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ABSTRACT

Deep generative models have emerged as powerful tools for efficiently navigat-
ing the vast chemical space and generating molecules with desirable properties.
However, existing approaches—particularly diffusion-based models—struggle to
effectively model the hierarchical structure of drug-like molecules, which typically
consist of a core scaffold and attached substituent functional groups. This hierar-
chical decomposition is central to modern drug design strategies, where scaffold
hopping and lead optimization are applied iteratively to refine molecular structure.
While traditional methods can optimize each component separately, they often
rely on rule-based heuristics and lack the capacity for joint optimization. To ad-
dress these limitations, we propose the Scaffold–Substituent Hierarchical Diffusion
Model (S2-HDM). It unifies the principles of scaffold hopping and lead optimiza-
tion within a single generative framework by introducing a differentiated noise
schedule for scaffold and substituent atoms. Unlike traditional approaches, S2-
HDM implicitly learns the scaffold and substituent hierarchy without pre-defined
functional groups, enabling an end-to-end generation pipeline. We validate the ef-
fectiveness of our method through extensive experiments, where S2-HDM achieves
outstanding performance in multiple generation benchmarks. These results under-
score the model’s potential to advance drug design by balancing scaffold integrity
with substituent diversity, aligning closely with structure-based design principles.
The code can be found at https://anonymous.4open.science/r/S2-HDM-6F23.

1 INTRODUCTION

The chemical space of drug-like molecules is estimated to contain over 1060 compounds (Lipinski
et al., 1997), making exhaustive exploration infeasible. Recent breakthroughs in machine learn-
ing—ranging from image synthesis (Rombach et al., 2022; Dhariwal & Nichol, 2021) to natural
language generation (Ouyang et al., 2022)—have motivated the application of generative models to
molecular design. Notably, AlphaFold (Jumper et al., 2021; Abramson et al., 2024) has demonstrated
the transformative potential of learning-based methods in biochemistry. These successes have inspired
growing interest in generative modeling for molecule discovery. In this context, generative models
aim to efficiently sample from the underlying distribution of biochemically valid molecules, ensuring
that generated compounds exhibit plausible chemical structures and desirable properties.

Impressive progress has recently been made in generative AI for molecular design, with models often
categorized based on how they represent and generate molecular structures. For example, (Kusner
et al., 2017) (Dai et al., 2018) (Liao et al., 2023) used Variational Autoencoder (Kingma, 2013)
to generate molecules represented as 1D SMILES strings. For 2D graph based models (Jin et al.,
2018)(Shi et al., 2020)(Luo & Ji, 2022)(Tan et al., 2023)(Kuznetsov & Polykovskiy, 2021)(Vignac
et al., 2023)(Kong et al., 2023), these works primarily construct molecular graphs using atom types
and bond types, while some adopt structural motifs as the fundamental building blocks. Most of them
generate molecules in an autoregressive manner by sequentially adding atoms and bonds. Overall,
since molecules exist in 3D space by nature, representing molecules as 3D conformers offers a more
holistic depiction to capture both geometric and chemical properties effectively. Among various
generative approaches, diffusion models (Hoogeboom et al., 2022; Xu et al., 2022) have emerged
as a powerful framework for 3D molecular design. These models generate molecules by gradually
adding Gaussian noise to transform structured molecule into a noisy point cloud, and then learning
to reverse this process step-by-step to recover realistic molecular conformations. Compared to the
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1D- and 2D-based models, these diffusion models offer greater flexibility in capturing geometric
constraints, making them well-suited for generating physically plausible 3D molecular structures.

Despite the success of deep generative models in molecular design, most existing ap-
proaches—particularly 3D diffusion-based models—fail to capture the hierarchical organization
inherent in drug-like molecules. These molecules often exhibit a core–peripheral structure, where the
scaffold serves as the central framework defining the overall molecular geometry and pharmacophore
orientation, while substituents (or R-groups) are peripheral functional groups that can be strategically
modified to influence biological properties (Welsch et al., 2010). This structural decomposition
supports modular design strategies, enabling the creation of diverse compound libraries by varying
substituents on a fixed scaffold (Hu et al., 2017; Sun et al., 2012), or exploring new core struc-
tures through scaffold hopping (Böhm et al., 2004). However, conventional diffusion models treat
molecules as undifferentiated collections of atoms, applying uniform generative rules without regard
to their structural roles. This lack of structural awareness can limit their effectiveness in generating
hierarchical structure, where scaffold integrity and substituent variability are both critical.

