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Abstract
This work explores whether current pretrained001
multimodal models, which are optimized to002
align images and captions, can be applied to the003
rather different domain of referring expressions.004
In particular, we test whether one such model,005
CLIP, is effective in capturing two main trends006
observed for referential chains uttered within007
a multimodal dialogue, i.e., that utterances be-008
come less descriptive over time while their dis-009
criminativeness remains unchanged. We show010
that CLIP captures both, which opens up the011
possibility to use these models for reference res-012
olution and generation. Moreover, our analysis013
indicates a possible role for these architectures014
toward discovering the mechanisms employed015
by humans when referring to visual entities.016

1 Introduction017

During a conversation, speakers can refer to an en-018

tity (e.g., the girl in Fig. 1) multiple times within019

different contexts. This has been shown to lead to020

subsequent referring expressions that are usually021

shorter and based on the most communicatively ef-022

fective words from the previous mentions (Krauss023

and Weinheimer, 1967; Brennan and Clark, 1996).024

This well known trend has been confirmed in re-025

cent vision-and-language (V&L) work (Shore and026

Skantze, 2018; Haber et al., 2019; Takmaz et al.,027

2020; Hawkins et al., 2020): referring utterances028

become more compact (i.e., less descriptive), and029

yet participants are able to identify the intended ref-030

erent (i.e., they remain pragmatically informative).031

Several approaches have tackled the generation032

of image captions from the perspective of prag-033

matic informativity (Mao et al., 2016; Luo et al.,034

2018; Cohn-Gordon et al., 2018; Schüz et al., 2021,035

i.a.) and Coppock et al. (2020) have compared the036

informativity of image captions and of referring037

expressions. However, no work to date has investi-038

gated how these two dimensions, descriptiveness039

and discriminativeness or pragmatic informativity,040

interact in referring expressions uttered in dialogue.041

Figure 1: Referring utterance chain from PhotoBook
(Haber et al., 2019). The chain has 4 ranks (4 references
to the target image, in red outline). For simplicity, only
the 5 distractor images from rank 1 are shown.

In this work, we use a transformer-based pre- 042

trained multimodal model to study the interplay be- 043

tween descriptiveness and discriminativeness in hu- 044

man referring utterances produced in dialogue. Due 045

to their unprecedented success in numerous tasks, 046

pretrained V&L models—such as LXMERT (Tan 047

and Bansal, 2019), VisualBERT (Li et al., 2019), 048

UNITER (Chen et al., 2020) and ALIGN (Jia et al., 049

2021)—have recently attracted a lot of interest 050

aimed at understanding the properties and poten- 051

tial of their learned representations. This includes 052

probing them in a zero-shot manner, i.e., with- 053

out any specific fine-tuning, on some diagnostic 054

tasks, e.g., image-text alignment or counting (Hen- 055

dricks and Nematzadeh, 2021; Parcalabescu et al., 056

2021); quantifying, via input ablations, the role 057

of each modality on the resulting multimodal rep- 058

resentations and model performance (Frank et al., 059

2021); inspecting models’ attention patterns when 060

performing a specific task, i.e., visual coreference 061

resolution (Cao et al., 2020); devising a unified 062

experimental framework to compare various archi- 063

tectures fairly (Bugliarello et al., 2021). 064

Here, we focus on one model: Contrastive 065

Language-Image Pre-training (CLIP, Radford et al., 066

2021), which has been shown to outperform sev- 067

eral V&L models on zero-shot image-sentence 068

alignment for object- and scene-level descrip- 069

tions (Cafagna et al., 2021) and been proposed as 070
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a reference-free image caption evaluator (Hessel071

