
RLJ | RLC 2024

STA-RLHF: Stackelberg Aligned Reinforcement
Learning with Human Feedback

Jacob Makar-Limanov∗

jacob_makar-limanov@brown.edu
Brown University, Computer Science

Arjun Prakash∗

arjun_prakash@brown.edu
Brown University, Computer Science

Denizalp Goktas
denizalp_goktas@brown.edu
Brown University, Computer Science

Nora Ayanian
nora_ayanian@brown.edu
Brown University, Computer Science

Amy Greenwald
amy_greenwald@brown.edu
Brown University, Computer Science

Abstract

The alignment problem, namely how to endow language models with human prefer-
ences, is a key AI challenge, for which various Reinforcement Learning with Human
Feedback (RLHF) methods have been developed. Most RLHF approaches treat the
optimization of the language model and the reward model as separate problems.
We propose Stackelberg Alignment RLHF, which formalizes RLHF as a two-player
Stackelberg game between the language model and the reward model. The leader in
our game is the language model, which aligns its behavior with human preferences
by optimizing the reward model, a representation of those preferences. Meanwhile,
the follower learns this representative reward model based on human feedback. We
present a nested gradient-based heuristic that searches for a Stackelberg equilibrium
of our game, and show that the ensuing language model outperforms other RLHF
methods on a diverse set of synthetic tasks.

1 Introduction

Reinforcement learning with human feedback (RLHF) has attracted a great deal of attention recently
as researchers aim to align ever more capable language models with human preferences, e.g., (Bai
et al., 2022). The RLHF process usually involves two models: a reward model (RM), which represents
human preferences over continuations given a prompt, and a language model (LM), which generates
continuations from prompts so as to optimize this reward model (Ouyang et al., 2022).

In Vanilla RLHF (Christiano et al., 2017; Stiennon et al., 2020; von Werra et al., 2020; Bai et al.,
2022; Ouyang et al., 2022), the reward model is trained first, and then the language model learns
to generate continuations that optimize this reward model. Drawing an analogy with reinforcement
learning (RL), the value function (i.e., the critic) is rarely trained first, with the policy (i.e., the
actor) updated only once in response. On the contrary, actor-critic is an iterative method that
jointly searches the space of policies and value functions for a pair which positively reinforce one
another. Similarly, it has been suggested that alignment can be improved via iteration (Xiong et al.,
2024; Dong et al., 2024), by updating the reward model after updating the language model, to in
turn best represent the human preferences of the current language model, and so on.

∗With equal contribution.

RLJ | RLC 2024

Conceptually, if the language model is optimizing its behavior given a reward model, and vice
versa, the two models are playing a simultaneous-move (general-sum) game, whose solution is a
Nash equilibrium (Nash, 1950). Indeed, RLHF has been studied as a simultaneous-move game with
varying degrees of success (Chen et al., 2024; Munos et al., 2023; Swamy et al., 2024).

In this paper, we argue that the alignment game can be better understood as a sequential game,
whose solution is a Stackelberg, rather than Nash, equilibrium (von Stackelberg, 1934). In a (two-
player) Stackelberg game, a leader commits to (i.e., she announces) a strategy, after which the
follower plays his strategy. At a Stackelberg equilibrium, the leader’s strategy maximizes her utility,
assuming the follower will best respond to this strategy, i.e., choose a strategy that maximizes his
utility, given the leader’s strategy. In contrast to a Nash equilibrium, the leader does not likewise
best respond to the follower’s strategy.

Drawing an analogy to RL once again, actor-critic algorithms have also been formalized as Stackel-
berg games (Zheng et al., 2022); however, the authors of this paper did not argue (except through
experimentation) whether one or the other of the actor or the critic should play the role of the leader.
In our view, the language model/actor is the leader, and the reward model/critic, the follower, be-
cause the goal is to search for an optimal policy, with a “best” supporting reward model/value
function; on the other hand, the goal is not to search for an optimal reward model/value function
with a “best” supporting policy.

An equilibrium of this game can be found via a search over fine-tuned LMs and corresponding RMs,
under the assumption that each ensuing RM (i.e., each follower strategy) tailors itself to a fine-tuned
LM (i.e., a leader strategy), similar to how a critic tailors itself to an actor’s policy. Consequently,
the Stackelberg leader’s equilibrium strategy is a LM that induces the highest possible rewards
among all RMs.

Since the advent of generative-adversarial networks (Goodfellow et al., 2020), which are perhaps
best understood as two-player zero-sum games, there has been a flurry of research on first-order
methods for learning in games. Simultaneous gradient-descent ascent (GDA) is known to converge in
polynomial time to Nash equilibrium in zero-sum simultaneous-move, e.g., (Daskalakis et al., 2017),
while nested GDA is known to converge in polynomial time to Stackelberg equilibrium in zero-sum
Stackelberg games, e.g., (Goktas and Greenwald, 2021; Goktas et al., 2023). In simultaneous GDA,
the two players update their strategies “simultaneously,” meaning each one updates her strategy,
i.e., takes one gradient step towards a best response, given her opponent’s previous strategy. In
nested GDA, in contrast, the first player takes one gradient step to arrive at a new strategy, after
which the second player takes many gradient steps towards a best response, given the first player’s
new strategy. Nested GDA is well suited for learning in Stackelberg games: the leader is the first
player, and the follower, the second.

As there are no known algorithms that compute Stackelberg equilibria in general-sum continuous-
action Stackelberg games in polynomial time, we propose a heuristic for training language and
reward models in our Stackelberg game formulation of RLHF. We empirically test our approach
against state-of-the-art variants of RLHF, including DPO (Rafailov et al., 2023), Vanilla RLHF, as
well as against a simultaneous version of our algorithm, and a version in which the player order is
reversed.

Contributions Our contributions can be summarized as follows: We present RLHF as a general-
sum Stackelberg game played between the LM (leader) and the RM (follower). We also present
a nested training algorithm for solving for a Stackelberg equilibrium of our game, and we show
empirically that the solutions discovered by our algorithm outperform the solutions discovered by a
simultaneous variant (corresponding to a simultaneous-move RLHF game formulation and a Nash
equilibrium), as well as a Stackelberg game where the roles of the leader and follower are reversed,
and state-of-the-art approaches in the literature, namely vanilla RLHF, DPO and PARL. Before
moving to the main body of the paper, we discuss related work.

RLJ | RLC 2024

2 Related Work

Alignment problem The problem of aligning the behavior and objectives of an AI agent to
a human’s preferences has been studied in various contexts, including robotic control (Wiener,
1960), game-playing AI (FAIR et al., 2022), and recommender systems (Stray et al., 2021). As
AI capabilities advance, this problem is becoming increasingly important and challenging, with
AI systems optimizing for proxy goals often finding unintended and potentially harmful ways to
achieve them. Comprehensively specifying objectives is notoriously difficult, due to the complexity
of capturing the full scope of human values (Christian, 2021). The emergence of large language
models has led to a surge of interest in the alignment problem, with RLHF (Christiano et al., 2017)
emerging as a dominant paradigm for tackling it. Indeed, RLHF has achieved some success aligning
the behaviors of LMs with humans (Bai et al., 2022; Ouyang et al., 2022).