A variety of separated design strategies have been proposed, broadly categorized into non-generative
and deep generative approaches. Traditional methods such as scaffold hopping and lead optimization
rely on predefined similarity metrics to search fragment databases and substitute problematic scaffolds
or substituents (Sun et al., 2012; Hessler & Baringhaus, 2010). While effective for local improvements,
these non-generative methods are limited in their ability to explore truly novel chemical structures
and become inefficient in the vast molecule databases. In contrast, deep generative models have
been developed to design either the scaffold or the substituent while holding the other component
fixed (Liao et al., 2023; Schneuing et al., 2024). Although this conditional formulation enables
modular control, it restricts the generative flexibility by decoupling the structural interdependence
between the core and peripheral parts. As a result, such models may overlook globally optimal
solutions that require joint optimization for functional and structural compatibility. These limitations
give rise to an important research question: How can we develop an effective generative framework
that incorporates prior knowledge of scaffold–substituent hierarchy while enabling end-to-end joint
optimization of the hierarchical structure for de novo molecule design?

To bridge this research gap, as illustrated in Fig. 1, we introduce a Scaffold–Substituent Hierarchical
Diffusion Model (S2-HDM), which incorporates a differentiated noise schedule for core and peripheral
atoms. The central idea is to encode the molecular hierarchy directly into the generative process:
during the forward diffusion process, scaffold atoms are corrupted with less noise than substituent
atoms, preserving their structural integrity. In the reverse process, scaffold atoms are denoised earlier
and more reliably, establishing a stable core context to guide the subsequent generation of substituents.
To support this role-aware generation, we introduce a S2 classifier that dynamically predicts the
structural role of each atom throughout the denoising process. Our main contributions are:

• We present S2-HDM, a diffusion-based generative framework inspired by traditional drug
design strategies of lead optimization and scaffold hopping. Rather than treating these as
separate processes, S2-HDM integrates their objectives into a unified generative model by
introducing differentiated noise scheduling for the scaffold and substituent atoms. This
hierarchical approach prioritizes the stability of generative scaffold and enables flexible
exploration of peripheral functional groups, closely aligning with modular drug design.

• Compared with the vanilla diffusion models and separated design strategies, our model
is trained in an end-to-end manner to achieve the hierarchical and joint optimization of
scaffold and substituent. Instead of relying on expert-defined functional groups, our model
learns the hierarchical structures implicitly, allowing for greater potential for designing
novel molecules containing scaffold integrity and substituent variability.

• Extensive experiments on QM9 and GEOM-Drugs datasets demonstrate that our model
outperforms baseline methods in molecular stability (by 0.8%), uniqueness (by 3.8%) and
validity (by 2.2%). Through empirical observations and ablation studies, we further validate
the rationality and effectiveness of each architectural component.

2 RELATED WORK

Diffusion based Molecule Generation. Diffusion models have recently emerged as powerful
frameworks for 3D molecular generation. Early works such as GeoDiff (Xu et al., 2022) and
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EDM (Hoogeboom et al., 2022) introduced E(3)-equivariant diffusion processes for modeling confor-
mations and jointly denoising atomic coordinates and types. More recent latent-space approaches like
GeoLDM (Xu et al., 2023) and GCDM (Morehead & Cheng, 2024) improve scalability and geometric
completeness, enabling larger and more stable structures. Meanwhile, graph-based methods such as
DiGress (Vignac et al., 2023) apply discrete diffusion directly on molecular graphs to support scalable
and property-conditioned generation. Beyond unconditional generation, conditioned molecular design
has seen notable progress. DiffSBDD (Schneuing et al., 2024) conditions on protein binding pockets
for structure-based drug design, while D3FG (Lin et al., 2023) models molecules at the functional
group level to improve 3D realism and synthetic feasibility.

Research gap of existing methods: Existing diffusion-based models either fail to account for the
scaffold-substituent memberships of atoms within a molecule or rely on a pre-defined set of functional
groups. This will limit their ability to generate meaningful hierarchical structure for the drug-like
small molecules, which are often optimized iteratively by scaffold hopping and lead optimization
in the realistic design pipeline. In addition, the pre-defined building blocks constrain the generative
diversity, the generative process treats fragments as rigid-body tokens. In contrast, our model
incorporates the distinct functional roles of scaffold and substituent atoms without requiring any
pre-defined group set, making it more flexible and data-driven.

