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Abstract001

Recent advances in web-augmented large lan-002
guage models (LLMs) have exhibited strong003
performance in complex reasoning tasks, yet004
these capabilities are mostly locked in propri-005
etary systems with opaque architectures. In this006
work, we propose ManuSearch, a transparent007
and modular multi-agent framework designed008
to democratize deep search for LLMs. ManuSe-009
arch decomposes the search and reasoning pro-010
cess into three collaborative agents: (1) a solu-011
tion planning agent that iteratively formulates012
sub-queries, (2) an Internet search agent that013
retrieves relevant documents via real-time web014
search, and (3) a structured webpage reading015
agent that extracts key evidence from raw web016
content. To rigorously evaluate deep reason-017
ing abilities, we introduce ORION, a challeng-018
ing benchmark focused on open-web reasoning019
over long-tail entities, covering both English020
and Chinese. Experimental results show that021
ManuSearch substantially outperforms prior022
open-source baselines and even surpasses lead-023
ing closed-source systems. Our work paves024
the way for reproducible, extensible research025
in open deep search systems.026

1 Introduction027

Deep search systems have recently marked remark-028

able strides by coupling large language models029

(LLMs) with web search, enabling them to answer030

complex queries that require multi-step reasoning031

and up-to-date information (Alzubi et al., 2025).032

Proprietary systems such as Perplexity’s Sonar Rea-033

soning Pro (Perplexity-AI, 2025) and OpenAI’s034

GPT-4o Search Preview (OpenAI, 2025a) exem-035

plify this progress. These closed-source agents036

demonstrate emergent chain-of-thought reasoning037

capabilities: they autonomously plan out search038

queries, retrieve information from the web, and syn-039

thesize coherent, context-rich answers with source040

citations. By integrating search planning, itera-041

tive retrieval, and on-the-fly content aggregation,042

these agents achieve state-of-the-art performance 043

on challenging benchmarks, far surpassing what 044

static offline models can do. 045

Despite impressive capabilities of closed sys- 046

tems, the open-source ecosystem lacks comparable 047

and transparent alternatives. Key components of 048

deep search systems, e.g., sophisticated query plan- 049

ning, multi-hop retrieval, and tool-augmented rea- 050

soning, remain entangled within proprietary stacks, 051

with few modular open implementations. In par- 052

ticular, there is a lack of modular and interpretable 053

architectures that let researchers inspect or improve 054

each stage of the reasoning process and an absence 055

of benchmarked multi-stage reasoning agents that 056

can serve as open baselines. More importantly, 057

there exists significant difficulty in replicating the 058

performance of closed systems due to their re- 059

stricted access and opaque design. This grow- 060

ing gap between private and public AI has been 061

noted by the research community (Alzubi et al., 062

2025; Zheng et al., 2025). Initial efforts to close 063

it are only just emerging; for example, an early 064

open-source prototype has combined techniques 065

like ReAct-based tool use and prompting to nearly 066

match the quality of GPT-4o Search and Sonar on 067

certain tasks (Alzubi et al., 2025). However, these 068

attempts are still in their infancy, underscoring the 069

urgent need to democratize deep search research 070

and foster reproducible innovation in this domain. 071

In this paper, we address these challenges by 072

introducing ManuSearch, a transparent and open- 073

source deep search system. Specially, ManuSearch 074

is designed as an agent-based, modular system that 075

achieves web-scale complex reasoning tasks with 076

three collaborative agents: (1) Solution planning 077

agent, an LLM-based planner that interprets the 078

user’s query, formulates a strategy (a series of sub- 079

questions or steps), and decides which information 080

to seek at each step; (2) Internet search agent, a 081

specialized agent that takes the planner’s requests, 082

executes web searches, and gathers relevant evi- 083
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dence from the open Internet; and (3) Webpage084

