Trainable Transformer in Transformer

Abhishek Panigrahi ! Sadhika Malladi“! Mengzhou Xia' Sanjeev Arora'

Abstract

Recent works attribute the capability of in-context
learning (ICL) in large pre-trained language mod-
els to implicitly simulating and fine-tuning an in-
ternal model (e.g., linear or 2-layer MLP) during
inference. However, such constructions require
large memory overhead, which makes simulation
of more sophisticated internal models intractable.
In this work, we propose a new efficient construc-
tion, Transformer in Transformer (in short, TINT),
that allows a transformer to simulate and fine-
tune more complex models during inference (e.g.,
pre-trained language models). In particular, we
introduce innovative approximation techniques
that allow a TINT model with less than 2 billion
parameters to simulate and fine-tune a 125 mil-
lion parameter transformer model within a single
forward pass. TINT accommodates many com-
mon transformer variants and its design ideas also
improve the efficiency of past instantiations of
simple models inside transformers. We conduct
end-to-end experiments to validate the internal
fine-tuning procedure of TINT on various lan-
guage modeling and downstream tasks. For ex-
ample, even with a limited one-step budget, we
observe TINT for a OPT-125M model improves
performance by 4—16% absolute on average com-
pared to OPT-125M. These findings suggest that
large pre-trained language models are capable of
performing intricate subroutines. To facilitate fur-
ther work, a modular and extensible codebase for
TINT is included.

1. Introduction

Large transformers (Vaswani et al., 2017) have brought
about a revolution in language modeling, with scaling yield-

“Equal contribution 'Department of Computer Science,
Princeton University. Correspondence to: Abhishek Pan-
igrahi <ap34@cs.princeton.edu>, Sadhika Malladi <small-
adi@cs.princeton.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ing significant advancements in capabilities (Brown et al.,
2020; Chowdhery et al., 2022). These capabilities include
performing in-context learning or following natural lan-
guage instructions at inference time.

Researchers have tried to understand how these models can
learn new tasks without parameter updates (Garg et al., 2022;
von Oswald et al., 2023; Xie et al., 2022; Nanda et al., 2023).
A popular hypothesis is that in-context learning corresponds
to the transformer (referred to as the simulator from now
on) simulating gradient-based learning of a smaller model
(called auxiliary model) that is embedded within it.

From perspective of Al safety and alignment (Amodei et al.,
2016; Leike et al., 2018; Askell et al., 2021), the ability of
a larger model to use input data (which could be arbitrary
in a deployed setting) to implicitly train an auxiliary model
feels worrisome. This concern felt minor due to efficiency
considerations: previous analyses and experiments required
the auxiliary model to be quite tiny compared to the simula-
tor. For instance, simulating and training an auxiliary model
that is a linear layer requires tens of millions of parame-
ters in the simulator (Akyurek et al., 2022). This scaling is
even more dramatic if the auxiliary model is a multi-layer
fully-connected net (Giannou et al., 2023).

Our primary contribution is an explicit and nontrivial con-
struction of a simulator called TINT that explicitly adapts
to the context without parameter updates. In particular, we
show that a forward pass through a modestly sized TINT
can involve gradient-based training of an auxiliary model
that is itself a large transformer. For example, we show that
TINT with 2B parameters can faithfully simulate fine-tuning
a 125M parameter auxiliary transformer in a single forward
pass. (Prior constructions would have required trillions
of parameters in the simulator for a far simpler auxiliary
model.)

Our main result is described in Theorem 1.1, which details
how the size of TINT depends on the auxiliary model. Our
construction is generally applicable to diverse variants of
pre-trained language models. The rest of the paper is struc-
tured to highlight the key design choices and considerations
in TINT.

1. Section 2 discusses the overall design decisions required
to make TINT, including how the simulator can read

https://github.com/abhishekpanigrahi1996/transformer_in_transformer

Trainable Transformer in Transformer

TINT can efficiently perform simulated gradient descent of an auxiliary model.

Theorem 1.1. Consider an auxiliary transformer with L layers, D, embedding dimension, H,,, attention heads,
and a maximum sequence length of T,,.. Given a hyperparameter S (see Section 3.1), TINT can perform an efficient
forward pass (Section 3), compute the simulated gradient (Section 4), and evaluate the updated auxiliary model with
a total of

52 D
((01 +¢3) + 25D min(S?, Hap) + 3

Toie DS
aux 12 aux’ aux
min(H g, S?) Do min(H gy, 52)) L

parameters, with constants cy,co,c3 < 150. The TINT model has Dy, = SDg, embedding dimension and

Hypy = min(S 2, H,,.) attention heads. See Table 3 for a detailed breakdown of the parameters.

from and write to the auxiliary model and how the data
must be formatted.

2. Section 3 uses the linear layer as an example to describe
how highly parallelized computation and careful rear-
rangement of activations enable TINT to efficiently sim-
ulate the forward pass of the auxiliary model.

3. Section 4 describes how TINT uses first-order approx-
imations and stop gradients to compute the simulated
gradient of the auxiliary model.

4. Section 5 performs experiments comparing TINT to suit-
able baselines in language modeling and in-context learn-
ing settings. Our findings validate that the simulated gra-
dient can effectively update large pre-trained auxiliary
models. Notably, we instantiate TINT in a highly exten-
sible codebase, making TINT the first such construction
to undergo end-to-end evaluation.

Due to the complexity of the construction, we defer the
formal details of TINT to the appendix.

Notations For a general model, we use D to denote its
embedding dimension, H to denote the number of attention
heads, 6 to denote its set of all parameters, and 7" to denote
the length of an input sequence. We use subscripts -5y, and
-ux to differentiate the quantities between the TINT and
the auxiliary model. For example, D,,x and Dy, refers
to the embedding dimension of the auxiliary model and
TINT respectively. We use e,E“ € RDsm and wgé) € RPux
to denote token embeddings in the TINT and the auxiliary
model at layer ¢ and sequence position ¢ respectively. For a
matrix A, a; refers to its jth row, and for any vector b, b;
refers to its jth element.

2. Design Considerations

Our goal is to construct a simulator that can train an auxiliary
model over the course of an inference pass. This procedure
requires four steps:

1. Forward Pass: A forward pass to compute the auxiliary
model output f(&; 0,,x) on training input £ and a loss L.

2. Backward Pass: Backpropagation to compute the gradi-
ent of the auxiliary model Vg L(f(&; Oaux))-

aux

3. Parameter Update: Update the auxiliary model
using gradient descent, setting 6! = Oux —

nVeauxE(f(f; OaUX))- -

4. Output: Output next-token predictions f(¢’; 07,,) on a
test input & using the updated auxiliary model.

Note that steps 1-3 can be looped to train the auxiliary model
for a few steps!, either on the same training data or on dif-
ferent training data for each step, before evaluating it on
the test input (Giannou et al., 2023). The above method
highlight two crucial features of the simulator: (1) it has ac-
cess to some amount of training data, and (2) it can use (i.e.,
read) and update (i.e., write) the auxiliary model. Below,
we discuss how to design a modest-sized simulator around
these two considerations.

2.1. Input structure

For simplicity, we describe only one update step on a single
batch of training data £ but note that our formal construction
and our experiments handle multiple training steps (see Def-
inition 5.1). Steps 1 and 4 show that the simulator must
access some training data & to train the auxiliary model and
some testing data £’ on which it evaluates the updated aux-
iliary model. For the sake of illustration we consider the
following simple setting: given a sequence of input tokens
ey, ...,er, we split it into training data §¢ = ey, ..., e, and
testing data ¢’ = e,y 1, ..., er.

Suppose £ contains an in-context input-output exemplar and
&' contains a test input. Then, the simulator performs a very
natural operation of training the auxiliary model on a task-
specific example and outputs results for the test example.

On the other hand, if the input is not specially formatted, £

"Looping steps 1-3 scales the depth of the simulator model.

Trainable Transformer in Transformer

Forward Modules For Evaluation

@ ~ ~ ~
Vi Vp Vk €4 €, €3 €y (SIS
ith Descent Module i-1 " Backward Module (i = €
@@ vi Vv VK dy: Oy, dys Oy, Oy
Last (£4,) Backward Module
Forward Modules
®
\%1 \'%] Vi ©q € E3 €4 €5

3

(D) Simulated forward pass

er (2) Backward simulation of i-1 ® layer
(3) Descent simulation of it layer
, 1)

V Auxiliary model params

9y . .
e Train Input embeddings &
e (Masked) validation input embeddings ¢
dy Gradient of loss wrt. y

er V | Updated auxiliary model params

Figure 1: The overall structure of TINT (see Section 2 for an overview). Each forward, backward, and descent module
is represented using combinations of linear, self-attention, layernorm, and activation layers. The input consists of prefix
embeddings (Definition 2.1) that represent relevant auxiliary model parameters in each layer followed by natural language
input. A prefix mask separates the train and test segments of the input (§2.1).

and £’ may simply contain some natural language tokens. In
this case, the simulator is using the first part of the context
tokens to do a quick fine-tune of the auxiliary for some task
before outputting the subsequent tokens with the auxiliary
model. In a worst-case scenario, users might provide harm-
ful contents, leading the model to implicitly fine-tune on
them and potentially output even more harmful content.

Our experiments consider many options for splitting a se-
quence into £ and £’, and we defer a more detailed discus-
sion of possible setups to Section 5.

Accessing Training Labels. The simulator must be able
to see the labels of the training tokens in order to compute
the loss £ (usually, the autoregressive cross-entropy loss)
in step 1. For example, in Figure 1, when we compute
the loss for the token es in the second position, we need
to use its label es in the third position. However, this is
not possible if the simulator uses strictly autoregressive at-
tention (Appendix G contains a more general discussion).
We thus use a bidirectional attention mask on the training
tokens and autoregressive attention on the evaluation por-
tion. We note that encoding relevant (e.g., retrieved) context
with bidirectional attention is a popular way to improve au-
toregressive capabilities in language modeling and natural
language tasks (Raffel et al., 2020; Borgeaud et al., 2022;
Izacard and Grave, 2020; Izacard et al., 2023; Wang et al.,
2023a; Tay et al., 2022). This empirical approach is sim-
ilar in motivation to how TINT uses a few context tokens
to adapt the auxiliary model to a given input. Having es-
tablished the training and testing data, we can now move
to discussing how the simulator can access (i.e., read) and
update (i.e., write to) the auxiliary model at inference time.

2.2. Read and write access to auxiliary model

As discussed in the start of this section, the simulator must
have read and write access to the parameters of the auxiliary
model. Crucially, the simulator must do at least two forward
passes through the auxiliary model, one with the current
parameters 6,,x and one with the updated parameters 6, ..
The straightforward way to simulate the forward pass of
the auxiliary model would be to store its weights in the
simulator’s weights and run a forward pass as usual. One
can analogously simulate the backward pass according to the
loss £ to compute the gradients. However, the simulator
cannot update its own weights at inference time, so this
strategy would not permit the model to write the updated
parameters 6. . and later read them when simulating the

second forward pass. Therefore, the auxiliary model 6,4
must be available in the activations of the simulator.

To this end, Wei et al. (2021); Perez et al. (2021) model
the simulator after a Turing machine, where the activation
eg) € RPsn in each layer acts as a workspace for oper-
ations, and computation results are copied to and from
memory using attention operations. In this paradigm, if
D,yx = 768, computing a dot product (w, a:(z)> with weight
w € R7%® requires at least 6.4 million parameters in the
simulator?. Given the pervasiveness of dot products in neu-
ral network modules, this strategy would yield a simulator
with trillions of parameters.

2Using a feedforward module to mimic the dot product (as
in Akyurek et al. (2022), see thm. B.5), where the simulator
embedding comprises [w, ;] € R3¢, necessitates a minimum
of 4.7 million parameters. Using an attention module to copy the
weight from memory adds another 1.7 million parameters.

Trainable Transformer in Transformer

Constructing Prefix Embeddings

Parallelizing Across S x S’ Attention Heads

R2Daux R2Daux Example: computation on attention head 2
R2Daux R2Daux “\,1 wh |) R Paux X Daux R Paux RDaux/2
1 aux—
I5 2 | |
1 2 3 2 2
‘ | “"1 wDT.x—l W) —— Wy ——— W, x! (Wi, ;)
Wi WDguz—1 3 w3 1 2 .3
| | "“’1 fl’alux—l w3 w3 W } (w3, x7)
1 w
W D, 1 2 3 .
2 aux W w w Attention 2 2
“‘, w ! w‘2 2| = S < x? (w3, %)
2 1B 2 aux . .
\ 3 | : |
| 3 pe—) —
W WDaux WDl Wh, -1 WD -1 |
| 3
1 2 3 X 2 2
Vi Vk Vi Vi 2 WD W Do |t (Wh,,.—1,X)
Stacking S=2 weights Sharding into S'=3 parts Key for Head 2 Query for Head 2 Output for Head 2

Figure 2: TINT simulates the forward pass of a linear layer with a Hg,,-head attention layer (Hy;, = 6 here). We stack S
weights per prefix embedding to reduce the number of prefix embeddings required (S = 2 here). We furthermore shard each
weight and token embedding x; into S’ shards and compute inner products of each shared in parallel using S x S’ attention

heads (S’ = 3 here). Please see Section 3.1.

Alternatively, one can store parameters in the first few con-
text tokens and allow the attention modules to attend to
those tokens (Giannou et al., 2023). This removes the need
for copying and token-wise operations. Then, the same
dot product requires only a self-attention module with 1.7
million parameters. We thus adopt this strategy to provide
relevant auxiliary model weights as prefix embeddings.

Definition 2.1 (Prefix Embeddings). {vy) }jK: 1 denotes the
K prefix embeddings at the ¢th layer in TINT. These contain
relevant auxiliary model weights or simulated activations.

We now consider how to efficiently simulate the building
block of neural networks: matrix-vector multiplication. In
the next section, we demonstrate that a careful construction
of the prefix embeddings enables efficient parallelizaton of
matrix-vector products across attention heads.

3. Efficient Forward Propagation

We now discuss how TINT performs a highly efficient for-
ward pass through the auxiliary model. Here, we focus on
the linear layer because it is repeated many times in various
transformer modules (e.g., in self-attention), so improving
the efficiency dramatically reduces TINT’s size.

Definition 3.1 (Linear layer). For a weight W ¢
RPwxxDax 3 linear layer takes € RP=x as input and
outputs y = Wa.3

We compute y coordinate-wise, i.e., (w;, z;) for all i €
[Daux), where w; is the ith row of W. The simulator rep-
resents (w;, T;) as an attention score between the row w;
and the input x;. So, the input embeddings e; contain x; in

3Linear layers are applied token-wise, so we can consider a
single position ¢ without loss of generality.

the first D,,x coordinates, and the rows {w; } of the weight
matrix W are in prefix embeddings {v, } (def. 2.1).

We strategically distribute the weights (§3.1) and aggre-
gate the parallelized computation results (§3.2). As we
briefly mentioned in the previous section, a straightforward
construction of the linear layer would use the context and
attention heads inefficiently. Our construction instead paral-
lelizes the computation across attention heads in such a way
that aggregating the output of the linear operation can also
be conducted efficiently.

3.1. Stacking and Sharding

We partition the inner product computation across attention
heads by carefully rearranging the weights and activations
via stacking and sharding (Figure 2). Instead of representing
each weight w; as its own prefix token v;, we stack S
weights on top of each other to form each prefix embedding
v;. S drives a trade-off between the embedding dimension
of the TINT, Dgy, = D, S, and the context length to the
TINT, Tgim = K + Toux. Weset S = 4.

A simple strategy now would be to use different attention
heads to operate on different rows; however, this would still
use only S attention heads whereas we could parallelize
across many more heads. We instead parallelize across
more attention heads, where each head is responsible for
computing the inner product on a subset of the coordinates.
We shard each individual weight and the activation into
S’ parts and compute the inner product on each of the S’
parts in parallel We set S and S’ such that Hgy, = S x 57,
thereby using all of TINT heads to efficiently compute the
dot products.

Trainable Transformer in Transformer

3.2. Efficient Aggregation

The attention module outputs a sparse matrix with shape
(Dsim/Hsim) X Hgm containing the inner products on var-
ious subsets of the coordinates in its entries. To complete
the linear forward pass, we need to sum the appropriate
terms to form a Dy, -length vector with W in the first
D ,yx coordinates. Straightforwardly summing along an axis
aggregates incorrect terms, since the model was sharded.
On the other hand, rearranging the matrix would require an
additional Dgjy, X Dy linear layer. Instead, TINT saves a
factor of Hgy, X parameters by leveraging the local structure
of the attention output. We illustrate this visually in Ap-
pendix C.1. This procedure requires D%/ Hgm + Dgim Hyim
parameters. This efficient aggregation also compresses the
constructions for the TINT’s backpropagation modules for
layer normalization and activations (Appendices E and F).

4. Simulated Gradient

TINT adapts backpropagation to compute gradients (Fig-
ure 1). We aim to train a capable (i.e., pre-trained) auxiliary
model for just a few steps, so high precision gradients may
be unnecessary. Instead, TINT performs an approximate
backpropagation. TINT then uses this simulated gradient to
update the auxiliary model. Prior works computed similar
approximate gradients in hopes of more faithfully model-
ing neurobiology (Scellier and Bengio, 2017; Hinton, 2022)
or improving the efficiency of training models (Hu et al.,
2021; Malladi et al., 2023). We note that the approxima-
tions in the simulated gradients can be made stronger at
the cost of enlarging TINT. Indeed, one could construct a
simulator to exactly perform the procedure outlined in §2,
though it would be orders of magnitude larger than TINT.
For brevity’s sake, we focus on the key approximations and
design choices and defer formal details to the appendix.

4.1. First-order approximations

We use first-order approximations of gradients to backprop-
agate through the layer normalization layer.* It normalizes
the input using its mean and standard deviation across the
input dimensions. Since the operation is token-wise, we can
consider a single position ¢ without loss of generality.

Definition 4.1 (Layer normalization). A layer normalization
layer f;, takes input & € R« and outputs y = (x — p) /o,
where 1 and o denote its mean and standard deviation.

High precision gradients: Formally, for input-output pair

*We discuss a layer normalization layer fi, without scale and
bias parameters, but Appendix E contains a general construction.

(z,y), we can compute the gradients d,,, 0, with chain rule:

g (afm<w>)T 5,

ox
~ {6, y+a —Lﬁa)
=5 v Y'Y v D vi | -

aux
=1

Inefficiency of exact computation: A TINT layer simulat-
ing backpropagation through an auxiliary’s layer normaliza-
tion layer receives d,, and x; in its input embeddings. We
go through the exact gradient and why it is inefficient.