Scaffold and Substituent Design. Scaffold and substituent manipulation plays a central role in both
traditional medicinal chemistry and modern AI-driven molecular design. Recent studies summarize
how modifying core scaffolds or peripheral R-groups can lead to enhanced potency, selectivity, and
multi-target engagement in small-molecule drug discovery (Acharya et al., 2024). In contrast, modern
deep learning approaches explicitly model scaffold and substituent separation to enable controllable
molecular generation. (Li et al., 2019) proposed an autoencoder-based model, DeepScaffold, which
performs one-shot generation of substituent atoms and bonds conditioned on a given scaffold. (Lim
et al., 2020) introduced a graph-based generative model that incrementally constructs molecules
by sequentially adding atoms and bonds to a predefined scaffold. (Hu et al., 2023) proposed
ScaffoldGVAE, a variational autoencoder disentangling scaffold and substituent representations for
scaffold hopping. (Liao et al., 2023) introduced Sc2Mol, a two-step VAE-Transformer framework for
scaffold-constrained molecule synthesis. Prompt-based methods such as PromptSMILES (Thomas
et al., 2024) and fragment-based models like SAFE (Noutahi et al., 2024) and FragGPT (Yue et al.,
2024) further advance scaffold-controlled generation using pretrained chemical language models.

Research gap of existing methods: However, these approaches either require a pre-defined scaffold to
generate the substituent—making de novo design infeasible—or explicitly decompose the generation
into two separate steps for scaffold and substituent, resulting in increased model complexity and
preventing end-to-end training. In contrast, our method enables simultaneous de novo generation of
both scaffold and substituent in an end-to-end manner.

3 BACKGROUND

Problem Definition. Considering a molecule consisted of N atoms, it can be represented as point
clouds in 3D space: G = ⟨x,h⟩, where x ∈ RN×3 is position tensor of every atom, h ∈ RN×d

is node features (e.g. atom types and charges), and d is the dimension of atom features. We focus
on two types of generation tasks. i) Unconditional generation is defined to model the distribution
of training molecules, i.e., q(G), with parameterized neural networks pθ(G) and sample from that
learned distribution, where θ is model weights. ii) Conditional generation targets at learning the
distribution of training molecules as well as their properties c, which is denoted by q(G, c). The
parameterized generator pθ(G|c) samples molecules conditioned on the given property c.

Diffusion Models. Diffusion models, inspired by non-equilibrium thermodynamics, was first
introduced in Sohl-Dickstein et al. (2015) and further advanced in Ho et al. (2020). Specifically, the
diffusion models generate data by first gradually adding Gaussian noise to transform a molecule into
pure noise through a forward diffusion process, and then learning to reverse this corruption step-by-
step via a denoising process to recover realistic data. i) Forward process: Analogous to the process
of ink diffusing in water—where the ink gradually disperses and the mixture becomes uniformly
cloudy—diffusion models corrupt a molecule by progressively adding noise over a sequence of
timesteps. Formally, this corruption is modeled as a forward diffusion process defined by a Markov
chain x0,x1, . . . ,xT , where x0 is initiated by the original molecule, such as the 3D position tensor
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x, and xT is nearly pure noise of point cloud:

q(xt|xt−1) = N (xt;
√
αtxt−1, βtI) , (1)

where αt and βt are pre-scheduled weights to determine the proportion of signal and noise injected
at each time step t. These parameters are typically chosen such that the final distribution q(xT )
approximates a standard Gaussian N (0, I). A common setting enforces αt + βt = 1 to ensure that
the variance of xt remains a constant, i.e., identity matrix I. Using this setup, we can easily have:
q(xt|x0) = N (

√
ᾱtx0, (1− ᾱt)I) with ᾱt =

∏i=t
i=1 αi.This forward process is fully specified by

fixed hyperparameters and contains no learnable components.

ii) Reverse process: The generative goal of diffusion models is to reverse this corruption process
by learning to sample molecules from the reverse conditional distributions. This reverse process
approximates the posterior q(xt−1|xt) with a parameterized distribution:

pθ(xt−1|xt) = N
(
xt−1;µθ(xt, t), ρ

2
t I
)
,µθ(xt, t) =

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
. (2)

µθ(xt, t) is a neural network predicting the mean, and ρt is a time-dependent variance, which is often
analytically derived as: ρt =

βt(1−
√
ᾱt−1)

(1−ᾱt)
. ϵθ predicts the noise component added at each step.

