2 81.4 -

Chinese
WECHSEL@0

1 1 46.2 69.9 4.7e+6
10 0.1 49.0 76.2 2.8e+6
10 1 49.0 75.0 3.2e+6
50 0.1 46.6 72.8 1.9e+7
50 1 46.7 71.9 2.9e+7

FullRand@0 - - 37.5 53.7 5.8e+6
BERTBase-Chinese - - 61.9 91.9 -

Table 7: Grid search over the temperature τ and number
of most similar tokens k parameters of WECHSEL.

Lang Model k τ
Scores

NLI POS LM

French WECHSEL-FSI@0

1 1 58.4 85.2 2.5e+5
10 0.1 59.8 86.8 2.0e+5
10 1 58.3 84.4 4.8e+5
50 0.1 57.2 83.6 3.1e+6
50 1 54.0 81.6 1.8e+7

German WECHSEL-FSI@0

1 1 55.8 72.7 6e+5
10 0.1 58.9 76.0 4.2e+5
10 1 57.5 75.4 8.3e+6
50 0.1 55.4 75.4 1.0e+7
50 1 53.6 69.5 5.9e+7

Chinese WECHSEL-FSI@0

1 1 47.4 75.4 2.7e+6
10 0.1 48.0 80.7 2.6e+6
10 1 48.3 80.3 3.1e+6
50 0.1 48.3 77.8 3.7e+7
50 1 47.9 76.5 8.6e+7

Table 8: The same grid search as in Table 7, but us-
ing subword information from fastText vectors instead
of a tokenize-flatten-reduce procedure to map words to
subwords.
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Figure 5: Perplexity over training steps from training French and Chinese GPT-2 models. We train models initial-
ized with WECHSEL and with TransInner for 75k steps and freeze all non-embedding parameters for the entirety
of training.

Figure 6: Cosine Similarity of embeddings to their initialization after training embeddings for 75k steps while
freezing other parameters. We train French and German GPT-2 models initialized with WECHSEL.
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