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Abstract

Colored noise, a class of temporally correlated noise processes, has shown
promising results for improving exploration in deep reinforcement learning
for both off-policy and on-policy algorithms. However, it is unclear how
temporally correlated colored noise affects policy learning apart from chang-
ing exploration properties. In this paper, we investigate the implications of
colored noise on on-policy deep reinforcement learning in a simplified setting,
considering linear dynamics and a linear policy under quadratic costs. We
derive a closed-form solution for the expected cost, revealing that colored
noise affects both the expected cost and the optimal policy. Notably, the
cost splits into a state-cost part equal to the unperturbed system’s cost and
a noise-cost term, affecting the policy, but independent of the initial state.
While the cost changes depending on the noise, the expected trajectory
remains independent of the noise color for a given linear policy. Far from
the goal state, the state cost dominates, and the effect due to the noise
is negligible: the policy approaches the optimal policy of the unperturbed
system. Near the goal state, the noise cost dominates, changing the optimal
policy.

1 Introduction

Deep reinforcement learning is an approximate dynamic programming technique to derive
a policy (a controller) for a given environment, i.e., reward (=—cost) and dynamics. The
policy is estimated based on trajectory samples gathered from the environment. To do so,
the data collection, and thus the action selection, needs to be varied. This is typically done
by randomly perturbing the action selection process, i.e., by action noise. Action noise can
be applied additively to the deterministically selected action of a policy or by sampling from
a stochastic policy. In continuous control settings, such as robotics, the system dynamics
include integrative components: the action signal (e.g., force, torque, velocity), is integrated
(velocity, position). This explains why temporally correlated action noise has been found to
improve learning performance in reinforcement learning (Riickstief et al., 2008; Raffin et al.,
2021} |[Eberhard et al.l 2023} [Hollenstein et al., |2022; |(Chiappa et al., [2023; [Hollenstein et al.,
2024). In particular, the temporally correlated colored noise processes have shown promising
results for continuous control (Eberhard et al.l 2023} Pinneri et al., |2020; [Hollenstein et al.,
2024)).
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While empirically, these noise processes have shown improvements in learning performance,
it is less clear how this noise affects the optimal policy. In this paper, we investigate this
question in a simplified setting.

While continuous control reinforcement learning is able to deal with stochastic dynamics,
ie.,

St41 ™~ P('|at7 St)
in practice, often environments with deterministic dynamics are used, e.g., based on the
MuJoCo simulator (Tassa et al., 2018; [Todorov et al., [2012; Brockman et al., [2016).

To study the impact of colored noise on RL, we employ a simplified model, considering linear
deterministic dynamics:
Si41 = Gsy + Hay
and a linear policy:
ar = —Ks;

Central to our investigation, we assume that the actions of the policy are perturbed by action
noise drawn from Cg, a colored noise process with noise color §: g; ~ Cg:

ar = —KSt + & (1)

Additionally, we assume the cost (= —reward) to be quadratic and the goal state to be s = 0.
That is, we study the question of the impact of colored noise in the linear quadratic regulator
(LQR) setting.

As is typical for reinforcement learning, we assume the initial state sqg ~ S to be sampled
from a given initial state distribution. Furthermore, we limit the study to the episodic
setting, limiting the length of the trajectories to T'.

Since we are interested in understanding the effects of colored noise on the optimal policy in
reinforcement learning, we are interested in the following questions:

1. How does colored noise affect the expected trajectory E [s;], given an expected
starting state 547

2. How does the expected cost change when the noise color (§) is changed?
3. How does colored noise change the optimal policy?

Our contributions are:

1. We show that while the collected trajectories are affected by the noise, the expected
trajectory remains unchanged regardless of the noise (Q1).

Context: On-policy RL results demonstrate improved performance with temporally
correlated noise but do not directly address the noise’s impact on data collection.
This result applies to linear dynamics and extends to more complex environments if
they are locally linear in the presence of noise.

2. We derive a closed-form solution for the expected cost.

Context: Sample-based estimation of cost in D-RL typically involves high variance,
obscuring the effect of noise color, requiring a more reliable assessment of the impact
of the noise.