The optimization of generative model used in the reverse process is to maximize the likelihood of
training molecules, i.e., pθ(x). Due to the difficulty of accessing the real pθ(x), training is instead
performed by maximizing a variational bound, specifically the Evidence Lower BOund (ELBO),
given by: ELBO = Eq(x1:T |x0)[log

q(xT |x0)
pθ(xT ) +

∑T
t=2 log

q(xt−1|xt,x0)
pθ(xt−1|xt)

− log pθ(x0|x1)]. Under this
framework, the training objective can be simplified to a denoising score matching loss:

Lnoise = Ex0,ϵ∼N (0,I),t∼Uniform(0,T )

[
||ϵ− ϵθ(xt, t)||2

]
, (3)

where ϵ is the known noise used to construct xt =
√
ᾱtx0 +

√
1− ᾱtϵ. Over successive reverse

steps, the model aims to iteratively remove noise, ultimately reconstructing x0 such that the learned
data distribution pθ(x0) converges to the true data distribution q(x0).

4 SCAFFOLD–SUBSTITUENT HIERARCHICAL DIFFUSION MODEL (S2-HDM)

Despite recent progress in diffusion models for molecular design, their denoising-based generative
process often overlooks the inherent core–peripheral structure of a molecule—namely, the separation
between scaffolds and substituents. Especially in the drug-like molecules, the scaffold typically
defines the molecule’s core geometry and conformational rigidity, contributing to metabolic stability.
In contrast, substituents are functional groups that modulate peripheral interactions and influence
properties like solubility. This separation allows researchers to establish a stable core structure and
afterward flexibly optimize peripheral properties, which enhances synthetic feasibility. However,
existing diffusion models typically treat the molecule as an undifferentiated whole, applying the same
noise schedule across all atoms regardless of their structural roles. To overcome this limitation, we
propose S2-HDM that applies differentiated noise schedules to scaffolds and substituents, allowing
scaffold sketching in early denoising and then enabling flexible exploration of substituent space.
As illustrated in Fig. 1, the proposed framework consists of three components: (i) a hierarchical
noise scheduler that distinguishes between scaffold and substituent atoms, (ii) a scaffold–substituent
classifier that dynamically estimates the structural role of each atom during generation, and (iii) a
modified denoising model that updates atomic positions and features based on their roles.
Hierarchical Noise Scheduler. The proposed hierarchical mechanism is motivated by two typical
types of traditional design approaches for drug-like small molecules: scaffold hopping (Acharya
et al., 2024) and lead optimization (Barcelos et al., 2022). Scaffold hopping aims at discovering
new compounds with similar biological activity by altering the molecular scaffold while keeping
the key functional groups of substituent intact. Lead optimization aims to improve the drug-like
properties of a lead compound by systematically adding, removing, or modifying its substituent, i.e.,
the functional groups attached to the core scaffold. These two approaches are complementary and
form a cornerstone of modern drug discovery pipelines.

Inspired by this two-stage design process, we propose to integrate its principles into the diffusion
model by introducing differentiated noise schedules for scaffold and substituent atoms. Specifically,
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Figure 1: Illustration of S2-HDM. Atoms marked with red circle are predicted to be scaffold and
prioritized in denoising process to provide stable context. Atoms marked with blue circle are predicted
to be substituent and denoised mainly in later stage. At each timestep t, Gt is fed into the EGNN
to produce both the predicted noise ϵ̂t and the predicted scaffold label ŝt. Simultaneously, Gt is
input into the property predictor to compute guidance gradient. The property predictor is trained
beforehand and kept frozen during the denoising process. The predicted scaffold label ŝt is then used
to adaptively update position and feature tensors of scaffold and substituent atoms in reverse process.

for a molecule G = ⟨x,h⟩, we identify the scaffold–substituent structure using computational
chemistry tools such as RDKit1, yielding a tag vector s = (s1, . . . , sN ) ∈ {0, 1}N , where si = 1
denotes a scaffold atom and si = 0 indicates a substituent atom. To encode structural hierarchy,
we assign distinct weighting factors ᾱt defined in Eq.(1) based on these tags. Scaffold atoms
receive lower noise levels during the forward diffusion process, preserving structural integrity, while
substituent atoms receive higher noise, encouraging flexible exploration. Accordingly, during the
reverse generative process, scaffold atoms are denoised earlier, providing a stable core context for
subsequent generation of substituents. Formally, let ᾱsc,t = ᾱt denote the weighting factor for
scaffold atoms. The weighting factor for substituent atoms is modulated as:

ᾱsu,t = ᾱtωt, ωt = cos (0.5πt/T )
η0 ∗ 0.8 + 0.2. (4)

η0 is the hyper-parameter that controls the ratio between the weighting factor of substituent and
scaffold atoms. The scheduled values of ᾱsc,t and ᾱsu,t w.r.t. time steps are shown in Fig. 1. The
scaffold requires faster denoising, meaning its ᾱsc,t remains closer to 1 over fewer denoising steps,
whereas the substituent requires a slower denoising process. Therefore, we enforce ᾱsc,t > ᾱsu,t at
all timesteps, with both schedules satisfying the boundary conditions: ᾱsc,t = 1, ᾱsu,t = 1 at step 0
and ᾱsc,t = 0, ᾱsu,t = 0 at step T . More details are discussed in Appendix. A.1.