For exact computation one could first compute y, using a
normalization layer and store in the embeddings. However,
inefficiency arises from computing the term (0y, , y:)y;. To
calculate (Oy,,y:)y; at each token position ¢, we could
either: (1) use a two-layer MLP that focuses on each token
separately, or (2) a single self-attention module to treat the
operation as a sequence-to-sequence task.

For (1) we could initially compute (0,,,¥y;) via an MLP,
followed by computation of (Jy, , y+)y: using another MLP.
The element-wise multiplication in embeddings would
be facilitated with a nonlinear activation function like
GELU (Akyurek et al., 2022) (refer to thm. B.5 for details).
However, this approach would need substantial number of
simulator parameters to represent the MLPs.

Alternatively, we could use a single self-attention mod-
ule. Constructing such a module would require careful
engineering to make sure the input tokens only attend to
themselves while keeping an attention score of O to others.
If we used a linear attention, we would need to space out
the gradient d,, and x; in each position ¢, such that the
attention score is 0 between different tokens. This would
require an embedding dimension proportional to the context
length. On the other hand, if we used a softmax attention
module, we would need an additional superfluous token in
the sequence. Then, a token at position ¢t would attend to
itself with attention (Oy;, y;) and to the extra token with
an attention score of 1 — (Qys, y:). The extra token would
return a value vector 0. To avoid such inefficiency, we
opt for a first-order approximation instead.

Efficient approximation: Instead of explicitly computing

. . 3 fin(x) T .
each term in the chain rule of ({)HT) Oy in Eq. 1, we
instead use a first order Taylor expansion of fj,.

afgi”) By + O(e?).

fnl + €dy) = finle) +e(

Rearranging allows us to write

(afg:im)> Oy = % (fin(x + €dy) — fin()) + O(e).

Trainable Transformer in Transformer

Similar to the computation of Eq. 1, we can show

Ofin(x) 1
ox o (-

g

Daux—l)I - fln(x)fln(m)T))

Because O fi,(x)/0x is symmetric’, we can write

(afgf)>T 0, = (afg‘f)) 0y

zégmm+@w7mw»+md

Then, ignoring the small error term, we can use just two
linear layers, separated by a normalization layer, to simulate
the approximation.

4.2. Fuzzy backpropagation via stop gradients

Self-attention is inherently quadratic, because it uses the
keys and queries to compute attention scores between every
possible pair of tokens in the sequence. These scores then
linearly combine the value vectors (see def. B.1 for a formal
definition). Computing the gradient exactly is thus a very
complex operation. Instead, we stop the gradient computa-
tion through attention scores in the self-attention layer. For
similar reasons, we only update the value parameter in the
self-attention module.

Gradient backpropagation: For an input, output sequence
pair {x:},{y:}, if {qs, k:,v:} denote the intermediate
query, key, value vectors, on gradients {0y, }, {9z, } is given
via the chain rule:

O, = Q" q, + K Ok, + V0,)

Here, V', K, Q denote the query, key, and value matrices.

Inefficiency in exact computation: Here, we demonstrate
that simulating computation of the three terms in Eq. 2 is
inefficient, because Jq, , Or, depend on the derivatives w.r.t.
the attention scores. As an example, we focus on O, :

O, = > ar i ((By,) T0;) (ks — > a ko).
i 5’

Computing this term would require us at least 2 self-
attention layers and an MLP layer. The first attention layer
would compute (9,,,) " v; for different token pairs, similar to
the forward simulation of a linear layer with linear attention
(§3). These would be then multiplied to the pair-wise atten-
tion scores a; ; with an MLP to compute a; ;((9y,) " v;),
with elementwise product would be facilitated by GeLU
non-linearity (thm. B.5). These would be finally used by

SFor a linear function f with matrix W, % = W. Since
W may not be a symmetric matrix, this method can’t be generally
applied to approximately backpropagate linear layers or causal
self-attention layers.

Table 1: Language modeling results on WIKITEXT-103.
We use 30%, 50%, 70% and 90% of sequences for training
in the language modeling setting (§5.2). TINT improves
the auxiliary model perplexities by 0.3 — 0.7 absolute on
average. The small perplexity difference between the TINT
and explicitly updating the auxiliary model suggests that the
simulated gradient (Section 4) can still effectively fine-tune
the auxiliary model.

Training proportion

Evaluating with ~ 30% 50% 70% 90%
Auxiliary Model 25.6 249 245 233
GPT-2 Fine-tuning 249 240 235 222
TINT 25.1 243 238 226
Auxiliary Model 29.6 28.8 28.0 28.0
OPT-125M Fine-tuning 290 282 274 274
TINT 293 284 275 274

an attention layer to combine the different key vectors. A
similar simulation would be necessary to compute Jg, .

Stop gradients through query and key vectors: In order
to reduce the necessary resources, we ignore the query and
key gradients in Eq. 2. When we ignore these gradient
components, {0, } can be simplified as

Oz, ®V 0y, =V 10, 3)

J

A single self-attention layer can compute this by using the
attention scores to combine the token-wise gradients.

Why won’t it hurt performance? Estimating 0, as de-
scribed is motivated by recent work (Malladi et al., 2023)
showing that fuzzy gradient estimates don’t adversely affect
fine-tuning of pre-trained models. Furthermore, we theoret-
ically show that when the attention head for each position
pays a lot of attention to a single token (i.e., behaves like
hard attention (Perez et al., 2021)), the approximate gradient
in Eq. 3 is entry-wise close to the true gradients (thm. D.5).

The other approximation is to update only the value pa-
rameters V' of the auxiliary model (§D). This is motivated
by parameter efficient fine-tuning methods like LORA (Hu
et al., 2021) and IA3 (Liu et al., 2022), which restrict the
expressivity of the gradient updates without degrading the
quality of the resulting model. We similarly show in the next
section that the simulated gradients in TINT can effectively
tune large pre-trained transformers.

5. Experiments

We evaluate the performance of the TINTs constructed us-
ing GPT2 and OPT-125M as auxiliary models. The find-
ings from our experiments in the language modeling and

Trainable Transformer in Transformer

Single
Example 1
Review: goes to absurd lengths.
Sentiment: Negative
Example 2

Review: contains no wit, only labored gags .
Sentiment: Negative

Example 3
Review: the greatest musicians
Sentiment: Positive

Multi.
Example 1

Review: goes to absurd lengths.
Sentiment: Negative

Review: contains no wit, only labored gags .
Sentiment: Negative

Review: the greatest musicians
Sentiment: Positive

Figure 3: Different settings in few-shot learning (k¥ = 3) using TINT. The Single mode (left) treats each example as
a training datapoint, and the auxiliary model is updated with a batch of inputs (see def. 5.1). The Multi. mode (right)
concatenates all examples to form a single input and uses batch size 1 in def. 5.1. For Label loss, only underlined label
words are used as training signal, while full context loss includes all tokens.

in-context learning settings confirm that fine-tuning with
the simulated gradients (Section 4) still allows for effec-
tive learning in the auxiliary model. We loop the training
steps (i.e., steps 1-3) outlined in Section 2 to accommodate
solving real-world natural language tasks. We formalize the
setting below.

5.1. Setting: N-step Fine-Tuning

We formalize the procedure in Section 2 to construct a suit-
able setting in which we can compare TINT to explicitly
training the auxiliary model.

Definition 5.1 (/V-step Fine-Tuning). Given a batch of train-
ing datapoints &1, - - - , £g and a validation input £, we com-
pute and apply gradient updates on the auxiliary model 0,
for timesteps t = 0,..., N — 1 as

B
0;-1’;(1 = aatlux - 772 v9£(f(£lv aztiux))
i=1

where 7 is the learning rate and £ is a self-supervised loss
function on each input &;. Then, we evaluate the model oN

aux
on ¢’. 69 denotes the pre-trained auxiliary model.

Below, we instantiate this setting with text inputs of different
formats and different self-supervised loss functions £. To
manage computational demands, we limit N to 3 or fewer.’

5.2. Case Study: Language Modeling

The first case we consider is language modeling, where
the input data ey, ..., er is natural language without any
additional formatting. We use a batch size of 1 in def. 5.1,
and delegate §&; = ey, ...,e; and £’ = e411,...,er. The
loss L is the sum of the token-wise autoregressive cross-
entropy loss in the sequence &;. For example, given an input
Machine learning is a useful tool for solving problems., we

SPerforming many gradient steps scales the depth of TINT and
makes experimentation computationally infeasible.

use the red part as the training data £;, and the brown part
as the validation data £’. We perform language modeling
experiments on WIKITEXT-103 (Merity et al., 2016) and
vary the number of tokens ¢ used as training data &.

Results. In Table 1, we observe that TINT achieves a per-
formance comparable to explicit fine-tuning of the auxiliary
model, indicating that the simulated gradient (Section 4) is
largely effective for fine-tuning. Both TINT and explicitly
fine-tuning the auxiliary model show improvement over the
base model, confirming that minimal tuning on the context
indeed enhances predictions on the test portion.

5.3. Case Study: In-Context Learning

For in-context learning, we consider input data to be a su-
pervised classification task transformed into a next-token
prediction task using surrogate labels (see Figure 3). Using
binary sentiment classification of movie reviews as an exam-
ple, given an input (e.g., the review), the model’s predicted
label is computed as follows. First, we design a simple
task-specific prompt (e.g., “Sentiment:”) and select label
words ¢y, ..., ¢, to serve as surrogates for each class (e.g.,
“positive” and “negative”). Then, we provide the input along
with the prompt to the model, and the label assigned the
highest probability is treated as the model’s prediction. We
describe the zero-shot and few-shot settings below.

Zero-shot. In the zero-shot setting, we are given text with
the first 7' — 1 tokens as the input text and final token as the
surrogate text label. Hence, we adapt def. 5.1 to use batch
size B = 1, training data £&; = z1,...,27_1, and testing
data ¢’ = x7. The loss L is again the sum of the token-wise
autoregressive cross-entropy losses.

Few-shot. In the few-shot setting, we are given input texts
that are a concatenation of k sequences &1, - -+ ,&;. Each
sequence contains the input text followed by the surrogate
label for the in-context exemplar. These k exemplars are
followed by test data £'. In this case, we can compute the

Trainable Transformer in Transformer

Table 2: Zero-shot and few-shot in-context learning results across 7 downstream tasks. All the few-shot results are averaged
over three training seeds. TINT consistently surpasses its auxiliary model and achieves comparable performance to Fine-
tuninguation. TINT outperforms auxiliary models by 3 — 4% and 12 — 16% absolute points on average in 0-shot and 32-shot
experiments respectively. TINT performs competitively with a similar-sized pre-trained model (OPT-1.3B) in both 0-shot
and 32-shot settings. We show the standard deviation for few-shot settings in parentheses.

Model Shots ‘ Subj AGNews SST2 CR MR MPQA Amazon Avg.
Without Calibration
OPT-125Mm 0 64.0 66.0 70.5 64.5 71.0 68.0 76.5 68.6
OPT-1.3B 0 59.0 55.5 54.0 50.5 52.5 74.0 57.0 57.5
OPT-125M Fine-tuning 0 71.0 67.0 79.5 71.5 70.0 68.0 85.5 73.2
OPT-125M TINT 0 67.5 66.0 76.5 69.0 76.0 70.5 78.5 72.0
OPT-125M 32 58.7(4‘9) 33-7(8.4) 50.8(1'2> 51.3(1.9) 50.0(0_0) 54.3(2'5) 55.0(6_7) 50.5(1_9)
OPT-1.3B 32 742(641) 71.3(5,3) 89.8(3.6) 71.5(45) 68.3(6.1) 81.7(3'3) 70.3(9,9) 75.3(0_4)
OPT-125M Fine—tuning 32 780(14> 667(16) 715(14) 737(33) 720(00) 807(06) 798(02) 746(27)
OPT-125M TINT 32 82.3(2.7) 69.3(0.9) 73-7(0.8) 75.7(1.9) 72.3(1.2) 83.2(10) 78.2(0.2) 76.4(0.7)
With Calibration
OPT-125M 0 64.0 66.0 53.0 54.5 52.5 55.5 58.0 57.6
OPT-1.3B 0 73.5 61.5 57.5 53.0 54.5 79.5 61.0 62.9
OPT-125M Fine-tuning 0 62.5 66.0 60.5 53.5 54.0 56.5 74.5 61.1
OPT-125M TINT 0 64.0 66.0 56.5 59.0 53.5 62.0 66.5 61.1
OPT-125m 32 83.5(2.4) 40.7(10'4) 50.8(0.8) 67.7(4.1> 57~7(10.8) 792(8.4) 56.0(8,1) 62.2(2_7)
OPT-1.3B 32 51.8(19) 66,2(3'1) 93.7(1'0) 82.8(2,8) 91.3(1,9) 83.5(2,5) 92.0(2,9) 80.2(0,7)
OPT-125m Fine—tuning 32 87.2(02) 67.2(06) 72.8(5‘9) 73.3(2.(;) 66.7(74) 81.5(37) 70.3(21) 74.].(29)
OPT-125M TINT 32 85.3(1.9> 67.3(()‘6) 71.8(3.8> 70.7(1.9) 63.7(()‘2) 83-5(1.6) 77.5(1_2) 74.3(1.4)

gradient updates to 6,,x in two different ways (Figure 3).
The first setting, denoted Single, treats the k sequences as a
batch of B = k training datapoints &1, ..., . The second
setting, denoted Multi, treats the concatenation of the B
sequences as a single training datapoint &;. Furthermore,
L for a training datapoint can be defined in two different
ways. The first setting, denoted as Full context loss, defines
L for a training datapoint &; as the sum of cross entropy loss
over all tokens. The second setting, denoted as Label loss,
defines £ for a training datapoint &; in def. 5.1 as the sum
of cross entropy loss over the surrogate label tokens.

Tasks. We evaluate 7 classification tasks for zero-shot and
few-shot settings: SST-2 (Socher et al., 2013), MR (Pang
and Lee, 2004), CR (Hu and Liu, 2004), MPQA (Wiebe
etal., 2005), Amazon Polarity (Zhang et al., 2015), AGNews
(Zhang et al., 2015), and Subj (Pang and Lee, 2005).

Model. We compare a TINT model that uses an OPT-
125M pre-trained model as its auxiliary model against two
alternative approaches: (1) directly fine-tuning OPT-125m,
and (2) performing standard evaluation using OPT-1.3b,
which is of a similar size to TINT.”

"Our construction is generally applicable to diverse variants of
pre-trained language models (Appendix J).

Calibration: We report the performance in Table 2 in
two settings: no calibration, and with calibration. If using
calibration, the predicted probabilities of the surrogate labels
are normalized using just the prompt as input.

No Calibration: argmax Pr[c; | input, prompt]

Ci

Prlc; | input, prompt]

Calibration: arg mca:x Prlc; | prompi

This is a widely used calibration technique (Holtzman et al.,
2021) for prompting language models.

Observations. We observe that inferences passes through
TINT perform on par with directly fine-tuning the auxiliary
model, affirming the validity of the construction design
(see Section 2). As expected, TINT outperforms the base
auxiliary model, since it simulates training the auxiliary
model. More intriguingly, TINT demonstrates performance
comparable to a pre-trained model of similar size (OPT-
1.3B). This suggests that the capabilities of existing pre-
trained models may be understood via the simulation of
smaller auxiliary models. We observe that calibration may
not always be beneficial in every setting.® However, even
with calibration, TINT remains competitive to fine-tuning

8Such inconsistencies in the calibration method have been
observed in previous works (Brown et al., 2020).

Trainable Transformer in Transformer

of OPT models. The performance of OPT-1.3B improves
with calibration. In this case, TINT lags behind OPT-1.3B
in the few-shot setting. For further details and results of the
experiments, please refer to Appendix K.

6. Related Work

Gradient-based learning and in-context learning: Sev-
eral works relate in-context learning to gradient-based learn-
ing algorithms. Bai et al. (2023) explicitly constructed trans-
formers to simulate simple gradient-based learning algo-
rithms. Mahankali et al. (2023); Ahn et al. (2023) suggested
one attention layer mimics gradient descent on a linear layer,
and Zhang et al. (2023b) showed polynomial convergence.
Cheng et al. (2023); Han et al. (2023) extended these ideas to
non-linear attentions. Experiments in Dai et al. (2022) sug-
gest that LLM activations during in-context learning mirror
fine-tuned models. These works focus on using a standard
transformer for the simulator and hence cannot accommo-
date more complex auxiliary models; on the other hand, our
work uses structural modifications and approximations to
construct an efficient simulator for complex auxiliary mod-
els. Our work in contrast attempts to build even stronger
transformers by introducing few structural modifications
that can run gradient descent on auxiliary transformers.

Transformer Expressivity: Perez et al. (2021); Pérez et al.
(2019) show that Transformers with hard attention are Tur-
ing complete, and Wei et al. (2021) construct transformers to
study statistical learnability, but the proposed constructions
are extremely large. Other works have investigated encod-
ing specific algorithms in smaller simulators, e.g. bounded-
depth Dyck languages (Yao et al., 2021), modular prefix
sums (Anil et al., 2022), adders (Nanda et al., 2023), regular
languages (Bhattamishra et al., 2020), and sparse logical
predicates (Edelman et al., 2022). Liu et al. (2023) aim to
understand automata-like mechanisms within transformers.
Ba et al. (2016) connect self-attention and fast weight pro-
grammers (FWPs), which compute input-dependent weight
updates during inference. Follow-up works (Schlag et al.,
2021; Irie et al., 2021) use self-attention layers to update
linear and recurrent networks during inference. Clark et al.
(2022) add and efficiently tune Fast Weights Layers (FWL)
on a frozen pre-trained model.

7. Discussion

We present a parameter-efficient construction TINT capable
of simulating gradient descent on an internal transformer
model during inference. Using fewer than 2 billion parame-
ters, it can simulate fine-tuning a 125 million transformer
(e.g., GPT-2) internally, dramatically reducing the scale
required by previous works. Language modeling and in-
context learning experiments demonstrate that the efficient
approximations still allow the TINT to fine-tune the model.

Our work emphasizes that the inference behavior of complex
models may rely on the training dynamics of smaller models.
As such, the existence of TINT has strong implications for
interpretability and Al alignment research.

Similar to prior research in this area, our insights into ex-
isting pre-trained models are limited. TINT was designed
to understand the power of in-context reasoning with an
explicit construction, and thereby, understand the safety risk
of transformers trained with moderate compute. Hence, we
introduce two major architectural modifications. TINT uses
bidirectional attention for efficiently computing the loss on
training portion & (§2). Furthermore, we use prefix embed-
dings to efficiently represent the relevant auxiliary model
parameters in each layer of TINT (§2). Both of these design
principles are largely motivated by existing perfomant archi-
tectures (Tay et al., 2022; Raffel et al., 2020; Cheng et al.,
2023; Izacard et al., 2023; Borgeaud et al., 2022) and fine-
tuning strategies (Liu et al., 2021; Lester et al., 2021; Zhang
et al., 2023a; Li and Liang, 2021). However, because of the
architecture modifications, TINT cannot be used to explain
the in-context capability in existing popular autoregressive
models (Touvron et al., 2023; Brown et al., 2020).