reading agent, an agent that reads the retrieved085

webpages, and extracts the most relevant key infor-086

mation needed to answer the query. These agents087

communicate and iterate in a structured reasoning088

loop, effectively integrating task planning, open089

Internet search, and key information comprehen-090

sion and synthesis into a unified problem-solving091

process. By breaking the deep search pipeline092

into interpretable modules, ManuSearch provides093

an extensible and transparent alternative to mono-094

lithic closed-source systems. More important, each095

agent’s behavior is traceable, i.e.,, one can examine096

the chain-of-thought in the planner’s decisions, the097

queries issued, and the evidence used to support the098

answer, which not only aids debugging and trust,099

but also allows researchers to improve individual100

components in isolation.101

To enable a rigorous evaluation of our system’s102

deep search capabilities, we introduce ORION, a103

benchmark for Open-web Reasoning evaluatION104

specifically designed based on long-tail entities.105

Unlike existing datasets that often concentrate on106

high-frequency topics, ORION emphasizes reason-107

ing over less common entities across ten diverse108

domains. Each question in ORION is constructed109

using predefined reasoning templates, ensuring that110

the benchmark challenges a wide spectrum of cog-111

nitive abilities. Questions are initially generated112

using LLMs and then refined by human annotators113

to verify factual correctness and provide source-114

grounded reasoning chains. Spanning both En-115

glish and Chinese samples, ORION contains 310116

annotated examples, each linked to authoritative117

sources. Our evaluation shows that even leading118

closed-source systems achieve under 30% accu-119

racy on ORION, underscoring the benchmark’s120

difficulty and its value in advancing research on121

transparent and modular deep search systems.122

We conduct extensive experiments on our bench-123

mark and two challenging datasets (i.e., FRAMES124

and GAIA) to verify the effectiveness of our ap-125

proach. The experimental results show that our126

ManuSearch system significantly outperforms pre-127

vious open-source deep search systems.128

2 Related Work129

Large Reasoning Models. Large reasoning mod-130

els (LRMs) such as OpenAI-o1 (Jaech et al., 2024)131

and DeepSeek-R1 (Guo et al., 2025) demonstrate132

impressive long-horizon reasoning on complex133

tasks, but still rely on static internal knowledge, 134

causing them to falter on knowledge-intensive 135

queries. Recent efforts have applied reinforce- 136

ment learning (RL) to further boost the reasoning 137

prowess of these models (Guo et al., 2025; Zeng 138

et al., 2025). RL fine-tuning has enabled LRMs 139

to excel at decomposing complex problems into 140

multi-step solutions, achieving strong performance 141

in domains like mathematical proof and code gener- 142

ation (Qin et al., 2024; Zhang et al., 2024). Beyond 143

improving internal reasoning, an emerging direc- 144

tion is to let LRMs plan and act in tandem. ReAct- 145

style prompting exemplifies this integration of plan- 146

ning with execution: the model interleaves chain- 147

of-thought reasoning steps with external tool use, 148

dynamically querying resources mid-problem and 149

incorporating new information into its reasoning. 150

This synergy between reasoning and acting leads 151

to more reliable, factual outcomes on challenging 152

tasks, marking a significant advance in LRM capa- 153

bilities. However, these methods are constrained by 154

their reliance on static, parameterized architectures 155

that lack access to external world knowledge. 156

Deep Search with LLMs. To overcome the knowl- 157

edge limitations of static models, a new class of 158

deep web-integrated reasoning agents has emerged. 159

Recent systems such as Search-o1 (Li et al., 2025a), 160

WebThinker (Li et al., 2025b), and Open Deep 161

Search (Alzubi et al., 2025) augment an LLM’s rea- 162

soning by weaving in web search planning, tool use, 163

and evidence retrieval as part of the pipeline. These 164

agents decompose complex queries into search sub- 165

tasks and iteratively gather information from the 166

open web, feeding the retrieved evidence back into 167

the model’s chain-of-thought. A key trend is the 168

use of RL-based training to scale these deep re- 169

search capabilities. DeepResearcher (Zheng et al., 170

2025), for instance, trains an LLM agent end-to- 171

end in a live web environment via reinforcement 172

learning, yielding emergent behaviors like plan 173

formulation, cross-source verification, and self- 174

correction during multi-hop research. Similarly, 175

R1-Searcher (Song et al., 2025) uses a two-stage 176

outcome-driven RL strategy to explicitly incen- 177

tivize the model to invoke external search, signifi- 178

cantly improving open-domain question answering 179

even against strong retrieval-augmented baselines. 180

This line of work demonstrates that by integrating 181

search and reasoning in a coordinated pipeline, it is 182

possible to substantially enhance the deep research 183

abilities of an LLM. 184
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3 ORION185

Existing complex reasoning datasets focus primar-186

ily on constructing multi-domain questions to eval-187

uate various capabilities of large language models188

(Krishna et al., 2024; Rein et al., 2024). Although189

these models perform well on questions involv-190

ing common entities, their performance tends to191

degrade when handling questions that involve rea-192

soning on long-tailed entities. In this section, we193

introduce ORION, a benchmark for the evaluation194

of open-web reasoning over long-tail entities.195

3.1 Data Source and Reasoning Patterns196

In the process of benchmark construction, we prior-197

itize the selection of long-tail entities from multiple198

domains to ensure diversity, while also designing199

questions that require complex logical operations200

to enhance the benchmark’s complexity.201

Seed Entity Selection. To mimic real-world web202

scenarios, we systematically select entities from203

ten diverse common domains in web search, i.e.,204

music, sports, geography, art, politics, science,205

games, history, TV shows and business. Entity se-206

lection excludes ambiguously named subjects and207

requires each entity to possess at least three veri-208

fiable numerical or temporal attributes to support209

multifaceted reasoning.210

Reasoning Pattern Design. To synthesize com-211

plex questions, we define five reasoning patterns212

through atomic operations that require multistep213

knowledge composition. Each pattern demands dis-214

tinct cognitive capabilities while ensuring answer215

verifiability through deterministic computation or216

unambiguous factual lookup. Table 6 summarizes217

these patterns with illustrative examples.218

3.2 Example Synthesis and Annotation219

The construction of our benchmark integrates auto-220

matic question generation based on LLMs followed221

by human refinement. Initially, we adopt an LLM222

to synthesize questions based on predefined reason-223

ing patterns and seed entities. After that, human an-224

notators carefully verify each question by labeling225

multiple sources of evidence, ensuring that the en-226

tire reasoning chain leading to the correct answer is227

thoroughly recorded with authoritative references.228

To ensure the difficulty of the final synthesized229

questions, we use advanced QA assistants (e.g.,230

ChatGPT) to answer those questions and retain231

those that challenge the assistants. For questions232
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Figure 1: Distribution of domains in ORION.