Let Gt = ⟨xt,ht⟩ denotes the noisy molecule obtained at time step t, where xt and ht are corrupted
position and feature tensors by adding Gaussian noise ⟨ϵ(x)t , ϵ

(h)
t ⟩ on input molecule G. According

to the forward process defined in Eq.(1), the corrupted tensors are obtained by:{
xt = (s ·

√
ᾱsc,t + (1− s) ·

√
ᾱsu,t)x0 + (s ·

√
1− ᾱsc,t + (1− s) ·

√
1− ᾱsu,t)ϵ

(x)
t ,

ht = (s ·
√
ᾱsc,t + (1− s) ·

√
ᾱsu,t)h0 + (s ·

√
1− ᾱsc,t + (1− s) ·

√
1− ᾱsu,t)ϵ

(h)
t

(5)

Scaffold–Substituent (S2) Classifier. Given the use of differentiated noise scheduling in the
forward process, a key challenge arises in the reverse process: how to accurately distinguish scaf-
fold and substituent atoms from noisy molecular representations—especially when explicit scaf-
fold–substituent annotations are unavailable at inference time. Addressing this challenge is crucial
for enabling the hierarchical generation strategy, where scaffold atoms are denoised earlier to pro-
vide structural context for subsequent substituent generation. To this end, we introduce an S2

binary classifier that dynamically predicts the structural role of each atom during denoising. As
shown within the red box of Fig. 1, given the noisy input Gt, the classifier Sθ(Gt) estimates the
scaffold probability for each atom, producing a prediction vector ŝt = (ŝ1,t, ..., ŝN,t), where ŝi,t
indicates the probability that atom i belongs to the scaffold. Classifier Sθ(Gt) is implemented by

1RDKit: Open-source cheminformatics. https://www.rdkit.org
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equivariant graph neural networks Satorras et al. (2021) (EGNN) to learn the 3D structure and
produce precise differentiation. The classifier is trained using a standard binary cross-entropy loss:
LCLS = EG,ϵ,t

[
1
N

∑N
i=1 (si log (ŝi) + (1− si) log (1− ŝi,t))

]
, where si ∈ {0, 1} is the ground-

truth scaffold label for atom i obtained above.

Modified Denoising Model. According to Eq.(2), the approximated posterior pθ(Gt−1|Gt) in the
original diffusion model can be implemented via the following update rule:

Gt−1 =
1

√
αt

(
Gt −

1− αt√
1− ᾱt

ϵθ(Gt, t)

)
+ ρtϵ, ϵ ∈ N (0, I). (6)

Noise ϵ is randomly sampled noise added to the generated positions and features to promote sample
diversity, and ϵθ(Gt, t) is the predicted noise output conditioned on the noisy molecule and the
current timestep. We leverage EGNN as backbone model for ϵθ, which estimates the noise added
during the forward process. However, unlike previous work, our denoising process should distinguish
between scaffold and substituent atoms, which were perturbed using different noise schedules with
weight factors ᾱsc,t and ᾱsu,t, respectively. Thus we modify the posterior during denoising as:
pθ(Gi,t−1|Gt) = Sθ(si,t = 1|Gt)pθ(Gi,t−1|si,t = 1,Gt) + Sθ(si,t = 0|Gt)pθ(Gi,t−1|si,t = 0,Gt).

(7)
Sθ(si,t = 1|Gt) and Sθ(si,t = 0|Gt) are the predicted scaffold probabilities from the S2 classifier.
pθ(Gi,t−1|si,t = 1,Gt) and pθ(Gi,t−1|si,t = 0,Gt) are obtained by replacing ᾱt of Eq.(6) with ᾱsc,t

and ᾱsu,t, respectively. The same substitution applies for other constants like αt and ρt. Please
refer to the Appendix A.2 for details and Appendix.A.3 for the proof of Eq.(7) . This formulation
enables soft role-aware denoising, where atoms are updated based on their estimated probabilities of
being part of the scaffold or substituent. This aligns the reverse process with the differentiated noise
injection applied in Eq.(5). The trainable components of posterior pθ(Gt−1|Gt) include the noise
prediction network ϵθ and the S2 classifier, which are jointly optimized using denoising loss Lnoise
and cross-entropy loss LCLS.