TINT provides a possible connection between fine-tuning
and in-context reasoning with transformer models. As such,
inference time behaviors of large language models may re-
quire understanding the training dynamics of smaller trans-
formers. On the other hand, such a connection can also
lead to explorations on improved architecture designs by
measuring generalization behaviors of the underlying simu-
lated auxiliary model (Li and Zhang, 2021; Ju et al., 2022).
Furthermore, we have not yet examined potential biases that
may arise in the auxiliary models due to one-step gradient
descent. We plan to investigate these aspects in future work.

Trainable Transformer in Transformer

Impact Statement

We note that the construction of TINT does not appear to
increase the probability of harmful behavior, because the
construction’s primary objective is to implicitly tune an
internal model (§2). Such tuning has been possible for a
long time and is not made more expressive by TINT.

Our findings suggest that existing transformer-based lan-
guage models can plausibly possess the ability to learn and
adapt to context by internally fine-tuning a complex model
even during inference. Consequently, although users are
unable to directly modify deployed models, these models
may still undergo dynamic updates while processing a con-
text left-to-right, resulting in previously unseen behavior by
the time the model reaches the end of the context. This has
significant implications for the field of model alignment. It
is challenging to impose restrictions on a model that can per-
form such dynamics updates internally, so malicious content
can influence the output of deployed models.

Alternatively, we recognize the potential benefits of pre-
training constructed models that integrate explicit fine-
tuning mechanisms. By embedding the functionalities typi-
cally achieved through explicit fine-tuning, such as detecting
malicious content and intent within the models themselves,
the need for external modules can be mitigated. Pre-training
the constructed model may offer a self-contained solution
for ensuring safe and responsible language processing with-
out relying on external dependencies.

Acknowledgements

The authors acknowledge funding from NSF, ONR, Simons
Foundation, and DARPA. We thank Dangi Chen, Jason Lee,
Zhiyuan Li, Kaifeng Lyu, Simran Kaur, Tianyu Gao, and
Colin Wang for their suggestions and helpful discussions
at different stages of our work. We thank the anonymous
reviewers and the Area Chairs of NeurIPS’23, ICLR’24,
and ICML’24 assigned to our paper for their helpful and
detailed reviews and meta-reviews to improve the quality of
our paper.

References

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Su-
vrit Sra. Transformers learn to implement preconditioned
gradient descent for in-context learning. arXiv preprint
arXiv:2306.00297, 2023.

Ekin Akyurek, Dale Schuurmans, Jacob Andreas, Tengyu
Ma, and Denny Zhou. What learning algorithm is in-
context learning? investigations with linear models. arXiv
preprint arXiv:2211.15661, 2022.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Chris-

10

tiano, John Schulman, and Dan Mané. Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Ramasesh, Ambrose
Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur.
Exploring length generalization in large language models.
arXiv preprint arXiv:2207.04901, 2022.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep
Ganguli, Tom Henighan, Andy Jones, Nicholas Joseph,
Ben Mann, Nova DasSarma, et al. A general language
assistant as a laboratory for alignment. arXiv preprint
arXiv:2112.00861, 2021.

Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z.
Leibo, and Catalin Ionescu. Using fast weights to at-
tend to the recent past, 2016.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song
Mei. Transformers as statisticians: Provable in-context
learning with in-context algorithm selection. arXiv
preprint arXiv:2306.04637, 2023.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the
ability and limitations of transformers to recognize formal
languages. arXiv preprint arXiv:2009.11264, 2020.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann,
Trevor Cai, Eliza Rutherford, Katie Millican, George Bm
Van Den Driessche, Jean-Baptiste Lespiau, Bogdan
Damoc, Aidan Clark, et al. Improving language models
by retrieving from trillions of tokens. In International con-
ference on machine learning, pages 2206-2240. PMLR,
2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane
Wang, Aaditya Singh, Pierre Richemond, James McClel-
land, and Felix Hill. Data distributional properties drive
emergent in-context learning in transformers. Advances
in Neural Information Processing Systems, 35:18878—
18891, 2022.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers
implement functional gradient descent to learn non-linear
functions in context. arXiv preprint arXiv:2312.06528,
2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian
Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

Trainable Transformer in Transformer

Bilal Chughtai, Lawrence Chan, and Neel Nanda. A toy
model of universality: Reverse engineering how networks
learn group operations. arXiv preprint arXiv:2302.03025,
2023.

Kevin Clark, Kelvin Guu, Ming-Wei Chang, Panupong
Pasupat, Geoffrey Hinton, and Mohammad Norouzi.
Meta-learning fast weight language models. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 9751-9757, Abu
Dhabi, United Arab Emirates, December 2022. Associ-
ation for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.661.

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adria Garriga-Alonso. Towards
automated circuit discovery for mechanistic interpretabil-
ity. arXiv preprint arXiv:2304.14997, 2023.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and
Furu Wei. Why can gpt learn in-context? language mod-
els secretly perform gradient descent as meta-optimizers,
2022.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and
Cyril Zhang. Inductive biases and variable creation in
self-attention mechanisms. In International Conference
on Machine Learning, pages 5793-5831. PMLR, 2022.

N Elhage, N Nanda, C Olsson, T Henighan, N Joseph,
B Mann, A Askell, Y Bai, A Chen, T Conerly, et al. A
mathematical framework for transformer circuits. Trans-
former Circuits Thread, 2021.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory
Valiant. What can transformers learn in-context? a case
study of simple function classes. Advances in Neural
Information Processing Systems, 35:30583-30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy yong Sohn, Kang-
wook Lee, Jason D. Lee, and Dimitris Papailiopoulos.
Looped transformers as programmable computers, 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang,
and Tieyan Liu. Efficient training of bert by progres-
sively stacking. In International conference on machine
learning, pages 2337-2346. PMLR, 2019.

Michael Hahn and Navin Goyal. A theory of emergent in-
context learning as implicit structure induction. arXiv
preprint arXiv:2303.07971, 2023.

Chi Han, Ziqi Wang, Han Zhao, and Heng Ji. In-context
learning of large language models explained as kernel
regression. arXiv preprint arXiv:2305.12766, 2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016.

11

Geoffrey Hinton. The forward-forward algorithm: Some
preliminary investigations, 2022.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi, and
Luke Zettlemoyer. Surface form competition: Why the
highest probability answer isn’t always right. arXiv
preprint arXiv:2104.08315, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language mod-
els. arXiv preprint arXiv:2106.09685, 2021.

Minqging Hu and Bing Liu. Mining and summarizing cus-
tomer reviews. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 168—177, 2004.

Kazuki Irie, Imanol Schlag, Rébert Csordas, and Jiirgen
Schmidhuber. Going beyond linear transformers with re-
current fast weight programmers. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, edi-
tors, Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?
id=ot20RiBgTal.

Gautier Izacard and Edouard Grave. Leveraging passage
retrieval with generative models for open domain question
answering. arXiv preprint arXiv:2007.01282, 2020.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hos-
seini, Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Ar-
mand Joulin, Sebastian Riedel, and Edouard Grave. At-
las: Few-shot learning with retrieval augmented language
models. Journal of Machine Learning Research, 24(251):
1-43, 2023. URL http://Jmlr.org/papers/
v24/23-0037.html.

Hui Jiang. A latent space theory for emergent abilities in
large language models. arXiv preprint arXiv:2304.09960,
2023.

Haotian Ju, Dongyue Li, and Hongyang R Zhang. Robust
fine-tuning of deep neural networks with hessian-based
generalization guarantees. In International Conference
on Machine Learning, pages 10431-10461. PMLR, 2022.

Ananya Kumar, Ruoqgi Shen, Sébastien Bubeck, and Suriya
Gunasekar. How to fine-tune vision models with sgd,
2022.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. Scalable agent align-
ment via reward modeling: a research direction. arXiv
preprint arXiv:1811.07871, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. arXiv
preprint arXiv:2104.08691, 2021.

https://aclanthology.org/2022.emnlp-main.661
https://aclanthology.org/2022.emnlp-main.661
https://openreview.net/forum?id=ot2ORiBqTa1
https://openreview.net/forum?id=ot2ORiBqTa1
http://jmlr.org/papers/v24/23-0037.html
http://jmlr.org/papers/v24/23-0037.html

Trainable Transformer in Transformer

Dongyue Li and Hongyang Zhang. Improved regulariza-
tion and robustness for fine-tuning in neural networks.
Advances in Neural Information Processing Systems, 34:
27249-27262, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimiz-
ing continuous prompts for generation. arXiv preprint
arXiv:2101.00190, 2021.

David Lindner, Janos Kramar, Matthew Rahtz, Thomas
McGrath, and Vladimir Mikulik. Tracr: Compiled trans-
formers as a laboratory for interpretability. arXiv preprint
arXiv:2301.05062, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krish-
namurthy, and Cyril Zhang. Transformers learn short-
cuts to automata. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=DedFYqgjFue?Z.

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta,
Tenghao Huang, Mohit Bansal, and Colin A Raffel. Few-
shot parameter-efficient fine-tuning is better and cheaper

than in-context learning. Advances in Neural Information
Processing Systems, 35:1950-1965, 2022.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengx-
iao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally
across scales and tasks. arXiv preprint arXiv:2110.07602,
2021.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu
Ma. One step of gradient descent is provably the optimal
in-context learner with one layer of linear self-attention.
arXiv preprint arXiv:2307.03576, 2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex
Damian, Jason D. Lee, Danqgi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes.
In Thirty-seventh Conference on Neural Information Pro-

cessing Systems, 2023. URL https://openreview.

net/forum?id=Vota6rFhBQ.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. arXiv preprint
arXiv:2301.05217, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. In-
context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

12

Bo Pang and Lillian Lee. A sentimental education: Sen-
timent analysis using subjectivity summarization based
on minimum cuts. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics
(ACL-04), pages 271-278, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class rela-
tionships for sentiment categorization with respect to rat-
ing scales. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL’05),
pages 115-124, 2005.

Jorge Perez, Pablo Barcelo, and Javier Marinkovic. Atten-
tion is turing-complete. Journal of Machine Learning
Research, 22(75):1-35, 2021. URL http://jmlr.
org/papers/v22/20-302.html.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Jorge Pérez, Javier Marinkovi¢, and Pablo Barcelé. On
the turing completeness of modern neural network ar-
chitectures. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=HyGBdoOgFm.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485-5551, 2020.

Sashank J Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar
Krishnan, Satyen Kale, Seungyeon Kim, and Sanjiv Ku-
mar. Efficient training of language models using few-shot
learning. 2023.

Nikunj Saunshi, Sadhika Malladi, and Sanjeev Arora.
A mathematical exploration of why language mod-
els help solve downstream tasks. arXiv preprint
arXiv:2010.03648, 2020.

Teven Le Scao, Angela Fan, Christopher Akiki, EI-
lie Pavlick, Suzana Ili¢, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Francois Yvon,
Matthias Gallé, et al. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022.

Benjamin Scellier and Yoshua Bengio. Equilibrium propa-
gation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuro-
science, 11:24, 2017.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear
transformers are secretly fast weight memory systems.
CoRR, abs/2102.11174, 2021. URL https://arxiv.
org/abs/2102.11174.

https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=Vota6rFhBQ
https://openreview.net/forum?id=Vota6rFhBQ
http://jmlr.org/papers/v22/20-302.html
http://jmlr.org/papers/v22/20-302.html
https://openreview.net/forum?id=HyGBdo0qFm
https://openreview.net/forum?id=HyGBdo0qFm
https://arxiv.org/abs/2102.11174
https://arxiv.org/abs/2102.11174

Trainable Transformer in Transformer

Noam Shazeer. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic compositional-
ity over a sentiment treebank. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1631-1642, 2013.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. Roformer: Enhanced trans-
former with rotary position embedding. arXiv preprint
arXiv:2104.09864, 2021.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Ja-
son Wei, Xuezhi Wang, Hyung Won Chung, Dara Bahri,
Tal Schuster, Steven Zheng, et al. Ul2: Unifying lan-
guage learning paradigms. In The Eleventh International
Conference on Learning Representations, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al.
Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Johannes von Oswald, Eyvind Niklasson, Maximilian
Schlegel, Seijin Kobayashi, Nicolas Zucchet, Nino Scher-
rer, Nolan Miller, Mark Sandler, Max Vladymyrov, Raz-
van Pascanu, et al. Uncovering mesa-optimization algo-
rithms in transformers. arXiv preprint arXiv:2309.05858,
2023.

Boxin Wang, Wei Ping, Peng Xu, Lawrence McAfee, Zihan
Liu, Mohammad Shoeybi, Yi Dong, Oleksii Kuchaieyv,
Bo Li, Chaowei Xiao, Anima Anandkumar, and Bryan
Catanzaro. Shall we pretrain autoregressive language
models with retrieval? a comprehensive study. In
Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7763-7786,
Singapore, December 2023a. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.

482. URL https://aclanthology.org/2023.

emnlp-main.482.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. Interpretabil-
ity in the wild: a circuit for indirect object identifica-
tion in GPT-2 small. In NeurlPS ML Safety Workshop,
2022. URL https://openreview.net/forum?
id=rvi3wa768B-.

13

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large
language models are implicitly topic models: Explaining
and finding good demonstrations for in-context learning.
arXiv preprint arXiv:2301.11916, 2023b.

Colin Wei, Yining Chen, and Tengyu Ma. Statistically
meaningful approximation: a case study on approx-
imating turing machines with transformers. CoRR,
abs/2107.13163, 2021. URL https://arxiv.org/
abs/2107.13163.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like
transformers. In International Conference on Machine
Learning, pages 11080-11090. PMLR, 2021.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Anno-
tating expressions of opinions and emotions in language.
Language resources and evaluation, 39:165-210, 2005.

Noam Wies, Yoav Levine, and Amnon Shashua. The
learnability of in-context learning. arXiv preprint
arXiv:2303.07895, 2023.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and
Tengyu Ma. An explanation of in-context learning as
implicit bayesian inference. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=RdJVFCHjUMI.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and
Karthik Narasimhan. Self-attention networks can pro-
cess bounded hierarchical languages. arXiv preprint
arXiv:2105.11115, 2021.

Biao Zhang and Rico Sennrich. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 32, 2019.

Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun
Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hongsheng Li,
and Yu Qiao. Llama-adapter: Efficient fine-tuning of
language models with zero-init attention. arXiv preprint
arXiv:2303.16199, 2023a.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained
transformers learn linear models in-context. arXiv
preprint arXiv:2306.09927, 2023b.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level
convolutional networks for text classification. Advances
in neural information processing systems, 28, 2015.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhao-
ran Wang. What and how does in-context learning learn?
bayesian model averaging, parameterization, and general-
ization. arXiv preprint arXiv:2305.19420, 2023c.

https://aclanthology.org/2023.emnlp-main.482
https://aclanthology.org/2023.emnlp-main.482
https://openreview.net/forum?id=rvi3Wa768B-
https://openreview.net/forum?id=rvi3Wa768B-
https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI

Trainable Transformer in Transformer

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Pree-
tum Nakkiran. What algorithms can transformers
learn? a study in length generalization. arXiv preprint
arXiv:2310.16028, 2023.

14

Trainable Transformer in Transformer

Contents
1 Introduction
2 Design Considerations

2.1 InputstruCture o o e e e e e e e e e e e e e e e

2.2 Read and write access to auxiliarymodel

Efficient Forward Propagation
3.1 Stackingand Sharding
3.2 Efficient AgEregation e e e e e

Simulated Gradient
4.1 First-order approXimations i i e e e e

4.2 Fuzzy backpropagation via stop gradients

Experiments
5.1 Setting: N-step Fine-Tuning e
5.2 Case Study: Language Modeling L

5.3 Case Study: In-Context Learning L e

Related Work

Discussion

Additional related works

Notations

B.1 Simulating Multiplication from (Akyurek et al., 2022) L oo

Linear layer

C.l Hgp-splitoperation o o 0ot e e e

Self-attention layer

D.1 Proofs of theorems and gradient definitions oL o

Layer normalization
E.1 Additional definitions

E.2 Proof of theorems and gradient definitions L

Activation layer

F.1 Proofsoftheorems e

o)}

9 9 9 e

16

16
20

20
21

23
28

32
34
34

36

Trainable Transformer in Transformer

G Language model head 39
H Parameter sharing 40
I Additional modules 40
I.1 Root mean square normalization (RMSnorm) L 40
L2 Attention variants e 40
1.3 Gated linear units (GLUS) e 41
J Construction of other variants of pre-trained models 43
K Experiments 44

Brief overview of the appendix

In Appendix A, we report few additional related works. In Appendix B, we present all the important notations used to
present the design of TINT. In Appendices C to F, we present the simulation details of all operations on linear, self-attention,
layer normalization, and activation layers respectively for an auxiliary model. In Appendix G, we present the details for
simulating loss computation with the language model head of the auxiliary model. In Appendix I, we discuss simulation of
additional modules necessary to simulate transformer variants like LLaMA (Touvron et al., 2023) and BLOOM (Scao et al.,
2022). Finally, in Appendix K, we discuss the deferred experimental details from the main paper.

A. Additional related works

Interpretability: Mechanistic interpretability works reverse-engineer the algorithms simulated by these models (Elhage
etal., 2021; Olsson et al., 2022; Wang et al., 2022; Nanda et al., 2023; Chughtai et al., 2023; Conmy et al., 2023). These
works study local patterns, e.g. activations and attention heads, to derive interpretable insights. Other works (Weiss et al.,
2021; Lindner et al., 2023) use declarative programs to algorithmically describe transformer models. Zhou et al. (2023)
use these to explain task-specific length generalization of transformer models.

Alternative Explanations for ICL: Some works study ICL using a Bayesian framework. Xie et al. (2022) model pretraining
data as a mixture of HMMSs and cast ICL identifying one such component. Hahn and Goyal (2023) later modeled language
as a compositional grammar, and propose ICL as a composition of operations. (Zhang et al., 2023c; Jiang, 2023; Wang et al.,
2023b; Wies et al., 2023) further strengthen this hypothesis by generalizing the underlying latent space. On the other hand,
careful experiments in Chan et al. (2022) show that data distributional properties (e.g. Zipf’s law) drive in-context learning
in transformers.