et al., 2021). However, CLIP’s ability to encode072

discriminativeness in dialogue and to capture refer-073

ring utterances in a zero-shot fashion has not yet074

been demonstrated. Here, we evaluate it on this075

capability for the first time, obtaining very promis-076

ing results. This allows us to gain insight into both077

the strategies used by humans in sequential refer-078

ence settings and CLIP’s potential for reference079

resolution and generation.080

2 Data081

We focus on PhotoBook (PB; Haber et al., 2019),082

a dataset of multimodal task-oriented dialogues083

where players aim to pick the images they have in084

common without seeing each other’s visual con-085

texts (which consist of 6 images coming from the086

same domain). The game is played over several087

rounds in which the previously seen images reap-088

pear in different visual contexts, giving the players089

an opportunity to refer to such images again. As090

a result, chains of utterances referring to a single091

image are formed over the rounds as the players092

build common ground. See Fig. 1 for a simplified093

representation of a chain.1 In total, PB consists094

of 2,500 games, 165K utterances, and 360 unique095

images from COCO (Lin et al., 2014).096

All our experiments are conducted on a sub-097

set of 50 PB games with manually annotated re-098

ferring utterances, which contains 364 referential099

chains about 205 unique target images. We refer100

to this subset as PB-GOLD.2 Although a dataset101

of automatically-extracted chains using all PB data102

was recently made available (Takmaz et al., 2020),103

as reported by the authors these chains may contain104

errors. We therefore opt for using the relatively105

small but high-quality PB-GOLD subset since, as106

described in Sec. 3, we evaluate a pre-trained model107

without fine-tuning and hence do not need large108

amounts of data.109

PB-GOLD’s chains contain 1,078 utterances, i.e.,110

2.96 utterances per chain on average (min 1, max111

4). We henceforth use the term ‘rank’ to refer to112

the position of an utterance in a chain. The average113

token length of utterances is 13.34, 11.03, 9.23, and114

7.82, respectively, for ranks 1, 2, 3, and 4.3 This115

decreasing trend, which is statistically significant116

1Only 1 player’s perspective for 1 context is represented.
2We use the gold set of the utterance-based chains v2

available at https://dmg-photobook.github.io/.
3We use TweetTokenizer: https://www.nltk.org/

api/nltk.tokenize.html

at p < 0.01 with respect to independent samples 117

t-tests between the ranks, is in line with the trend 118

observed in the whole dataset (Haber et al., 2019). 119

PB-GOLD’s vocabulary consists of 926 tokens. 120

3 Model 121

We use CLIP (Radford et al., 2021), a model pre- 122

trained on a dataset of 400 million image-text pairs 123

collected from the internet using a contrastive ob- 124

jective to learn strong transferable vision represen- 125

tations with natural language supervision.4 In par- 126

ticular, we employ the ViT-B/32 version of CLIP, 127

which utilizes separate transformers to encode vi- 128

sion and language (Vaswani et al., 2017; Dosovit- 129

skiy et al., 2021; Radford et al., 2019, 2021). 130

As the model learns to align images and texts, 131

this enables zero-shot transfer to various V&L tasks 132

such as image-text retrieval and image classifica- 133

tion and even certain non-traditional tasks in a 134

simple and efficient manner (Radford et al., 2019; 135

Agarwal et al., 2021; Shen et al., 2021; Cafagna 136

et al., 2021; Hessel et al., 2021). In this work, 137

we freeze CLIP’s weights and do not fine-tune the 138

model or perform prompt engineering, since we 139

aim to evaluate the model on referring utterances 140

taken out of dialogue in a zero-shot setting. 141

4 Descriptiveness 142

In our first experiment, we investigate whether 143

CLIP is effective in capturing the degree of de- 144

scriptiveness exhibited by referring utterances in 145

the PhotoBook game, i.e., the amount of informa- 146

tion they provide about the image out of context. 147

We consider each target image and correspond- 148

ing referential utterance at a give rank in isola- 149

tion, i.e., without taking into account the other 150

competing images. We quantify descriptiveness 151

as the alignment between an utterance and its 152

image referent using CLIPScore (Hessel et al., 153

2021). For all the target image-utterance pairs 154

in the chains of PB-GOLD, we use CLIP to ob- 155

tain a vector t representing the utterance and a 156

vector v representing the image. CLIPScore 157

is then computed as the scaled cosine similarity 158

between these two vectors, with range [0, 2.5]:5 159

CLIPScore(t, v) = 2.5 ∗max(cos(t, v), 0). 160

We compute the average CLIPScore per rank 161

over the whole PB-GOLD dataset. 162

4https://github.com/openai/CLIP
5The scaled factor was introduced by Hessel et al. (2021)

to account for the relatively low observed cosine values.
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Figure 2: CLIPScore values for PB-GOLD, COCO
and IDS. We only plot the first 4 ‘ranks’ (x-axis) for
COCO and IDS for comparability with PB-GOLD. The
error bars illustrate the standard error.