Model Design Details. Based on the above framework, we elaborate the additional details of
model and training design. First, to enhance the hierarchical structure–property consistency of the
generated molecules, we introduce a property-guided refinement mechanism that steers the generation
process toward molecules with desirable properties. The experiment result in Tab. 3 justifies that this
property-guided denoising process synergizes with the hierarchical generation but can deteriorate
the whole-molecule 3D diffusion. Second, since the intermediate molecular representation Gt is
inherently noisy, the scaffold probability output becomes unreliable when t approaches T . To address
this, we restrict the application stages of both the classifier and the refinement mechanism. Actually,
we find that the classification is only relatively stable and accurate when t < 0.4T . As shown in
our experiment, the classifier can already accurately predict the scaffold/substituent tag of atoms at
epoch 20 when t < 0.4T , but cannot achieve a high accuracy even after hundreds of epochs when
t→ T . Similar to what has been mentioned in Han et al. (2023), the same phenomenon occurs with
the property predictor in our case. The property-guidance term will not be applied when t > 0.4T .
Finally, to avoid the wrong hierarchical structure generation and property-guided denoising, we
introduce a time-dependent weighting factor and a prediction momentum. Those two methods try to
stabilize the predicted scaffold probability by adding a weighted momentum. The weighting factor
ψt is formulated as ψt =

1
1+e100(t/T−0.3) and the predicted scaffold probability ŝt is re-formulated as

ψtŝt + (1− ψt)ŝt+1. More details can be found in Appendix.A.4.

5 EXPERIMENT

Evaluation Tasks and Datasets. Following previous practice (Hoogeboom et al., 2022)(Xu et al.,
2023)(Cornet et al., 2024) on molecule generation in 3D space, we evaluate our method on two
settings: unconditional and conditional generations. The datasets of QM9 (Ramakrishnan et al., 2014)
and GEOM-DRUG dataset (Axelrod & Gomez-Bombarelli, 2022) are treated as benchmarks, which
have been widely adopted in baseline works. The dataset details are listed in Appendix A.6.

5.1 UNCONDITIONAL MOLECULE GENERATION

Evaluation Metrics. To evaluate model performance, following the previous work (Hoogeboom
et al., 2022), we measure the model’s capability to learn the data distribution by calculating the
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chemical validity of the generated molecules. With the generated 3D molecule conformers, we
first determine the bond type (single, double, triple or none) using the distance between atoms and
the atom type. Then, given the bond type and atom type (molecular graph), we calculate the atom
stability and the molecule stability of the molecule. Atom stability (A.S.) is the proportion of atoms
that have the right valency. Molecule stability (M.S.) is the proportion of the generated molecules of
which all the atoms are stable. Also, we report the validity (V) and uniqueness (U) of the generated
molecules. Validity is the proportion of the valid molecule measured by RDkit. Uniqueness is the
unique molecules among all the generated molecules. The metrics are calculated on 10,000 samples
generated from each method. We report the mean and standard deviation from three repeated runs.
Baselines. We compare the proposed S2-HDM method with three types of generative models:
autoregressive model, flow model and diffusion models. i) Autoregressive model: G-Schnet (Gebauer
et al., 2019) is an autoregressive model generating 3d point set that respect the rotational invariance
of the targeted structure. ii) Flow model: E-NF (Garcia Satorras et al., 2021) is a normalizing flow
based model that take E(n) graph neural network as the invertible equivariant function. Geometric
Bayesian Flow Networks (GeoBFN) (Song et al., 2023) incorporates Bayesian inference into the
flow model, leading to better efficiency and quality. iii) Diffusion model: Equivariant graph diffusion
model (EDM) (Hoogeboom et al., 2022) combines the equivariant graph network with the diffusion
model while Graph Diffusion model (GDM) is the non-equivariant variation of EDM. Geometric
Latent Diffusion Model (GeoLDM) (Xu et al., 2023) is the first diffusion model that utilize the
autoencoder to project the molecule into a latent space and perform the diffusion process in the latent
space. Equivariant Neural Diffusion (END) (Cornet et al., 2024) features a learnable forward process
instead of a pre-specified one for enhanced generative modeling. Hierarchical Diffusion-based model
(HierDiff) (Qiang et al., 2023) uses a two stage coarse-to-fine strategy to generate fragment-level and
atom-level structures sequentially.

Table 1: Comparison with key baselines on QM9 and GEOM-Drugs datasets. The higher is the
better. A./M. S.: Atom or molecule stability. V&U/S: Valid and unique/atom stable.