AI Systems Chinese English Overall

Kimi Exploration Edition 14.7 20.0 17.1
Doubao Search 23.5 30.7 26.8
Qwen2.5-Max Search 20.0 20.7 20.3

Table 1: Accuracy (%) for three systems in ORION.

identified as relatively simple, we apply iterative 233

revisions, including substituting high-frequency en- 234

tities with long-tail alternatives from provided do- 235

mains and enhancing the logical complexity of the 236

questions by additional reasoning constraints. 237

3.3 Benchmark Statistics 238

Our benchmark comprises 310 samples, with 170 239

Chinese and 140 English entries. Each entry in- 240

cludes a question, a verifiable answer, and authori- 241

tative source URLs that illustrate evidence extrac- 242

tion. The questions exhibit a diverse range of rea- 243

soning patterns, with more than 85% involve more 244

than two reasoning patterns, and more than 43% 245

involve more than three reasoning patterns. More- 246

over, they cover a broad spectrum of domains, as 247

shown in Figure 1. The credibility of the sources is 248

carefully verified, with more than 95% URLs link- 249

ing to authoritative data sources (e.g., Wikipedia, 250

academic articles, government documents). To 251

substantiate the pronounced complexity of of our 252

benchmark, we evaluate three state-of-the-art AI 253

search systems on our benchmark, including Kimi 254

Explorer, Doubao AI Search, and Qwen2.5-Max 255

AI Search. Each system is tasked with answering 256

questions by leveraging real-time search capabil- 257

ities and information retrieval from the Internet. 258

The results are presented in Table 1. We can see 259

that the three systems achieve accuracy rates be- 260

low 30%, which demonstrates the high difficulty of 261

our dataset when dealing with questions involving 262

intricate logical operations and rare entities. 263
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Figure 2: The overall framework of our proposed ManuSearch.