3. We show how the cost is affected by the noise (Q2).

Context: While noise is primarily intended for exploration, and typically the un-
perturbed policy is evaluated, in on-policy RL, exploration and stochastic policy
classes are more directly connected. Our result highlights how the change in data
collection leads to a change in the cost, i.e., the optimization target. By dividing
the cost into state-dependent terms, noise-dependent but policy-independent, and
noise-policy dependent costs, we show how correlated noise can result in a different
optimal policy.

4. We show how these different parts of the cost can affect the optimal policy K (Q3).

Contert: We empirically show that the impact of these noise terms varies, being
generally small but more significant when the policy generates close to zero actions,
e.g., when it aims to remain close to a goal.



1.1 Related Work

Exploration is critical for reinforcement learning. In continuous control deep reinforcement
learning, the two most prominent noise types used for exploration are uncorrelated white
noise (Haarnoja et al.| |2019; [Fujimoto et al., 2018 |JAbdolmaleki et al.| 2018} [Schulman
et al.l |2017)) or temporally correlated Ornstein-Uhlenbeck (Uhlenbeck & Ornstein) [1930)
noise, e.g., Lillicrap et al.| (2016). The importance of temporally correlated noise has also
been shown by methods that combine random aspects with deterministic state-to-action
mappings (Raffin et al., 2021} Riickstief3 et al., [2008; |Chiappa et all 2023). A further type
of random exploration, more similar to white noise and Ornstein-Uhlenbeck noise is action
noise exploration based on colored noise processes (Pinneri et al.; 2020; |[Eberhard et al.| [2023;
Hollenstein et al., 2024).

Research in the LQR setting has investigated noise based exploration strategies, establishing
regret bounds for learning unknown dynamics. [Simchowitz & Foster| (2020) and |Simchowitz
et al.| (2020]) show that “naive” exploration, e.g., white-noise injection, is rate-optimal for
online LQR when aiming to identify the system and recover the noise-free optimal controller.
These studies focus on minimizing regret with process or observation noise, often assuming
i.i.d. Gaussian noise, rather than on how temporally correlated noise affects the optimal policy
for known dynamics. Classical LQG control also treats noisy dynamics and observations—
and even temporally correlated noise (Kwong) [1987; [Escobedo-Trujillo & Garrido-Meléndez,
2021)—but typically does not model additive action noise directly in the control law.

In this work, we fill that gap by studying
a = —Ks; + &,

where €, is drawn from a colored noise process generated in the frequency domain—an
approach particularly relevant to deep RL implementations (Eberhard et al.,[2023; [Hollenstein
et al.l |2024; |Pinneri et al.| [2020)).

2 Background

Colored noise processes are a class of temporally correlated noise processes that are parame-
terized by the noise color 8. This class includes temporally uncorrelated noise (white noise,
B = 0) and temporally correlated red noise (8 = 2), which is exhibited by, e.g., Brownian
motion. Sequences of different noise colors are illustrated in the time domain in Figure
The noise color 8 describes how the expected power spectral density (PSD) behaves, i.e., the
power components scale with fiﬁ. This is illustrated in Figure

8 = 0 White B=0.5 B = 1 Pink B = 2Red
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Figure 1: Colored noise processes generate temporally correlated noise with varying degrees of
temporal correlation depending on the noise color 8. From left to right: the temporal correlation
increases with increasing 8, from 8 = 0 (temporally uncorrelated white noise) to 8 = 2 (highly
temporally correlated red noise).
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Figure 2: Colored noise is defined by the slope of the expected power spectral density: the power
components scale with f%

Generating colored noise Following the work by [Eberhard et al.| (2023)); [Hollenstein
et al.| (2024) on colored noise in deep reinforcement learning, we generate colored noise in the
frequency domain and apply the Inverse Real (Fast) Fourier (IRFFT) to retrieve a sequence
of perturbation e, i.e., noise generation follows the algorithm proposed by [Timmer & Konig
(1995). This means that for a specific rollout the frequency components ® are sampled once
® ~ (g, and remain fixed for the entire episode. &; can then be computed by the inverse
Fourier transform, which amounts to a weighted summation of the components of ®. This
summation can be expressed as the inner product between &' and the time dependent

Fourier coefficients f:
Er = (I)T . ft (2)

The perturbation ; can be interpreted as a discrete-time signal at time index ¢ € {0,..., M —
1}, derived using the inverse real Fourier transform from N = |M /2] +1 frequency components.
For simplicity in the colored noise generation and inverse Fourier transform, we assume both
M and N to be even valued. The derivations in both cases are analogous. For details on the
noise generation process see Appendix

N-1
1 t t
“&=N_1 ,;_0 CrP2k cos(—kM - 27) + CpP2k+1 sin(—kﬂ - 27) (3)

where @ar, par+1 denote the real, respectively imaginary part of the frequency domain Fourier

coeflicients and ¢ denotes a scaling factor.