Category Methods QM9 GEOM-Drugs
A. S. (%) M. S. (%) V (%) V&U (%) A. S. (%) V (%) V&S (%)

Autoregressive G-Schnet 95.7 68.1 85.5 80.3 - - -

Flow E-NF 85.0 4.9 40.2 39.4 - - -
GeoBFN 99.1±0.1 90.9±0.2 95.3±0.1 93.0±0.1 85.6 92.1 78.8

Diffusion

GDM 97.0 63.2 - - 75.0 90.8 68.1
GDM-aug 97.6 71.6 90.4 89.5 77.7 91.8 71.3
GeoLDM 98.9±0.1 89.4±0.5 93.8±0.4 92.7±0.5 84.4 99.3 83.8
EDM 98.7±0.1 82.0±0.4 91.9±0.6 90.7±0.6 81.3 92.6 75.3
END 98.9±0.0 89.1±0.1 94.8±0.1 92.6±0.2 87.0 89.2 77.6

Hierarchical
Diffusion

HierDiff-E - - 87.8 86.0 - 94.0 -
HierDiff-P - - 83.6 82.3 - 90.4 -
S2-HDM 99.2±0.1 91.7±0.4 97.5±0.3 96.8±0.3 85.4 98.4 84.0

Figure 2: Samples generated by S2-HDM trained on QM9 (left four) and GEOM-Drugs (right three).

Obs. 1: Our hierarchical diffusion model delivers superior generation results compared with
the baseline models on unconditional molecule generation. Results of both our method and the
baseline methods are reported in the Tab. 1. Our method surpasses the baseline methods in terms of
Valid (+2.2%), Molecule stable (+0.8%) and Valid&Unique (+3.8%) on QM9 and Valid&Stable
(+0.2%) on GEOM-Drugs. The observed performance gain can be attributed to the staged generation
of scaffold followed by sustituent, which reflects established best practices in medicinal chemistry
and molecular design. We showcase a selection of molecule samples generated from the QM9 and
GEOM-Drugs datasets in Fig. 2. More experiment details can be found in Appendix A.5.

Obs. 2: The scaffold and sustituent are indeed generated and subsequently refined at distinct
stages of the denoising process. We visualized the molecular structures at different stages of the
generation process in Fig. 3. Intuitively, we observe that scaffold atoms are indeed generated earlier
than sustituent atoms, and they remain relatively stable during subsequent timesteps. More specifically,
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the positions of scaffold atoms stabilize relatively early in the generation process, whereas their atom
types, which depend on the surrounding atomic context, are determined only at the final stages. In
contrast, both the positions and atom types of sustituent atoms tend to stabilize at later timesteps. Fig.
4 shows the progression of atomic displacements across denoising timesteps, providing empirical
support for the aforementioned observation.

Figure 3: Visualization of the S2-HDM denoising process, where scaffold atoms are denoised earlier.
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Figure 4: Left: Displacement of the scaffold/sustituent atoms over the denoising steps. Mid-
dle&Right: S2-HDM’s performance over a range of noise difference ratios η0 and model layers.

Table 2: Ablation study on QM9.
Hierarchical Scheduler

and Classifier
Modified

Denoising Model
Property-guided

Refinement
QM9 Mol
Stable (%)

QM9
Valid (%)

✓ ✓ ✓ 91.7±0.4 97.5±0.3
✓ ✓ 89.6±0.4 95.9±0.5
✓ 86.6±0.3 94.0±0.4

82.0±0.4 91.9±0.6

Obs. 3: Ablation studies reveal that
different components of our frame-
work play complementary roles in
enhancing performance. We per-
formed a series of controlled ablation
studies to systematically evaluate the
impact of each design component. The hierarchical noise scheduler and the scaffold/sustituent
classifier modules are deeply coupled in the model design. Therefore, in the ablation study, they
are treated as a single unit and are not evaluated separately. As shown in Tab. 2, the design that
achieved the largest performance gain is the combination of the hierarchical noise scheduler and
the scaffold/sustituent classifier, leading to a 4.6% improvement in molecule stability and a 2.1%
improvement in validity compared with the ablated variant on these two modules. A possible explana-
tion is that the training of the classifier incorporates additional scaffold/sustituent labels generated by
RDKit, providing the model with extra supervision signals that facilitate better discrimination between
different structural components. By progressively refining the scaffold and sustituent in separate
stages, the model benefits from a more stable contextual structure, thereby promoting the generation
of chemically more plausible molecules. In addition, the inclusion of modified denoising enhance the
stability of generated molecules, justifying the denoising rationality to generate hierarchical structure.
The property-guided refinement uses classifier-derived gradient guidance in denoising to enhance the
consistency of generated hierarchy with molecular energy levels, thus further improving performance.