4 Method264

4.1 Overview265

Previous work (Song et al., 2025; Chen et al., 2025)266

typically relied on advanced capabilities of state-of-267

the-art reasoning models (e.g., OpenAI-o1 (Jaech268

et al., 2024), Deepseek-R1 (Guo et al., 2025)), inte-269

grating both task decomposition and sub-problem270

solving within a single model. Such complex in-271

tegration may exceed the capabilities of backbone272

models, often necessitating additional training or273

prompt engineering efforts. Moreover, performing274

planning and problem solving simultaneously re-275

quires the model to interact with the external web276

and integrate large volumes of web information,277

exceeding the model’s context window.278

To address these challenges, we decouple the tra-279

ditional search paradigm and propose a transparent280

and open-source multi-agent deep search system,281

called ManuSearch. Our system is designed as an282

agent-based modular system that consists of three283

LLM-based collaborative agents: solution planning284

agent, internet search agent and webpage reading285

agent. ManuSearch offers a plug-and-play deep286

search framework that supports flexible integration287

of any LLM, from open-source alternatives to com-288

mercial LLMs accessible via API. Next, we will289

describe each module in detail.290

4.2 Multi-Step Solution Planning291

In complex problem-solving scenarios, particularly292

those that involve large search spaces and intri-293

cate dependencies, planning plays a pivotal role 294

in guiding the reasoning process toward efficient 295

and effective outcomes. In deep search, the system 296

must determine not only what to search, but also 297

how to structure the search process: identifying 298

intermediate information needs, sequencing related 299

subqueries, and reasoning over retrieved content. 300

To address this challenge, we design a special- 301

ized Solution Planning Agent that operates within 302

a deep search framework. The planning agent 303

solely focuses on breaking down the input problem 304

iteratively and generating the final answer, grant- 305

ing the model superior capacity to reflect on and 306

evaluate the main problem-solving process and 307

the correctness of sub-question solutions. Spe- 308

cially, the planning agent adopts the ReAct archi- 309

tecture (Yao et al., 2023) and utilizes a memory 310

container to manage its input context. The memory 311

manager records each decomposed sub-question 312

and its corresponding answer generated by the tool- 313

augmented Internet search agent (detailed in Sec- 314

tion 4.3), then automatically concatenates them into 315

the context for the LLM in the next iteration. 316

At step t, the input question x, previously decom- 317

posed sub-questions and their corresponding an- 318

swers (if any) are combined as the context, denoted 319

by Ht−1 = {x, ⟨q1, a1⟩ . . . , ⟨qt−1, at−1⟩}. The 320

solution planning agent first evaluates the problem- 321

solving progress in the history and then either de- 322

composes the input question further or refines the 323

unsolved sub-question from the previous steps, gen- 324

4



erating the next sub-question qt to be solved as:325

qt = πp(Ht−1), where πp denotes the solution326

planning agent. In particular, if the planning agent327

determines that the current information is sufficient328

to derive the final answer, the agent will proceed to329

generate the answer as: y = πp(Ht−1).330

In ManuSearch, the planning agent only needs331

to generate the next-step query based on the envi-332

ronmental feedback (i.e., previous sub-questions333

and solutions), without concerning itself with the334

details of the retrieval operations. This effectively335

alleviates the capability limitations faced in tradi-336

tional retrieval-based frameworks.337

4.3 Tool-Augmented Internet Search338

After planning the next sub-question, we introduce339

a Tool-Augmented Internet Search Agent, re-340

sponsible for solving sub-questions by invoking341

online Internet search. To ensure a unified manner342

with the planning agent, the Internet search agent343

also uses the ReAct format, interacting with the344

online Internet through pre-defined search tools in345

multiple rounds to ultimately solve sub-questions.346

We elaborate two tools to augment the search agent:347

• Web Search: The search tool will take a query348

and its corresponding search intent as input and per-349

forms information retrieval via Google API, return-350

ing the top-K most relevant web pages information.351

Each result includes the link, title, short summary352

and detailed relevant information. Then, it will in-353

voke the webpage reading agent (Section 4.4) to354

visit the entire page documents of all retrieved links355

to extract detailed relevant information.356

• Answer Question: This tool is called to gen-357

erate an answer at to the given sub-question qt358

based on the fine-grained and relevant information359

returned by the webpage reading agent.360

Specifically, based on the sub-question qt and361

the historical information Ht−1, the Internet search362

agent engages in a multi-round interaction with363

the vast web. At each round, the agent calls the364

web search tool to return top-K results, denoted365

by D = {⟨uk, tk, sk, ck⟩}Kk=1, where uk, tk, sk, ck366

denote the page link, title, summary, and the task-367

relevant content, respectively. Note that since web-368

pages contain massive and noisy information, the369

webpage reading agent also extracts the most rel-370

evant content ck for return. The search agent will371

iteratively search until the retrieved information372

is sufficient to answer the sub-question. All the373

retrieved results will be combined as a comprehen-374

sive and up-to-date source Ot = {Dj}Jj=1, where375

J is the number of iterations. Finally, the agent 376

will call the answer question tool to generate an 377

answer at to the sub-question qt as follows: 378

at = πs(qt,Ot,Ht−1), (1) 379

where πs denotes the search agent. The generated 380

answer at will be passed to the solution planning 381

agent, continuing the next round of planning and 382

problem solving. Through this iterative process, 383

the two agents collaborate interactively until the 384

input question is successfully solved. We argue 385

that this decoupled planning-solving framework is 386

particularly well-suited for addressing web-based 387

complex reasoning tasks, as it can fully leverage 388

the respective strengths of each module to achieve 389

the optimal performance. 390

4.4 Structured Webpage Reading 391

On the Internet, there are a huge number of HTML 392

webpages with messy organizational forms and en- 393

coding formats, making it difficult to process in a 394

unified approach and seriously affects the model’s 395

comprehension on the webpage content. Besides, 396

the webpages contain substantial redundant and 397

noisy information that is useless for problem solv- 398

ing. Therefore, we design a Structured Webpage 399

Reading Agent which is primarily responsible for 400

two tasks: extracting clean texts from the messy 401

HTML page and further extracting the most rele- 402

vant information from noisy raw texts. 403

Messy HTML Formats Processing. For each in- 404

put query, the web search tool returns the top-K 405

webpages with their links, titles, and summaries, 406

denoted by D = {⟨uk, tk, sk⟩}Kk=1. For each page 407

link, the webpage reading agent first crawls the 408

whole HTML page and then removes the HTML 409

tags, special characters to obtain clean texts zk. 410

Relevant Information Extraction. The raw web- 411

page texts still contain massive noisy information. 412

Therefore, we enable the Internet search agent to 413

generate a detailed search intent I to help the web- 414

page reading agent extract the most relevant con- 415

tent. Unlike the simple query fed into the search 416

engine, the search intent incorporates broader con- 417

textual information, aiming to bridge the semantic 418

gap between query and search results. Given the 419

search intent I and the processed clean raw text zk, 420

the webpage reading agent extracts highly relevant 421

information as: 422

ck = πr(zk, I), (2) 423
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where πr denotes the webpage reading agent. Fi-424

