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ABSTRACT

Urban infrastructure networks are complex systems characterized by heteroge-
neous nodes and edges, partial observability, and temporal dynamics, which many
graph neural networks struggle to handle. We introduce AttentionR-GCN, an ex-
tension of graph attention network based on different relational types that (i) uses
attention-based message aggregation to weight node and edge signals under dif-
ferent relation types, (ii) uses learnable embeddings to represent missing values,
and (iii) incorporates a transformer encoder to model temporal dependencies. We
evaluate AttentionR-GCN on two simulated water distribution networks, predict-
ing one-step-ahead chlorine concentrations at both monitored and unmonitored
nodes under varying levels of missing sensor data. Our model outperforms dif-
ferent baselines, especially under high data sparsity, and demonstrates superior
generalization to unmonitored nodes. Our results reveal the importance of incor-
porating adaptive weighting of node and edge features under different relations,
learnable representations for missing values, and capturing temporal dependencies
to achieve more reliable predictions in partially observed infrastructure networks.

1 INTRODUCTION

Urban infrastructure networks, such as water distribution systems, electrical grids, and transportation
systems, form the backbone of modern cities. These networks are complex and consist of hetero-
geneous components that exhibit dynamic temporal-spatial behavior, often operating under limited
sensing coverage. Monitoring the status of individual components within these networks is critical
for ensuring system stability. In practice, soft sensors are used to estimate physical parameters at key
locations throughout the network. However, due to the high costs and practical challenges, coverage
is often limited to a small subset of the network, leaving large portions unmonitored and uncer-
tain. Consequently, these networks are partially observed, with critical physical attributes missing
at many locations and time steps. This sparsity, combined with the heterogeneity of node and edge
types and complex temporal dependencies, presents a significant challenge for traditional machine
learning models.

Graph neural networks are well suited for urban networks because they propagate information across
interconnected components. In homogeneous scenarios, GAT Veličković et al. (2017) and GATv2
Brody et al. (2021) learn neighbor-specific attention weights through multi-head aggregation to cre-
ate expressive, denoising message passing with strong inductive generalization to unseen nodes.
In heterogeneous settings, R-GCN Schlichtkrull et al. (2018) captures multi-relational structure via
relation-specific transformations with shared parameters, allowing efficient training and strong per-
formance. Extending attention to heterogeneous graphs, r-GAT Chen et al. (2021) and RGAT Bus-
bridge et al. (2019) directly incorporate relation information into the attention mechanism to better
utilize multi-relational information.

However, these models are inadequate for multi-relational, spatio-temporal urban data. GAT and
GATv2 are designed for homogeneous graphs and do not support multiple relation types; R-GCN
models relations but do not incorporate continuous edge attributes into messages or attention. r-
GAT and RGAT add relation conditioning, yet treat relations as categorical labels and only weakly
couple relational signals with edge features, leaving rich edge attributes underused. As a result,
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none of these methods fully integrate relation type, edge features, and node features within a unified
attention or message pathway. Moreover, they lack explicit mechanisms to handle severe observation
sparsity and to capture temporal dynamics, both of which are crucial in real-world urban networks.

To address these limitations, we introduce AttentionR-GCN, a unified architecture that combines
relation-aware attention for message passing, learnable mechanisms for missing-data handling, and a
Transformer-based temporal encoder. This design enables end-to-end reasoning over heterogeneous
graph structures, reliable interpolation under observation sparsity, and robust modeling of tempo-
ral dependencies. We evaluate AttentionR-GCN on two realistic water-distribution simulations
to forecast chlorine concentration across all nodes under varying sparsity levels. Across metrics,
AttentionR-GCN consistently outperforms GAT, GATv2, R-GCN, RGAT, and their Transformer-
augmented variants, especially in medium to high sparsity regimes and on unmonitored nodes. This
demonstrates our model’s improved robustness and generalization in challenging inference settings.
Our contributions are as follows.

• Attention-based relational aggregation: We introduce a triplet attention mechanism that
jointly considers neighboring node features, edge features, and self-node features under dif-
ferent relation types, enabling fine-grained, adaptive message passing over heterogeneous
infrastructure graphs.