Transfer learning: Our construction uses a pre-trained model to initialize a larger transformer, which is similar to several
other more empirically oriented works (Gong et al., 2019; Reddi et al., 2023).

B. Notations

For simplicity, we repeat notations from the main paper. Let D denote the embedding dimension for a token and 7" denote
the length of an input sequence. I denotes the number of attention heads. With the exception of contextual embeddings,
we use subscripts to indicate if the quantity is from TINT or from the auxiliary model. For example, D, refers to the

embedding dimension and Dy, refers to the TINT embedding dimension. For contextual embeddings, we use ef) € RPsm

to denote activations in TINT and ac,gé) € RPw to denote activations in the auxiliary model, where / is the layer and is the
sequence position. When convenient, we drop the superscript that represents the layer index and the subscript that represents
the position index. For a matrix A, a; refers to its jth row, and for any vector b, b; refers to its jth element. However, at a
few places, for typographical reasons, for a matrix A, we have also used (A); to refer to its jth row, and for any vector b,

(b); to refer to its jth element. TINT uses one-hot positional embeddings {p;™T € R}, 1 .

16

Trainable Transformer in Transformer

Table 3: Number of parameters of TINT for the forward, backward, and gradient update operations on various modules.
For simplicity, we have ignored biases in the following computation. We set S = 4, i.e. stack 4 weights in each prefix
embedding. We set Hg,, = 12 for OPT-125M and Hg,, = 16 for the other models, Dg,, = 4Dy« for all the models,
and Ty = Thx + K, with Tyux = 2048 for OPT models, and K = Dy /4. @ = 4Qspiit + 3Tsim Dsim/ Hgim, Where
Qsplit = ﬁ(Dsim)2 + Hgim Dsim, denotes the number of parameters in a TINT Linear Forward module (Section 3).

Module Size
Module Name Forward Backward Descent Total
Linear layer Q Q Q 3Q
Layer norms Q Q + 2Dgm Hgim Q 3Q + 2Dgm Hgim
Self-Attention 2Q 2Q 2Q 6Q
Activation Qsplit 2DsimHsim 0 Qsplit + 2l)siml—lsim
Self-Attention block 4Q 4Q + 2Dgm Hgim 4Q 12Q + 2Dgm Hgim
Feed-forward block 3Q + Qspiit 3Q + 4Dgm Hgim 3Q 9Q + 4DgmHgim
Transformer block 7Q + Qsplit 7Q + 6 Dgim Hgim 7Q 21Q + 6Dgim Him + Qspit
Transformer TQL + LQspiit (7Q + 6Dgim Hgim) L TQL (21Q + 6Dgim Hsim + Qsprit) L
OPT-125M 0.4B 0.4B 0.4B 1.2B
OPT-350M 1.2B 1.1B 1.1B 3.4B
OPT-1.3B 3.7B 3.6B 3.5B 10.8B
OPT-2.7B 7.4B 7.2B 7.2B 21.8B

We differentiate the parameters of the auxiliary model and TINT by using an explicit superscript TINT for TINT parameters,
for example, the weights of a linear layer in TINT will be represented by WT™NT, We use two operations throughout:
SPLIT, and VECTORIZE. Function SPLIT;, : R¢ — R"*14/] takes an input & € R and outputs H equal splits of x, for
any arbitrary dimension d. Function VECTORIZE : R"*¢ — R concatenates the elements of a sequence {x; € Rd}ig h
into one single vector, for any arbitrary d and h.

Auxiliary model’s self-attention We first start with the definition of a single head self-attention layer for the auxiliary
model. The definition can be easily extended to a multi-head self-attention layer. A self-attention layer first computes the
query, key, and value vectors at each position by token-wise linear transformations of the input embeddings. The query and
the key vectors are used to compute pairwise self-attention scores. These scores are then used to linearly combine the value
vectors.

Definition B.1 (Auxiliary model softmax self-attention). A self-attention layer with parameters { Wy, Wi, Wy, } takes a
sequence {x; }:<7,, and outputs a sequence {y; };<7,,. such that

Y = Z at U, with a; ; = softmax(Kq,);, q:=Wox,, ki=Wgx,, v, =Wy,
J

for all ¢ < Ty, and K € RTwxDPux defined with rows {k:t}tTi‘i.

TINT Attention Module We modify the usual attention module to include the position embeddings {p!™T € RTn}, . .
In usual self-attention modules, the query, key, and value vectors at each position are computed by token-wise linear
transformations of the input embeddings. In TINT’s Attention Module, we perform additional linear transformations on
the position embeddings, using parameters Wé, W7, W, and decision vectors AC AE AV € RFim decide whether to
add these transformed position vectors to the query, key, and value vectors of different attention heads. For the following
definition, we use € to represent input sequence and € to represent the output sequence: we introduce these general notations
below to avoid confusion with the notations for token and prefix embeddings for TINT illustrated in Figure 1.

Definition B.2 (TINT’s self-attention with Hyp heads). For parameters {W)™T, WNT, WINT ¢ R Dsim* Diim}|
{6, BINT oI € RPw}, {WE, Wi, WY € RTmxDin/Hin} and {29, AKX, AV e R}, TINT self-attention
with Hgy, attention heads and a function fag, : RTm — RTn takes a sequence {€; € RPn}, 7. as input and outputs

17

Trainable Transformer in Transformer

{&: e RPn}ycry,,, with
€, = VECTORIZE({ Z al M) ntn<n,), withal s = fan (K"q)");
J <Tiim
iﬂl = SPLITH(qt)h +)\Q pptTlNT’ E = SPLITH(th)h =+ /\h Ip(p;FINT,

o8 = SPLIT (vy), + \) WPpI™T.

Here, g;, k:, v; denote the query, key, and value vectors at each position ¢, computed as WgINTé\ + bTINT WiNTe, + pIINT,
and W{I™NTe, + bINT respectively. K h ¢ RTsimxDsim/Hsim ig defined with its rows as {Ef}KT for all h < Hgpy,.

sim

fattn can be either linear or softmax function.

Bounded parameters and input sequence: = We define a linear self-attention layer to be B,,-bounded, if the 5 norms of
all the parameters are bounded by B,,. Going by Definition B.2, this implies

max{[|[W, [[WR™ |, [Wo™ |} < Buy - max{[[bg™ |, [1oR™ I, [16v™]} < Bo

AW WP} < Buy max{[]A%], [IA%],.

A} € Bu.

Furthermore, we define an input sequence {e; }:<,

sim

to B,-bounded, if ||€;||, < B, for all t.

Recall from the main paper (Section 3), we used Linear TINT Self-Attention layer to represent the linear operations of
the auxiliary model. In the following theorem, we show that a linear attention layer can be represented as a softmax
attention layer that uses an additional attention head and an extra token u, followed by a linear layer. Therefore, replacing
softmax attention with linear attention does not deviate too far from the canonical transformer. We use the Linear TINT
Self-Attention layers in several places throughout the model.

Theorem B.3. For any B,, > 0, consider a B,,-bounded linear self-attention layer that returns {&}"¢*" ¢ RD 1,1
on any input {€; € RE <1, . Consider a softmax self-attention layer with 2Hy, attention heads and an additional
token u € R*Psn such that for any B,-bounded input {€; }i<T,,, it takes a modified input sequence {&i,- - - ,€r,,,u}, and
returns {€;°1"" ¢ R2Psn}, . Each modiﬁed input token &; € R?Psn is obtained by concatenating additional Os to €.
Then, for any B, > 0, and ¢ < O(”mz B5B;®), there exists Wo € RPsn*2Dsn and such a softmax self-attention layer
such that

~ t ~lin
HW softmax eimear

< OWe),

2

forallt < Ty,

Proof. Consider an input sequence {x; };<7,,. Let the attention scores of any linear head h < Hgp, in the linear atten-
tion layer be given by {aﬁ j }i<t.., at any given position ¢. Additionally, let the value vectors for the linear attention
be given by v;. To repeat our self-attention definition, the output of the attention layer at any position ¢ is given by
VECTORIZE({&"™*™", _ i), where

~l7,nearh a
E: t,j]

7 <Tsim

Under our assumption, B,, denotes the maximum ¢ norm of all the parameters in the linear self-attention layer and B,
the maximum /5 norm in the input sequence ie. max;<T,, < B,. With a simple application of Cauchy-Schwartz
inequality, we can show that max;<r,, |a; 7| <0(B% BQ) and max;<, ||1)£LH2 < O(ByB;).

sim

For e < O(T, 51;0/93;40/93540/9), we can then use Lemma B.4 to represent for each ¢, j < Ty,

h € deca 1 h
ap; = — —e 40 (€(Tsim + aw-))
v, € ' +eT2lose

:= ¢ 3softmax ({eaﬁl, ea?’Q, e ,eaﬁTS_‘m, —2log e})j -+ 0 (60'9) .

18

Trainable Transformer in Transformer

Softmax attention construction: We define u, and the query and key parameters of the softmax attention layer such that
for the first Hgpn attention heads, the query-key dot products for all the attention heads between any pairs {(&;, €;) }+,j<Ty.
is given by {eaﬁ j} h<H,,» While being —2 log € between u and any token &;, with ¢ < Tyy,. For the rest of Hyp, attention
heads, the attention scores are uniformly distributed across all pairs of tokens (attention score between any pair of tokens is
given by ﬁ).

We set the value parameters of the softmax attention layer such that at any position ¢ < Ty, the value vector is given by
VECTORIZE({e 3v;, v, }). The value vector returned for u contains all Os.

Softmax attention computation: Consider an attention head h < Hg, in the softmax attention layer now. The output of
the attention head at any position ¢ < Ty, is given by

~softmax,h __ h h h —-3,,h
e = Z softmax ({ea; |, eary, - ,eat p, ,—2log e})j € °v;
J<Tim
= Z (aﬁj +e 1+ 0(€7)) v]h.
J<Tim
This has an additional >, ;. (7! + O(e*?)) v}, compared to élinearh However, consider the output of the attention
head Hgp, + h at the same position:
~softmax, Hgm+h __ 1 h
€t T T4 Z Uy
T i< T

: ~softmaz,h _ Ty +1 zs0ftmaz, Hn+h
Hence, we can use the output matrix W to get &;°/me=" _ %efof marHinth i<ty (0t + O(e2?)) vl The

additional term O(¢%%) 37 . ! can be further shown to be O(¢%?) small with the assumed bound of ¢, since each v/ is

atmost O(B,, B,) in {2 norm with a Cauchy Schwartz inequality. O
Lemma B.4. Fore > 0, B > 0, and a sequence {a1,az,- - ,ar} with each a; € R and |a;| < B, the following holds true
foralli <T,

6—365a1

— 1 0.9

provided € < (’)(T—10/9B—20/9).

Proof. We will use the following first-order Taylor expansions:

e =1+z+ O0(z?). 4)

—1-0(). S

Hence, forany z < 1, x =~ ® — 1.

Simplifying the L.H.S. of the desired bound, we have

¢ tec _ e (1 +eai + O(€a})) (6)
Sy o €0 + e 2loEe = S o or(L+ cap + O(a2)) + e 21oge
et +a; + O(ea?
_ (ea;) .

doper(€ + Say + O(e*a?)) +1
= (7' +a; + O(ea?)) (1+ O(T)) (8)
=e 4 a;+O(T + a?Te* + a?Te + ea?) = e +a; + O("9).
We used taylor expansion of exponential function(Equation (4)) in Equation (6) to get Equation (7), and taylor expansion
of inverse function(Equation (5)) to get Equation (8) from Equation (7). Furthermore, with the lower bound assumption on e,

Syer (€2 + 3ay + O(e*a?)) can be shown to be atmost 3¢2T', which amounts to O(e2T") error in Equation (8). The final
error bound has again been simplified using the lower bound assumption on e. O

19

Trainable Transformer in Transformer

B.1. Simulating Multiplication from (Akyurek et al., 2022)

We refer to the multiplication strategy of (Akyurek et al., 2022) at various places.

Lemma B.5. [Lemma 4 in (Akyurek et al., 2022)] The Ge LU (Hendrycks and Gimpel, 2016) nonlinearity can be used to
perform multiplication: specifically,

V1/2(GeLU (z +y) — GeLU (2) — GeLU (y)) = zy + O(a® + ¢?).

Thus, to represent an element-wise product or a dot product between two sub-vectors in a token embedding, we can use a
MLP with a GeLU activation.

C. Linear layer

In the main paper, we defined the linear layer without the bias term for simplicity (Definition 3.1). In this section, we will
redefine the linear layer with the bias term and present a comprehensive construction of the Linear Forward module.

Definition C.1 (Linear layer). For a weight W € RPwXDux and bias b € RP«, a linear layer takes € R« as input
and outputs y = Wa + b.

In the discussions below, we consider a linear layer in the auxiliary model with parameters {W, b} that takes in input
sequence i, - - - ,xT,, and outputs yi, - -,y With ys = Wz, + b for each ¢t < T,. Since this involves a token-wise

aux

operation, we will present our constructed modules with a general token position ¢ and the prefix tokens {v; }.

TINT Linear Forward module Continuing our discussion from Section 3, we represent S stacked rows of W as a prefix
embedding. In addition, we store the bias b in the first prefix embedding (v1).

Using a set of S’ unique attention heads in a TINT attention module (Definition B.2), we copy the bias b to respective token
embeddings and use a TINT linear layer to add the biases to the final output.

Auxiliary’s backpropagation through linear layer For a linear layer as defined in Definition C.1, the linear backpropa-
gation layer takes in the loss gradient w.r.t. output (J,) and computes the loss gradient w.r.t. input (J).

aux X D

Definition C.2 (Linear backpropagation). For a weight W € R wx the linear backpropagation layer takes 0,, € RPu

as input and outputs 9, = W T 9,,.

TINT Linear backpropagation module This module will aim to simulate the auxiliary’s linear backpropagation. The
input embedding e, to this module will contain the gradient of the loss w.r.t. Y, i.e. Jy,. As given in Definition C.2, this
module will output the gradient of the loss w.r.t. &, given by 05, = WTé)yt.

We first use the residual connection to copy the prefix embeddings {v;} (i.e., the rows of W) from the forward propagation
module. A straightforward construction would be to use the Linear Forward module but with the columns of W stored in
the prefix tokens, thereby simulating multiplication with W . However, such a construction requires applying attention to
the prefix tokens, which increases the size of the construction substantially.

We instead perform the operation more efficiently by splitting it across attention heads. In particular, once we view the
operation as dz, = »_, (Oy,), w;, we can see that the attention score between the current token and the prefix token
containing w; must be (0,),. Using value vectors as rows of W returns the desired output. Similar to the Linear Forward
module, we shard the weights into S’ parts to parallelize across more attention heads. Please see Figure 4.

Auxiliary’s linear descent update Finally, the linear descent layer updates the weight and the bias parameters using a
batch of inputs {x; },<7,, and the loss gradient w.r.t. the corresponding outputs {0y, }t<T,,-

Definition C.3 (Linear descent). For a weight W € RPwxXDPux and a bias b € RP=x, the linear descent layer takes in a
batch of inputs {z; € R },<7, and gradients {9, € RD },<7, and updates the parameters as follows:

WeW-=n> oyz/; beb-nd 0

t<Tux t<Tux

20

Trainable Transformer in Transformer

RBDaux RDauX/Q R2DPaux
Iy
(Qyi) (1) :Vé,é
(Oy+)3 0 |;
0 . wy Multi
(9Y4) Dawa—1] x 3 0 V;I,% head WTayt
(((;)Yt)2 15t token “Ifg Attn.
(yf)4 ng
: |
(0Yt) Dgu / X3 15t token
Query Key Value

Figure 4: TINT simulates the backward pass of a linear layer as a H-head attention layer (H = 6 pictured), with the gradient
of the loss w.r.t. linear layer output (Jy,) as the query, the positional one-hot vector of prefix embeddings as the key, and
the parameters of the auxiliary model stored in the prefix embeddings as the value. Similar to the Linear Forward module
(Figure 2), we distribute the dot product computations across all attention heads by sharding the vectors into S’ (S’ = 3
here) parts. We omitted the identical transformation for query, and value matrices, and permutation-based transformation for
key matrix for illustration purposes.

TINT Linear descent module The input embedding e, to this module will contain the gradient of the loss w.r.t. y;, i.e.
0

Yt

As in the Linear backpropagation module, the prefix tokens {v; } will contain the rows of W and b, which have been copied
from the Linear forward module using residual connections. Since, in addition to the gradients, we also require the input
to the linear layer, we will use residual connections to copy the input {x;} to their respective embeddings {e; }, from the
Linear Forward module. As given in Definition C.3, this module will update W and b using the gradient descent rule.

Focusing on w;, the descent update is given by w; <— w; — 1), (0y,); x:. For the prefix token v; that contains w;, the
update term —n), (Oy,), T can be expressed with an attention head that represents the attention between the prefix token
v; and any token e; with score (0,), and value —nax;. The residual connection can then be used to update the weights w;
in vj.

For the bias b, the descent update is give by b <— b —n >, 0,,. With b present in v;, we use one attention head to represent
the attention score between prefix token v; and any token e; as 1, with the value being —nd,, . The residual connection can
then be used to update the weights b in v .

The above process can be further parallelized across multiple attention heads, by sharding each weight computation into S’
parts. Please see Figure 5.

C.1. Hgn-split operation

We leverage local structure within the linear operations of TINT to make the construction smaller. We build two Hjjp,-split
operations to replace all the linear operations. We use dgjy, to denote Dy, / Hgim in the following definitions.

Definition C.4 (Split-wise Hp-split Linear operation). For weight and bias parameters WTNT g RHiim X chinXdim | BTINT ¢
RHsm>dsm _ this layer takes in input e € RPs» and returns € = VECTORIZE(S + B™T), with S € RHsmxdim defined with
rows {W’;‘I‘INTSPLITHsim (e)h}hSHsim °
Definition C.5 (Dimension-wise Hgp-split Linear operation). For weight and bias parameters WTNT ¢
Rbsim X Him X Him | BTINT ¢ Résim* Huim this layer takes in input e € RPsn, defines § € Ré%m*Hin with columns
{SpLiTy,, (€)n}h<m,,, and returns € = VECTORIZE((S + BT™T)T), where § € R%in*Hin j5 defined with rows
{WTINTSTINT} -
d d d<d

sim *

We find that we can replace all the linear operations with a splitwise Hg,-split Linear operation followed by a dimensionwise
Hgm-split Linear operation, and an additional splitwise Hgp,-split Linear operation, if necessary. A linear operation on

21

Trainable Transformer in Transformer

RSDMX RDaux/Z
(Oyih (1)
(Oye)3 0
(DYI):D,,,,,—I %3 :
(9y2)s :
(0y+)s
@Y0)p...] X3
t™ token
Key Query

t™h token

Value

Multi
head
Attn.