nally, the reading agent combines the extracted425

information with the webpage and returns to the In-426

ternet search agent. The search agent might iterate427

the search process for several times by interacting428

with the webpage reading agent. In this process,429

the webpage reading agent effectively filters out430

irrelevant information while accurately extracting431

task-relevant details. This significantly mitigates432

information conflicts across webpages in Internet433

search agent’s reasoning, enabling more efficient434

and effective information retrieval.435

5 Experiments436

5.1 Experimental Settings437

Datasets and Metrics. For evaluation, we select438

two complex multi-hop reasoning benchmarks, i.e.,439

FRAMES (Krishna et al., 2024) and GAIA (Rein440

et al., 2024), along with ORION to evaluate model441

performance. Specially, FRAMES is intended to442

test the information retrieval and factual reasoning443

capabilities from single-hop to multi-hop questions,444

and GAIA focuses on challenging information re-445

trieval tasks in general scenarios. We select the446

whole dataset of FRAMES and adopt the same447

evaluation subset of GAIA used in WebThinker (Li448

et al., 2025b). For the three datasets, we adopt449

LLM-as-Judge with ChatGPT-4o as the evaluator450

to compare model outputs with ground truth and451

report Pass@1 accuracy.452

Baselines. We compare ManuSearch to the fol-453

lowing three types of baselines:454

• Closed-source Search Systems include Per-455

plexity Sonar Reasoning Pro (Perplexity-AI, 2025)456

from Perplexity, GPT-4o Search Preview (Ope-457

nAI, 2025a) from OpenAI, Kimi Search1, and Exa458

Search Pro2. These are state-of-the-art systems459

with access to search engines.460

• Open-source Search Systems include Open461

Deep Search (ODS) (Alzubi et al., 2025), Search-462

o1 (Li et al., 2025a), WebThinker (Li et al., 2025b),463

and SimpleDeepSearcher (Zheng et al., 2025).464

• Direct Reasoning employs GPT-4o, Qwen2.5-465

Instruct-32B, QwQ-32B and DeepSeek-R1 to di-466

rectly reason and generate answers without access467

to search engines.468

Implementation Details. We implement ManuSe-469

1https://www.kimi.com/
2https://exa.ai/

arch upon Qwen and DeepSeek series models. In 470

Qwen series, we adopt QwQ-32B as the multi- 471

step solution planning agent and Internet search 472

agent, represented as ManuSearch-QwQ-QwQ. 473

In DeepSeek series, we adopt DeepSeek-R1 and 474

DeepSeek-V3 as the planning and search agent, re- 475

spectively, represented as ManuSearch-R1-V3. In 476

both series, we uniformly employ Qwen2.5-32B- 477

Instruct as the base model for the webpage reading 478

agent. We also conduct experiments with respect 479

to the base model seleciton of webpage reading 480

agent in Section 5.3. For Internet search agent, we 481

set the maximum number of sub-queries per search 482

to 3 when calling web search tool. For webpage 483

reading agent, we set the maximum length of the 484

original web text to 64K. For the web search tool, 485

we retrieve top-5 relevant webpages. Specifically, 486

when the ManuSearch fails to provide an answer, 487

we switch to the direct resoning mode to generate 488

the final answer. 489

5.2 Main Results 490

Table 2 shows the result of ManuSearch and other 491

baselines across three representative benchmarks. 492

Firstly, it can be observed that ManuSearch is a 493

general search framework for seamlessly augment- 494

ing any LLMs from 32B models to large closed- 495

source reasoning models. For example, DeepSeek- 496

R1 achieves 30.1% accuracy on FRAMES, 31.1% 497

accuracy on GAIA and 36.6% accuracy on ORION. 498

After pluging into ManuSearch, these perfor- 499

mances surge to 71.8% on FRAMES, 47.6% on 500

GAIA and 42.5 % on ORION, achieving impres- 501

sive performance gains and validating the efficiency 502

of our designed search framework. 503

Secondly, with a modular, multi-agent frame- 504

work, ManuSearch nearly matches existing state-of- 505

the-art baselines on the two benchmarks: FRAMES 506

and GAIA. For 32B models, ManuSearch-QwQ- 507

QwQ achieves 46.6% on GAIA, surpassing Web- 508

thinker by 1.9% and 68.4% on FRAMES, almost 509

matching the elaborately trained search agent Sim- 510

pleDeepSearcher. Moreover, ManuSearch-R1-V3 511

achieves advanced performance, with 47.6% on 512

GAIA and 71.8% on FRAMES, nearly matching 513

ODS-v2+DeepSeek-R1. 514

Finally, ManuSearch outperforms all closed- 515

source Search AIs in three datasets. Notably, with 516

only 32B models, ManuSearch improves the best 517

existing baseline of the GPT-4o Search Preview by 518

2.8% in accuracy on FRAMES, 6.6 % on ORION 519

and 19.5% on GAIA. 520
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Method FRAMES ORION GAIA

Avg. EN ZH Avg. Level 1 Level 2 Level 3 Avg.

Direct Reasoning (w/o Retrieval)
Qwen2.5-32B-Instruct 24.5 14.3 11.2 12.8 20.5* 9.6* 8.3* 13.6*
QwQ-32B 32.5 27.1 23.5 25.3 30.8* 15.4* 25.0* 22.3*
DeepSeek-R1 30.1* 37.9 35.3 36.6 43.6* 26.9* 8.3* 31.1*
GPT-4o 50.5* 27.1 20.0 23.6 25.6 15.4 0 17.5

Closed-source Search Systems
GPT-4o Search Preview 65.6* 38.6 22.9 30.8 48.7 17.3 0 27.1
Perplexity Sonar Reasoning Pro 44.4* 26.4 19.4 22.9 43.6 25 16.7 31.1
Kimi Search 35.9 14.3 11.2 12.8 35.9 21.2 8.3 24.3
Exa Search Pro 32.8 8.6 11.8 10.7 30.8 9.6 0 16.5

Open-source Search Systems
ODS-v1+DeepSeek-R1 56.7* - - - - - - -
ODS-v2+DeepSeek-R1 75.3* - - - - - - -
Search-o1-32B 64.4* - - - 53.8* 34.6* 16.7* 39.8*
WebThinker-32B-Base - - - - 53.8* 44.2* 16.7* 44.7*
SimpleDeepSearcher 68.7* - - - 61.5* 44.2* 16.7* 47.6*
ManuSearch-QwQ-QwQ (Ours) 68.4 40.0 34.7 37.4 59.0 42.3 25.0 46.6
ManuSearch-R1-V3 (Ours) 71.8 47.9 37.1 42.5 64.1 44.2 8.3 47.6

Table 2: Main results on three challenging reasoning tasks: FRAMES, ORION, and GAIA, evaluating models
on both closed-source and open-source search systems. The results are measured using the Pass@1 metric, with
breakdowns for individual languages (EN, ZH) and hierarchical reasoning levels in GAIA. Bold fonts indicate the
best performance among open-source models, and asterisks (*) denote results collected from other studies.