RLHF algorithms The standard RLHF recipe to align a language model by fine tuning is as
follows (Ouyang et al., 2022): First, the base model is fine tuned using supervised next-token
prediction (SFT) on a high-quality dataset to create a base reference policy. Subsequently, given
a distribution over prompts, continuations are sampled from the reference policy and ranked by
human labellers. A Bradley-Terry (BT) utility function is then trained to maximize the likelihood
of this preference data . Finally, the LM’s policy is optimized to maximize this utility function, using
standard reinforcement learning methods, such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017), regularized by the policy’s KL divergence from the reference model.

Although PPO is widely recognized as the best-performing method for optimizing the LM’s policy
in RLHF (Xu et al., 2024), the underlying reasons for its effectiveness are not fully understood.
Moreover, the implementation of PPO for LMs involves intricate details and multiple components,
including the policy model, reference model, reward model, and critic model (Huang et al., 2024).

An alternative approach involves iteratively sampling from the reward model and fine-tuning the
LM policy based on these samples (Dong et al., 2024). Examples of this approach include Reward
Ranked Finetuning (RAFT) (Dong et al., 2023), Reinforced Self-Training (ReST) (Gulcehre et al.,
2023), and Reward Weighted Regression (Peters and Schaal, 2007).

There are also approaches that omit training a reward model, and instead optimize the LM directly
from preference data, such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2023), and KTO
(Ethayarajh et al., 2024). DPO has gained popularity as an alternative to PPO due to the simplicity
of its implementation, and was recently extended to online preference collection (Singhal et al., 2024).
Several recent papers also focus on comparing and contrasting the performance of PPO-based RLHF
and DPO (Xu et al., 2024; Tajwar et al., 2024; Rafailov et al., 2024).

Offline vs Online RLHF Both online and offline RLHF algorithms rely on a fixed dataset for
prompts. However offline algorithms, like DPO (Rafailov et al., 2023), also rely on a fixed dataset to
learn continuations without active reinforcement. Online methods, like STA-RLHF, use on-policy
samples which are given rewards by some feedback mechanism. This feedback allows the policy
to be updated in the next iteration Tang et al. (2024). Our algorithm can be used to convert an
offline algorithm into an online algorithm by sampling new completions from the LM trained offline
provided there is access to a feedback mechanism (Castricato et al., 2024; Bai et al., 2022).

Game-theoretic RLHF Algorithmic game theory and multi-agent reinforcement learning provide
strong theoretical grounding for the study of learning agents who interact with one another and must
adapt their strategies accordingly. Recently, several game-theoretic approaches to RLHF have been
proposed. SPO (Swamy et al., 2024) leverages self-play by comparing win-rates between trajectories.
In a similar vein, SPIN (Chen et al., 2024) leverages self-play to generate synthetic high quality data
discerning self-generated continuations from human generated continuations. Both of these methods
rely on a fixed reward model like vanilla RLHF. Nash-RLHF (Munos et al., 2023) defines a game
between two competing LMs, each of which is vying to be preferred by a human rater.

RLJ | RLC 2024

The RLHF problem has also been formulated as a social choice problem, extending the setting to
accommodate multiple humans with competing preferences (Conitzer et al., 2024; Chakraborty et al.,
2024). Bi-level optimization approaches have also been considered for RLHF, which is analogous
to a Stackelberg game. Chakraborty et al. (2023) treat the reward model as the leader and the
RL agent as the follower; in our game, the roles are reversed. Like us, they also solve their game
using a nested algorithm, but the follower learns from new trajectories at each step of their inner
optimization, while we reuse samples.

3 Preliminaries

Notation We use caligraphic uppercase letters to denote sets (e.g., X), bold lowercase letters to
denote vectors (e.g., x), and lowercase letters to denote scalar quantities (e.g., x). We denote the
ith element of a vector with a subscript, i.e. xi; and the jth observation in a set of samples with a
superscript in parentheses, i.e x(j). We denote functions by a letter determined by the value of the
function, e.g., f if the mapping is scalar valued and f if the mapping is vector valued.

Stackelberg games In a two-player general-sum Stackelberg game (X ,Y, f, g), the leader moves
first by choosing a strategy x from her strategy set X intended to maximize her reward f : X×Y → R.
The follower, who moves second after observing the leader’s strategy, then aims to maximize his
reward g : X × Y → R by choosing a strategy y from his strategy set Y.

Given a leader strategy x, we define the best-response correspondence BR(x, y) = {y ∈ Y | g(x, y) ≥
maxy∈Y g(x, y)}. A Stackelberg equilibrium is a strategy profile (x∗, y∗) ∈ X ×Y, where the leader
chooses x∗ as to maximize x 7→ f(x, y∗(x)), under the assumption that the follower will best
respond, i.e., y∗(x) ∈ BR(x, y), given any x ∈ X .

Language model environments Given a vocabulary of tokens A, let D .= D(A) denote finite
set of all possible the finite utterances (i.e., strings) over elements of A.

A language model environment E = (D, µ,≻) comprises a data set D of strings, a distribution
µ ∈ ∆(D) over strings and a preference relation ≻⊆ D ×D indicating a (strict) preference for one
of two utterances y0, y1 ∈ D in context x ∼ µ.

Language model Given a language model environment E , a language model (LM) is a function
π : D → ∆(D) from prompts x ∼ µ to a distribution over continuations y ∼ π(x) ∈ ∆(D). We
assume parameterized language models, and write πθ , or more often simply θ, to denote the policy
corresponding to a model parameterized by θ ∈ Θ.

A language model environment is given, and thus exogenous, to the language model. In particular,
prompts x ∼ µ are drawn from an exogenous distribution, and human preferences are assumed to
be determined by a third party (human), outside the learning framework. On the other hand, the
language model itself generates the continuations y0, y1 ∼ θ(x), given a context x ∼ µ, which the
human (or a model of the human) evaluates according to ≻ (or an approximation thereof).

Preference relations Most RLHF variants impose standard assumptions on human preferences:
Assumption 1. The preference relation ≻ is complete and transitive.

Under Assumption 1, a preference relation ≻ can be represented by a utility function u : D×D → R
s.t. for all contexts x ∈ D and for all strings ya, y1−a ∈ D, u(ya; x) > u(y1−a; x) iff ya ≻ y1−a in
context x (von Neumann and Morgenstern, 1947).

The intent of Vanilla RLHF is for a LM to produce continuations that respect human preferences,
i.e., maximize the utility function u that represents ≻. This function is typically unknown, however,
even to the human herself. We thus seek to approximate it with a utility function û : D × D → R
learned from data.

RLJ | RLC 2024

4 Vanilla RLHF

To build any fine-tuning system based on human feedback requires a data set with human labels. We
thus assume the language model environment is endowed with a human labeller who, given a prompt
(i.e., a context) x ∼ µ and two continuations y0, y1 ∼ π(x), returns a label indicating which of the
two is preferred in the given context. A perfect human would report labels a∗ ∈ [0, 1] indicating
ya∗ ≻ y1−a∗ in context x whenever she indeed prefers ya∗ is to y1−a∗ in context x.
Assumption 2. The human is a quantal best responder (McKelvey and Palfrey, 1995). She tries to
label continuations so as to maximize her utility, but may make small mistakes. Specifically, if she
ascribes utility u(ya; x) to continuation ya and utility u(y1−a; x) to continuation y1−a, in context x,
then

P
(

ya ≻ y1−a in context x

)
= σ

(
u(ya; x)− u(y1−a; x)

)
= eu(ya;x)

eu(ya;x) + eu(y1−a;x) ,

Here, σ(z) is the sigmoid function 1
1+e−z . We use pa;1−ato abbreviate P(ya ≻ y1−a in context x),

and let p1−a;a = 1− pa;1−a.