- _(0ye)ix;
t

-1y (Qyhx;
t

® [-nd (Oyx}

t

=N Z(a}’t)zxfl
t

=1 Z(3Yt>zx[2,
t

0> (9y)ox
t

@

—wi—
—wi—
—wi—

1
—wy—

Wi < Wy — WZ(3Yt)1Xt
t

W2 < Wo — UZ(3YI)2XL
t

Figure 5: TINT computes the parameter gradients for a linear layer as a H-head attention layer (H = 6 pictured), with the
gradient of the loss w.r.t. linear layer output (Jy,) as the query, the positional one-hot vector of prefix embeddings as the key,
and the input to the linear layer (x,) as the value. The auxiliary model parameters in the prefix embeddings are then updated
using a residual connection. Similar to the Linear Forward module (Figure 2), we distribute the dot product computations
across all attention heads, by sharding the vectors into S’ (S’ = 3 here) parts. We omitted the identical transformation for
query, and value matrices, and permutation-based transformation for key matrix for simplicity.

Dsim-dimensional space involves Dfim parameters, while its replacement requires Dfim /Hgm + 2Dgjm Hgy parameters,

effectively reducing the total number of necessary parameters by Hgip,.

We motivate the Hgn,-split linear operations with an example. We consider the Linear Forward module in Figure 2 for
simulating a linear operation with parameters W € RPw*Dax and no biases. For simplicity of presentation, we assume
Dayx is divisible by 4. We stack 2 rows of weights per prefix embedding. We distribute the dot-product computation across
the Hg,, = 6 attention heads, by sharding each weight into 3 parts. Since we require to have enough space to store all the
sharded computation from the linear attention heads, we require Dy, = 3D,ux (We get 3 values for each of the D,,;x weights
in W). For presentation, for a given vector v € RPax we represent SPLIT3(v); by viforalll <i< 3.

Now, consider the final linear operation responsible for combining the output of the attention heads. The output, after the
linear operation, should contain W x; in the first D,,x coordinates. At any position ¢, if we stack the output of the linear
attention heads as rows of a matrix S; € R sm > Dsn/Him e get

<w%>$t1> <w?1>’$%> <w51;7$t1> ' <w1Daux—17wt1>
('wi,w? <w§7xz> <w§,m§> ! 2Daux—17w§>
S, = (w%,w? <w?{,w§> (w?,w§>) Dfux—lvift>
<w27$t> <w4’wt> <w67wt> ’ < Doy’ t>
<w§7wt2> <w27$§> <w(257mt2> ' < 2Daux7m%>
(wi,xf) (wixf) (wizf) - (wh,,. x?)

Note that for each j < D,u, we have (w;, x¢) =
sum the relevant elements in each column to get

3 P . L .
> i—1{wj, @y). Thus, with a column-wise linear operation on S}, we can

Stcol _
(w1, x:) (ws,xy) (wp,, /21, %¢) 0 0 e 0
(we,) (wy,Ts) (wp,, /2, Tt) 0 0 e 0
0 0 0 (WD, /241, ®1) (Wp,, /213, Tt) (WD, -1, %)
0 0 0 (Wp,, /242, Tt) (WD, /244, Tt) (wp,,, Tt)
0 0 0 0
0 0 0 0 0 0

22

Trainable Transformer in Transformer

Linear Forward s Wth—l] WQXt] Woxi| - - -
Module (Figure 2)
Query
Xe—1| |Xt| [Xt+1] .- . -
oo [Wrexetl IWEXY WX - - - Multihead {ye}i2y
K Attn.
ey
€t 1 € €441
. Evatl] ENVX,] (vatﬂ] .
Value

Figure 6: TINT simulates the forward pass of a self-attention layer of the auxiliary model with a Linear Forward module
(Figure 2) and a TINT softmax attention layer (Definition B.2). The Linear Forward module computes the query, key, and
value vectors using a Linear Forward module on the current embeddings, changing the prefix embeddings to correspond to
Wq, Wi, and W respectively.

A row-wise linear operation on S¢°! can space out the non-zero elements in the matrix and give us

S:Ow —
(wy, xy) 0 (w3, @) 0 o {wp,, /-1, %) 0
0 (wa, x4) 0 (wy,) e 0 (wp,, /2, Tt)
(wp,, /241, Te) 0 (Wp,, /243, Tt) 0 o (WD -1, Tr) 0
(Wp,, /242, Tt) 0 (Wp,, /244, Tt) - 0 (Wp,,, Tt)
0 0 - 0 e 0 0
0 0 . 0 .. 0 0

Finally, a column-wise linear operation on S;°" helps to get the non-zero elements in the correct order.

Sv;:ol _
(w1,) (wa,) (w3,) (wy,) T <wa/2—1, x;) <’me.X/27 xy)
(Wp, /241, Tt) (WD 242, %1) (WD, 248, @) (WD, 244:®1) -+ (WD —1,%:) (Wb, Tr)
0 0 0 0 e 0 0
0 0 0 0 0 0
The desired output is then given by VECTORIZE({E?Z;}}JD;“{), which contains Wz, in the first Dy, coordinates. The

operations that convert S; to S¢° and S7°% to S7°" represents a split-wise 6-split linear operation, while the operation
that converts S°! to S7°% represents a dimension-wise 6-split linear operation. A naive linear operation on the output
of the attention heads would require D? parameters, while its replacement requires D2 /6 parameters to represent a
dimension-wise 6-split linear operation, and an additional 12Dy;,, parameters to represent the split-wise 6-split linear
operations.

D. Self-attention layer

We first introduce multi-head attention, generalizing single-head attention (Definition B.1).

Definition D.1 (Auxiliary self-attention with H,, heads). For query, key, and value weights W, Wy, Wy, € RPuxX Dus
and bias bg, by, by € RDPax | a self-attention layer with H,,, attention heads and a function fa¢n : RTr — RTwx takes a

23

Trainable Transformer in Transformer

[VVQXt,I] [WQX] WQXLH]
Multi

ayt—l 0yt 8yt+1 head
Woxi1 [|[Woxe | [Woxis s | Wexa| | W | |[WrXesa| -« - Attn. SR KA ANY ovy |0vig1| - - -
Ki

(x2)

Query

Wirxi—1| [Wexe| | WrXep1

€1 € €141 t '[0Yt—1] [aytJ [aYtJrl] e
Value

Figure 7: The gradient w.r.t. the value vectors {0,, } (Definition D.2) forms the integral component for both TINT self-
attention backward and descent update modules. TINT computes {0y, } using a softmax attention and a linear attention layer.
We first use residual connections to copy the query and key vectors to the current embeddings from the TINT Self-attention
Forward module (Figure 6). The softmax attention layer re-computes the attention scores {aﬁ j} between all token pairs
{(t,7)} and stores them in the token embeddings. The linear attention layer uses the one-hot position embeddings of the
input tokens as the query to use the transposed attention scores {a,} for all token pairs {(¢, j)} and use the gradients {3, }
as the value vectors to compute {9, }.

ey

sequence {x; € RPw}, o1 asinput and outputs {y; };<7,,, with

y, = VECTORIZE({ Y af jvl}ucn,,)-)
jSTauX

aﬁ ; 1s defined as the attention score of head / between tokens at positions ¢ and j, and is given by

aﬁj = softmax(K"q/");. (10)

Here, g, k:, v; denote the query, key, and value vectors at each position ¢, computed as Wox: + bg, Wi x: + bi, and
Wy, + by respectively. In addition, g/, k!, v} denote SPLIT,, (q:)n, SPLITy,, (K¢)n, and SPLITy,, (v;);, respectively
for all t < Ty, and b < Hyyx. K" € RTwXDax g defined with its rows as {k,’}}tSTm for all h < Huy.

In the discussions below, we consider a self-attention layer in the auxiliary model with parameters
{Wo,bg, Wi, b, Wy, by} that takes in input sequence a1, - - - , &7, and outputs ¥y, - - , Y., with {g;}/} given by
(9). As in the definition, g, k:, v; denote the query, key, and value vectors for position . We will use TINT self-attention
modules in order to simulate the operations on the auxiliary’s self-attention layer. To do so, we will need Hgy,, > Hayx in the

corresponding TINT self-attention modules.

TINT Self-attention forward module The input embedding to this module e; at each position ¢ will contain x; in its
first D,,x coordinates. The self-attention module can be divided into four sub-operations: Computation of (a) query vectors
{@:}i<r, (b) key vectors {k; }+<r, (c) value vectors {v; }<r, and (d) {y: }+<7 using (9). Please see Figure 6.

* Sub-operations (a): The computation of query vector q; := Wgx; + bg at each position ¢ is a linear operation
involving parameters W, bg. Thus, we can first feed in the stacked rows of W and bg onto the prefix embeddings
{v;}. We use a Linear Forward module (Appendix C) on the current embeddings and the prefix embeddings to get
embedding e at each position ¢ that contains g; in the first Dy coordinates.

* Sub-operations (b, ¢): Similar to (a), we feed in the stacked rows of the necessary parameters onto the prefix embeddings
{v,}, and call two Linear Forward Modules (Appendix C) independently to get embeddings e, and e? containing k;
and v, respectively.

We now combine the embeddings e?, ef, and e} to get an embedding e; that contain g, k¢, v; in the first 3Dy«
coordinates.

24

Trainable Transformer in Transformer

* Sub-operation (d): Finally, we call a TINT self-attention module (Definition B.2) on our current embeddings {e;}<r
to compute {y; }:<7. The query, key, and value parameters in the self-attention module contain sub-Identity blocks
that pick out the relevant information from gy, k;, v, stored in e;.

Remark: Sub-operations (a), (b), and (c) can be represented as a single linear operation with a weight W ¢ R3Daun X Dax
by concatenating the rows of {Wg, Wi, Wy, } and a bias b € R3P«x that concatenates {bg, by, by }. Thus, they can be
simulated with a single Linear Forward Module, with W b fed into the prefix embeddings. However, we decide to separate
them in order to limit the number of prefix embeddings and the embedding size. E.g. for GPT-2, D,,x = 768. This demands
either a 3x increase in the embedding size in TINT or a 3x increase in the number of prefix embeddings. Hence, in order to
minimize the parameter cost, we call Linear Forward Module separately to compute g;, k;, and v; at each position ¢.

Aucxiliary’s backpropagation through self-attention For an auxiliary self-attention layer as defined in Definition D.1,
the backpropagation layer takes in the loss gradient w.r.t. output ({9y, }+<r,,) and computes the loss gradient w.r.t. input
token ({ Oz, }t<T.,)-

Definition D.2. [Auxiliary self-attention backpropagation] For query, key, and value weights W, Wi, Wy, € RPuxX Dus
and bias bg, by, by € RPw | the backpropagation layer corresponding to a self-attention layer with H,, attention heads
takes a sequence {0y, € RP»}, o7 and {z, € RPw},1 asinput and outputs {9z, };<7,,,, with

O, = W 0q, + Wi Ok, + Wy 0y, with
O, = VECTORIZE({> _ a}';((9,n) "ol [k} — Zat],k 1Y h<m);
J

Ok, = VECTORIZE({Zaj tqj [(Oy Za ,v I h<Ha);

J

O, = VECTORIZE({Z a;tayy Yhe<m,)
j

Here, g, k;, and v, refer to query, key, and value vectors at each position ¢, with the attention scores {af}, j}t, < T h< Hos -

Complexity of true backpropagation The much-involved computation in the above operation is due to the computation
of 0q, and Oy, at each position ¢. For the following discussion, we assume that our current embeddings e; contain g, k¢, vy,
in addition to the gradient d,,,. The computation of g, (and similarly O,) at any position ¢ involves the following sequential
computations and the necessary TINT modules.

{{0yp) TV} } i<t I n< i, with a TINT linear self-attention module (Definition B.2), with atleast Hoyy attention heads

aux

that represent the attention score between e; and any other token e;, by {(J,,) v} MY < Ho -

* Attention scores {af, ;j Yh<H,,» Which requires a TINT softmax self-attention module (Definition B.2), with at least
H i heads, that uses the already present {q:, k¢, v:} in the current embeddings e; to re-compute the attention scores.

* {af ;(9yr) "} }n<,, forall j < Ty by multiplying the attention scores {af'; }n< ,,, With {(9yn) "0} }n<,, using

an MLP layer (Lemma B.5). Furthermore, {3, a} ;k"} <, needs to be computed in parallel as well, with additional
attention heads.

* 0,, with a TINT linear self-attention module (Definition B.2), with atleast H,, attention heads that repre-
sent the attention score between any token e; and e; by {a};(9,) v} n<m,,. With value vectors given by

{k? Z]' atﬂ k] }hSHaux-

The sequential computation requires the simulator to store {{J,»)T'v? }j< T Y h< Ho and {af! ;jh<H,, in the token embed-
ding e;, which requires an additional 27,4 H,,x embedding dimension size. To avoid the much-involved computation for
the true gradient propagation, we instead only use the gradients w.r.t. v;.

25

Trainable Transformer in Transformer

{6;{75 = W‘t avt}zgf

Linear Backward Module

v‘1v,1 .
2 .
Wy .
|3
Wy o
TN R Y <o |0V |0V [0V
V‘l’vz Vleaut
2
"‘I’Va W%/,DM
3 3
Wyo WY Daus €1 € €ty1
| |
\41 Vk

Figure 8: TINT simulates the backward pass of a self-attention layer of the auxiliary model using a Linear Backward module
(Figure 4). The input embeddings contain the gradient of the loss w.r.t. the value vectors (0,,) computed in Figure 7. The
value matrix W7y, is encoded in the prefix embeddings. We call the Linear Backward module on this sequence.

Approximate auxiliary self-attention backpropagation We formally extend the definition of approximate gradients
{9, }12 from Definition D.3 to multi-head attention in Definition D.3.

Definition D.3. For query, key, and value weights Wg, Wy, Wy, € RPwxDux and bias bg, b, by € RP=, the
approximate backpropagation layer corresponding to a self-attention layer with H,,, attention heads takes a sequence
{0y, € RPw},_p and {x; € RP=}, o1 as input and outputs {Jy, := VECTORIZE({Ogn }n< Hyy) H<Ty,» With

O, = W 0y,, where 0y, = VECTORIZE({> _ a0y }n<m,,)
5,0yl Th<
j

Here, q,, k;, and v, refer to query, key, and value vectors at each position ¢, as defined in Definition D.1, with the attention
scores {a}! ; }¢ j< Ty h<H,, defined in Equation (10).

In the upcoming theorem, we formally show that if on a given sequence {x; }:<7,,, for all token positions all the attention

heads in a self-attention layer primarily attend to a single token, then the approximate gradient J,, is close to the true
gradient J,, at each position ¢.

Definition D.4 (c-hard attention head). For the Self-Attention layer of H,, heads in Definition D.1, on a given input
sequence {:nt}tT;“i, an attention head h < H, is defined to be £-hard on the input sequence, if for all positions ¢ < T,
there exists a position ty < T, such that aiﬁto >1—-c.

Theorem D.5. With the notations in Definitions D.I to D.3, if on a given input sequence {:L’t}tTg’{, with its query, key, and

value vectors {q, k¢, vt}tTg‘{, all the H,,, attention heads are c-hard for some € > 0, then for a given sequence of gradients

{0y},
10g, Nl + |0k, 11, < O(eB2BLBy), forallt < Ty,

where B, = max¢<t,, ||Tt|ls B,
max{[|Wk |y, [Wall,, [Wvlly, [[bv s, [0k |y, [[bv |5}

= maXtSTa

Oy, |lo» and B, =

ux

This implies, for each position t,

a/\wt _awt

< O(eB2B:B,).
2

26

Trainable Transformer in Transformer

WV — WV — n28vtxtT
t

Linear Descent Module

1
V1 .
Iy .
Wy .
Wl'?/.l 8Vt_ 1 th 8Vt+1
I ’ o o o 1 | o o o
“l’xl/z wy, P Xe—1f| Xt | | Xe41
2
"TV? WY Do,
“i%/g WSV’IDW €1 et ert1
Vi Vk

Figure 9: TINT simulates the backward pass of the self-attention layer in the auxiliary model by employing the Linear
Descent module (Figure 5). The input embeddings consist of the gradient of the loss with respect to the value vectors (0y,)
computed in Figure 7. Additionally, we incorporate a residual connection to copy the input from the Self-attention Forward
module (Figure 6) into ;. Before invoking the Linear Descent module, we represent the value parameters (Wy,) into the
prefix embeddings. TINT simulates the backward pass of a self-attention layer of the auxiliary model using a Linear Descent
module (Figure 5).

TINT Self-attention backpropagation module The input embeddings e; contain 0y, in the first Dy, coordinates. Since
we require to re-compute the attention scores {aﬁ 15 <Tun h< Hoy» W need to copy the query, key, and value vectors gy, ki,
and v; from the TINT self-attention Forward module at each position ¢. Furthermore, we use the residual connection to copy
the prefix embeddings {v; }, which contain the rows of Wy, from the TINT self-attention Forward module.

The operation can be divided into three sub-operations: Computing (a) attention scores {aﬁ j}hg m,. forall j < Tk, at

aux

each position ¢, (b) dy, from {al’ ;}4<p,, and dy,, and (c) 8/; from 0, .

» Sub-operation (a): Since, the current embeddings e; contain gy, k¢, we can simply call a self-attention attention module
to compute the attention scores {aﬁ jYn<,, forall j < T and store them in the current embeddings. We further retain
0Oy, and v, for further operations using residual connections.

* Sub-operation (b): With the current embeddings e; containing the attention scores {a,’f’ jYn<H,, forall j < T, and the
gradient 0y, , we can compute J,, using a TINT linear self-attention module with atleast H,,, attention heads, that
represent the attention scores between tokens e; and e; for any j as {a.’;’t} h<H,, and use SPLITf, (0y,) as their value
vectors.

* Sub-operation (c): And finally, the computation of 8/; is identical to the backpropagation through a linear layer, with
parameters Wy, and by-. Hence, we call a Linear backpropagation module on the current embeddings, that contain d,,,
and the prefix embeddings that contain Wy, and by, .

Separating sub-operations (a) and (b) The operation for computing J,,, in Definition D.3 looks very similar to the
computation of y; in Equation (9). However, the major difference is that instead of the attention scores being {aﬁ P Fh< Hy
between token ¢ and any token j, we need the attention scores to be {a?)t}hg H,, - Thus, unless our model allows a transpose
operation on the attention scores, we need to first store them in our embeddings and then use an additional self-attention
module that can pick the right attention scores between tokens using position embeddings. Please see Figure 8.