5.3 Further Analysis521

We report further analysis on FRAMES with ran-522

domly selected 100 samples and GAIA, due to the523

constraint of computational resources.524

How to harmonize reasoning and non-reasoning525

models? Our system comprises three LLM-based526

collaborative agents where each agent supports var-527

ious configurations by integrating different LLMs,528

enabling diverse combinations tailored to specific529

tasks. In this part, we aim to explore how reason-530

ing and non-reasoning models can be harmonized531

in our system. Inspired by the human problem-532

solving process where people typically engage in533

more deliberate thinking during the problem de-534

composition phase and adopt faster, more intuitive535

thinking during the information search phase, we536

compare two configurations: (1) reasoning mod-537

els for both solution planning and internet search538

agents; and (2) reasoning models for solution plan-539

ning agent while non-reasoning models for internet540

search agent. We evaluate two reasoning models541

(i.e., QwQ and DeepSeek-R1) and non-reasoning542

models (i.e., Qwen2.5-32B-Instruct and DeepSeek-543

V3). The results are shown in Table 3. We can544

observe that the performance differences between545

these configurations are relatively small. Within the 546

Qwen series, using QwQ as both agents yields bet- 547

ter results, whereas in the DeepSeek series, using 548

DeepSeek-R1 paired with DeepSeek-V3 performs 549

better. Our in-depth analysis reveals that due to the 550

relatively weaker capabilities of the Qwen series 551

models, the non-reasoning model sometimes strug- 552

gles to identify key information from the content 553

returned by the webpage reading agent during sub- 554

problem solving, resulting in poorer performance. 555

In contrast, for the DeepSeek series, both reasoning 556

and non-reasoning models are sufficiently capable 557

of handling subproblem solving effectively. In this 558

case, the performance bottleneck is primarily deter- 559

mined by the quality of the information returned 560

by the webpage reading agent. 561

Method
FRAMES GAIA

Avg. Level 1 Level 2 Level 3 Avg

MS-QwQ-Qwen 63.0 51.3 44.2 8.3 42.7
MS-QwQ-QwQ 64.0 59.0 42.3 25.0 46.6
MS-R1-V3 62.0 64.1 44.2 8.3 47.6
MS-R1-R1 63.0 64.1 44.2 0 46.6

Table 3: Performance comparison of ManuSearch with
four different configurations on FRAMES and GAIA.
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Does webpage reading agent really need page se-562

lection? Through extensive experiments, we found563

that the implementation of the webpage reading564

pipeline has a significant impact on the overall per-565

formance of our framework. Inspired by previous566

work (Chen et al., 2024; Alzubi et al., 2025; Li567

et al., 2025b), we summarize two mainstream web-568

page reading approaches:569

• Selective Reading: The model autonomously570

selects appropriate webpages to read in detail571

as it needs.572

• Full Reading: The model does not perform573

page selection and instead uses the full content574

of all webpages retrieved by search engine.575

In the first approach, the model is minimally af-576

fected by irrelevant web content and can focus on577

pages it deems potentially useful, allowing for a578

more deliberate reasoning process. However, it is579

often difficult for the model to accurately choose580

the right pages to read based solely on metadata,581

leading to information loss and increasing errors.582

The second approach is more straightforward by583

allowing the model to read all potentially relevant584

content, and it significantly reduces the chance585

of missing critical information. Nevertheless, the586

model may struggle to identify the correct informa-587

tion amid a large volume of content, increasing the588

risk of hallucination. Table 4 presents the results589

of our experiments over the two methods. It can590

be observed that Full Reading achieves better over-591

all performance, with significantly better results592

than Selective Reading under the ManuSearch with593

QwQ-QwQ configuration. Moreover, considering594

that the Full Reading approach is simpler and more595

efficient, we ultimately recommend and adopt the596

Full Reading method in our framework.597

Method
FRAMES GAIA

Avg. Level 1 Level 2 Level 3 Avg

MS-QwQ-Qwen
Full Reading 63.0 51.3 44.2 8.3 42.7
Selective Reading 62.0 61.5 42.3 0 44.7

MS-QwQ-QwQ
Full Reading 64.0 59.0 42.3 25.0 46.6
Selective Reading 56.0 48.7 40.4 16.7 40.8

Table 4: Performance comparison of Full Reading and
Selective Reading on FRAMES and GAIA.

What are the impacts of different webpage read-598

ing models? Since the retrieved webpages often599

contain various types of noise, lengthy content, 600

or present conflicting information, it poses signif- 601

icant challenges for models to extract useful in- 602

formation. Meanwhile, as discussed in the previ- 603

ous part, it is crucial to investigate how different 604

models as webpage reading agents affect the per- 605

formance of overall framework. We conduct ex- 606

periments using three models as webpage reading 607

agent, including Qwen2.5-32B-Instruct, QwQ-32B, 608

and ChatGPT-4o-mini, under the ManuSearch with 609

QwQ-Qwen and QwQ-QwQ configurations. The 610

results in Table 5 shows that Qwen2.5-32B-Instruct, 611

as a webpage reading model, achieves consistently 612

leading performance on both dataset, except un- 613

der the ManuSearch-QwQ-Qwen configuration on 614

GAIA, where ChatGPT-4o-mini has a better perfor- 615

mance. These results demonstrate that Qwen2.5- 616

32B-Instruct is the most suitable model among the 617

three for serving as a webpage reading agent. 618

Method
FRAMES GAIA

Avg. Level 1 Level 2 Level 3 Avg

MS-QwQ-Qwen with
Qwen2.5-32B-Instruct 63.0 51.3 44.2 8.3 42.7
QwQ-32B 59.0 59.0 25.0 8.3 35.9
ChatGPT-4o-mini 55.0 46.2 48.0 16.7 43.7

MS-QwQ-QwQ with
Qwen2.5-32B-Instruct 64.0 59.0 42.3 25.0 46.6
QwQ-32B 61.0 56.4 44.2 16.7 44.7
ChatGPT-4o-mini 59.0 48.7 32.7 25.0 37.9

Table 5: Average accuracy comparison of ManuSearch
with three kinds of webpage reading models: Qwen2.5-
32B-Instruct, QwQ-32B, and ChatGPT-4o-mini, evalu-
ated on FRAMES and GAIA benchmarks.