Assumption 2 is equivalent to assuming a Bradley-Terry preference model, in which u(ya; x) −
u(y1−a; x) is given by the log-odds ratio log pa;1−a/1−pa;1−a (Hamilton et al., 2023; Good, 1955).

Returning to Vanilla RLHF, the key idea is to fine-tune a language model πθ so that it optimizes
its parameters θ ∈ Θ so as to generate continuations y ∼ θ(x) that maximize this utility function
in expectation:

max
θ∈Θ

E
x∼µ

y∼θ(x)

[
u(y; x)

]
(1)

As any human (or set of human) labeller(s) can only ever label a finite data set in a finite amount
of time, in practice we are given a data set of size m ∈ N of 4-tuples

{
x(j), y

(j)
0 , y

(j)
1 , a(j))

}m

j=1
, each

one comprising a prompt (i.e., a context), two continuations, and a label a(j) indicating which of the
two is preferred in the given context. We assume a utility function representation ûω parameterized
by ω ∈ Ω, and we build a preference model by solving for ω ∈ Ω that maximizes the likelihood of
the data {x(j), y

(j)
0 , y

(j)
1 , a(j)}m

j=1.

Under Assumption 2, the learning problem becomes: find ω∗ ∈ Ω s.t.

ω∗ ∈ arg max
ω∈Ω

m∏
j=1

P
(

y
(j)
a(j) ≻ y

(j)
1−a(j) in context x(j)

)
(2)

= arg max
ω∈Ω

m∏
j=1

σ

(
ûω(y(j)

a(j) ; x(j))− ûω(y(j)
1−a(j) ; x(j))

)
(3)

Equivalently, we can find an ω∗ ∈ Ω that maximizes the log likelihood of the data:

ω∗ ∈ arg max
ω∈Ω

m∑
j=1

log σ

(
ûω(y(j)

a(j) ; x(j))− ûω(y(j)
1−a(j) ; x(j))

)
(4)

In the sequel, we refer to this log likelihood objective function as RRM(ω; θ). The dependence on θ
stems from the fact that the data on which this objective is evaluated varies with θ.

After learning ûω , Vanilla RLHF fine-tunes the language model πθ by searching for parameters
θ ∈ Θ, which generate continuations y ∼ θ(x) that maximize the expected value of this learned
utility function over the prompt distribution µ:

max
θ∈Θ

E
x∼µ

y∼θ(x)

[
ûω(y; x)

]
(5)

RLJ | RLC 2024

5 Alignment as a Stackelberg game

Given a language model environment E = (D, µ,≻), an alignment game (Θ, Ω,RLM,RRM; E) com-
prises two players: a leader LM who seeks to set the parameters θ ∈ Θ of a policy πθ , which, given a
prompt x ∈ D, outputs a continuation y ∼ θ(x); and a follower RM who seeks to set the parameters
ω ∈ Ω of a reward model rω (i.e., a utility function) that represents ≻.

At a Nash equilibrium, both players’ strategies are optimal given one another’s. In contrast, at
a Stackelberg equilibrium, only the follower optimizes given the leader’s strategy; the leader then
optimizes over all possible follower’s best responses. We thus parameterize the RM’s objective
function RRM by the LM’s policy: i.e., its parameters θ.

In an alignment game, the RM’s objective RRM is to learn a reward model rω that well approximates
≻ on a data set C comprising prompts x ∼ µ and ensuing pairs of continuations (y0, y1) ∼ θ(x).
The LM’s objective RLM is then to generate continuations that optimize this reward model rω :

RLM(θ, ω) .= max
θ∈Θ

E
x∼µ

y∼θ(x)

[
rω(y; x)

]
(6)

Taking as our starting points Assumptions 1 and 2, we choose Equation (4) as the RM’s objective,
RRM(ω; θ). The alignment game formulation, however, is not wedded to this particular choice.

We cast the problem of solving an alignment game as the following bi-level optimization problem:

max
θ∈Θ
RLM(θ, ω∗)

subject to ω∗ ∈ arg max
ω∈Ω
RRM(ω; θ)

(7)

A solution to this problem, when one exists, is called a Stackelberg equilibrium. By the extreme
value theorem, we can guarantee the existence of a solution to a maximization problem whenever
the objective function is continuous in all its arguments and the space of possible solutions is compact.
But even if we assume these conditions hold for the follower’s optimization problem, it can still be
difficult to ensure the leader’s optimization problem has a solution, because the leader’s objective
function must be continuous in the follower’s solution. Moreover, the follower’s solution need not
be unique, in which case we must ensure that the leader’s objective function is continuous in the
follower’s solution correspondence!1

Although general-sum Stackelberg equilibria are computable via linear programming in polynomial
time in two-player discrete-action games (Blum et al., 2019; Conitzer and Sandholm, 2006), little
is known about how to compute Stackelberg equilibria in two-player continuous-action games, such
as those played by two neural networks. Consequently, we developed a heuristic (Algorithm 1)
for computing a Stackelberg equilibrium of an alignment game. This heuristic carries over the
intuition for solving zero-sum Stackelberg games via nested rather than simultaneous gradient-
descent algorithms to general-sum games Goktas and Greenwald (2021). Specifically, for each update
step of the leader’s policy, we allow the follower multiple update steps, during which time it searches
for a best response to the leader’s current policy.

As our heuristic is a first-order (i.e., gradient-based) method, it is necessary to compute the gradients
of RRM (Equation (4)) and RLM (Equation (6)). Computing the former is straightforward. To
compute the latter, we employ the standard REINFORCE estimate (Sutton et al., 1999; Williams,
1992).2 Furthermore, we regularize the LM’s objective with a KL-divergence term, which ensures

1Alternatively, but less generally, we can impose a deterministic tie-breaking rule on the follower’s choice that
ensures that the leader’s objective function is continuous in the follower’s now unique solution.

2For details, see Appendix A.1, Equation (17).

RLJ | RLC 2024

that the language model does not stray too far from the reference model:

Rβ
LM(θ, ω; πref)

.= max
θ∈Θ

E
x∼µ

y∼θ(x)

[
rω(y; x)

]
− β DKL(πθ(y(j); x(j)) || πref(y(j); x(j))) (8)

This regularization term also mitigates reward hacking (Laidlaw et al., 2024) and maintains diver-
sity in the generated continuations (Rafailov et al., 2023). This method is our Naive STA-RLHF
algorithm.

Motivated by Stackelberg Actor-Critic (Zheng et al., 2022), which recognises the interdependence
between the actor’s objective and the critic’s objective in reinforcement learning, we also introduce
Total STA-RLHF. The leader incorporates the fact that the follower’s optimization is implicitly
defined by the leader’s own optimization. Therefore, the leader still uses the KL-regularized REIN-
FORCE estimator, but also includes an additional derivative which takes the gradient of the follower
into account3.

