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Abstract

We propose WyckoffTransformer, a generative model for inorganic materials that
takes advantage of the high order symmetry present in most known crystals. Wyck-
off positions, a mathematical object from space group theory, is used as the basis
for an elegant, compressed, and discrete structure representation. To model the
distribution we develop a permutation–invariant autoregressive model based on
Transformer. Our experiments demonstrate that Wyckoff Transformer has better
performance compared to the baseline in generating novel stable structures condi-
tioned on the space group symmetry, while also having competitive metric values
when compared to a model not conditioned on space group symmetry.

1 Introduction

Space of all possible combinations of atoms forming periodic structures is intractably large. It is not
possible to screen it fully, even with a fast machine learning algorithm. Practical materials, however,
occupy only a small part of it 1. Firstly, they must correspond to an energy minimum. Secondly,
occupying an energy minimum is not sufficient to establish if the material is synthesizable or indeed

1Conjecture: the set of all possible stable materials is countable, while the set of all possible ways to place
atoms in 3D space has cordiality of the continuum. (Dis)proving it goes beyond this paper.
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experimentally stable. Having a generative model that outputs a priori stable materials is a step
towards speeding up automated material design by orders of magnitude.

2 Space groups and Wyckoff positions

Figure 1: Wyckoff positions illustration of a toy
2D crystal [8]. It contains 4 mirror lines, and one
rotation center. There are four Wyckoff positions,
illustrated by shading. Magenta is the Wyckoff po-
sition that is invariant under all the transformations,
it only contains a single point; red and yellow lie
on the mirror lines, and teal is only invariant under
identity transformation and occupies the rest of the
space. Markers of the corresponding colors show
one of the possible locations of an atom belonging
to the corresponding Wyckoff position.

Our work relies on a crucial insight: most
(≈ 98%) known crystals have symmetry beyond
the simplest, P1, which only requires lattice
translation (see also figure 4). Those symme-
tries are not merely a mathematical observation;
optical, electrical, magnetic, structural and other
properties are determined by symmetry [15, 21].

Wyckoff positions (WPs) are regions of space
that are invariant under some transformation.
Mathematically, a WP is any point in a set of
points whose site symmetry groups are all con-
jugate subgroups one of another [14]. Every
point inside a unit cell belongs to a WP. A note
on terminology: an “atom position” is just a
single point in 3D space, while a “Wyckoff po-
sition” is a set of 3D points. Some WPs contain
a finite number of 3D points, while other WPs
correspond to 1D lines, 2D planes, or an open
continuous 3D set. See figure 1 for an illustra-
tion. WPs for a given space group are commonly
enumerated by Latin letters in the order of mul-
tiplicity and denoted by a combination of the
multiplicity value and the letter, e. g. 2a.

A crystal can be represented as a space group
and a set of WPs and chemical elements occu-
pying them, reducing the number of parameters
by an order of magnitude without information
loss. For example, see figure 2.

Group: I4/mmm (139)
Lattice: a = b = 8.9013, c = 5.1991, α = 90.0, β = 90.0, γ = 90.0
Wyckoff sites:
Nd @ [ 0.0000 0.0000 0.0000], WP [2a] Site [4/m2/m2/m]
Al @ [ 0.2788 0.5000 0.0000], WP [8j] Site [mm2.]
Al @ [ 0.6511 0.0000 0.0000], WP [8i] Site [mm2.]
Cu @ [ 0.2500 0.2500 0.2500], WP [8f] Site [..2/m]

Figure 2: Wyckoff representation of Nd(Al2Cu)4 (mp-974729), variable parameters in bold. If
represented as a point cloud, the structure has 13[atoms]×3[coordinates]+6[lattice] = 42 parameters;
if represented using WPs, it has just 4 continuous parameters (WPs 8i and 8j each have a free
parameter, and the tetragonal lattice has two), and 5 discrete parameters (space group number, and
WPs for each atom).

3 WyckoffTransformer

3.1 Tokenization

A complete crystal representation consists of two parts: discrete, containing space group, WPs and
chemical elements; and continuous, containing fractional coordinates and lattice parameters. In this
paper, we are only concerned with the discrete part. Given a Wyckoff representation, coordinates
can be determined with random initialization followed by a relaxation with a machine learning
potential [24], or DiffCSP++ [13].
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We represent each structure as a set of tokens, as shown in figure 3. The first token contains the
space group, the others chemical elements and WPs. We encode a WP as a tuple containing site
symmetry and so–called enumeration. Several WPs can correspond to the isomorphic site symmetries,
for example both yellow and red in figure 1 correspond to reflection, but with different axes. To
differentiate those WPs we enumerate them separately within each space group and site symmetry
according to conventional WP order [3]. For example, in space group 225 present in figure 3 WP
4a becomes (m-3m, 0), 4b becomes (m-3m, 1), and 8c becomes (-43m, 0). The purpose of this
encoding is to take advantage of the fact that, unlike Wyckoff letters, site symmetry definition is
universal across different space groups.