6 Conclusion 619

We present ManuSearch, a transparent and modular 620

multi-agent framework that enables large language 621

models to perform deep web-integrated reasoning. 622

By decoupling the problem-solving process into 623

three specialized agents, i.e., solution planning, 624

internet search, and structured webpage reading, 625

our system promotes interpretability, extensibil- 626

ity, and performance. Extensive evaluations on 627

our proposed benchmark ORION demonstrate that 628

ManuSearch significantly outperforms prior open- 629

source systems and rivals or exceeds several closed- 630

source commercial agents. Our work highlights 631

the importance of modular reasoning pipelines and 632

introduces a reproducible foundation for future re- 633

search in open deep search systems. We hope this 634

framework will catalyze progress toward trustwor- 635

thy agents empowered with search capabilities. 636
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7 Limitations637

Despite our considerable efforts, this study remains638

limited due to the substantial computational cost.639

Our evaluations primarily focus on open-source640

models from the Qwen and DeepSeek series and641

are conducted on only three datasets. Future re-642

search will expand the scope by incorporating a643

wider range of both open-source and proprietary644

models—such as the LLaMA 4 series (Meta-AI,645

2025), the GPT series (OpenAI, 2025b), and the646

Claude series (Anthropic-AI, 2025)—as well as647

evaluating performance across a more diverse set648

of datasets. Additionally, our current framework649

employs a fine-grained WebSearch tool as part of650

the Tool-Augmented Internet Search mechanism.651

Future work could enhance this framework by inte-652

grating additional built-in tools such as Code Exe-653

cution and Multimodal tools to endow models with654

more comprehensive and versatile capabilities.655

8 Ethics and Risks656

Our work primarily focuses on the construction657

of the open-source deep search system ManuSe-658

arch and the open-web reasoning evaluation dataset659

ORION. Although our goal is to pave the way for660

reproducible and extensible research in open deep661

search systems, we recognize that it could be mis-662

used in certain scenarios, such as large-scale web663

scraping without proper authorization, automated664

generation or manipulation of online content, or665

privacy-invading search behaviors. To mitigate666

these risks, we clearly state the intended use of667

the framework, and we do not include any function-668

ality for bypassing access restrictions or automated669

user impersonation. We encourage the responsi-670

ble use of this framework and its continued critical671

evaluation.672

References673

Salaheddin Alzubi, Creston Brooks, Purva Chiniya,674
Edoardo Contente, Chiara von Gerlach, Lucas Irwin,675
Yihan Jiang, Arda Kaz, Windsor Nguyen, Sewoong676
Oh, and 1 others. 2025. Open deep search: Democ-677
ratizing search with open-source reasoning agents.678
arXiv preprint arXiv:2503.20201.679

Anthropic-AI. 2025. Claude 3.7 sonnet and claude680
code.681

Mingyang Chen, Tianpeng Li, Haoze Sun, Yijie Zhou,682
Chenzheng Zhu, Fan Yang, Zenan Zhou, Weipeng683
Chen, Haofen Wang, Jeff Z Pan, and 1 others. 2025.684

Learning to reason with search for llms via reinforce- 685
ment learning. arXiv preprint arXiv:2503.19470. 686

Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning 687
Liu, Wenwei Zhang, Kai Chen, and Feng Zhao. 2024. 688
Mindsearch: Mimicking human minds elicits deep ai 689
searcher. arXiv preprint arXiv:2407.20183. 690

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 691
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 692
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 693
Deepseek-r1: Incentivizing reasoning capability in 694
llms via reinforcement learning. arXiv preprint 695
arXiv:2501.12948. 696

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard- 697
son, Ahmed El-Kishky, Aiden Low, Alec Helyar, 698
Aleksander Madry, Alex Beutel, Alex Carney, and 1 699
others. 2024. Openai o1 system card. arXiv preprint 700
arXiv:2412.16720. 701

Satyapriya Krishna, Kalpesh Krishna, Anhad Mo- 702
hananey, Steven Schwarcz, Adam Stambler, Shyam 703
Upadhyay, and Manaal Faruqui. 2024. Fact, 704
fetch, and reason: A unified evaluation of 705
retrieval-augmented generation. arXiv preprint 706
arXiv:2409.12941. 707

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, 708
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng 709
Dou. 2025a. Search-o1: Agentic search-enhanced 710
large reasoning models. CoRR, abs/2501.05366. 711

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yu- 712
tao Zhu, Yongkang Wu, Ji-Rong Wen, and Zhicheng 713
Dou. 2025b. Webthinker: Empowering large rea- 714
soning models with deep research capability. CoRR, 715
abs/2504.21776. 716

Meta-AI. 2025. The llama 4 herd: The beginning of a 717
new era of natively multimodal ai innovation. 718

OpenAI. 2025a. Gpt-4o search preview. 719

OpenAI. 2025b. Introducing gpt-4.1 in the api. 720

Perplexity-AI. 2025. Introducing the sonar pro api. 721

Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie 722
Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector 723
Liu, Yuanzhi Li, and 1 others. 2024. O1 replication 724
journey: A strategic progress report–part 1. arXiv 725
preprint arXiv:2410.18982. 726

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack- 727
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju- 728
lian Michael, and Samuel R Bowman. 2024. Gpqa: 729
A graduate-level google-proof q&a benchmark. In 730
First Conference on Language Modeling. 731

Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, 732
Zhipeng Chen, Wayne Xin Zhao, Lei Fang, and Ji- 733
Rong Wen. 2025. R1-searcher: Incentivizing the 734
search capability in llms via reinforcement learning. 735
arXiv preprint arXiv:2503.05592. 736

9

https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2501.05366
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2504.21776
https://doi.org/10.48550/ARXIV.2504.21776
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://platform.openai.com/docs/models/gpt-4o-search-preview
https://openai.com/index/gpt-4-1/
https://www.perplexity.ai/hub/blog/introducing-the-sonar-pro-api


Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak737
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.738
React: Synergizing reasoning and acting in language739
models. In International Conference on Learning740
Representations (ICLR).741

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing742
He, Qian Liu, Zejun Ma, and Junxian He. 2025.743
7b model and 8k examples: Emerging reason-744
ing with reinforcement learning is both effective745
and efficient. https://hkust-nlp.notion.site/746
simplerl-reason. Notion Blog.747

Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming748
Shu, Jinlin Xiao, Chao Kong, and Jitao Sang. 2024.749
o1-coder: an o1 replication for coding. CoRR,750
abs/2412.00154.751

Yuxiang Zheng, Dayuan Fu, Xiangkun Hu, Xiaojie Cai,752
Lyumanshan Ye, Pengrui Lu, and Pengfei Liu. 2025.753
Deepresearcher: Scaling deep research via reinforce-754
ment learning in real-world environments. arXiv755
preprint arXiv:2504.03160.756

10

https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://hkust-nlp.notion.site/simplerl-reason
https://doi.org/10.48550/ARXIV.2412.00154


Reasoning Type Description and Example

Numerical Computation Combines arithmetic operations with numerical facts.
Example: "Among TIME’s Persons of the Year from 2000 to 2010, which tech
industry winner born in an odd year had the square root of their age at election
closest to an integer?"

Temporal Constraint Resolves time-bound relationships through duration calculations or chronological
ordering.
Example: "When Robert D. Heaton was born, how many years had Pennsylvania
been part of the U.S.?"

Fact Constraint Identifies entities satisfying more than two fact constraints through Boolean
conjunction.
Example: "Which U.S. president signed climate-related legislation while in office
and was born 40–50 years before Halley’s Comet’s last return?"

Statistical Reasoning Applies comparative operators or aggregation over bounded entity sets.
Example: "How many UK heirs died with age more than 80 between 1707 and
2025?"

Scenario Reasoning Embeds real entities into hypothetical scenarios, requiring real-world information
for answering.
Example: "Assuming the height of "Aurora Lab" (in meters) equals the first three
digits of the speed of light (m/s) plus 200, what is its ranking among the world’s
tallest buildings in 2024?"

Table 6: Reasoning patterns and illustrative examples in our benchmark ORION.

A Appendix757

A.1 Case Study758

In the case shown in Figure 3, our search strategy759

begins by identifying the birthplaces of U.S. pres-760

idents and their geographical coordinates. At the761

first step, the Solution Planning Agent generates762

the current sub-question, querying "the western-763

most city in the United States where a U.S. presi-764

dent was born". Upon receiving the sub-question,765

the Tool-Augmented Internet Search Agent pro-766

duces a diverse set of search keywords, including767

"westernmost city in the US where a president768

was born", "presidents born in Hawaii", "presi-769

dents born in Alaska", and "list of US presidents770

birthplaces", to obtain comprehensive information.771

Subsequently, the Tool-Augmented Internet Search772

Agent calls the WebSearch Tool to retrieve the top-773

K relevant documents, which are then passed to774

the Structured Webpage Reading Agent for pro-775

cessing. The Structured Webpage Reading Agent776

cleans and formats these documents, extracting777

content relevant to the query and returning it to778

the Tool-Augmented Internet Search Agent. Based779

on the extracted information and the user’s query,780

the Tool-Augmented Internet Search Agent formu-781

lates an answer to the current sub-question. This782

iterative process continues until the Solution Plan-783

ning Agent accumulates sufficient information to784

respond to the user’s original question.785

A.2 Reasoning Patterns in ORION 786

To synthesize complex questions, we define five 787

reasoning patterns through atomic operations that 788

require multi-step knowledge composition. Table 6 789

summarizes these patterns with illustrative exam- 790

ples. 791
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Question

Of the cities within the United States where U.S. presidents were born, which two are the farthest apart from the
westernmost to the easternmost going east, giving the city names only? Give them to me in alphabetical order, in a
comma-separated list.

Answer

Hillsborough, New Hampshire, Honolulu, Hawaii

Think

{
    "What is the westernmost city in the United States where a U.S. president was born?": {
        "search_keywords": [
            "westernmost city in the US where a president was born",
            "presidents born in Hawaii",
            "presidents born in Alaska",
            "list of US presidents birthplaces"
        ],
        "searcher_response": "The westernmost U.S. presidential birthplace is **Honolulu, Hawaii**, where Barack Obama was 
born on August 4, 1961."
    },
    "What is the easternmost city in the United States where a U.S. president was born?": {
        "search_keywords": [
            "easternmost city united states president born",
            "president born in maine",
            "franklin pierce birthplace longitude",
            "calvin coolidge birthplace longitude"
        ],
        "searcher_response": "The easternmost U.S. presidential birthplace is **Hillsborough, New Hampshire**, where Franklin 
Pierce was born on November 23, 1804."
    },
    "response": {
        "evaluation_previous_goal": "Success - The easternmost city (Hillsborough, NH) was confirmed as Franklin Pierce's 
birthplace. Now both extremities are identified: Honolulu (HI) and Hillsborough (NH).",
        "actions": "final_response",
        "challenges": [
            "Ensuring no other presidential birthplaces exist further east than Hillsborough, NH or west of Honolulu, HI",
            "Confirming alphabetical order requirement"
        ],
        "answer": "Hillsborough, New Hampshire, Honolulu, Hawaii"
    }
}

Figure 3: A case of ManuSearch from GAIA benchmark.
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