Results. We find that earlier utterances are better163

aligned with the target image features and that there164

is a monotonically decreasing trend over the 4 ranks165

(Fig. 2, blue bars). The differences between all166

pairs of ranks are statistically significant (according167

to independent samples t-tests, p < 0.01), except168

for the comparison between the last 2 ranks (p >169

0.05). Since earlier referring utterances tend to be170

longer (see Sec. 2), we check to what extent length171

may be a confounding factor. We find that there is172

only a weak correlation between token length and173

CLIPScore (Spearman’s ρ = 0.29, p < 0.001).174

Analysis. Our results indicate that CLIP is able175

to capture that earlier referring utterances contain176

more descriptive information about the target im-177

age than later referring utterances, and that this is178

only weakly related to length. We compare these179

results on PhotoBook with text-to-image alignment180

computed with the same method on two other181

datasets: (1) COCO (Lin et al., 2014),6 which182

includes 5 captions per image provided indepen-183

dently by different annotators; here we do not ex-184

pect to find significant differences in the level of185

descriptiveness across the captions, and (2) Image186

Description Sequences (IDS, Ilinykh et al., 2019)7187

where one participant describes an image incre-188

mentally, by progressively adding sentences with189

further details; here we do expect a similar pattern190

to PhotoBook, albeit for different reasons (because191

participants mention the most salient information192

at the beginning; Ilinykh et al., 2019).193

Fig. 2 shows that these expectations are con-194

firmed. According to CLIP, COCO captions (green195

bars) are more descriptive than IDS descriptions196

6We use the set of COCO images in PB-GOLD (N=205).
7The images are from ADE20k corpus (Zhou et al., 2017)

Figure 3: Reference resolution accuracy per rank
with PB-GOLD utterances, word retrieved in context
(TARGET−CONTEXT) and word retrieved from the im-
age in isolation (TARGET ONLY).

and PB referring utterances, and are equally aligned 197

with the image across ‘ranks’ (the order is arbitrary 198

in this case). In contrast, IDS incremental descrip- 199

tions (yellow bars) are intrinsically ordered and 200

show a significant decreasing trend. 201

Overall, these findings show that CLIP is effec- 202

tive as a reference-free image caption evaluator, 203

as claimed by Hessel et al. (2021), as well as be- 204

ing able to capture the trends in sequential settings 205

such as IDS and PB. However, this does not shed 206

light on whether (and how) the model accounts for 207

the degree of discriminativeness of a referring ut- 208

terance in a given context, which is critical in PB. 209

We explore this issue in the next section. 210

5 Discriminativeness 211

In order for a listener to select the target image 212

among distractor images, a referring utterance 213

should be discriminative in its visual context. Our 214

results in the previous section show that descrip- 215

tiveness decreases over time—what is the trend in 216

discriminativeness when we encode the utterances 217

in CLIP? To address this question, in our second 218

experiment we investigate the use of CLIP from the 219

perspective of reference resolution and generation. 220

We focus on local text-to-image alignment, ig- 221

noring the previous dialogue history. To this end, 222

we feed CLIP a single referring utterance together 223

with the visual context of the speaker who produced 224

that utterance. CLIP yields softmax probabilities 225

for each image contrasted with the single text. As a 226

metric, we use accuracy: 1 if the target image gets 227

the highest probability; 0 otherwise. 228

Results. The overall accuracy is 80.15%, which 229

shows that CLIP performs well above the random 230

baseline of 16.67%. In Fig. 3, we break down the 231
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results per rank (blue bars). A 4 × 2 chi-square232