• Learnable embeddings for missing values: We introduce learnable parameters to repre-
sent missing inputs, enabling models to maintain predictive robustness under data sparsity.

• Temporal modeling via transformer encoder: We integrate a transformer module to en-
code multivariate time series, enabling the model to capture long-range temporal depen-
dencies and improve forecast accuracy across time.

2 RELATED WORK

2.1 R-GCN

R-GCNs extend traditional GCNs by introducing relation-specific weight matrices to capture hetero-
geneous relational structures during message passing, making them suitable for graphs with multiple
edge types Schlichtkrull et al. (2018). This represents an improvement over GNNs that share a sin-
gle weight matrix across all edge types. R-GCNs have been successfully adapted to domains such as
recommendation systems Yan et al. (2023), knowledge graph reasoning Schlichtkrull et al. (2018)
and financial prediction Jeyaraman et al. (2024).

2.2 GAT AND GATV2

GAT and GATv2 expand convolutional GNNs by replacing fixed neighbor aggregation with learn-
able, nodes-edges specific attention that determines how much each neighbor contributes during
message passing Veličković et al. (2017); Brody et al. (2021). GAT computes an attention logit
by applying a shared learnable parameter per head to the concatenation of linearly projected fea-
tures from the target node, a neighbor node, and, when available, a learned projection of the edge
features between them. These logits are softmax-normalized over the target’s neighborhood to pro-
duce coefficients that weight incoming messages Veličković et al. (2017). GATv2 increases scorer
expressivity by inserting a nonlinearity into an attention MLP applied to a joint transformation of
target, neighbor, and edge features, yielding content-dependent coefficients beyond the original lin-
ear form Brody et al. (2021). Variants of GAT and GATv2 have been deployed widely, including in
transportation and spatio-temporal traffic forecasting Zhao et al. (2023); Kong et al. (2020); Chen
et al. (2023) and in molecular property prediction Xu et al. (2023).

2.3 RGAT AND R-GAT

Relational extensions of GAT adapt neighborhood weighting to multi-relational graphs by condi-
tioning on edge types or relation embeddings. RGAT Busbridge et al. (2019) augments GAT with
relation-type parameterization, making both attention and message transformations depend on the
relation. RGAT has been applied to typed-edge settings such as molecular interaction graphs, where
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different bonds carry distinct semantics Busbridge et al. (2019). r-GAT Chen et al. (2021) condi-
tions a shared attention scorer on learned relation embeddings, yielding a parameter-efficient way
to model multi-relational structure. r-GAT has been used for knowledge-graph link prediction and
entity classification Chen et al. (2021). Collectively, these methods show that injecting relation in-
formation into attention improves representation learning on heterogeneous graphs, especially in
domains with rich relational structure.

2.4 GRAPH NEURAL NETWORKS (GNNS) FOR INFRASTRUCTURE MODELING

GNNs have become a central approach for spatiotemporal forecasting and state estimation in ur-
ban infrastructure, with rapid adoption in water systems and established use in transportation and
energy. In water distribution networks, recent research applies GNNs to reconstruct unmonitored
water-quality states and related variables under sparse sensing Salem et al. (2024). In transporta-
tion, models such as STFGNN, which fuses spatial and temporal graphs Li & Zhu (2021), Graph
WaveNet, which combines adaptive learned adjacency with dilated temporal convolutions Wu et al.
(2019), and GMAN, which uses multi-head spatiotemporal attention Zheng et al. (2020), illustrate
how learned dependencies and temporal encoders can be effectively integrated for traffic forecast-
ing. In energy, emerging methods pair graph encoders with Transformer-style temporal stacks for
multi-site PV power forecasting, further highlighting the importance of learned, time-varying de-
pendencies Yang et al. (2025).

Current approaches usually combine a spatial graph operator to capture flow-like interactions with
a temporal encoder to model long-range dynamics, and some include edge-aware message func-
tions. However, two gaps remain: (i) Relational heterogeneity is under-modeled, as real systems
have multiple pipe, road, or feeder types and operational roles that require relation-specific message
passing. (ii) Data sparsity remains a significant challenge, as limited or intermittent sensing reduces
robustness, especially at unmonitored nodes. Overcoming these issues involves developing models
that simultaneously encode edge types and continuous edge attributes within the message function
and remain accurate under high sparsity, focusing on reliable inference at unobserved locations.