Although our algorithm is iterative, it is not necessary to seek human feedback during each iteration.
While we could rank preferences at each step with a human labeler, this is not necessary. On the
contrary, we run a pre-processing step in which we solve Equation (4) for û, exactly as in Vanilla
RLHF, and then we seed the heuristic with a learned language model environment Ê = (D, µ, û),
instead of a language model environment E = (D, µ,≻). We can then rank proposed continuations
according to these learned utilities, rather than ≻ (or repeatedly querying humans). Our algorithm
is flexible in that û can be instantiated by ≻, direct principal feedback (Castricato et al., 2024), or
constitutional AI (Bai et al., 2022).

Algorithm 1 STA-RLHF

Input: Learned language model environment Ê = (D, µ, û), batch size B, number of outer and
inner iterations T, S, reference model πref, and learning rate schedules {ηt}T

t=1, {ηs}S
s=1

Output: Fine-tuned language model πT
θ

Initialize the language model π0
θ with the reference model πref

for t = 1 to T iterations do
Sample a batch B = {x(i)}B

i=1 of prompts from D according to µ

Run θt−1 on all prompts x(i) in B twice to generate a pair of continuations (y(i)
0 , y

(i)
1)

Rank continuations using the utility function û and store as C =
{(

x(i), y
(i)
a , y

(i)
a−1

)}B

i=1
ωt−1,0 ← ωt−1

for s = 1 to S iterations do
Compute the gradient of Rλ

RM(ωt−1,s−1; θt−1) on C
ωt−1,s ← ωt−1,s−1 − ηs∇ωRλ

RM(ωt−1,s−1; θt−1)
end for
ωt ← ωt−1,S

Compute the gradient of Rβ
LM(θt−1, ωt; πref) on C (Equation (11))

θt ← θt−1 + ηt∇θRβ
LM(θt−1, ωt; πref)

end for
return Final fine-tuned language model πT

θ

Competing approaches In Vanilla RLHF and DPO Rafailov et al. (2023), a reward model is
trained on data, i.e., continuations, generated by the reference model. Similar to our approach,
ReST (Gulcehre et al., 2023) addresses the static nature of the continuations by sampling new
continuations from the latest LM. ReST does not build a corresponding reward model, however; it
simply continues to optimize its initial objective on new data. Algorithm 1 similarly samples new

3shown in Appendix A.1

RLJ | RLC 2024

continuations from the latest LM, based on which it learns a new reward model, so that it always
updates the LM using the latest reward signal.

In PARL (Chakraborty et al., 2023), RLHF is formulated as a bi-level optimization, in which the
players roles are the reverse of those in our Stackelberg game formulation. A nested heuristic is also
proposed to solve PARL, but unlike in our method, multiple batches of trajectories are sampled in
the inner loop, where the LM is updated. As the RM is updated in the outer loop, and on fewer
batches of data, the frequency of queries to the preference oracle (e.g., ≻ or û) is reduced in PARL,
but the LM may be updated based on an outdated reward signal. We compare our heuristic to both
PARL and a reversed version of our game/heuristic, with the LM updated in the inner loop and the
RM, in the outer.

We also compare against a simultaneous variant of Algorithm 3 with only one loop, where one update
step is performed on the LM (RM), based on the previous RM (LM). In this variant, we run our
algorithm with S = 1 and update the LM (i.e., compute the gradient of Rβ

LM) using rωt−1 instead
of rωt . The simultaneous variant is intended to find a Nash equilibrium of a simultaneous-move
game played between the LM and the RM. This approach is distinct from SPO (Swamy et al., 2024)
and Nash-RLHF (Munos et al., 2023), both of which aim to compute a Nash equilibrium between
dueling LM policies.

6 Experiments

To evaluate the effectiveness of STA-RLHF, we conduct empirical comparisons against state-of-
the-art RLHF variants, such as DPO (Rafailov et al., 2023) and PPO-based Vanilla RLHF. We
also compare our methods with iterated DPO where we retrain a DPO model after sampling new
completions from the current policy4 Additionally, we compare our algorithm to its simultaneous
and reversed variants, as well as PARL, another variant with the players’ roles reversed, which aligns
with the problem formulation proposed by Chakraborty et al. (2023).

In all experiments, we seed the algorithms with a ground truth preference relation ≻, rather than an
approximation û, and we assess how well the various approaches learn these ground truth preferences,
by measuring the utility achieved as a function of size of the preference data set, i.e., the number of
examples seen. Following Rafailov et al. (2023), we also evaluate the Pareto front between reward and
KL-divergence from the reference policy, as it may be possible to achieve high reward by diverging
substantially from the reference policy, but this could result in a fine-tuned model that is no longer
tethered to the English language.

Experimental setup Unless stated otherwise, all experiments were run using β = 0.1, a batch
size of 16, RMSprop as the optimizer for the LM, and a learning rate of 1e-6. For Total STA-RLHF,
Naive STA-RLHF, Reverse, Simultaneous, and our PARL implementation, we use AdamW as the
optimizer for the reward model with a constant learning rate of 1e-5. For Total STA-RLHF, we
compute the Hessian vector product term in the total gradient with the conjugate gradient method
with 10 iterations.

The number of inner iterations is set to S = 5, except in Simultaneous, where S = 1. When
generating continuations, we generate four instead of two continuations and select the continuations
with the highest and lowest ground truth rewards as the more and less preferred continuations.

Our choice of reference model varied with the task, but in all experiments, the LM shares the
network architecture of the reference model. The RM appends to this architecture a classification
head, which we implemented using AutoModelForSequenceClassification from the HuggingFace
Transformers library (Wolf et al., 2020).

For PPO, we used ground-truth reward instead of a reward model, and the following hyperparameter
values: the clipping paramater ϵ = 0.2, 4 PPO update steps per trajectory batch, and AdamW as

4Our code can be found at https://github.com/jacobmakar/stackelberg-rlhf

https://github.com/jacobmakar/stackelberg-rlhf

RLJ | RLC 2024

the optimizer of the critic model with a constant learning rate of 1e-5. The critic model consists
of two fully connected layers: the first layer maps the model output size to a hidden size of 256,
followed by a ReLU activation function; the second layer maps the hidden size to a single output
value.

We run all methods five times on seeds [467, 532, 6518, 7107, 8688]. All experiments were
conducted using GeForce 3090 or equivalent GPUs. Running a single seed for one setting and one
algorithm generally required one GPU. No optimization of hyper-parameters for STA-RLHF or any
other methods was attempted.

If a pair of continuations had the same score, one of them was replaced such that there were no ties,
as is consistent with the Bradley-Terry preference model and Rafailov et al. (2023).

Word collector In our second set of experiments, Word Collector, we adopt the experimental
setup from Singhal et al. (2024). Given a set of words W = {w1, w2, . . . , w30}, the goal is to
construct a text output y comprising 75 tokens, which incorporate as many unique words from W
as possible. Specifically, for any two outputs y1 and y2, y1 ⪰ y2 if the number of words from W
included in y1 is greater than or equal to the number included in y2. Each unique additional word in
W included in y increases the value of y by 1, up to a maximum value of 30. In these experiments,
we use OPT-125m as a reference model, the top 30 content words in the UltraFeedback dataset (Cui
et al., 2023) as W , and prompts from the UltraChat dataset (Ding et al., 2023).