{0 if ke {0,N -1}
C = 1

The sum can be rewritten as the dot product

&t = (I’Tft
where ® and f; are defined as:
co cos(—0 - 2m 47
01 cosin(—0 - 2747
o= fe= : (4)

PN en—1cos(—(N —1 _
en—1sin(—=(N —1) - 2747

The components ¢; of ® are independently sampled, depending on the noise color g, and
the sequence length M:

1: procedure C(M, j3)

2: N+ Mp41

3 [ {d o Ny

4 o2 {0 > Calculate scales
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5: C%(—(%) -Zwﬂwi6{01,...,01\;,2,‘”2’1}

[(N(0,c- 00 -v2)]
N(0,¢-09-0)
N(O,C . 0'1)
6: b ~ N(O,C'O’l)
N(O,C:UNA)
_N(O,C'O’N_1) |
7 return ¢

8: end procedure

3 Q1: Expected Trajectory remains unchanged

The addition of action noise changes the distribution of sampled trajectories. The distribution
also changes when the noise color is varied. This is illustrated in Figure [3] Empirically this
figure also shows, that despite the widely different distribution of trajectories, the expected
trajectory remains unchanged. In this section we derive the expected trajectory.

For a given @, the action noise is fixed for the whole duration of a trajectory. The policy
can be included in the dynamical system to make it autonomous, i.e., the system evolution
only depends on the initial state. This means that the trajectory, or more precisely, the
state s;, can be expressed as a sum capturing the recursion starting at the given state sq

(Appendix :

s1=Gso+ Hag (5)
s1=Gso— HKsy+ H®' fy (6)
sy =Gs1 + Hay (7)
(8)
t
st =(G—HK)'so+» (G- HEK)'H®' f; (9)
=1

Assuming that the initial state is randomly chosen, sg ~ Sy and the expected value exists
E [s9] = S0, the expected value for E [s;] can be computed:

t
Es]=E (G- HK)'so+» (G—HK)'"H®" fi_,

i=1

Because E [®] = 0, by definition of the chosen colored noise generation process, using the
linearity property of the expectation, this simplifies to

E[s] = E [(G — HK)'so] = (G — HK)'E [so]

That is: the expected trajectory under colored noise remains unchanged.

[ = 0 white [ =1 pink B =2red B = 0 white B =1 pink B =2red
04 0 0 20 A 20 20
NORUR ) ) )
—10 —-10 —-10 _90 | 90 | _90 4
(I) 1I0 0 10 (I) 1I0 (IJ 1I0 (I) 1I0 (I) 1I0

Figure 3: Effect of different noise colors on sampled trajectories. (first three plots) Double Integrator
environment, (last three plots) Randomly generated test environment. While the distribution of
trajectories (black) changes depending on the noise color, the expected trajectory (red) remains
unchanged, reaching the same goal state (marked X) reliably.



4 Q2: Effect of Colored Noise on Cost

In the previous section, we demonstrated that the noise color alters the distribution of
sampled trajectories, but the expected trajectory stays the same. This raises the question of
how the noise color affects the cost, particularly the expected cost.

We assume quadratic costs:

J =

t

-
s; Qst +a) Ra; = Jg + Jr (10)
=0

Because of the presence of action noise, e.g., Equation 7 we are interested in the expected
cost J = E [J], which we derive (see Appendix |C|for details) as follows:

T T
E[J]=E[Jo] +E[Jr] =E[> s/ Qs:] +E[ D a/ Ra;] = (11)
t=0 t=0
-
Z (sgStso + tr (S, Cov[so]) (12)
t=0
+fE [®R®T] fi+ (13)

t t t
> > FLE[@Wije+ Bij)® ] ficr+ > fLE [0Y;,;8 ] ft) (14)

i=1 j=1 i=1
where C* = (G — HK)" Biji=H C"™' KTRKC'"'H
Wi,j,t _ HTCt—jTQCt—iH }/;5,1' = HT(ct—i)TKTR
S =t QCt + (CH)TKTRKC!