3 MODEL ARCHITECTURE

We propose AttentionR-GCN, which extends GATv2 by incorporating relation-aware attention in-
spired by R-GCN. The attention weights are conditioned on relation types as well as node and
edge attributes, enabling the model to assign fine-grained importance to neighbors and capture het-
erogeneity across relations. To improve robustness under sparse observations, we add learnable
embeddings that impute missing node features during both training and inference. We also couple
the graph module with a Transformer-based encoder to model long-horizon dynamics.

3.1 ATTENTION-BASED AGGREGATION FOR RELATIONAL MESSAGE PASSING

GAT and GATv2 operate on homogeneous graphs and do not model multiple relation types. R-
GCN handles multi-relational structures by computing relation-specific messages, but fails to utilize
edge features. r-GAT primarily conditions its attention scorer on relation embeddings, but it shares
parameters across relations and often uses a single softmax for all. Additionally, it only encodes
relation type and not per-edge features. RGAT employs relation-specific parameters but treats rela-
tions as categorical edge types and does not propagate edge attributes through the message-passing
process.

We therefore propose a relation-aware extension of GATv2 that conditions attention on relation
type and directly incorporates nodes and edge attributes. For each relation r, attention is computed
over the triplet [xu ∥xv ∥ euv] via a GATv2 scorer, while messages follow R-GCN by projecting the
neighbor feature with a relation-specific Wr and scaling by the learned coefficients. This design
jointly encodes self node-edge-neighbor node under different relations and enables head-wise, fine-
grained selection of informative signals in heterogeneous graphs. The specifics are as follows:

1. Relation-specific message projection.

m r
uv = xuWr,
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where xu ∈ Rdin is the neighbor node feature and Wr ∈ Rdin×dout is a relation-specific
linear projector shared across heads.

2. GATv2-style attention over self node–neighbor node –edge features.

cuv = [xu ∥xv ∥ euv ] ∈ RDcat

z r
uv[he] = LeakyReLU

(
M [he]

r cuv
)
,

S r
uv[he] = (w[he]

r )⊤z r
uv[he] + b[he]r .

where u and v are the neighbor and self nodes ; r is the relation type; he is the attention
head index; xu, xv ∈ Rdin are the neighbor and self nodes features; euv ∈ Rde is the edge
feature; cuv ∈ RDcat is the concatenated attention input; din is the node feature dimension
and de is the edge feature dimension; Dcat = 2din + de is the concatenation dimension;
M

[he]
r is the per-relation and head linear map; dh is the hidden dimension of the attention

scorer; zruv[he] is the LeakyReLU activation output; w[he]
r and b

[he]
r are the per-relation and

head weight and bias that map z to a scalar; and S,r
uv[he] is the unnormalized attention logit

for (u, v), relation r, head he.

3. Per-head normalization over neighbors of the self node.
For each self node v and head he,

a r
uv[he] =

exp
(
S r
uv[he]

)∑
k∈N (v) exp

(
S r
kv[he]

) ,
where a r

uv[he]∈(0, 1) is the normalized attention coefficients that weighs neighbor u rela-
tive to all neighbors of v.

4. Aggregation and update at the self node.
Weighted neighbor messages are concatenated across heads and summed as:

h̃v =
∑

u∈N (v)

∥∥H
he=1

(a r
uv[he] m

r
uv) ∈ RHdout

where H is the number of heads, ∥Hhe=1 denotes head-wise concatenation

3.2 LEARNABLE PARAMETERS FOR MISSING VALUES

Real-world infrastructure networks experience data sparsity due to incomplete sensor coverage. Ex-
isting approaches replace missing features with zeros or predefined constantsSalem et al. (2024);
Li et al. (2024), which can introduce biases in learned representations as these constants are treated
as meaningful signals. To address this issue, we propose incorporating learnable embeddings for
missing node features. These embeddings are trained simultaneously with the model parameters,
which allows the network to infer contextually meaningful representations for unknown data points.