Constrained word collector We expand on the Word Collector setting with the introduction
of an additional constraint, namely that the continuation should not contain any words in the
prompt. Given a set of 30 target words W = {w1, w2, . . . , w30}, the objective remains to construct
a text output y comprising 75 tokens, which incorporate as many unique words from W as possible.
However, in this setting, including any words in the prompt in y results in a penalty. Specifically, for
any two outputs y1 and y2 given prompt x, y1 ⪰ y2 if the number of words from W \x included in y1
minus the number of words from x included in y1 is greater than or equal to the number included in
y2. As in the Word collector task, we use OPT-125m as a reference model, the top 30 content words
in the UltraFeedback dataset (Cui et al., 2023) as W , and prompts from the UltraChat dataset
(Ding et al., 2023).

Unique nouns Finally, we consider a second experimental setup from Singhal et al. (2024). In
this setting, the objective is to align the LM so that it constructs a continuation with as many unique
nouns as possible. In these experiments, we use OPT-125m as a reference model, Natural Language
Toolkit (NLTK) (Loper and Bird, 2002) for noun detection, and prompts from the UltraChat dataset
(Ding et al., 2023).

Results We calculate the Pareto frontier of KL divergence vs. reward on a fixed set of test
prompts. Potential points are calculated by averaging the KL divergence from the reference policy
(x-dimension) and averaging the reward on the test set (y-dimension), across all five seeds through-
out training. Pareto-dominated points—those for which another point exists that is weakly
better in both dimensions of comparison—are then excluded, so that we plot only the Pareto frontier.
We also calculate the reward with respect to number of examples seen. We plot the mean reward
with shading indicating the standard deviation across the five seeds.

In all tasks, both versions of STA-RLHF achieve better rewards than the all other methods. In
word collector and constrained word collector, the the STA-RLHF methods are Pareto dominated
indicating that they modify the LM further away from the reference policy, however in unique nouns
their Pareto front is similar to the other methods while also achieving a much higher reward. One
explanation for why Total STA-RLHF does not convincingly outperform the Naive counterpart may
be because of the imprecision with approximating the inverse Hessian vector product of a large
neural network.

RLJ | RLC 2024

Pareto frontier Training curve

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
KL-Divergence

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
wa

rd

words

DPO
Iterated DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA_RLHF

(a) Word collector

0 5000 10000 15000 20000 25000 30000
Examples Seen

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
ea

n
Re

wa
rd

words
DPO
Iterated DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA_RLHF

(b) Word collector

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
KL-Divergence

0

2

4

6

8

10

12

14

16

Re
wa

rd

penalty

DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA_RLHF

(c) Constrained word collector

0 5000 10000 15000 20000 25000 30000
Examples Seen

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
ea

n
Re

wa
rd

penalty
DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA_RLHF

(d) Constrained word collector

0 10 20 30 40 50 60
KL-Divergence

10

15

20

25

30

35

40

Re
wa

rd

nouns

DPO
Iterated DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA-RLHF

(e) Unique nouns

0 5000 10000 15000 20000 25000 30000
Examples Seen

10

15

20

25

30

35

40

M
ea

n
Re

wa
rd

nouns
DPO
Iterated DPO
PPO
Reversed
PARL
Simultaneous
Naive STA-RLHF
Total STA-RLHF

(f) Unique nouns

Figure 1: Comparison of competing approaches. STA-RLHF, shown in red and black, consistently
achieves the highest rewards after sufficiently long training (i.e., after seeing sufficiently many pref-
erence examples), while Reversed starts off competitive, but becomes unstable.

RLJ | RLC 2024

7 Conclusion

In this paper, we formalize the RLHF alignment problem as a Stackelberg game. The leader in our
game is the LM, while the follower is the RM. A Stackelberg equilibrium of this game is a fine-tuned
language model that optimizes a reward model which is intended to represent human preferences.
The key difference between our framework and others is that our search for an optimal LM induces
a search over RMs, in a way that is analogous actor-critic methods, where an actor’s search for an
optimal policy induces a search over value functions. The result of this search is a LM with a higher
reward than is achieved by other game-theoretic formulations.

To solve our game, we introduce STA-RLHF, a pair of novel training algorithms for aligning large
language models with human preferences. Our findings indicate that STA-RLHF enhances perfor-
mance in a variety of synthetic settings when compared to traditional RLHF methods such as DPO
and PPO. We further validate our approach by reversing the roles of the players, and by training
both the language and the reward models simultaneously.

We believe that our approach is theoretically sound, as it takes a game-theoretic perspective, seek-
ing an equilibrium of the Stackelberg alignment game. Indeed, we empirically demonstrate solid
performance of STA-RLHF on synthetic tasks, as compared to other perhaps less principled ap-
proaches. That said, we are do not provide any convergence guarantees. Our algorithm does appear
to converge, as shown in Figure 2, so it may be possible to prove that our method converges to a
Stackelberg equilibrium in the future.

Furthermore, our experiments are run on relatively small models, compared to the massive language
models (with billions of parameters) now available. Further validation of our approach on larger
models and additional tasks are other avenues for future work, although we would expect STA-RLHF
to continue to exhibit solid performance across additional tasks, as shown here.

Although we assume a Bradley-Terry model of human preferences, our game formulation is agnostic
to the preference structure (unlike DPO). In future work, we intend to experiment with other
preference models, such as the Kahneman-Tversky model of human utility (Ethayarajh et al., 2024).
Future work could also consider a more general Stackelberg game framework, with multiple followers
(i.e., reward models), where the language model seeks to optimize some aggregation of the followers’
preferences.

References
Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal

Valko, and Rémi Munos. A General Theoretical Paradigm to Understand Learning from Human
Preferences, November 2023. URL http://arxiv.org/abs/2310.12036. arXiv:2310.12036 [cs,
stat].

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova
DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El
Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan,
Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas
Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional AI: Harmlessness from
AI Feedback, December 2022.

Avrim Blum, Nika Haghtalab, MohammadTaghi Hajiaghayi, and Saeed Seddighin. Computing
stackelberg equilibria of large general-sum games. In Algorithmic Game Theory: 12th International
Symposium, SAGT 2019, Athens, Greece, September 30–October 3, 2019, Proceedings 12, pages
168–182. Springer, 2019.

http://arxiv.org/abs/2310.12036

RLJ | RLC 2024

Louis Castricato, Nathan Lile, Suraj Anand, Hailey Schoelkopf, Siddharth Verma, and Stella Bi-
derman. Suppressing Pink Elephants with Direct Principle Feedback, February 2024. URL
http://arxiv.org/abs/2402.07896. arXiv:2402.07896 [cs].

Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Mengdi
Wang, and Furong Huang. PARL: A Unified Framework for Policy Alignment in Reinforcement
Learning, October 2023. URL http://arxiv.org/abs/2308.02585. arXiv:2308.02585 [cs].

Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
rit Singh Bedi, and Mengdi Wang. MaxMin-RLHF: Towards Equitable Alignment of Large Lan-
guage Models with Diverse Human Preferences, February 2024. URL http://arxiv.org/abs/
2402.08925. arXiv:2402.08925 [cs].

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-Play Fine-Tuning
Converts Weak Language Models to Strong Language Models, February 2024. URL http://
arxiv.org/abs/2401.01335. arXiv:2401.01335 [cs, stat].

Brian Christian. The alignment problem: How can machines learn human values? Atlantic Books,
2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep re-
inforcement learning from human preferences. Advances in neural information processing systems,
30, 2017.

Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to. In Pro-
ceedings of the 7th ACM conference on Electronic commerce, pages 82–90, 2006.

Vincent Conitzer, Rachel Freedman, Jobst Heitzig, Wesley H. Holliday, Bob M. Jacobs, Nathan
Lambert, Milan Mossé, Eric Pacuit, Stuart Russell, Hailey Schoelkopf, Emanuel Tewolde, and
William S. Zwicker. Social Choice for AI Alignment: Dealing with Diverse Human Feedback,
April 2024. URL http://arxiv.org/abs/2404.10271. arXiv:2404.10271 [cs].

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training gans with
optimism. arXiv preprint arXiv:1711.00141, 2017.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations. arXiv preprint arXiv:2305.14233, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. RAFT: Reward rAnked FineTuning for Gener-
ative Foundation Model Alignment, December 2023. URL http://arxiv.org/abs/2304.06767.
arXiv:2304.06767 [cs, stat] version: 4.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. RLHF Workflow: From Reward Modeling to Online
RLHF. https://arxiv.org/abs/2405.07863v1, May 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. KTO: Model
Alignment as Prospect Theoretic Optimization, February 2024. URL http://arxiv.org/abs/
2402.01306. arXiv:2402.01306 [cs].

FAIR, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried,
Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. Human-level play in the game of diplomacy
by combining language models with strategic reasoning. Science, 378(6624):1067–1074, 2022.

http://arxiv.org/abs/2402.07896
http://arxiv.org/abs/2308.02585
http://arxiv.org/abs/2402.08925
http://arxiv.org/abs/2402.08925
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2401.01335
http://arxiv.org/abs/2404.10271
http://arxiv.org/abs/2304.06767
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2402.01306

RLJ | RLC 2024

Denizalp Goktas and Amy Greenwald. Convex-Concave Min-Max Stackelberg Games. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 2991–3003. Curran Associates, Inc.,
2021.

Denizalp Goktas, Arjun Prakash, and Amy Greenwald. Convex-concave zero-sum markov stackel-
berg games. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors,
Advances in Neural Information Processing Systems, volume 36, pages 66818–66832. Curran As-
sociates, Inc., 2023.

I. J. Good. On the marking of chess-players. The Mathematical Gazette, 39(330):292–296, 1955.
ISSN 00255572. URL http://www.jstor.org/stable/3608567.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced Self-Training (ReST) for Language Mod-
eling, August 2023. URL http://arxiv.org/abs/2308.08998. arXiv:2308.08998 [cs].

Ian Hamilton, Nick Tawn, and David Firth. The many routes to the ubiquitous bradley-terry model.
arXiv preprint arXiv:2312.13619, 2023.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl;dr summarization,
2024.

Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Preventing reward hacking with occupancy
measure regularization, 2024.

Edward Loper and Steven Bird. NLTK: the natural language toolkit. CoRR, cs.CL/0205028, 2002.
URL https://arxiv.org/abs/cs/0205028.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, Marco
Selvi, Sertan Girgin, Nikola Momchev, Olivier Bachem, Daniel J. Mankowitz, Doina Precup, and
Bilal Piot. Nash Learning from Human Feedback, December 2023. URL http://arxiv.org/abs/
2312.00886. arXiv:2312.00886 [cs, stat].

John F Nash. Non-cooperative games. 1950.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback, March
2022.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pages 745–
750, Corvalis Oregon USA, June 2007. ACM. ISBN 978-1-59593-793-3. doi: 10.1145/1273496.
1273590. URL https://dl.acm.org/doi/10.1145/1273496.1273590.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model, De-
cember 2023. URL http://arxiv.org/abs/2305.18290. arXiv:2305.18290 [cs].

http://www.jstor.org/stable/3608567
http://arxiv.org/abs/2308.08998
https://arxiv.org/abs/cs/0205028
http://arxiv.org/abs/2312.00886
http://arxiv.org/abs/2312.00886
https://dl.acm.org/doi/10.1145/1273496.1273590
http://arxiv.org/abs/2305.18290

RLJ | RLC 2024

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to Q^*: Your Lan-
guage Model is Secretly a Q-Function, April 2024. URL http://arxiv.org/abs/2404.12358.
arXiv:2404.12358 [cs].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal pol-
icy optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.
06347.

Prasann Singhal, Nathan Lambert, Scott Niekum, Tanya Goyal, and Greg Durrett. D2po:
Discriminator-guided dpo with response evaluation models, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Jonathan Stray, Ivan Vendrov, Jeremy Nixon, Steven Adler, and Dylan Hadfield-Menell. What are
you optimizing for? aligning recommender systems with human values. CoRR, abs/2107.10939,
2021. URL https://arxiv.org/abs/2107.10939.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A Min-
imaximalist Approach to Reinforcement Learning from Human Feedback, January 2024. URL
http://arxiv.org/abs/2401.04056. arXiv:2401.04056 [cs].

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie,
Stefano Ermon, Chelsea Finn, and Aviral Kumar. Preference Fine-Tuning of LLMs Should
Leverage Suboptimal, On-Policy Data, April 2024. URL http://arxiv.org/abs/2404.14367.
arXiv:2404.14367 [cs].

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the per-
formance gap between online and offline alignment algorithms. arXiv preprint arXiv:2405.08448,
2024.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, Princeton, 1947. ISBN 9781400829460. doi: doi:10.1515/9781400829460. URL
https://doi.org/10.1515/9781400829460.

H. von Stackelberg. Marktform und Gleichgewicht. Die Handelsblatt-Bibliothek "Klassiker der Na-
tionalökonomie". J. Springer, 1934. URL https://books.google.com/books?id=wihBAAAAIAAJ.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https://github.com/
huggingface/trl, 2020.

Norbert Wiener. Some Moral and Technical Consequences of Automation. Science, 131(3410):
1355–1358, May 1960. doi: 10.1126/science.131.3410.1355. URL https://www.science.org/
doi/10.1126/science.131.3410.1355. Publisher: American Association for the Advancement
of Science.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

http://arxiv.org/abs/2404.12358
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2107.10939
http://arxiv.org/abs/2401.04056
http://arxiv.org/abs/2404.14367
https://doi.org/10.1515/9781400829460
https://books.google.com/books?id=wihBAAAAIAAJ
https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://www.science.org/doi/10.1126/science.131.3410.1355
https://www.science.org/doi/10.1126/science.131.3410.1355

RLJ | RLC 2024

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint, 2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is DPO Superior to PPO for LLM Alignment? A Comprehensive Study, April 2024.
URL http://arxiv.org/abs/2404.10719. arXiv:2404.10719 [cs].

Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J Ratliff. Stackel-
berg actor-critic: Game-theoretic reinforcement learning algorithms. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 9217–9224, 2022.

A The Total Derivative

The LM’s objective is to choose parameters θ ∈ Θ, which define a policy πθ for the LM that
maximizes

RLM(θ, ω∗) .= E
x∼µ

y∼πθ (x)

[
rω∗(y; x)

]
(9)

Here, ω∗ is an optimal choice for the RM.

The RM’s objective is to choose parameters ω that maximize

RRM(ω; θ) .= E
x∼µ

y0,y1∼πθ (x)

[
log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
, (10)

where, a(∗) ∈ arg maxa∈{0,1} û(ya).

As we compute a Monte Carlo estimate of this gradient from samples x, y0, and y1, it is possible to
sort each pair of continuations y0, and y1 according to û to identify ya(∗) (preferred) and y1−a(∗) .

After appling the Inverse function theorem (Zheng et al., 2022), total derivative of the LM’s objective
function is:

∇θRLM(θ, ω∗)−∇T
ωθRRM(ω; θ)(∇2

ωRRM(ω; θ))−1∇ωRLM(θ, ω∗) (11)

Note that only using ∇θRLM(θ, ω∗) results in our naive STA-RLHF algorithm.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://arxiv.org/abs/2404.10719

RLJ | RLC 2024

A.1 The REINFORCE Estimator: The Gradient of the LM’s Objective RLM(θ, ω∗)
wrt θ

By the policy gradient theorem Williams (1992); Sutton and Barto (2018) the gradient of this
objective is:

∇θRLM(θ, ω∗) = ∇θ E
x∼µ

y∼πθ (x)

[
rω∗(y; x)

]
(12)

= E
x∼µ

y∼πθ (x)

[
∇θrω∗(y; x)

]
(13)

= E
x∼µ

∫
y∈D
∇θπθ(x) rω∗(y; x) dy (14)

= E
x∼µ

∫
y∈D

πθ(x)∇θπθ(x)
πθ(x) rω∗(y; x) dy (15)

= E
x∼µ

∫
y∈D

πθ(x)∇θ log πθ(x) rω∗(y; x) dy (16)

= E
x∼µ

y∼πθ (x)

[
∇θ log πθ(y; x) rω∗(y; x)

]
, (17)

which we estimate by averaging across a batch of samples {x(j), y(j)}B
j=1, with each x(j) ∼ µ and

each y(j) ∼ πθ(x(j)). Additionally, we regularize this estimator with the KL divergence:

1
B

B∑
j=0

[
∇θ log πθ(y(j); x(j)) rω∗(y(j); x(j))− β DKL(πθ(y(j); x(j)) || πref(y(j); x(j))

]
(18)

A.2 The Gradient of the RM’s Objective RRM(ω; θ) wrt ω and θ

We begin by computing the partial wrt θ:

∇θ E
x∼µ

y0,y1∼πθ (x)

[
log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(19)

= E
x∼µ

y0,y1∼πθ (x)

[
∇θ log πθ(y0, y1; x) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(20)

= E
x∼µ

y0,y1∼πθ (x)

[
∇θ log(πθ(y0; x)πθ(y1; x)) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(21)

= E
x∼µ

y0,y1∼πθ (x)

[
∇θ(log πθ(y0; x) + log πθ(y1; x)) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(22)

= E
x∼µ

y0,y1∼πθ (x)

[
(∇θ log πθ(y0; x) +∇θ log πθ(y1; x)) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(23)

= E
x∼µ

y
a(∗) ,y1−a(∗) ∼πθ (x)

[
(∇θ log πθ(ya(∗) ; x) +∇θ log πθ(y1−a(∗) ; x)) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(24)

The last line follows from the fact that addition is symmetric; in particular, ∇θ log πθ(y0; x) +
∇θ log πθ(y1; x) = ∇θ log πθ(y1; x) +∇θ log πθ(y0; x).

RLJ | RLC 2024

Next, we compute the gradient wrt ω:

∇ω E
x∼µ

y0,y1∼πθ (x)

[
(∇θ log πθ(ya(∗) ; x) +∇θ log πθ(y1−a(∗) ; x)) log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(25)

= E
x∼µ

y0,y1∼πθ (x)

[
(∇θ log πθ(ya(∗) ; x) +∇θ log πθ(y1−a(∗) ; x))∇ω log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(26)

Finally, by the chain rule,

∇ω log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)
= 1

1 + e
rω (y

a(∗) ;x)−rω (y1−a(∗) ;x)

(
∇ωrω(ya(∗) ; x)−∇ωrω(y1−a(∗) ; x)

)
(27)

A.3 The Gradient of the RM’s Objective RRM(ω; θ) wrt ω, twice

Computing the gradient of RLM once wrt ω (once) yields:

∇ω E
x∼µ

y
a(∗) ,y1−a(∗) ∼πθ (x)

[
log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(28)

= E
x∼µ

y
a(∗) ,y1−a(∗) ∼πθ (x)

[
∇ω log σ

(
rω(ya(∗) ; x)− rω(y1−a(∗) ; x)

)]
(29)

= E
x∼µ

y
a(∗) ,y1−a(∗) ∼πθ (x)

[
1

1 + e
rω (y

a(∗) ;x)−rω (y1−a(∗) ;x)

(
∇ωrω(ya(∗) ; x)−∇ωrω(y1−a(∗) ; x)

)]
(30)

Using the product rule to compute the gradient a second time wrt ω yields two terms, which are
summed in the final gradient expression, namely

∇ω
1

1 + e
rω (y

a(∗) ;x)−rω (y1−a(∗) ;x)

(
∇ωrω(ya(∗) ; x)−∇ωrω(y1−a(∗) ; x)

)
(31)

= e
rω (y1−a(∗) ;x)−rω (y

a(∗) ;x)

(1 + e
rω (y1−a(∗) ;x)−rω (y

a(∗) ;x))2

(
∇ωrω(ya(∗) ; x)−∇ωrω(y1−a(∗) ; x)

)
(32)

+ 1
1 + e

rω (y
a(∗) ;x)−rω (y1−a(∗) ;x)

(
∇2

ωrω(ya(∗) ; x)−∇2
ωrω(y1−a(∗) ; x)

)
(33)

A.4 The Gradient of the LM’s Objective RLM(θ, ω∗) wrt ω

∇ωRLM(θ, ω∗) = ∇ω E
x∼µ

y∼πθ (x)

[
rω∗(y; x)

]
= E

x∼µ
y∼πθ (x)

[
∇ωrω∗(y; x)

]
(34)

1
B

B∑
j=0

[
∇ωrω∗(y(j); x(j))

]
(35)

B Additional Results

Runtime The table below lists the average running time in seconds of each method on the various
tasks, averaged across seeds.

RLJ | RLC 2024

Table 1: Average Experiment Times of Different Algorithms

Task Total STA-RLHF Naive STA-RLHF PPO DPO Simul. Rev. PARL
WC 11040.50 2558.152 3489.175 1143.555 2130.730 4102.406 1847.278
CWC 11043.6 2399.765 2004.738 652.607 1340.522 3130.647 1340.522
UN 8220.03 3130.627 2133.094 654.742 2050.985 3370.721 1527.929

In Total STA-RLHF, computing the total gradient involves an Hessian term of the reward model.
We accomplish this numerically this by applying the conjugate gradient method to find the inverse
Hessian vector product (rather than the finding the entire Hessian).