27

Trainable Transformer in Transformer

Auxiliary’s value descent update Similar to the complexity of true backpropagation, the descent updates for
Waq,bg, Wk, b are quite expensive to express with the transformer layers. Hence, we focus simply on updating
on Wy, by, while keeping the others fixed.

Definition D.6 (Auxiliary self-attention value descent). For query, key, and value weights Wy, Wi, Wy € R Duwx X Daux
and bias bg, by, by € RPax | the value descent layer corresponding to a self-attention layer with H,,, attention heads and
any function fagn : R7wx — RTw takes in a batch of gradients {9,, € RPw},o1 and inputs {z; € RP=}, 5 and
updates W7y, by, as follows:

Wv%Wv—nzautxz, bvebv—nZ&,t,
t<Tux t<Thux

where 9, = VECTORIZE({Y _ a0, bn<)
? J -
j

Here, v; refers to value vectors at each position ¢, as defined in Definition D.1.

TINT Self-attention descent module The input embeddings contain J,, in the first Dy, coordinates, from the TINT
self-attention backpropagation module. Furthermore, the prefix embeddings {v;} contain the stacked rows of Wy, and by,
continuing from the TINT self-attention backpropagation module.

Since we further need the input x; to the auxiliary self-attention layer under consideration, we use residual connections to
copy x; from the TINT self-attention Forward module at each position ¢.

The updates of Wy, and by are equivalent to the parameter update in a linear layer, involving gradients {9, } and input
{x;}. Thus, we call a Linear descent module on the current embeddings and the prefix embeddings to get the updated value
parameters. Please see Figure 9.

D.1. Proofs of theorems and gradient definitions

We restate the theorems and definitions, before presenting their proofs for easy referencing.

Definition D.2. [Auxiliary self-attention backpropagation] For query, key, and value weights W, Wy, Wy, € RPusxXDa
and bias bg, bi, by € RPax | the backpropagation layer corresponding to a self-attention layer with H,, attention heads
takes a sequence {0y, € RP»}, 7 and {z, € RP=},7 asinput and outputs {9z, }1<7,,,, With

aux

O, = W 0q, + Wi Ok, + Wy 0y, with

Oq, = VECTORIZE({> _ a}';((0yn) Tv}!) [k} — Zat],k D h<m);
J

Ok, = VECTORIZE({) _ df},q}'[(3,: Za] U <)i
J

h
O, = VECTORIZE({Z a0y Yh< i)
J
Here, g, k;, and v, refer to query, key, and value vectors at each position ¢, with the attention scores {aﬁ G < T B Hoy -

Derivation of gradient in Definition D.2. Recalling the definition of y, from Definition D.1,

ys = VECTORIZE({ Z aiﬁjv;’}hSHﬂ“x); agj = softmax(thf)j,
jSTﬂ“X

g =Wox, +bg ki =Wgx +bg, v,=Wyx,+by.

ql, kP, vl denote SPLITy, (q:)n, SPLITy,, (K¢)n, and SPLITg, (v;), respectively for all ¢ < Ty, and b < Hyyy.

aux

K" € RTwxDun ig defined with its rows as {k}'};<7,, forall b < Hyy.
We explain the proof for an arbitrary token position £. With the application of the chain rule, we have

_ Q4 Okt \ vy
amti(awt) 6Qf+(8 t) akt+(8wt) avt

=Wy 0q, + Wg Ok, + Wy 0y,

28

Trainable Transformer in Transformer

where the second step follows from the definitions of g, k¢, and v; respectively.

Computation of 0,,: With the SPLIT operation of g; across H,, heads for the computation of y,, the computation of

the backpropagated gradient Jg, itself needs to be split across H,. heads. Furthermore, query vector g; only affects y,,

implying %Ztt’ = 0 for any ¢’ # t. Thus, we have for any head h < H,y,, if y! represents the output of attention head A,

: h ok
given by > <y, @595

oyl
Our = (g Ot
dal
= <v’-‘,8 {1> ’L]
JSZT v gy

o ol ar)
_ h
= 2 Oy gm () an

(k! .ql)
D<€

<
, 1 9e kTt ok at) oelkiar)
= 3 o, - ge T (12)
J7 7Y (k" ,ql) h (kM ,ql)\2 h
< T Ser, et 0g; (Cpen, @2) 0

ol al) (kT al) (ki)
= E <'U;'Zvay,"> TR k;L - (k" ql) E (k" ") k;'L’ (13)
< T Yt €T Yt €) i ma \Dv<n, €Y

_ h o/,h h h L.h
= Z at7j<vj78y¢> kj — Z ay i k3

j STaux j/ STZIUX

In Equation (11), we have expanded the definition of softmax in aﬁ ;= softmax(K"q}); in order to better motivate the

derivative of aj' j WLt q. Finally, 0y, is given by VECTORIZE ({Ogn }h< iy,)-

Computation of Ji,: Continuing as the computation of J4,, we split the computation of Oy, across the H,,y attention
heads. However, unlike q;, k; affects y; for all j < T,u. For any head h < H,., we follow the chain-rule step by step to
get

-
oy" 0y aj vl
_ JINT _ 3 <Taux 750" 7
b= X Gl - X (Emtth) g
F< T t F< T t

h aa?’t h aa?vj'

J<Tuux J<Toux ' <Taux;J' #t

o (ki a))
h
= 3 b0y g () (15)

(k™ ,q")
3< T D<€ Y

h a e<k?/7Q;‘l>
F2 X Wi s as)

F< T 3" <TawxsJ’ #t # <To €

h ekt a)) h ekia;) i h
= Z@t'aayﬁ = ey | T\ e | Y 7)

(K7 (k
5 < T Dotr<T €Y Dot <Ty €
h h
h elkir ;) etk ai) h
B Z Z <vj'7ay?> (Kl qh) (Kl qh) 9 (18)
F< T §' <Touwesj’ # div<m, e Yyt €

F h h h F h _h _F
= Z <'UtLvay;?>(aj,t - (aj,t)Q)qj - Z Z <”jb’78y§‘>aj7j’ajl7tqjl

J<Tuux < Tux §' <Taux;§' #4

29

Trainable Transformer in Transformer

= E a ,'Ut E aJ J/'U 57

j S Taux

In Equation (14), we separate the inside sum into two components, since the derivative w.r.t. kJ differ for the two components,
as outlined in the derivation of Equation (17) from Equation (15), and Equation (18) from Equation (16). We have skipped a
step going from Equations (15) and (16) to Equations (17) and (18) due to typographical simplicity. The skipped step is
extremely similar to Equation (12) in the derivation of O . Finally, Ok, is given by VECTORIZE({y» }n<m,,)-

Computation of J,,,: Similar to the gradient computation of g;, the computation of 9,, needs to be split across the Hyyx
attention heads. However, like k;, v; affects y; for all j < Thux. For any head h < H,.x, we follow the chain-rule step by
step to get

}
oyl - 03 <1, 0.0V} h
=2 Gup) O = 2\ T g) = 2 iy

J<Toux

O

Theorem D.5. With the notations in Definitions D.I to D.3, if on a given input sequence {wt}t “s, with its query, key, and
value vectors {qz, k, vt}t «, all the H,,, attention heads are e-hard for some € > 0, then for a given sequence of gradients

{0y,
19a. 115+ 1k, I, < O(eBIByBy), forall t < T,

and By =

Oy,

where B, = MaX¢< T

max{|[Wk||,, IIWQHQ AWy,

By = maxg<rT,

aux

2

||bKH2v||bV|| 2

8/\% _amt

, < O(B2B}B,).

Proof of Theorem D.5. For typographical simplicity, we discuss the proof at an arbitrary position ¢. Recall the definition of
an e-hard attention head from Definition D.4. An attention head is defined to be £-hard on an input sequence {; } 1, if for
each position ¢, there exists a position ¢(such that the attention score a; 4, > 1 — ¢.

For the proof, we simply focus on dq,, and the proof for Jg, follows like-wise.

Bounds on g;: Recalling the definition of 04, from Definition D.2, we have

Oq, = VECTORIZE({> _ af' ;((Oyn) "0l)[K} = " af j k] <)
J J’

Focusing on a head h < H,yy, define 8(1? = Zj aﬁj((ay?)Tv?)[k? — Zj, aZj,k?/] and tg < T, as the token position

where the q; attends the most to, i.e. aﬁto >1—c¢cand ZKTM_].#O aﬁj < e. Then,

tl, = (120 s (@y) oDk = D a kG
j 7

2

= agto((ay) Uto)[ki%—Zaﬁj,kh Zam i))" h kh Zah ,k:h

5/
J Jj#to 9

af' 1, (D) Top) [k — Zam,kh HID T al;(0yn) "ol KD = al kR

‘ ~
9 Jj#to J 9

IN

Term1 Term?2

where the final step uses a Cauchy-Schwartz inequality. We focus on the two terms separately.

30

Trainable Transformer in Transformer

1. Term1: Focusing on ki — >~ ., af! ;, k", we have

h h ph
kto_zat,j'kj' = [|[(1 — as,)k Za”,k

7) J'#to 2
< (1= ar,) [|Kt ||, + Z 15l
i #to
< (1= au) + Y i) max] [k,
J'#to
< 2emax [k, (4

We use a Cauchy-Schwartz inequality in the second and third steps and the attention head behavior in the final step.

Hence, Term1 can now be bounded as follows:

h h h _ _h
at,to((a ”to kto E atg'k = Gyt

(Oyr) "y,

h Z b 1h
kto - at7jlk:j/)
j/

<2eHa o max &5,

In the final step, in addition to the bound from Equation (19), we use a Cauchy-Schwartz inequality to bound
|(0,) Tl

and bound the attention score af, + by L.

2. Term2: Focusing on k;‘ -2 a,}; j/k;ﬁ for any j < T,ux, we have using two Cauchy-Schwartz inequalities:

(20)

hizaﬁj/k;}/ S ||k;LH2+ ZaZj/k?/ § (1+Za?3/)rnﬁx” j
I ‘ 5

, = 2]
> J
2 2

Hence,

Z aﬁj((ay?)%f)[k? - Zaﬁj,k;ﬂ Z ag max‘ yh)Tv;-“ k? - Z aﬁj,k;ﬁ
j/

Jj#to 9 Jj#to J’

, (o,) (oma 51,)-

In the final step, in addition to the bound from Equation (20), we use a Cauchy-Schwartz inequality to bound
‘(811?)T and use the e-hard behavior of the attention head to bound

2

j#to at,y

(o) o

Combining the bounds on both terms, we have

<2 Ha ,

ot mae R, + 2= |0,

, (s,) (max 21,)-

We bound the remaining terms as follows.

< 4e Hayiz

‘ay?

< By, under the bounded assumption of the gradients.

2

 Forany j < T, we have Hk;’“ < ||k;]|, since k; = VECTORIZE({k?,}h/GHﬂux). Furthermore, from the defintion of
the key vector k;, ||k;[|, = [[Wkx; + bk ||, < [[Wk||,[|z;|l, + ||bx]|, with a Cauchy-Schwartz inequality. Under
the bounded assumptions of Wi, bx and input ;, we have ||k;[|, < B, (1 + B,).

31

Trainable Transformer in Transformer

* Similar procedure can be followed for bounding max; ||v§1 ||2

k h/

Thus, we have Hﬁq? 7

2 < de Hayth

) (maxj ||’v§"||2) (man/ 2) S 4€B12U(1 =+ Bx)QBy

Bounds on ‘ From the definitons of 8/; and O, from Definition D.3, we have

8ac _aac
t t 2

where we use Cauchy-schwartz inequality in the second step. We use the assumed bounds on ||[Wg||, , | Wk |,, and the
computed bounds on ||0q, ||, , || Ok, ||, in the pre-final step.

éim\t 78%*;

, = Wik, + Wo0q]|, < Willy [0kl + [Well, 10,1
<8B3 (1+ B,)’B, = O(¢B3 B2B,),

E. Layer normalization

Definition E.1. [Layer Normalization] Define a normalization function f : R? — R< that performs f(z) = (= — u)/o,
where /2 and o are the mean and standard deviation of x, respectively. Then, layer normalization with parameters v, b € R
takes as input € RP= and outputs y € RP=, which is computed as z = f(x),y =7 ® z + b.

Definition E.2. [Exact Gradient for Layer Normalization] Using notations in Definition E.1, given the gradient of the loss
w.r.t the output of the Layer Normalization 0,,, backpropagation computes 0, as

0 = (02 = D' D _ 0, = (02,2)2) /0 0 =700,

Exact backpropagation is expensive because (0, z) z requires using at least two sequential MLPs. We thus approximate
it with a first-order Taylor expansion, which is entry-wise close to the true gradient.

Definition E.3. [e-approximate Layer Normalization Gradient] With notations defined above, this layer takes 0y, x € R P
as input and outputs 9, = (f(x + ey ® 0y) — f(x)).

€
In the discussions below, we consider a layer normalization layer in the auxiliary model with parameters {, b} that takes in
input sequence 1, - - - , x,, and outputs yi,--- ,yr,, Withy, = v © 2z; + b; z; = f(x;) for each t < T,,. Since this

involves a token-wise operation, we will present our constructed modules with a general token position ¢ and the prefix
tokens {v; }. We will use W, as a diagonal matrix in RPaxxDax containing + on its main diagonal.

TINT Layer normalization Forward module The input embedding to this module e; will contain x; in its first D
coordinates. The layer normalization computation can be divided into two sub-operations: (a) application of f, and (b)
linear computation using -y, b. We will present a TINT module for each sub-operation.

We can represent the function f using a layer normalization operation itself, with its weight and bias parameters set as 1
and O respectively. However, since the relevant input exists only in the first D, coordinates, the operation on the first
D,yx coordinates needs to be independent of the rest of the coordinates. To do so, we instead use Group normalization
(Definition E.6) on e;, with groups of size D,x.

Now, the embedding e; contains f(x;) in its first D, coordinates. The second sub-operation can then be viewed as a
Linear Layer computation, i.e. y, = W,x; + b. Hence, we simply stack the rows of W, and b, onto the prefix tokens
{v;} and call the TINT Linear Forward module (Appendix C).

Aucxiliary’s gradient backpropagation through layer normalization = With the definition of layer normalization and the
normalization function f in Definition E.1, the auxiliary’s backpropagation operation takes in the loss gradient w.r.t. output
(0y) and computes the loss gradient w.r.t. input (Oz).

32

Trainable Transformer in Transformer

Definition E.2. [Exact Gradient for Layer Normalization] Using notations in Definition E.1, given the gradient of the loss
w.r.t the output of the Layer Normalization 0,, backpropagation computes 0, as

Daux
0 = (02 = D ' D _ 0, = (02,2)2) /0 0 =700,
i=1

Complexity of true backpropagation The above operation is computation heavy since it involves computing (a) 0,
(b) f(02), (c) (02, z)z, and (d) multiplying by a factor of % (02, z)z in itself will require two MLP layers, following
Lemma B.5. In order to reduce the number of layers, we turn to first-order Taylor expansion for approximating the above
operation.

Definition E.3. [e-approximate Layer Normalization Gradient] With notations defined above, this layer takes 0,, x € R P
as input and outputs 9 = X (f(x + €y © 0y) — f(x)).

€

The following theorem shows that the first-order gradient is a good approximation of the true gradient, and in the limit of €
tending to 0, the approximation error tends to 0 as well.

Theorem E.4. For any € > 0, and a layer normalization layer with parameters v, b € RP« for an input € RP= and
gradient 9, € R,

where o denotes the standard deviation of . Oy, 5; have been computed from x, Oy and € using Definitions E.2 and E.3.

5;—393

— 2 2
, S O(eDi2o 2 I3 19y15),

TINT Layer normalization backpropagation module The input embeddings e; contain d,, at each position ¢ in the first
D,x coordinates. Since we further need the input to the auxiliary’s layer normalization layer under consideration, we copy
x; from the TINT Layer normalization Forward module at each position ¢ using residual connections. Furthermore, residual
connections have been used to copy the contents of the prefix tokens {v; } from the Layer normalization Forward module,
which contain W, b. Recall that for ease of presentation, we use z; to represent f ().

We set € as a hyperparameter and return 5; as the output of this module. The computation of 6/9; can be divided into two
sub-operations: (a) computation of 9, := v ® d,,, and (b) computation of %(f(x + €0,,) — f(x:)). We represent each
sub-operation as a TINT module.

To compute 0,, := v © 0y, = W,0y,, We can observe that the required operation is identical to backpropagating through
a linear layer with parameters W, and b. Hence, we simply call the Linear Backpropagation module on the current
embeddings. We use residual connections to retain ; at each location ¢, and the contents of the prefix tokens {v;}.

Now, the embedding e; contains 0, and ;. In order to backpropagate through f, we first use a linear layer to compute
x; + €0, and retain ;. Following the same procedure as the Forward module, we use a Group normalization layer with
weight and bias parameters 1 and O respectively, to compute f(x; + €0,) and f(x;). Finally, we use a linear layer to
compute 1 (f(x, + €0z,) — f(x1)).

Auxiliary’s Descent update And finally, the auxiliary’s descent operation updates parameters ~y, b using a batch of inputs
{z}+<7 and the loss gradient w.r.t. the corresponding outputs {0y, }i<7.

Definition E.5 (Auxiliary’s layer normalization descent). For parameters v, b € RP=, descent update takes in a batch of
inputs {x; € RPw}, 1 and gradients {9, € RPw»}, o7 and updates the parameters as follows:

aux aux

*y%’y—nzathZt; b%bfﬁzaym

t<Thux t<Tuux
where z; represents f(x;).

The update of v involves an elementwise multiplication between d,, and z;, which requires an MLP layer (Lemma B.5).
With the prefix tokens containing the rows of W, and b, we instead consider the update of b alone with the descent update.

33

Trainable Transformer in Transformer

TINT Layer normalization descent module The input embeddings contain 0y, in the first D, coordinates. The prefix
tokens contain W.,, b, which have been copied from the Forward module using residual connections. The update of b is
identical to the auxiliary’s descent update through a linear layer. Hence, we apply a TINT Linear descent module to the
current embeddings, updating only the bias b and switching off the update to W/,

E.1. Additional definitions
We describe TINT group normalization layer below, which we use in different modules to simulate the auxiliary’s layer
normalization operations.