3.3 TRANSFORMER-BASED TEMPORAL ENCODING

Standard GNN architectures do not directly integrate temporal information, which results in subopti-
mal performance in tasks that involve time-dependent data. We therefore incorporate a transformer-
based encoder that processes sequentially structured node and edge features before relational ag-
gregation. This transformer encoder consists of positional encodings, multi-head self-attention, and
fully connected feed-forward layers.

3.4 COMPLETE ATTENTIONR-GCN MODEL ARCHITECTURE

The complete AttentionR-GCN model works as follows(Figure 1): first, input node and edge fea-
tures, along with learnable embeddings for missing values, are processed through the transformer
encoder to obtain contextualized representations. These temporal embeddings are then passed into
a stack of attention-based relational graph convolutional layers. Each layer implements relational
message passing using the attention-based aggregation method, followed by batch normalization,
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ReLU activation, and skip connections to facilitate gradient flow. Finally, another batch normal-
ization is added, and a linear projection maps the resulting node representations to the prediction
targets. Our experiments utilize a two-layer transformer encoder with 128 hidden dimensions and
2 heads, a dropout rate of 0.2, and two attention-based R-GCN layers, each using 2 attention heads
and 128 hidden dimensions.

Attention R-GCN

Batch Normalization

Nodes

Node Features

Attention R-GCN
Output

...

Edge Features

...

...

... Output

Attention-based
aggregation  

Activation

Batch Normalization

* NAttention R-GCN layer

+

Transformer Encoder

Global Pooling (Mean)

+ +++ + ++

...

...

...

Time steps
Time-series Input

Features

Positional Encoding

Transformer Output

Output/ Input for Attention
RGCN

+

Forward

Linear Projection Head

Figure 1: AttentionR-GCN model structure

3.5 BASELINE MODELS

We compare our model with baselines including R-GCN, GAT, and GATv2, RGAT and r-GAT, and
their Transformer-augmented versions to isolate the effect of the proposed relation-aware attention.
For consistency, all graph encoders use two building blocks, hidden dimension of 128, and ReLU
activations. When included, the temporal module is a Transformer with an identical configuration
across models.

To further assess robustness, we benchmark commonly used GNN models, including Graph
Convolutional Network (GCN) Kipf (2016), Topology Adaptive Graph Convolutional Network
(TAGCN) Du et al. (2017), and edge-aware model Unified Message Passing (UniMP) Shi et al.
(2020), along with their transformer-augmented versions. All models used two GNN layers, a 128-
dimensional hidden size, and ReLU activations.

4 EXPERIMENT

4.1 DATA

We use water distribution networks as a case study to predict next time-step chlorine concentration
at whole net. Chlorine serves as a key metric for assessing water quality in water distribution net-
works Lipiwattanakarn et al. (2021). Our simulations are primarily based on the C-Town benchmark
network, a widely used case for water distribution system studies Brahmbhatt et al. (2023); Tornye-
viadzi et al. (2024); Ostfeld et al. (2012). The C-Town system comprises 5 District Metered Areas,
each equipped with independent pumping stations, and sustains an average monthly total demand
of 175 L/s. The network infrastructure consists of 396 nodes with 388 junctions, 1 reservoir, and 7
storage tanks, and 444 edges including 429 pipes, 11 pumps, and 4 valves.

Chlorine is introduced at the reservoir node. We simulate 2000 distinct operational scenarios by
varying node demands and chlorine injection rates, following the setup from paper Salem et al.
(2024). For each node, demand is generated according to Eq 1 and chlorine injection rate is gener-
ated based on Eq 2. Each simulation runs for 24 hours with a 5-minute time step. For analysis, we
used the data from the last 3 hours that reach the hydraulic steady state. For each node, the simulator
outputs time series water demand, hydraulic head, pressure, and chlorine concentration; for each
edge, the simulator outputs time series velocity, head loss, and flow rate.

d(n) =


rn∑
rn

×D, if n ∈ L ⊂ {1, 2, . . . , N}, |L| = U(zmin, zmax)

0, if n /∈ L
(1)
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where zmin = 338 and zmax = 388, and d(n) represents the water demand at node n.