Note that the cost splits into a state dependent term equal to the cost of the noise-free system
and three noise terms, one independent of the policy K , and two dependent on the
policy K . Interestingly, all three of the noise terms are independent of the expected
initial state Sp. These additional terms show analytically that the noise influences the cost.
This is illustrated empirically in Figure [
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Figure 4: Effect of different noise colors 8 and noise scales o - ® on the expected cost. Generally,
the cost increases with a larger noise scale 0. Whether the cost is higher for a specific noise color
depends on the dynamics. The experiments are performed with a horizon 1" = 30.

5 Q3: Optimal Policy K under Colored Noise

In the previous section we showed that the noise color affects the expected cost and that the
expected cost splits into a state dependent cost term and a noise dependent cost term.

The split of the expected cost J Equation , into the state dependent cost

.
Ty = <50TStso + tr(StCOV[SO])>



and noise dependent cost (keeping only terms dependent on K)

T t t t
Je=> (Z S HLE[@Wije+ Bij)® ] ficr+ > f1E [0Y;:8 ] ft>
1=1

t=0 \ i=1 j=1

shows a dependency of the optimal policy, i.e., a change in optimal K in the presence of
noise.

The effect of o and  on K is illustrated empirically in Figure[5] Here, the Double Integrator
is studied with initial state s = [0.5 0.5], horizon T' = 32, the optimal policy K, (K € R?)
is found numerically from the closed form solution of the expected cost. With larger scale o,
or change in 8 the components of the gain matrix policy K change.

However, if the noise is scaled down, o - ® for 0 < 1, J,, dominates the combined cost and
the optimal policy K approaches the optimal policy of the unperturbed system. On the
flip side, when J,, has little influence, J. dominates the combined cost, causing a shift in
the optimal policy K to counteract the noise effect. The influence of J, is small when the
system is close to the goal state (Sgoa1 = 0). This indicates that the cost is likely to be
dominated by the state cost J,, at the beginning of the trajectory, shifting to J. towards
the end, i.e., close to the goal.

This has several interesting implications:
e J. is independent of sy and will thus not converge to zero. For an infinite horizon

lim7_,~ J might diverge and average or discounted cost formulations need to be
investigated.

o [Hollenstein et al.| (2022) suggests reducing the influence of the noise over the course of
the training process, i.e., scheduling ¢ in o-® to shrink over the training process. This
would reduce the influence of J. and recover the optimal policy of the unperturbed
system.

e Close to the goal state s = 0, the unperturbed policy would not take any action
a = —Ks = 0. In this case, J. would dominate over J;,. However, in practical
applications, the policy will either have to take actions, suggesting s # 0, or, if
the system is required to stay close to the goal state, the action noise scale needs
to be small to prevent the system from deviating too far from 0. Both of these
factors would lead to Js, > J., suggesting that the optimal policy K approaches
the solution of the unperturbed system.

This shift from the state dependent cost Jg, to the noise dependent cost J. is illustrated in

Figure H for the Double Integrator, sqg = [18} , for K the infinite horizon LQR solution is
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Figure 5: The optimal policy K, is affected by the noise color $ and the noise scale 0. We numerically
derive the optimal K for the Double Integrator for 54 = [0 0] and horizon T = 30. The plots
show the difference to the optimal K for the action-noise free setting for both dimensions of K
(state, velocity) separately. The color gradients show that the growing discrepancy to the noise-free
policy is driven by the increase in noise scale and the change in noise color (i.e., temporal correlation
of the noise).
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Figure 6: Visualization of the contributions to the cost for each timestep ¢: The closed-form solution
for the expected cost consists of a state dependent term Js,(¢) (M) and a noise dependent term J (t)
(M) At the beginning of the trajectory, the cost is dominated by Js, (t), close to the goal state, the
cost is dominated by the cost incurred by the noise J:(t). The noise cost J:(t) appears to reach an
equilibrium. Overall Jy,, which is independent of the action noise, dominates.

used, and 7" = 120. In this example, the total cost of the trajectory is determined mostly by
the state dependent cost accounting for 99.7% of the total cost. Here, the influence of the
noise on the policy would be marginal.