Element

Site symmetry

Enumeration

225

Mg

m-3m 

0

Tm

m-3m 

1

Hg

-43m 

0

Space 
group

Figure 3: An example of structure tokenization, TmMgHg2 mp-865981

3.2 Model architecture

Token embeddings are constructed by concatenating the embeddings for every part of the token
(element, site symmetry, enumeration). To each structure we add a STOP token. We use those
sequences as an input for an encoder–only Transformer [19]. We do not use positional encoding. To
represent states where some parts of token are known and others are not, we replace those values
with MASK. We take the output of Transformer on the token containing MASK value(s), concatenate it
with a one–hot vector encoding presence of each token in the input sequence, and use the result as
the input for three fully–connected neural networks, one for each predicted part of token.

3.3 Training

We predict the next token in cascade: first the chemical element, then, conditioned on it, site symmetry
and, finally, enumeration. We use cross–entropy loss. Validation dataset is used for learning rate
scheduling and early stopping.

Wyckoff representation is permutation–invariant, so is Transformer. Auto–regressive generation,
however, is not permutation–invariant. Therefore we shuffle the order of every Wyckoff representation
at every training epoch and use multi–class loss when training the element prediction. See Appendix D
for analysis.

For some crystals enumerations part of Wyckoff representation is not uniquely defined, as it depends
on the arbitrary choice of the coset representative of the space group affine normalizer. For example
the structure figure 3 has two equivalent representations: [(Mg, (m-3m, 0)), (Tm, (m-3m, 1)), (Hg,
(-43m, 0))] and [(Mg, (m-3m, 1)), (Tm, (m-3m, 0)), (Hg, (-43m, 0))]. Fortunately, the number
of variants is small; in MP-20 [20] dataset for 96% structures there are less than 10. We encourage
invariance also using data augmentation, by picking a randomly selected equivalent representation at
every training epoch.

3.4 Structure generation

Generation is conditioned on space group number which is sampled from the combination of
training and validation datasets. Wyckoff representation is then autoregressively sampled using
the WyckoffTransformer. Finally we generate a crystal structure using pyXtal [7] and relax it with
CHGNet [6], see Appendix E. As an alternative option, we also used DiffCSP++[13].

4 Experimental Evaluation

The goal of the generative model is to produce novel stable structures from a distribution approximat-
ing the training data. We use a multi–step procedure for evaluation of the generated structures. Firstly,
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we discard non–unique generated structures. For all models the number is ≤ 3 out of 1000, so unique-
ness is not discussed in detail. Secondly, we count and discard structures that are present in the training
and validation dataset and thus not novel, as verified by pymatgen.analysis.StructureMatcher [17]
with default parameters. Thirdly, we evaluate stability and statistical similarity between the generated
structures and the test dataset. Stability is approximated by energy above convex hull Ehull < 0.08 eV,
the same threshold as used during construction of MP-20 dataset; the criterion is computed by
CHGNet [6] with Materials Project [11] as the source of the structures for the hull. For consistency,
we do not use DFT energies for reference structures, but recompute energy with CHGNet.

We train and evaluate WyckoffTransformer on MP-20 dataset [20] (45229 structures), following the
original 60/20/20 train/validate/test split. Since WyCryst [24] only supports a limited number of
chemical elements per structure, to compare with it WyckoffTransformer was separately trained on a
subset of MP-20 containing only binary and ternary structures (35575 in total). All structures are
relaxed with CHGNet.

WyckoffTransformer is better than DiffCSP and WyCryst in reproducing property statistics; 39% of
the structures generated by WyckoffTransformer are stable unique and novel (S.U.N) [23], which is
less than for DiffCSP 57.4%. It is greater then the value reported for MatterGen-MP [23, fig. 2e]
(≈ 25%), but they cannot be compared directly as in that work DFT is used for energy computation.
WyckoffTransformer S.U.N. fraction is similar to WyCryst, but the later has much lower novelty, so
it is likely that the WyCryst–generated structures that do not verbatim appear in the training data are
still similar to it. Structures generated by WyckoffTransformer by design belong to the target space
group; only 20% do for MatterGen [23, sec. 2.4]. Detailed comparison is present in table 1, and plots
are available in appendix C.