I(n) =

{
U(imin, imax), if n ∈ m ⊂ {1, 2, . . . , N}
0, if n /∈ m

(2)

where imin = 1mg/L and imax = 4mg/L,and I(n) represents the injection rate at node n.In this
study, N=1 and chlorine injection occurs only at the reservoir node.

We additionally evaluate on L-Town, another benchmark water distribution network widely used in
prior studies Wang et al. (2025). We follow the same experimental protocol as for C-Town. L-Town
contains 2 reservoirs, 782 junctions, 1 tank, 905 pipes, 1 pump, and 3 valves. Although L-Town is
slightly larger than C-Town, it exhibits fewer relation types. Therefore, we primarily present results
on C-Town, noting that the findings on L-Town align with those on C-Town.

4.2 INPUT AND OUTPUT

We frame the task as node-wise temporal prediction over a water distribution network graph. Each
graph node is represented by four time-series features: water demand, hydraulic head, pressure, and
chlorine concentration. Each variable spans 36 time steps, including the time 0 step, resulting in an
input of size 4× 36 for each node. Similarly, each edge is characterized by three temporal features:
velocity, head loss, and flow rate, each spanning 36 time steps, resulting in an input of size 3 × 36
for each edge.

Our goal is to predict the chlorine concentration at each node after the final time step (in this case,
t = 37), given complete temporal context up to t = 36. To ensure comparability, all models receive
equivalent predictive context, with architectural differences determining how they leverage node and
edge information. All input features and target outputs are standardized using Z-score normalization
and no future information is leaked during training or evaluation. For models with a Transformer
module, inputs are tensors of shape (N,F,D), where N is the number of nodes, F the number
of feature channels, and D the per-feature dimensionality (temporal length). For the naive GNN
baselines, we flatten the feature axis and use inputs of shape (N,F×D).

4.3 TRAINING AND EVALUATION SETUP

We evaluate all models on 2,000 synthetic water distribution network graphs generated from the
C-Town and L-Town benchmark. The data is randomly partitioned into training (70%), validation
(15%), and test (15%) splits. The test set is held out for final evaluation and is not used during model
development or hyperparameter tuning. All models are trained and validated on the same splits and
evaluated on the identical test set to ensure fair comparison.

Models are trained to minimize the Mean Absolute Error (MAE) between predicted and ground-
truth chlorine concentrations at the final time step. Optimization is performed using the Adam
optimizer with an initial learning rate of 0.001 and a ReduceLROnPlateau scheduler, which reduces
the learning rate by a factor of 0.9 if validation loss does not improve for 2 consecutive epochs.
Training is conducted for up to 30 epochs, with early stopping applied if validation performance
does not improve for 10 consecutive epochs to mitigate overfitting. A batch size of 16 is used for
training, validation, and testing.

To evaluate predictive robustness, we report three metrics: Mean Absolute Error (MAE), Mean
Squared Error (MSE), and the coefficient of determination (R2). MAE captures the average absolute
error but treats all deviations equally. Therefore, we employed MSE that penalizes larger errors
more heavily to detect whether large error occurs. However, MAE and MSE only evaluate model’s
predictive accuracy. We employed R2 to evaluate model’s explanatory capacity.

To evaluate robustness to data sparsity, we simulate missing chlorine concentration values by ran-
domly masking chlorine concentration variable in the node features. Masking ratios vary from 0.0
to 1.0 in increments of 0.1. The same set of nodes is masked across all graphs to maintain spatial
consistency for each ratio. Masked values are treated as missing during training. This setup reflects
real-world partial observability while allowing for controlled comparison across masking levels.
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We evaluate the model’s computational cost under two threshold masking ratios 0 and 1, and expect
the cost for other masking scenarios to fall within this range. Our AttentionR-GCN model was
trained with a NVIDIA L40S GPU. At a masking ratio of 0, training used 45.65 MB memory,
completed in 665 seconds with all 30 epoches completed, and achieved an average inference time of
1.70 seconds per batch. At a masking ratio of 1, training used 45.4 MB memory, completed in 354
seconds with early stop at 16 epoches. It has an average inference time of 0.05 seconds per batch.