test (4 ranks vs. correct/incorrect) did not yield233

significant differences in accuracy between the234

ranks, p > 0.05. Thus, although descriptiveness235

decreases over time, discriminativeness is not sig-236

nificantly affected. Interestingly, an analysis of the237

entropy of the softmax distributions reveals that en-238

tropy increases monotonically over the ranks (this239

difference is statistically significant according to240

an independent samples t-test between ranks 1 and241

4, p < 0.01). That is, the model is more uncertain242

when trying to resolve less descriptive utterances,8243

yet still performs remarkably well at this task.244

Analysis. Our results show that CLIP is very ef-245

fective in resolving referring utterances, even for246

later ranks where their form is more likely to rely247

on common ground established over the previous248

dialogue history, which we do not exploit in our249

setup. To better understand CLIP’s abilities, we ex-250

plore to what extent the model can extract what is251

discriminative in the images, which would provide252

a basis for using CLIP not only for resolution but253

also for referring expression generation.254

We encode all the words in the vocabulary of PB-255

GOLD using CLIP. For each target image, we re-256

trieve two words: the word whose representation is257

the closest to the features of the target image in iso-258

lation (TARGET ONLY); the word whose represen-259

tation is the closest to the discriminative features of260

the target image in context (TARGET−CONTEXT).261

For the latter, we compute the discriminative fea-262

tures by average-pooling the visual representations263

of distractor images to end up with the mean con-264

text vector and then subtracting this vector from265

the visual representation of the target image.266

To check whether these retrieved one-word utter-267

ances would be enough to identify the target image268

in context, we plug them into the CLIP-based refer-269

ence resolution mechanism described earlier.9 We270

observe very high resolution performance with the271

discriminative words (TARGET−CONTEXT; orange272

bars in Fig. 3), with all ranks achieving above 94%273

accuracy. The accuracies obtained from TARGET274

ONLY (green bars), however, are lower than those275

of the original utterances.276

We also check whether at least one of the top-277

8There is indeed a negative correlation between entropy
and CLIPScore (Spearman’s ρ = −0.5, p < 0.001).

9Note that since for resolution CLIP compares the word
to the images one by one, this mechanism is indepen-
dent from the subtraction method used to generate the
TARGET−CONTEXT words.

10 retrieved words are mentioned in the original 278

human utterance: words retrieved in context are 279

less frequently (59.83%) mentioned than the words 280

retrieved for the image on its own (77.09%). As an 281

illustration, the TARGET ONLY word retrieved for 282

the example in Fig. 1 is umbrella, which is present 283

in all the human utterances in this chain, although 284

not discriminative. The TARGET−CONTEXT words 285

retrieved are beach, teal, blue, and beach for ranks 286

1, 2, 3, and 4, respectively. As can be seen, the 287

word is either present in the human utterance (blue 288

in rank 3) or similar to other words mentioned (teal 289

instead of blue, beach instead of water). Reference 290

resolution succeeds with both the human utterances 291

and the generated TARGET−CONTEXT words, but 292

fails with the TARGET ONLY word. 293

6 Conclusion 294

We explored whether a pretrained multimodal 295

model claimed to be a reference-free caption eval- 296

uator, CLIP (Radford et al., 2021), is effective in 297

capturing two main trends observed for referen- 298

tial chains uttered within a multimodal dialogue, 299

i.e., that (1) the utterances become less descrip- 300

tive over time while (2) their discriminativeness 301

remains unchanged. We showed that CLIP cap- 302

tures both, which sheds new light on the abilities 303

of this model to deal with referential utterances 304

besides standard image descriptions. 305

At the same time, the findings that CLIP can 306

identify the correct referent without exploiting any 307

dialogue history and that the retrieved TARGET 308

ONLY words are more often used by the partici- 309

pants than the retrieved TARGET−CONTEXT words 310

are intriguing, and suggest that participants playing 311

the PhotoBook game (Haber et al., 2019) seek a 312

trade-off between relying on contrastive and non- 313

contrastive information. This could be due to per- 314

ceptual salience, previously established conceptual 315

pacts (Brennan and Clark, 1996), or to control refer- 316

ential entropy even though the discriminative utility 317

of such information is not necessarily high (Rehrig 318

et al., 2021; Tourtouri et al., 2018; Gatt et al., 2013). 319

Interestingly, this opens up the possibility, parallel 320

to the present work, to use CLIP to identify the 321

mechanisms employed by humans when referring 322

to visual entities. Moreover, future work could ex- 323

plore novel ways to incorporate the CLIP model or 324

its representations into a reference resolution model 325

embedding dialogue history and visual context. 326
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