Model WyckoffTransformer DiffCSP WyCryst Test dataset

Dataset: MP-20
Novelty % ↑ 90 90 - 100
Charge neutrality % 80 81 - 91
Num sites KS ↓ 0.058 0.415 - 0
Num elements KS ↓ 0.054 0.163 - 0
DoF KS ↓ 0.067 0.407 - 0
P1 % 3 37 - 2
Space group χ2 ↓ 0.222 7.95 - 0
Elements χ2 ↓ 0.040 0.100 - 0
S.U.N. % ↑ 39.2 pyXtal / 36.7 DiffCSP++ 57.4 - -

Dataset: MP-20 binary & ternary
Formal validity % ↑ 97 - 72 -
Novelty % ↑ 89 - 53 100
Charge neutrality % 79 - 76 90
Num sites KS ↓ 0.052 - 0.287 0
Num elements KS ↓ 0.030 - 0.002 0
DoF KS ↓ 0.056 - 0.282 0
P1 % 1 - 5 1
Space group χ2 ↓ 0.063 - 0.82 0
Elements χ2 ↓ 0.019 - 0.140 0
S.U.N. % ↑ 38.7 pyXtal - 36.7 -

Table 1: Evaluation of WyckoffTransformer, WyCryst and DiffCSP. All metrics below Novelty are
computed only using novel structures. Detailed definitions are available in appendix B.

5 Related work

Crystal generation is a burgeoning field, with a plethora of models operating in the 3D point cloud
space [12, 4, 22, 23]. Large Language Models that use a straightforward text representation of
structures as CIF [10] have been recently proposed [1, 9, 16]. Our approach complements them
naturally, by providing symmetry-based constraints and / or initial structure approximation.
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Our work is inspired by [24], the first generative model to utilize Wyckoff positions. Our primary
contribution is an autoregressive token-based model, as opposed to a VAE, allowing for a better
inductive bias, and production of materials with a varying number of elements. A recent preprint [4]
independently explores a similar approach.

Wyckoff Transformer improves on other machine learning works that use WPs in a few key ways.
1. Previous works encode WPs by enumerating them by space group defined letters [24, 8, 4, 2],
while we use universally-defined site symmetries, easing transfer learning. 2. It explicitly combines
all the information about a WP into a single token, while [4] relies on the sequential order to maintain
the relationship between the chemical element and WP. 3. Instead of imposing an arbitrary order [4],
we train our model to work for all permutations 4. We are also the first ML work to take into account
the dependency of Wyckoff representation on the arbitrary choice of the coset representative of the
space group affine normalizer.

6 Limitations and Conclusion

Our work shares the limitation of most generative models for materials [23, 24, 20, 12]: we learn the
distribution from the training dataset, so there must be stable structures that are out-of-domain and
will not be generated. Ehull as a proxy for stability is commonly used, but is imperfect, as it does not
take into account entropy, and the hull determination relies on known structures. The high number of
asymmetric space group P1 structures found by DiffCSP, that are supposedly stable, casts additional
doubt on stability estimation with CHGNet Ehull.

Novelty evaluation is crucial. A model can generate structures that are same or similar to the ones
in the training dataset, and are valid, but not very useful for material design. Counting complete
duplicates is a step in the right direction, but does not measure substantial sample diversity.

WyckoffTransformer has a strong inductive bias motivated by the fact that most of known crystals
are highly symmetric. It introduces several architecture innovations to create a deep learning model
best suited for this representation. The distribution of structures generated by WyckoffTransformer
is closer to the test dataset than that for DiffCSP and WyCryst in terms of the high–level property
statistics, with a larger fraction of stable structures than WyCryst.
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Appendix

A Space groups distribution
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Figure 4: Distribution of space groups in MP-20 dataset [20]. 98% of structures belong to symmetry
groups other that P1, with internal symmetries.

B Property comparison details

We do not use COV metrics [20], as they are almost saturated; they reach values ≥ 99.5% for
state-of-the-art methods [20, 12, 22] with the maximum being 100%.

For DiffCSP we use the generated structures provided by the authors. DiffCSP++ was retrained.

Formal validity is a fraction of formally consistent Wyckoff representations. A Wyckoff represen-
tations is invalid if it contains site symmetries not present in the space group, enumerations not valid
for a given site symmetry – space group combination, or several atoms are forced into a single point
in 3D space by being assigned to the same WP with no degrees of freedom.

Novelty is defined as the fraction of generated structures that do not appear in the training dataset,
as verified by pymatgen StructureMatcher with default parameters.

Charge neutrality is computed using SMACT [5]. Only 91% of structures in MP-20 are charge
neutral, so it is not a necessary criterion for structure validity and stability.