5 RESULTS AND DISCUSSION

5.1 PERFORMANCE OF BASELINE MODELS WITHOUT TRANSFORMER ON ALL NODES

We compare attentionR-GCN with two ablations: (i) without the Transformer and (ii) without both
the Transformer and the learnable embedding, against standard baselines. Across all three evalua-
tion metrics, attentionR-GCN consistently outperforms the baselines Fig A1. At low mask ratios,
GATv2, R-GCN, and r-GAT perform similarly. However, starting at mask ratio 0.5, attentionR-GCN
outperform these methods, and the performance gap widens as data sparsity increases. The addition
of the learnable embedding provides only minimal improvement, indicating that the main enhance-
ments come from the relation-aware attention mechanism. These findings suggest that relation-based
attention utilizes available features more effectively under high data sparsity than other approaches.
Additionally, under sparse supervision, we consistently observe RGAT performing worse than sim-
ple relational baselines. This supports the original study Busbridge et al. (2019)’s conclusion that
RGAT is highly task-dependent and struggles to learn stable attention when input signals are weak
(few or low-quality features, limited labels). In such cases, R-GCN and related spectral baselines
tend to generalize better, probably because they avoid the extra estimation required for attention
parameters and thus overfit less when data is limited.

5.2 PERFORMANCE OF TRANSFORMER-ENHANCED, EDGE-AWARE MODELS ON ALL NODES

Fig. A1 shows that models including edge information generally outperform the edge-agnostic mod-
els, except for RGAT. Therefore, we add a Transformer module to the edge-aware baselines and com-
pare them with our full model, which includes both the learnable embedding and the Transformer.
As shown in Fig. 2, our model continues to outperform these models. However, TransformerR-
GCN, TransformerGATv2, and TransformerrGAT can sometimes achieve similar performance to
our model. Specifically, for MAE, they consistently perform similarly to our model. For MSE and
R2, they show comparable performance to our model at very low masking ratios (0–0.2) and very
high masking ratios (0.8–1.0). However, in the middle range (0.2–0.8), our model consistently per-
forms better. This pattern aligns with an information-availability perspective: when observations
are plentiful, all methods perform well; under extreme sparsity, all are similarly limited by scarce
information; and in the intermediate range, differences in how models exploit partial observations
and heterogeneous relations become decisive. Therefore, the consistent better performance of our
model in the medium masking ratio demonstrates that the relation-aware attention more effectively
leverages available heterogeneous edge and node information. Additionally, similar MAE but lower
MSE shows that our model better reduces large errors while keeping comparable typical absolute
errors as the other three models. Higher R2 indicates that our model explains a larger portion of
target variability under partial observability than the three baselines.
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Figure 2: Test-set performance of Transformer variants across masking ratios
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Figure 2: Test-set performance of Transformer variants across masking ratios (continued)

5.3 PERFORMANCE ON MASKED AND UNMASKED NODES

Figure 3 and Figure A2 shows that all models perform significantly better on unmasked nodes than
on masked nodes, which is expected given the greater supervision available for unmasked nodes
during training. Our model outperforms all transformer baselines on both masked and unmasked
nodes. However, for the unmasked subset, TransformerR-GCN, TransformerGATv2, and Trans-
formerrGAT achieve performance comparable to ours, with very low MAE and MSE and high R2

across all masking ratios. For masked nodes, however, our model consistently outperforms these
models, with the largest margins in the intermediate masking range (0.2–0.8). This pattern sup-
ports earlier findings, indicating that the overall performance improvement of our model over the
other three is mainly due to better results on masked nodes rather than unmasked ones. Such results
suggest that our relation-aware attention design provides stronger inductive generalization to unob-
served nodes, enabling more reliable interpolation. This is important for inferring unknown nodes
in the networks under partial observability.
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Figure 3: Performance on masked nodes across three metrics (MAE, MSE, R2).