6 Conclusion

In this paper, we investigated the effect of colored action noise on the optimal policy in a
simplified LQR setting. We found that the expected trajectory for a given policy remains
unchanged in the presence of colored noise but that the expected cost changes. Associated
with this change in cost is a change in the optimal policy. The change in cost is due to an
additional cost term compared to the cost of the unperturbed system, which is independent
of the starting state and instead depends on the noise color, system dynamics, and policy
matrix. This effect is relevant close to the goal state, but has little impact further away from
the goal. This suggests that while colored noise can change the optimal policy, this change
is likely to be small in practice.
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A Colored Noise

A.1 Generating Colored Noise

1: procedure GENERATECOLOREDNOISE(N, f3)
2: L+ [N/|

3: f(—{N7N,...,%,...7
4

s—{...,f R 3 > Calculate scales

sr, if Lisodd
w .

st fa,  otherwise
w <+ {s1,...8L-1,wr}

oo 2w
a:{].v..,az,. g

B={...Bi...}:8

aONN(O,SO f)
50<—0

} > Frequencies of components 0...L

2|~

o

ozZ ~ N(O Si) > Real part
N(0, s;) > Imaginary part

s N A I

—_ =

b o N(0, 50 -v/2), if odd
' L N(0, s0), otherwise

13 Br ~ N(0, 50) - {O, if odd

1, otherwise

14: 'y(—{ .,’yl,...}.'yi:ozi—i—iﬁi

15: =F 1y -t

16: return Te > Return noise sequence of length N
17: end procedure

B Derivation of s;

ap=—Ks; + @' f;
s1 = Gsg+ Hag
s1=Gso— HKsy+ H®' fy
= (G- HK)so + HO' f,
s9 =Gsy+Hay
s9=Gs, —HKs, + H®' f,
= (G- HK)s; + H®' f,
s5=(G—HK)(G - HK)so + H®' fo) + HO' f,
s = (G — HK)*so+ (G — HK)(H®" fo) + H®' f;
s3 = Gsy + Has
= (G- HK)sy + HO' f,
s3= (G — HK)((G— HK)?so + (G — HK)(H®" fo) + H®" f) + H®" f5
s3= (G — HK)%O +(G-HEK)*(H®" fo) + (G-~ HK)H®" f, + HO' f,

t
= (G- HK)'sog+ > (G—HK)''®"f;_
i=1

C Derivation of closed-form expected cost E [J]
From Equations (1)) and (9) and let C' = (G — HK). For a given trajectory length 7', the

noise sample ¢, is generated by the Fourier series at time ¢. This amounts to a weighted sum
of the frequency component random variables: &, = ® T f;.

11



E[J] =E[Jg] +E[Jg] = Zst Qs +E[ Zat Ray] =

T T T
Z IE Qst ZE [a:Rat} = ZIE [s:Qst] + E [a;rRat]
=0 t=0 t=0

We derive E [st Qst] and E [at Rat] in separate subsections and combine the results after-
wards into the final closed-form expected cost solution.

C.1 Derivation of E [s] Qs¢]

E [s{ Qs:] =E

t T t
(CtSo + ZCt_iH‘I)Tfi1> Q (Ctso + Z Ct_iH‘PTfi1> ] =

i=1 i=1

—E [sgC'TQC"so| +E |25 th HOT fi s

t
+E ijT_pI)HTC’thQZCtinbei_l} -

j=1 i=1

=E [s7] C"" QC'E [so] + t2(C* ' QC'Cov[so]) +2E [s§] C* QY CE [@7] fiy+

i=1
t t
+3Y N 5L HTE [@Ct—jTQCt—iH@} fii=

t t
=50 ' QC'350 + tr(C ' QC'Cov]so)) + S fLE {(I)HTCt—jTQCt—iH(I)T Fig =

j=11i=1

t t
=35, C'T QC'50 + tr(C ' QC'Cov]sy)) + S FHLE[W @7 fi
j=1 i=1
C.2 Derivation of E [atTRat]

Calculating the expected action cost for time step a; results in three separate action cost
terms:

E [a] Ra)] =E [(~Ks; + @' fi) R(-Ks, + @ f,)] =
=E [f/ ®R®" f,] +E [s{ K RKs,] — 2E [s{ K R®" f,]

First action cost term:

E[f ®R®" f,] = f/E [®RD'] f,
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Second action cost term:
E[s{ K'RKs;] =E [sq (C")TKTRKC"so| + tr ((C*)" KT RKC"Covl[so]) +

t
+E 25§ C'TKTRY KCYIH®T iy

=1

t t
+E NS (¢ HS f,)  KTRKCTHS [ | =
i=1 j=1

=E [sq | (C'Y"KTRKC'E [so] + tr ((C*) " K T RKC"Covlsg]) +

-~

+E ZijTléHTCJ U KTRKCTHO fi, | =

=3, (C")TK"RKC'5, + tr ((C")T K T RKC*Covl[so]) +

t t
+Y Y LB [@HT O KTRKCT HOT | i =
i=1 j=1
[substitute : B; j+ := HTCi—i" K'"RKC'""H|
t t
=50 (C"YTKTRKC"s + tr ((C")TKTRKC"Cov[so]) + > > f,E [®B; ;@] fi_

=1 j=1
Third action cost term:

t
Clsp+» C*'H®")TK RO f,

i=1

E[s/ K ROTf,] =E

t
Y fLieHT(C) KR,
i=1
[E[sq (C")TKTR®"f,] =0 & substituteY;, :== H' (C""))TK " R]

=E[sq(C")TKTR®T f;] +E

t
Z LE[®Y,:®] f;

C.3 Closed-form expected cost E [J]
When combining the derived parts, we group them based on

Initial state dependency: We use the linear property of the quadratic form
and trace operator to merge the state cost and action cost parts with initial state
dependency.

Noise dependency: The action cost term that only depends on the noise.

Noise + Policy dependency: State and action cost have a quadratic double sum
term, which we combine to one (linearity of expectation). This term and the linear
action cost term are both noise and policy dependent but have no dependents on
the initial state.
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t=0

E[J]=) E[s/Qs] +> El[a/ Ra(] :Z<

37 (CtTQCt + (cf)TKTRKCt) o+ tr ((CtTQCt + (ct)TKTRKct) Cov[so]) (15)

+fE[®R®"] f,+ (16)
t t t
+ S B [@(Wije+ Bij)® ] fin + > L E[2Y;0]] ft> (17)
i=1 j=1 i=1
where C* = (G — HK)" Biji:=H C" KTRKC'"'H
Wi=H'C QC'H Y, :=H (C"")TK'R

To make this a closed-form solution we have to evaluate all expectations in the formula which
all can be evaluated in the following way analogously:

E[2ze7] =
Y11 PMa Y11 o PMa
E ; Z : =
$1,N  PMN P1L,N  PMN
Dokt ZEIPEOPLO T D pg Lk 1PKOPLN
E : =
Dokt ZriPENPLO D gy ZkAPRNPLN
>kt ZiaE k0wl o Dk ZiE [ok00in]
>kt ZeaB ok neio] 0 Do ZiiE [or, NN ]
[E [pikpjr]l =0 for i j]
Yok ZkE [oro00k0] 0 Dok ZekE (k008 N]
Yok ZrkE [orNnero] o Do ZkkE [or Nok N]
[E [or,ipr,] =0 for i#j]
>k Zk,k Var[py o] 0
0 >k Zrk Var[pg n]
= diagy _,  (diagy,_,y (Z) - Var[®])) (18)
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By definition of the colored noise generation process Var[®] is known which results in the
following closed form solution:

T T
E[J] = ZIE [s] Qs¢] + ZE [a) Ra;] =
t=0 t=0
T
Z 5S¢0 + tr (S;Cov[so]) +
t=0

+ £, diagy_, s (diagy, v (R) - Var[®])) fi+
t ot

+ 30N f diagy s (diagyy oy (Wi je + Biji) - Var[®])) fio1+

i=1 j=1

t
+ Z fiLy diagy (diags_,y (Y2,:) - Var[®])) ft>

=1
where C* := (G — HK)" Bij.:=H'C"™' KTRKC'"™'H
Wi, jt:=H' Ot QCt—'H Y, =H (C"™)TK'R
Sy =t QCt + (¢H)TKTRKC!
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