Num sites KS is the Kolmogorov–Smirnov statistic between the number of Wyckoff sites in the
generated and test datasets. See also figures 6, 9.
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Num elements KS is the Kolmogorov–Smirnov statistic between the number of unique chemical
elements in the generated and test datasets. See also figures 5, 8.

DoF KS is the Kolmogorov–Smirnov statistic between the number degrees of freedom of Wyckoff
representations between the generated and test datasets.

Space group χ2 is the χ2 statistic of difference of the frequencies of space groups between the
generated and test datasets.

Elements χ2 is the χ2 statistic of difference of the frequencies of different elements between the
generated and test datasets.

S.U.N. is the fraction of novel unique structures having Ehull < 0.08 eV computed with CHGNet.
See also figures 7, 10.

C Property plots

C.1 WyckoffTransformer vs DiffCSP; MP-20
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Figure 5: Distribution of the number of unique chemical elements per structure.
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Figure 6: Distribution of the number of occupied Wyckoff positions per structure.
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Figure 7: Stability of novel structures generated by WyckoffTransformer and DiffCSP trained on
MP–20 dataset. Note that the % is not S.U.N., but just the fraction of novel structures that are stable.
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C.2 WyckoffTransformer vs WyCryst; MP-20 binary and ternary
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Figure 8: Distribution of the number of unique chemical elements per structure.
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Figure 9: Distribution of the number of occupied Wyckoff positions per structure.
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Figure 10: Stability of novel structures generated by WyCryst and WyckoffTransformer trained on a
subset of MP-20 containing only binary and ternary structures. Note that the % is not S.U.N., but
just the fraction of novel structures that are stable. Only half of the structures generated by WyCryst
are novel, but the rest are rather stable – probably because they are similar to the structures in the
training dataset.

D Permutation invariance

To asses learned permutation invariance, we compute the Kullback–Leibler divergence:

KL [pθ(x)||pθ (ρ(x))] , (1)

where x is a token sequence, ρ(x) is a random permutation of the token sequence, pθ(x) is the
likelihood of x as computed by the model.

pθ(x) = p(t0|SG)p(t1|t0,SG)...p(tn|t0, ..., tn−1,SG), (2)

where ti is the i-th part of token and SG is the space group, and the conditional probabilities are
estimated by Wyckoff Transformer. Later we omit θ for clarity. To estimate Ex∼p(x) we sample 9046
generated sequences; for each sequence, we sample 20 random permutations (Eρ):

KL = Ex∼p(x) [log p(x)− log p(ρ(x))]

= Ex∼p(x) [log p(x)− Eρ log p(ρ(x))]

= 2.0

(3)

For a perfectly invariant model KL = 0. For comparison, Shannon’s entropy [18]:

H = −Ex∼p(x) log p(x) = 19.0. (4)

Finally, to get more comparison values, we compute the mean and standard deviation of the log-
likelihoods over several datasets, see table 2. All generated samples are conditioned on the same
space groups as the test dataset.

In conclusion, the model is not perfectly permutation invariant, but it is to a high degree. In terms
of information theory, permutation constitutes 2 out of 19 nats needed to describe the state of the
random variable (crystal in our case). In terms of naive log–likelihood arithmetic, standard deviation
of log–likelihood between different permutations is two orders of magnitude less that the difference
between log–likelihood of the generated and training data and 4 times less than the standard deviation
of the generated samples log–likelihood.
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Dataset −Ex∼dataset σx∼dataset Ex∼dataset
log p(x) log p(x) σρ log p(ρ(x))

Generated, temperature = 100 499 373.6 16.8
Test 93.0 49.2 5.4
Train 92.8 48.3 5.5

Generated, temperature = 1 17.0 6.2 1.5
Generated, temperature = 10−2 12.9 6.9 1.5

Table 2: Log-likelihood statistics of different datasets

E Structure generation details

The process begins by specifying a space group and defining WPs. PyXtal [7] allows users to input
atomic species, stoichiometry, and symmetry preferences. Based on these parameters, PyXtal will
generate a crystal structure that respects the symmetry requirements of the space group. The software
is particularly useful for generating random structures that adhere to crystallographic symmetry rules:
once the initial structure is generated, we then perform energy relaxation using CHGNet. CHGNet [6]
is a neural network-based model designed to predict atomic forces and energies, significantly speeding
up calculations that would traditionally require density functional theory (DFT). Energy relaxation
involves optimizing the atomic positions to reach a minimum energy configuration, which represents
the most stable form of the material. CHGNet, trained on vast DFT datasets, can efficiently relax
crystal structures by adjusting atomic positions to reduce the total energy. This approach ensures that
the final structure is not only symmetrical but also physically realistic in terms of energy stability.
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