The following figure shows that in our settings (naive) STA-RLHF empirically converges, as both
the reward model and policy converge to a value for the respective objectives.

0 200 400 600 800 1000
Batch

0.0

0.2

0.4

0.6

0.8

Lo
ss

(a) Word collector

0 200 400 600 800 1000
Batch

0.0

0.2

0.4

0.6

0.8

Lo
ss

(b) Constrained words

0 200 400 600 800 1000
Batch

0.0

0.2

0.4

0.6

0.8

Lo
ss

(c) Unique nouns

0 200 400 600 800 1000
Batch

10

5

0

5

10

Re
wa

rd

(d) Word collector

0 200 400 600 800 1000
Batch

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Re
wa

rd

(e) Constrained words

0 200 400 600 800 1000
Batch

10

5

0

5

10

Re
wa

rd

(f) Unique nouns

Figure 2: Loss of the reward model (top) and the rewards received by the policy from the reward model
(bottom) during training for STA-RLHF across various settings. Cumulative averages in red.

The following figure shows the cumulative average of Figure 2.

RLJ | RLC 2024

0 200 400 600 800 1000
Batch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Lo

ss

(a) Word collector

0 200 400 600 800 1000
Batch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

(b) Constrained words

0 200 400 600 800 1000
Batch

0.0

0.5

1.0

1.5

2.0

Lo
ss

(c) Unique nouns

0 1000 2000 3000 4000 5000
Batch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
wa

rd

(d) Word collector

0 1000 2000 3000 4000 5000
Batch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Re
wa

rd

(e) Constrained words

0 1000 2000 3000 4000 5000
Batch

0.0

0.5

1.0

1.5

2.0

Re
wa

rd

(f) Unique nouns

Figure 3: Cumulative average of the loss of the reward model (top) and the cumulative average of the
rewards received by the policy from the reward model (bottom) during training for STA-RLHF across
various settings.

C Algorithm Variants

Included below are two modifications of our heuristic that we run as baselines in our experiments:

Algorithm 2 Reversed

Input: Learned language model environment Ê = (D, µ, û), batch size B, number of outer and
inner iterations T, S, reference model πref, and learning rate schedules {ηt}T

t=1, {ηs}S
s=1

Output: Fine-tuned LM πθ

Initialize fine-tuned model π0
θ with reference model πref

for t = 1 to T iterations do
Run θt−1 on all prompts x(i) in B twice to generate a pair of continuations (y(i)

0 , y
(i)
1)

Rank continuations using the utility function û and store as C =
{(

x(i), y
(i)
a , y

(i)
a−1

)}B

i=1
θt−1,0 ← θt−1

for s = 1 to S iterations do
Compute the gradient of Rβ

LM(θt−1,s−1; πref) on C using REINFORCE (Equation (18))
θt−1,s ← θt−1,s−1 + ηs∇θt−1Rβ

LM(θt−1)
end for
θt ← θt−1,S

Compute the gradient of RRM(ωt−1; θt−1) on C (Equation (4))
ωt ← ωt−1 − ηt∇ωRRM(ωt−1; θt−1)

end for
return Final fine-tuned model πT

θ

D Policy Samples from Naive STA-RLHF

Included below are policy samples from the experimental settings in our paper.

RLJ | RLC 2024

Algorithm 3 Simultaneous

Input: Learned language model environment Ê = (D, µ, û), batch size B, number of outer and
inner iterations T , reference model πref, and learning rate schedules {ηt}T

t=1, {ηs}S
s=1

Output: Fine-tuned LM πθ

Initialize fine-tuned model π0
θ with reference model πref

for t = 1 to T iterations do
Sample a batch B =

{(
x(i))}B

i=1 of prompts from D according to µ

Run θt−1 on all prompts x(i) in B twice to generate a pair of continuations (y(i)
0 , y

(i)
1)

Rank continuations using the utility function û and store as C =
{(

x(i), y
(i)
a , y

(i)
a−1

)}B

i=1
Compute the gradient of RRM(ωt−1; θt−1) on C (Equation (4))
ωt ← ωt−1 − ηt∇ωRRM(ωt−1; θt−1)
Compute the gradient of Rβ

LM(θt−1; πref) on C using REINFORCE (Equation (18))
θt ← θt−1 + ηt∇θt−1Rβ

LM(θt−1)
end for
return Final fine-tuned model πT

θ

Table 2: Naive STA-RLHF samples for word collector

Prompt Continuation (Words in W = {w1, w2, . . . , w30} are shown
in bold)

What is your personal definition of art? The invention is, to help create the following three use-
ful data to ensure safe and appropriate use of your data
to deliver appropriate information to our customers. We
create the following two important first question to
keep your data safe to provide you appropriate possible
experience to ensure that your

What is the role of a motherboard in a
computer system?

Your information may be useful to help ensure the fol-
lowing are safe to provide the best possible experience.
We have the following two important first question to
understand to generate the best possible information
to ensure your data is safe to provide appropriate infor-
mation to help create the best possible experience

What are some of the most famous
works of art, and what makes them

valuable to your data? We have to provide the following
two first question to help us understand understand-
ing your best possible experience to create the appro-
priate data to help ensure your data is safe to provide
the best possible experience. We have two important
questions to help ensure your information

RLJ | RLC 2024

Table 3: Naive STA-RLHF Samples for Constrained Word Collector

Prompt Continuation (Words in W = {w1, w2, . . . , w30} are shown
in bold)

What is your personal definition of art? The following question is helpful in determining how to get
an appropriate and safe information to provide your
important data to create best possible experience for
your best possible data to help ensure a safe and ap-
propriate experience to provide a safe, appropriate
experience to create your best possible information
to

What is the role of a motherboard in a
computer system?

Bosch is the perfect partner to have to create a best possi-
ble experience to help create important and meaningful
information for your visitors. We have created a series
of questions to help understand important questions to
help provide important data to help create best cus-
tomer value. It is

What are some of the most famous
works of art, and what makes them

important to help understand the experience of creat-
ing a safe and appropriate environment to help ensure
your best possible experience? The following question
is important to provide a good and important question
to understand your best possible experience to help
provide appropriate and important information to en-
sure you have to provide

Table 4: Naive STA-RLHF samples for unique nouns

Prompt Continuation
Can you speak to the role that technol-
ogy and social media have played in the

development of public safety programs in the United Nations
Economic Development Agency, World Bank and United
Nations Health Research Institute Center for Global Public
Policy Research (UNC) International Global Public Policy
Studies Research Center (U.S. State University, United Na-
tions Environment Science Research and

What are the most promising renewable
energy sources in terms of their poten-
tial and scal

ability? The United States Department of Health Services
National Science Foundation International Center for Global
Technology Policy Research Research Society Earth Sciences
Science Technology and Engineering Education Sciences
Technology Management Services Policy Center National
Science Foundation Economic Studies Research Department
Office Social Sciences Public Affairs Research Business Ad-
ministration Social Services Business