Definition E.6 (TINT D,,«-Group normalization). Define a normalization function f : R? — R that performs f(x) =
(x — n)/o, where p and o are the mean and standard deviation of x, respectively. Then, D,,-Group RMSnorm with
parameters yT™NT pTNT ¢ RPwx takes as input € RPs» and outputs y = VECTORIZE({y" € RP»}, .\ p. /p. |), with

yh _ ,YTINT ® f(mh) + bTINT7

where & = SPLIT p,, /D, | ()

E.2. Proof of theorems and gradient definitions

We restate the theorems and definitions, before presenting their proofs for easy referencing.
Definition E.2. [Exact Gradient for Layer Normalization] Using notations in Definition E.1, given the gradient of the loss
w.r.t the output of the Layer Normalization 0,, backpropagation computes 0, as

Dy

O = (02 — aux—lzazl (02,2)2)/0 D, =70 0y

Derivation of gradient in Definition E.2 . With the normalization function f and parameters «,b € RP= recall from
Definition E.1 that given an input & € RP=~, a layer normalization layer returns y = v ® z + b; 2 = f(x). Let y and o
denote the mean and standard deviation of x. They can be computed as

Dux Dux

1
_)2
M DdUX 72; xz’ N D'dUX ;(xl M) ’
With the chain rule, we can compute J, from Jy as follows.
0z) 0
Op = (52) 0x with 0, = (a—Z)Tay. 21

Since y = v ® z + b, we have g—g = W,, where W, represents a diagonal matrix with +y on the main diagonal. Thus,
0, = W,0y =7 © 0.

With z = f(x) = *-%, we have
0z _ 0 (z—p_10z _10p_(@—p (00
dxr Ox o 0dx o0z o? Ox
I—

— M
0
o)
== 11" —z2z' |. (22)
g (D aux

dé)a

In the final step, we require 8 an which are computed as follows.

. % € RPw with its jth element given by

onY _om _ 0 1 NR 1
ox). O0x; 0z Dy P B

34

Trainable Transformer in Transformer

. gﬁ; € RPw with its jth element given by

DauX
(80)A_ do 0 1 Z(xi_u)z
J

9z), = 9, =) |\ Do 2
D,
1 aux a T —
- (2~ 210
Yol (@ — p)? i=1

D,
1 aux T — /,14
-—— ((wju)D mu))— L,
Z aux (xz _ M)2 aux i=1

i=1
where we have re-utilized the g—g in the pre-final step.

Hence, from Equation (21),

0z

1 1
)Taz = ; <I - 19711—r — ZZT> az =
aux

We repeat Theorem E.4 for easier reference.

Theorem E.4. For any € > 0, and a layer normalization layer with parameters v, b € RP« for an input € RP= and
gradient 0, € RPux,

where o denotes the standard deviation of ®. Oy, 5; have been computed from x, Oy and € using Definitions E.2 and E.3.

5;—5%

aux

— 2 2
, < 0Dz Il 19y 15),

Proof of Theorem E.4 . With the normalization function f and parameters x, b € R, recall from Definition E.1 that
given an input & € RP=x, a layer normalization layer returns y = 7y ® z + b; 2 = f(x). Let 1 and o denote the mean and
standard deviation of &. They can be computed as

1 Daux 1 Daux
= Ti, g = €Xr; — 2.
: Daux; ’ Daux;(£ #)

We will refer to g—; from Equation (22) and the formulation of d,, from Equation (21) for our current proof. To recall, they

are

0= _ (I— L11T - zzT) , Oy = (8z)T3z.

ox o aux oz

Using a second-order Taylor expansion of the normalization function f around x, we have

9 (0f(ze)
Ti —_—
01 5 (Do >8z9d9

s+ 0, [L (o
_f($)+€ aw az o 0_3 Hazng Daux.

where xy represents x + 00, z9 = f(xp). The second step follows similar steps for computing g—; in Equation (22).
We avoid this computation since we only need to make sure that the second-order term is bounded. Furthermore, if

flx+edy) = f(x) + eag(’”)az +/O

xTr

((1,02))* - (<Ze,3z>)QZ9> 0do,

35

Trainable Transformer in Transformer

e<O (m) , we can show the £3-norm of the second-order term can be bounded by O(€2D§l{x20'_2 |0~ ||§) We

avoid this computation as well.

Thus, from the above formulation, we have

f(@+e0:) — fla) _0f(x), _ <8f(w))T b — o
z 8:1: z -

lim
e—0 € ox

Of@) _ 9z _ Ly _ 1 99T _ 4,7

The pre-final step follows from Equation (22), where

ox Oz o Dyux
symmetric. The final step follows from the gradient formulation in Equation (21). Including the error term, we have the final
bound as

) can be shown to be

< O(eD32572 |8, 13).

aux
2

Hf(w+eaz) — flz) o,

€

Using 0, = v ® Oy and a Cauchy-Schwartz inequality gives the final bound. [

F. Activation layer

Definition F.1 (Auxiliary activation). For a continuous function o, : R — R, an activation layer takes € R~ as input
and outputs Yy = oa () With y; = oue(z;) forall i < Dy

In the discussions below, we consider an activation layer in the auxiliary model with activation function o, that takes
in input sequence x1, - - , @, and outputs yi,- - ,yr, , With y; = oau(@;) for each t < T,.. Since this involves a
token-wise operation, we will present our constructed modules with a general token position ¢. Since no parameters of the
auxiliary model are involved in this operation, the prefix tokens {v;} contain 0 in the following modules.

TINT Activation Forward module The embedding e; contains x; in its first D, indices. We simply pass the embeddings
into activation o, which returns o, () in its first D, indices.

Aucxiliary’s backpropagation through activation With the definition in Definition F.1, the auxiliary’s backpropagation
takes in the loss gradient w.r.t. output (J,) and computes the loss gradient w.r.t. input (J,). We further assume that
the derivative of o, is well-defined everywhere. This assumption includes non-differentiable activation functions with
well-defined derivatives like ReLU.

Definition F.2 (Auxiliary activation backpropagation). For a continuous function o,y : R — R, with a well-defined
derivative o’ (¥) = Ooau () /O for each z € R, the backpropagation takes 9y, z € RP=x as input and outputs

Op = agct(m) © Oy,

where o7,

() € RPw with o

act

()i = ol (zi) at each § < Dyyy.
Complexity of true backpropagation The above operation is computation heavy since it involves o} () ©® 0. As
mentioned for the layer normalization module, the element-wise multiplication between o (x) and J,, will require an MLP
module following Lemma B.5. Furthermore, it involves changing the activation function in TINT in specific modules to o

act*
To circumvent this, we instead turn to a first-order Taylor approximation.

Definition F.3 (Approximate Activation backpropagation). For a continuous function ot : R — R and a hyperparameter e,
the layer takes 0y, © € RPax as input and outputs

o~

1
Oy =

€

(Uacl(w + 681}) - O-aCt(w)) :

The following theorems show that under mild assumptions on the activation function and the input, gradient pair, the
first-order gradient is a good approximation to the true gradient.

36

Trainable Transformer in Transformer

Theorem F.4. For any ¢ > 0, By, Baet > 0, consider a second-order differentiable activation function o, : R — R,
with 020 4(x)/0(x?) bounded by By for each x € R. Then, for any input © € RP= and gradient 8,, € RP= with
10yll, < By, the following holds true:

where Oy, é; have been defined using x, 0y, and € in Definitions F.2 and F.3.

aw_5;

2
9 S O(BactBye)a

For ReLLU activation, which is not second-order differentiable at 0, we instead bound the difference between O, 5; by
defining some form of alignment between input and gradient pair &, 9,,.

Definition F.5 ((¢, p)-alignment). Input and gradient @, d, € RP=x are said to be (¢, p)-aligned, if there exist a set
C C [Daux), with |C] > (1 — p) D, such that for each i in C, |z;| > €[(0y)| -

e controls the fraction of coordinates where |z;| < €|(0y)i|- As e — 0, p — 0 as well for bounded gradients.

Example F.6. For any B,in, Bjmaz > 0, all inputs x that satisfy min; |x;| > By, , and gradients 0y that satisfy
max; [(Oy);j| < Bmaaz» are (Bmin/Bmag,0)-aligned.

Theorem F.7. For any ¢, p > 0 and By, > 0, for any input @ € R and gradient d,, € RP=, with ||0y|| . < By, that are

(e, p)-aligned by Definition F.5,
| < OBy V/pDaw).

where O, 5; have been defined using x, 0,,, € and o,, = ReLU in Definitions F.2 and F.3.

am_é;

TINT Activation backpropagation module The input embeddings contain 0y, in the first D,,x embeddings. With the
requirement of the activation layer input for gradient, we copy «; from the Forward module at each position ¢t. We set € as a
hyper-parameter and return J,, as the output of this module.

8/; will be computed using a single-layer MLP with activation o, as follows. The first linear layer of the MLP will be used
to compute x; + €0y, and x,. After the activation o, the embedding e, contains e (; + €0y,) and oaei(x;). The final
linear layer of the MLP will be used to compute 2 (04c(¢ + €0y,) — oact(21)).

F.1. Proofs of theorems

We restate the theorems, before presenting their proofs for easy referencing.

Theorem F4. For any € > 0, By, Byet > 0, consider a second-order differentiable activation function o, : R — R,
with 020 4(x)/0(x?) bounded by By for each x € R. Then, for any input x € RP= and gradient 9,, € RPu with
10yl < By, the following holds true:

where Oy, é; have been defined using x, 0y, and € in Definitions F.2 and F.3.

a:c_ég

2
9 S O(BactBye)a

Proof. The proof follows along the lines of Theorem E.4. Recall that given an input x, the activation layer outputs
Y = 0,ct(), where the function o, is applied coordinate-wise on «. Given input « and the output gradient J,,, the gradient

w.r.t. the input is given by 0, = o} (x) © 0y, where the o, function is also applied coordinate wise to . We defined 0,

as an e-approximate gradient, given by 1 (0 (@ + €dy) — gaci()). Since both oy and o, are applied coordinate-wise, we

can look at the coordinate-wise difference between 9, and Oy.

Consider an arbitrary coordinate ¢ < Dy,x. Under the assumption that o, is second-order differentiable, we have

—~

(B)i = = (Gua + e(2y)0) = (1)

1 ‘ 62 ac
= Ol(:)(9y)i + - /0 9 gua(wg)

—o O}
= 01(2:)(By)i + O(€Bact (0y)7),

(0y)70d0

37

Trainable Transformer in Transformer

2
where ¢ represents x; + 6(0y), in the second step. In the final step, we utilize the upper bound assumption on 8”"‘7“2(“7)

Thus, (92)i — (9a)i = O(eBqet(dy)?), and so

|

6;0—5;

Daux
, = O(eBact D _(9y)7) = O(Buct [0y 13) < O(eBuct B})-
i=1

O

Example F.6. For any Bi,in, Bpmaz > 0, all inputs x that satisfy min; |x;| > By, , and gradients 0y that satisfy
max; |(Oy)j| < Bmaaz» are (Bmin/Bmaz,0)-aligned.

Proof. Recall the definition of (e, p)-alignment from Definition F.5. Input and gradient @, 9, € R are said to be

(e, p)-aligned, if there exist a set C' C [Dyux], With |C| > (1 — p) Daux, such that for each ¢ in C, |z;| > €[(0y);] -
Consider an arbitrary coordinate ¢ < D,,. We have |z;| > €[(0y);| for any € < |z;| /|(9y):|. Under the assumption that
|;| > Bpin, and |(0y)i| < Bmaaz, a bound of By, / Bpae suffices. O

Theorem F.7. Forany €, p > 0 and B, > 0, for any input x € RP= and gradient 0, € RP=, with ||0y|| . < By, that are

(e, p)-aligned by Definition F.5,
| < OBy /pDaw).

where Oy, 5; have been defined using x, 0y, € and o,., = ReLU in Definitions F.2 and F.3.

(91,75;

Proof. Recall that given an input , the activation layer outputs y = o, (), where the function o, is applied coordinate-
wise on x. Given input « and the output gradient d,,, the gradient w.r.t. the input is given by 9, = ol () © O,
2t function is also applied coordinate wise to . We defined 5; as an e-approximate gradient, given by
%(aact(az + €0y) — gact()). Since both o, and o, are applied coordinate-wise, we can look at the coordinate-wise

() = sign(x) for all z € R\ {0}, with o.,(0) = 1 to avoid

where the o/

difference between 0, and ('/?; For ReLU activation, o,
ambiguity.

Going by the definition of (e, p)-alignment of the input and gradient from Definition F.5, we have a set C' with |C| >
(1 — p)Daux such that for each i € Dy, |z;| > €](9y);|. For all coordinates i € C, we can then observe that sign(x; +

€(0y):) = sign(z;), implying

Tact (T + 5(81/)2’) — Oaet(T3) = 6((91,)1‘0;6[(1‘1*) = €(0x)i
For coordinates ¢ ¢ C, we have three possible cases:

* sign(z;) = sign(z; +€(dy);): In this case, we can again Show e (i +€(0y)i) — Oact (i) = €(Dy)ioh (25) = €(0z)i-

* sign(x;) = 0, sign(z; + €(0y);) = 1: In this case, we have o, (z;) = 0, and so (05); = 0. Additionally,
sign((0y):) = 1, and so

|Oact (i + €(By)i) — Tact(i) — €(Oz)i| = |i + €(Ty)il < €|(Dy)il,
where in the final step, we use the fact that z; < 0 and |z;| < €[(0y)i| -

e sign(z;) = 1, sign(z; + €(0dy);) = 0: In this case, we have o}, (z;) = 1, and so (0z); = (0y);. Additionally,
sign((dy):) = 0, and so

|Oact(wi + €(Oy)i) = Tar(i) = €(F)il = | =i — €(By)i| < [e(Dy)il,
where in the final step, we use the fact that z; > 0 and |z;| < €[(0y)i| -

38

Trainable Transformer in Transformer

Thus, from the above discussion, we have

1 DCII.IX 1/2
‘ am - 8:13 9 = E (;(Uact(zi + E(ay)z) - Uacl(zi) - 6(8;3)1)2)
) 1/2
~ (Z(amm T e(0y)i) — owali) - e(am»f)
i¢C
1/2
S (Z(ay)12> S V pDaux %fic},((ay)? S \% pDaUXBy'
i¢C
The final step includes a simple Cauchy Schwartz inequality and the desired bound comes from the assumed bound on
19y ll,- O
G. Language model head

Additionally, we provide a description of the gradient computation for the loss function that involves the language model
head. This computation entails performing a softmax operation over the entire vocabulary. If }V denotes the vocabulary
set of the auxiliary model, and E € RIVI*Pux denotes the embedding matrix of the auxiliary model, we directly utilize
the embedding matrix for the auto-regressive loss in the TINT. Additionally, we do not update the embedding matrix
of the auxiliary model; instead, we solely backpropagate the gradients through the language model head. Recent work
in (Kumar et al., 2022) has shown that keeping the embedding matrix fixed while updating the model can stabilize SGD.
We demonstrate that the backpropagated gradients can be expressed as the combination of the language model head and a
self-attention layer.

Definition G.1 (KL-loss gradient through auxiliary’s language model head). Given an embedding matrix E € RIVIXDPus
the language model head takes in input 2 € RP= and a target distribution ¢ € RIV| and returns gradient 9,, € RP=x, with
Oz = ET (softmax(Ex) — q).

In the autoregressive loss on a sequence of tokens, the target output distribution at any position is the next occurring token. If
{m%”}'f;“x denote the uncontextualized embeddings of a sequence of tokens after encoding them via the embedding matrix,
and {x;};™ denote their contextualized embeddings after passing through the auxiliary model, then the gradient J,, at
any position ¢ can be simplified as E T softmax(Ex;) — xy';. We illustrate the involved TINT module w.r.t. an arbitrary

position ¢.

TINT autoregressive loss gradient module The current embedding e; contains the contextualized embedding x; in its
first Dy« coordinates. Furthermore, e; includes the uncontextualized embedding x}'"*, copied from the input layer using
residual connections. The prefix tokens v; are assigned a value of 0 and do not participate in the subsequent computations.

The loss computation can be decomposed into two sub-operations: (a) computing y; := E softmax(Ex;), and (b)
calculating 0, = y; — x}};.

For the first sub-operation, we use a feed-forward layer with softmax activation, with hidden and output weights E and E "
respectively, that takes in the first D, of e; and returns y; in the first Dy, coordinates. We retain 3" using a residual
connection.

un

The final sub-operation can be interpreted as a TINT self-attention layer. With e; containing both y; and }™, we use a
linear self-attention layer (Definition B.2) with two attention heads. The first attention head assigns an attention score of
1 to pairs {(¢,t + 1) }+<1,,—1, while assigning an attention score of 0 to the remaining pairs. At any position ¢, —x}'" is
considered the value vector. The second attention head assigns an attention score of 1 to pairs {(¢,¢) }:<m,,, While assigning
an attention score of 0 to the remaining pairs. At any position ¢, y; is considered the value vector. The outputs of both
attention heads are subsequently combined using a linear layer.

Remark G.2. We conducted experiments using mean-squared loss and Quad loss (Saunshi et al., 2020), which do not
necessitate softmax computations for gradient computation. As an example, in the case of mean-squared loss, if our objective
is to minimize % Zthl ||act - ac?fll 2, the gradient can be computed as 0, = x; — z}}";. Similarly, in the case of Quad
loss, the gradient is 0, = ﬁ > ei—x} . However, in all of our language model experiments (Section 5), both gradients

39

Trainable Transformer in Transformer

resulted in minimal improvement in perplexity compared to the auxiliary model. Therefore, we continue utilizing the
standard KL loss for optimization.

Remark G.3. For ease of implementation in the codebase, we utilize a dedicated loss module that takes in y;, ;'] as input
and directly computes O, = y; — T{}.

H. Parameter sharing

Feed-forward layer of auxiliary model: In a standard auxiliary transformer, like GPT-2, the feed-forward layer is a token-
wise operation that takes in an input x € RP« and returns y = Ao(Wz), with A € RPwxX4Dux and W € R Duwxx D A
naive construction of the TINTto simulate its forward operation will have 2 Linear Forward modules (Section 3), separated
by an activation. However, this requires 4 x more prefix embeddings to represent the parameters, compared to other linear
operations in the auxiliary transformer that use R« Pux weight parameters.

To avoid this, we can instead break down the computation into 4 sub-feed-forward layers, each with its own parameters
{{W, A"} }1<i<4. Here {W'} ;< represent 4-shards of the rows of W, and {A’};<;<4 represent 4-shards of the
columns of A.

The forward, backward, and descent operations on these 4 sub-feed-forward layers can be effectively parallelized. For
example, the forward operation of each layer can be simulated by a single TINTmodule, consisting of two Linear Forward
modules and activation, changing only the prefix embeddings to correspond to {{W?, A%} }1<;<4.

1. Additional modules

We describe the forward, backward, and decent update operations of additional modules, used in different model families,
like LLaMA (Touvron et al., 2023) and BLOOM (Scao et al., 2022). We discuss the simulation of these modules, using
similar TINT modules.