5.4 ABLATION TEST

Figure A3 shows an ablation study of the proposed model, starting with the naive attentionR-GCN
and incrementally adding components, evaluated across different masking ratios and metrics. Across
all masking levels, all variants demonstrate similar MAE. Adding the Transformer module produces
modest yet consistent improvements in MSE and R within the medium masking range (0.2–0.8).
These results suggest that the attentionR-GCN backbone provides the main performance improve-
ments, while the Transformer offers additional benefits under partial observability, especially at
intermediate masking levels.
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5.5 UNCERTAINTY QUANTIFICATION AT INDIVIDUAL LEVELS

We compute the per-sample MAE and MSE on the test set. Figure 4 shows that, at low masking
ratios, errors remain consistently small across samples. As the masking ratio increases, error magni-
tudes rise slightly but stay centered around small values. Only at very high masking ratios, heavier
tails appear and the distribution becomes more uniform across both small and large errors. These
patterns suggest model’s reliable performance under low–to–moderate masking, with no significant
outliers. Figure A4 shows the mean and standard deviation of MAE and MSE for different y values
across various masking ratios. At low masking levels, errors are both small and consistent across
the range of target values y. For medium to high masking, the model performs best at mid-range
y values, while both error magnitude and variability increase at the low and high y values. This
indicates that the model is most accurate within the central target range and less reliable near the
edges for medium to high masking ratios.
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Figure 4: Error distribution over individual samples for the test set under different masking ratios

5.6 UNCERTAINTY QUANTIFICATION OVER DIFFERENT SEEDS

Figure A5 presents the mean MAE and MSE with standard deviations across three random seeds.
The small standard deviations demonstrate robust, seed-stable performance. Figure A6 further dis-
tinguishes results between masked and unmasked nodes. While variability remains low overall,
masked nodes show higher mean errors and larger standard deviations than unmasked nodes, indi-
cating greater sensitivity in the masked setting.

6 CONCLUSION

We introduce AttentionR-GCN, a model for accurate forecasting in partially observed, dynami-
cally evolving infrastructure networks. AttentionR-GCN tackles core limitations of prior work
by integrating: (i) relation-aware, attention-driven aggregation that leverages heterogeneous node
and edge features; (ii) learnable embeddings for missing features; and (iii) a Transformer-based
temporal encoder that captures long-range temporal dependencies. Empirical results on two sim-
ulated water-distribution networks show that AttentionR-GCN outperforms strong baselines, with
the largest gains at moderate sparsity. The model generalizes well, maintaining robust accuracy on
fully unmonitored nodes at medium masking ratios. Ablations reveal that most of the improvement
comes from the relation-aware attention, with small incremental benefits from the learnable missing-
feature embeddings and the Transformer module. Finally, uncertainty quantification and cross-seed
validation validate the model’s robuestness. Together, these findings highlight the value of adap-
tive weighting of relational edge and node features, explicit missing-data handling, and temporal
modeling for robust spatiotemporal forecasting.

Although our results demonstrate the promise of AttentionR-GCN, our evaluation is limited to a wa-
ter infrastructure network. Further studies on diverse infrastructure datasets, such as energy grids or
transportation networks, would provide additional validation of its generalizability and robustness.
Exploring extensions to real-world deployments and examining aspects of model interpretability
represent valuable directions for future work.
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A APPENDIX
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Figure A1: Comparison of basic model performance across masking ratios on test set
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Figure A2: Performance on unmasked nodes across three metrics (MAE, MSE, R2).

0.0 0.2 0.4 0.6 0.8 1.0
Mask Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
AE

Model
Whole Model
AttentionR-GCN
AttentionR-GCN + Learnable embedding
AttentionR-GCN + Transformer

(a) MAE

0.0 0.2 0.4 0.6 0.8 1.0
Mask Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
M

SE

Model
Whole Model
AttentionR-GCN
AttentionR-GCN + Learnable embedding
AttentionR-GCN + Transformer

(b) MSE

0.0 0.2 0.4 0.6 0.8 1.0
Mask Ratio

0.2

0.4

0.6

0.8

1.0

R²

Model
Whole Model
AttentionR-GCN
AttentionR-GCN + Learnable embedding
AttentionR-GCN + Transformer

(c) R2

Figure A3: Ablation test on three metrics
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Figure A4: MAE and MSE with their mean and standard deviation for different sample values on
the test sets across different mask ratio.
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Figure A5: MAE and MSE on mean and std on all nodes on test sets over different seeds
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Figure A6: Evaluation of MAE and MSE across seeds, reported separately for masked and unmasked
nodes; note the much smaller y-axis scales in the unmasked graph than the masked graph.
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