L.1. Root mean square normalization (RMSnorm)

The operation of RMSnorm (Zhang and Sennrich, 2019) is very similar to layer normalization.

Definition I.1 (RMSnorm). For an arbitrary dimension d, define a normalization function f : R? — R? that performs
f(x) = ®/RMS(x), where RMS(x) = (30, #2)!/2. Then, RMSnorm with parameters ~, b € R+ takes as input
x € RP=x and outputs y € RP=x, which is computed as z = f(z),y =y ©® z + b.

The extreme similarity between RMSnorm and layer normalization (Definition E.1) helps us create similar TINT modules as
described in Appendix E, where instead of Group normalization layers, we use Group RMSnorm layers described below.

Definition L.2 (TINT D,,-Group RMSnorm). For an arbitrary dimension d, define a normalization function f : R? — R
that performs f(x) = @/RMS(z), where RMS(z) = (30, 22)1/2. Then, D,u,-Group RMSnorm with parameters
ATINT pTNT ¢ RPw takes as input @ € RPsm and outputs y = VECTORIZE({y" € RP»}, < p, /p..)), With

yh _ ,YTINT ® f(sch) + bTINT’

where & = SPLIT | p, /D, | (®)h-

1.2. Attention variants

In order to incorporate additional attention variants, e.g. Attention with Linear Biases (ALiBi1) (Press et al., 2021), and rotary
position embeddings (Su et al., 2021), we can change the definition of softmax attention layer in Definition B.2 likewise.
We showcase the changes for ALiBi.

Definition 1.3 (Auxiliary ALiBi self-attention with H,, heads). For query, key, and value weights Wy, Wi, Wy €
RPwxDax bias b, by, by € RPw and m € RHwx ALiBi self-attention layer with H,,, attention heads and a function
fattn : RTwx — RTwx takes a sequence {x; € RD“"*}tSTm as input and outputs {y; }+<r,,, With

ux ?

y; = VECTORIZE({ Z ay ;v n<m,)- (23)
jSTﬂ\JX

40

Trainable Transformer in Transformer

aﬁ ; is defined as the attention score of head 1 between tokens at positions ¢ and j, and is given by

aﬁj = softmax(K"q! + MpTe) - (24)
Here r, € RT» denotes a relative position vector at each position ¢ that contains (j — t) at each coordinate j < Tj.
Here, q;, k;, v, denote the query, key, and value vectors at each position ¢, computed as Wy x; + bg, Wi, + bk, and
Wy x; + by respectively. In addition, g/, k!, v} denote SPLITg,, (q;)n, SPLIT,, (K¢)n, and SPLITg,, (v¢);, respectively
for all t < Tyyx, and h < Hyye. K" € RTwXDan jg defined with its rows as {kl'}<7,, forall b < Hyyy.

aux

To include operations involving ALiBi, we modify the self-attention module of TINT to change the definition of the attention
scores like Equation (24).

Definition I.4 (Modified TINT self-attention for ALiBi with Hgy, heads). For parameters {WCS‘NT7 NT g IINT
RDsimXDsim}’ {bSNT’ b’I]‘(INT, b’I‘}]NT c RDsim}’ {WS, W[I;’ W‘Z} = RnimXDsim/Hsim}’ {)\Q,)\K’)\V c RHsim} and mTINT c
RTin TINT self-attention with Hy, attention heads and a function fag, : R75m — R7in takes a sequence {€; € RPn}, o,
as input and outputs {&; € RPsn}, 7. with

& = VECTORIZE({ Y al' ;0!)n}tn<h,,), Withal'; = faren (K" +mp™Try);
3 <Tsim

g = SPLITy (q:)n + AP Whp™T; k! = SPLITy (Ky)p + AEWE pI'™NT 1

ol = SPLITy (ve)n + A, WPpI™T.

Here ; € R%m denotes a relative position vector at each position ¢ that contains (j — ¢) at each coordinate j < Ti,. Here,

q:, k;, v; denote the query, key, and value vectors at each position ¢, computed as WgINTé} + bSNT, WiNTe, + bINT and

WINTg, 4 bINT respectively. K" € RTm*Din/Hin js defined with its rows as {k[}e<r,,, for all b < Hyp,.

After referring to Appendix D, we make the following modifications to the Forward, Backward, and Descent modules. In the
Forward module, we incorporate the modified self-attention module to compute the attention scores using ALiBi attention.
In the Backward module, since we do not propagate gradients through the attention scores of the auxiliary model, the
backpropagation formulation remains unchanged from Definition D.3 when we have access to the attention scores. Similarly,
in the Descent module, we update the value matrix while keeping the query and key parameters fixed. The formulation of
the gradient update remains unchanged from Definition D.6 when we have access to the attention scores. Consequently, we
simply modify all the self-attention modules in the simulator to include ALiBi attention, as defined by Definition 1.4.

1.3. Gated linear units (GLUs)

We describe the operations of GLUs (Shazeer, 2020) using similar GLU units available to the TINT.

Definition L.5. For parameters W,V , W¢ € RPwxDux and biases by, by, byyo € RP»x, a GLU layer with activation
Oact : R — R, takes input & € RP=x and outputs 7 € RP=x, with

y= Wz +by)Oou(Ve+by); y=W°Y+bye..

Typical GLUs have 8/3 x D, as a hidden dimension (i.e. the dimension of y). We can use similar parameter-sharing
techniques discussed for feed-forward layers (Appendix H) with the TINT modules presented here. Furthermore, since
can be expressed as a combination of the gated operation and a linear operation, we focus on the computation of y here.

For the discussion below, we consider a GLU (without the output linear layer) in the auxiliary model, with parameters
W,V ,bw, by, that takes in input sequence 1, - - - , @7 and outputs yy, - - - , yr, withyy = (Wxi+bw) Ooa (Vi +by)
for each t < T§;y,. Since this involves a token-wise operation, we will present our constructed modules with a general token
position ¢ and the prefix tokens {v;}.

TINT GLU Forward module The embedding e; contains x; in its first D, coordinates. The output y; can be computed
using three sub-operations: (a) linear operation for Wx; + byy, (b) linear operation for V&, + by, and (c) gate operation
to get (Wxy + by) © cue(Va: + by).

We use three TINT modules, representing each sub-operation.

41

Trainable Transformer in Transformer

(a) Wz, + by is a linear operation, hence we can use a TINT Linear Forward module (Appendix C) with the current
embedding e, and {v;} containing W, by to get embedding e; containing Wa; + by in its first Dy, coordinates.

(b) Vx; + by is alinear operation, hence we can similarly use a TINT Linear Forward module (Appendix C) with the
embedding e; and {vj} containing Wy, by to get embedding €; containing Va; + by in its first Dy, coordinates.

€; and €; are now combined to get an embedding e, that contains Wa; + by, Va; + by inits first 2D, coordinates.

(c) Finally, we can use a TINT GLU layer that can carry out the elementwise multiplication of Wx; + by, 0yt (Vs + by)
to get y; in the first Dy« coordinates.

Parameter Sharing: Since (a) and (b) involve a Linear Forward module, we can additionally leverage parameter sharing to
apply a single Linear Forward module for each of the two computations, changing only the prefix embeddings to correspond
to W, by, or Wy, by

Auxiliary GLU backpropagation For the GLU layer defined in Definition 1.5, the backpropagation layer takes in the loss
gradient w.r.t. output (9,) and computes the loss gradient w.r.t. input (Oz).

Definition 1.6 (Auxiliary GLU backpropagation). For the weights W,V € RPw>Dax | the backpropagation layer takes
9y € RPw as input and outputs 9, € RP», with 8, = W "0y, + V' O, where

o~ —

Op = 0y © 09 (VX + by); Op = sV +by) © 0y © (Wz + bw).

/

A direct computation of 0, involves changing the activation function to ;.

Following a similar strategy for backpropagation
through an activation layer (Appendix F), we instead use a first-order Taylor expansion to approximate Oy.

Definition 1.7 (Auxiliary GLU approximate backpropagation). For a hyper-parameter € > 0, for the weights W,V €
RPawxDan the approximate backpropagation layer takes Oy € RPwx as input and outputs d, € RP= with 0, =

WTE‘; + VTg;, where

5; = 8y O] Uact(Vw + bV)
= 1
€

1
Op = 0act(VE + by + €0y) © —(Wx + b)) — 0ae(Vx +by) © E(Ww + bw).

TINT GLU backpropagation module The current embedding contains Jy, in its first Dy, coordinates. Furthermore,
since we need Wx; 4 by and Vx; 4+ by in the gradient computations, we copy them from the Forward module using

residual connections. We discuss the computation of W ' 9,,, and VTG’; as separate sub-modules acting on the same
embedding e; in parallel.

1. The computation of W Tz; involves two sub-operations: (a) gate operation to get T; := Oy, © oact(Vay + by), and
(b) linear backward operation to get W T z;. Since for this operation, we require W, we copy the contents of the prefix
embeddings containing W, by from the Forward module.

(a) Since the current embedding e; contains both 9y, and Wx; + by, we can use a TINT GLU layer to get an
embedding é\gl) that contains O, .

(b) The final linear backward operation can be performed by using a TINT Linear backpropagation module (Ap-
pendix C) with the embeddings é\gl) and the prefix embeddings. The final embedding &; contains W " Z; in the
first D,,x coordinates.

2. The computation of VT%: involves four sub-operations: (a) gate operation to get %(W:ct +bw) ©ogu(Vry + by +

€0y,), (b) gate operation to get %(W:cf +bw) ®ou(Va +by), (c) alinear layer to compute aﬁi\? (c) linear backward
operation to get V' x;. Since for this operation, we require V', we copy the contents of the prefix embeddings
containing V', by from the Forward module.

(a) Since the current embedding e; contains y,, V x4+ by and Wz, + by, we can use two TINT GLU layers to get
an embedding aﬁ” that contains both L (W, +bw) 04 (V@1 4+by +€0y,) and 2 (Wi +bw) ©0 (Vi +by).

42

Trainable Transformer in Transformer

(b) A linear later on EEI) can then return an embedding 552) containing ; in the first D,y coordinates.

(c) The final operation can be performed by using a TINT Linear backpropagation module (Appendix C) with the

embeddings €2 and the prefix embeddings containing V', by-. The final embedding €; contains V' " z; in the first
D,ux coordinates.

After the two parallel computations, we can sum up €; and €; to get an embedding e; containing 9, (Definition 1.7) in the
first D, coordinates.

Auxiliary GLU descent Finally, the auxiliary’s descent updates the weight and the bias parameters using a batch of inputs
{#}+<7 and the loss gradient w.r.t. the corresponding outputs {0y, }i<7.

Definition 1.8 (Auxiliary GLU descent). For weights W,V € RPw>Dux and bias by, by, € RP=, the linear descent
layer takes in a batch of inputs {x; € RPw»}, o1 and gradients {0,, € RP=}, 7 and updates the parameters as follows:

WvenZa;mI; bw%bW*ﬂzg\mm

tSTaux tST‘nux
o~ T. —
Ve Vend 0nal; buebr—n Y O,
t<Thux t<Tux

where 5; and 5; have been computed as Definition I.6.

Due to similar concerns as gradient backpropagation, we instead use 5; (Definition 1.7) in place of 6’; for each t < Ty to
update V', by, .

TINT GLU descent module We discuss the two descent operations separately.

1. Update of W', byy: We start with the embeddings 8§1) from the backpropagation module, that contain 5; in the first
D,ux coordinates.

For the update, we additionally require the input to the auxiliary GLU layer under consideration, and hence we copy
from the Forward module using residual connections. Furthermore, we copy the contents of the prefix embeddings that
contain W, by from the Forward module.

With both 8/; and x; in the embeddings, the necessary operation turns out to be the descent update of a linear layer with
parameters W, by,. That implies, we can call a TINT Linear descent module (Appendix C) on the current embeddings
and prefix embeddings to get the desired update.

2. We start with the embeddings €§2) from the backpropagation module, that contain 8/; in the first D, coordinates.

For the update, we additionally require the input to the auxiliary GLU layer under consideration, and hence we copy
from the forward module using residual connections. Furthermore, we copy the contents of the prefix embeddings that
contain V', by from the Forward module.

With both 8/; and x; in the embeddings, the necessary operation turns out to be the descent update of a linear layer
with parameters V', by . That implies we can call a TINT Linear descent module on the current embeddings and prefix
embeddings to get the desired update.

Parameter sharing: Since both the descent updates involve a Linear descent module, we can additionally leverage parameter
sharing to apply a single TINT Linear descent module for each of the two computations, changing the input to correspond
to {€§”} and prefix to correspond to W, by, or the input to correspond to {égz)} and prefix to correspond to V', by
respectively.

J. Construction of other variants of pre-trained models

Though we only conduct experiments on an OPT-125M model, our construction is generally applicable to diverse variants
of pre-trained language models. Table 3 highlights many types of modules and the required size and computation for each.
The size of a constructed model is influenced by various factors, including the number of layers, and embedding dimension
in the auxiliary.

43

Trainable Transformer in Transformer

K. Experiments

Computing environment: All the experiments are conducted on a single A100 80G GPU.

Hyperparameters: In the few-shot setting, we employ three different random seeds to select distinct sets of training
examples. Grid search is performed for each seed to determine the optimal learning rate for both constructed models and
dynamic evaluation. The learning rates considered for the learning rate hyperparameter in the descent update operations
in TINT are le — 3, le — 4, le — 5. ° Additionally, we explore various layer-step combinations to allocate a fixed budget
for one full forward pass. Specifically, we update the top 3 layers for 4 steps, the top 6 layers for 3 steps, or 12 layers for
1 step. These specific combinations were chosen to demonstrate the flexibility of TinT in simulating fine-tuning for any
number of layers and steps while staying within computational constraints. In all of these scenarios, TINT performs as well
as fine-tuning the auxiliary model.

Results of different settings. Table 4 displays the results of few-shot learning with calibration across various settings,
encompassing different loss types, input formats, and layer-step configurations. Our analysis reveals that employing a
label-only loss, utilizing a single-example input format, and updating all layers of the internal model for a single step yield
the most favorable average result. The performance of the multi-example format is disadvantaged when dealing with tasks
of long sequences such as Amazon Polarity. In general, we observe that calibrated results tend to be more consistent and
stable.

Table 4: Few-shot (k = 32) results with different loss types, input formats, and layer-step configurations with a fixed
compute budget, with calibration.

Loss Type Format Layer Step \ Subj AGNews SST2 CR MR MPQA Amazon Avg.

Label Smgle 12 1 660(19) 647(02) 687(13) 690(07) 637(02) 828(05) 737(06) 698(01)
Smgle 6 2 627(02) 663(02) 683(61> 672(02) 618(16) 810(36) 743(05) 688(14)
Slngle 3 4 635(00) 672(08) 625(04) 687(14) 617(06) 768(33) 752(08) 679(08)
Multi. 12 1| 83205 43766 60757 7031 62859 84206 6630123 67.3000)
Multi. 6 2 | 83500 43204 52005 70560 585115 82004 55.8¢rg 63.6027)
Multi. 3 4 840(23) 423(84) 515(18) 682(46) 585(120) 802(21) 585(79) 633(30)

Full-context Slngle 12 1 645(04) 658(02) 632(09) 673(05) 608(14) 735(08) 750(04) 672(01)
Slngle 6 2 667(20) 660(04) 627(06) 705(21) 597(09) 777(22) 760(00) 685(04)
Single 3 4 64.0(0_0) 65.8(0_6) 65.0(1_9> 67.3(0_2) 59.5(0_4) 74.2(1_3) 77.0(1_9) 67.5(0_8)
Multi. 12 1| 838429 410006 51208 68045 583011 79.0me 56.0s1) 6250
Mllltl 6 2 853(19) 412(107) 512(13> 677(45) 577(108) 792(37) 558(79) 626(26)
Multi. 3 4 833(25) 417(113) 510(11) 682(47) 577(108) 790(32) 560(81) 624(28)

“When utilizing the full-context loss, the learning rates considered are 1e — 5, 1e — 6, and 1le — 7 due to gradient summations in
TINT.

44

Trainable Transformer in Transformer

Table 5: Few-shot (k = 32) results with different loss types, input formats, and layer-step configurations with a fixed
compute budget, without calibration.

Loss Type Format Layer Step \ Subj AGNews SST2 CR MR MPQA Amazon Avg.

Label Slngle 12 1 633(02) 657(02) 713(06) 650(14) 707(09) 650(00) 767(02) 682(01)
Slngle 3 4 642(02) 665(11) 732(06) 757(05) 720(00) 832(10) 780(04) 732(01)
Multi. 12 1 | 64508 35574 568497 63067 58750 7520108 6223 59400
Multi. 6 2 | 77700 355¢4 57000 60063 52.3wp1) 58561 55879 56.7(2)
Multi. 3 4 67.5(11‘5) 38-5(842) 55.3(5.2) 67.0(3.5) 61-0(8.0) 65.2(11,2) 62.5(8<9> 59.6(1‘3)

Full-context Slngle 12 1 655(11) 665(00) 707(02) 648(05) 720(14) 670(00) 765(00) 690(03)
Single 6 2 647(06) 66.2(042) 71.2(0.2) 653(0.6) 71.5(0'4) 67.0(0,0) 76.7(02) 68.9(0‘0)
Single 3 4 64.2(0.2) 66.2(042) 71.3(0.2) 64.7(0.2) 71.0(0'0) 67.0(0'0) 76.5(00) 68.7(()‘0)
Multi. 12 1 622(75) 338(83) 522(31) 528(40) 508(12) 558(43) 553(72) 519(22)
Multi. 6 2 600(55) 337(84) 508(12) 522(24) 502(02) 543(25) ’550(67) 509(18)
Multi. 3 4 | 58749 3374 50812 5L3a1e) 50.000 54325 55372 50.6(20)

45

	Introduction
	Design Considerations
	Input structure
	Read and write access to auxiliary model

	Efficient Forward Propagation
	Stacking and Sharding
	Efficient Aggregation

	Simulated Gradient
	First-order approximations
	Fuzzy backpropagation via stop gradients

	Experiments
	Setting: N-step Fine-Tuning
	Case Study: Language Modeling
	Case Study: In-Context Learning

	Related Work
	Discussion
	Additional related works
	Notations
	Simulating Multiplication from akyurek2022learning

	Linear layer
	Hsim-split operation

	Self-attention layer
	Proofs of theorems and gradient definitions

	Layer normalization
	Additional definitions
	Proof of theorems and gradient definitions

	Activation layer
	Proofs of theorems

	Language model head
	Parameter sharing
	Additional modules
	Root mean square normalization (RMSnorm)
	Attention variants
	Gated linear units (GLUs)

	Construction of other variants of pre-trained models
	Experiments