Obs. 4: S2-HDM achieves the optimal performance with modest network depth and noise
difference ratio. We primarily investigated the impact of the network depth and the parameter η0,
which controls the noise difference between scaffold and sustituent atoms, on model performance.
The results are shown in the Fig. 4. We compared models with 9, 15, and 20 layers, and the
experiments suggest that the 9-layer baseline model is not the optimal choice; as the depth increases,
model performance continues to improve. Regarding the effect of η0, applying a differentiated noise
schedule yields better results than using a uniform noise schedule (η0 = 0), and a moderate noise
difference (η0 ∈ [1, 2]) outperforms a large noise difference (η0 = 6).

Obs. 5: S2-HDM demonstrates clear advantages in both training and inference efficiency.
As illustrated in Fig. 5, despite the hierarchical design, our method converges significantly faster
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than EDM to reach comparable quality metrics of Validity and Molecular Stability: To reach 80%
validity, S2-HDM required 46 epochs, 14 hours, while EDM took 123 epochs, 31 hours. To reach
80% Mol Stability, S2-HDM required 208 epochs, 63 hours, while EDM took 631 epochs, 159 hours.
Compared with the vanilla whole-molecule diffusion, the hierarchical generation of scaffold and
substituent atoms prones to formulate effective molecules.
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Figure 5: Model performance v.s. training steps.

To fairly compare the trade-off between infer-
ence cost and model performance, we compare
model parameters, sampling time, and perfor-
mance of EDM augmented with property guid-
ance in Tab. 3. First, while S2-HDM introduces
modest overhead in sampling time (∼1.1× com-
pared to EDM), this is a necessary trade-off for
improved generation quality and controllability.
According to PTST metric, S2-HDM achieves
higher validity of sampling molecules per sec-
ond, while it only pay negligible time cost based on metric STPR. Second, the inclusion of property
guidance on EDM yields poor results compared the EDM-only performance in Tab. 1. This justifies
the design rationale of coupling hierarchical generation with property-classifier gradient guidance.

Table 3: Comparison of inference efficiency metrics between EDM (with property guidance) and
S2-HDM. Sampling-Time-to-Parameter Ratio (STPR): Reflects how computational-efficient the
model is during inference. Performance-to-Sampling-Time Ratio (PTST): Captures how many stable
molecules each second of sampling yields.

Method Parameters Sampling Time (s / 10k samples)↓ V↑ A. S.↑ M. S.↑ STPR↓ PTST↑
EDM + Property Guidance 3M 65 92.1 98.9 84.3 21.7 1.29
S2-HDM 6M 72 97.5 99.2 91.7 12.0 1.27

5.2 CONDITIONAL MOLECULE GENERATION Table 4: MAE of conditional 3D molecule genera-
tion on QM9. The lower is the better.

Property α ∆ε εHOMO εLUMO µ Cv

Units Bohr3 meV meV meV D cal
mol K

Random 9.01 1470 645 1457 1.616 6.857
Natoms 3.86 866 426 813 1.053 1.971
EDM 2.76 655 356 584 1.111 1.101
GeoLDM 2.37 587 340 522 1.108 1.025
GeoBFN 2.34 577 328 516 0.998 0.949
S2-HDM 1.34 465 242 417 0.873 0.924

Evaluation Metrics and Baselines. We eval-
uate the Mean Absolute Error (MAE) of the
given property and the property of the generated
molecules, which is predicted by the property
prediction network (Hoogeboom et al., 2022).
The properties we use include polarizability
α, highest occupied molecular orbital energy
εHOMO, lowest unoccupied molecular orbital en-
ergy εLUMO, HOMO-LUMO gap ∆ε, dipole moment µ and heat capacity Cv. More details are in
Appendix A.5. Following (Hoogeboom et al., 2022) and (Xu et al., 2023), we list two additional
baselines named Random and Natoms. Random shuffles the property labels and represents the upper
bound of the MAE. Natoms take only the number of atoms as the input.

Results and Analysis. As shown in Tab. 4, our method exceeds the baseline model in all quantum
properties, with MAE decreasing on average by 20.5%. The comparison between Natoms and S2-
HDM shows that the proposed model is capable of effectively embedding property information into
the molecular generation process.

6 CONCLUSION

In this work, we present S2-HDM, a hierarchical diffusion model with a differentiated noise schedule,
which effectively integrates domain knowledge from traditional medicinal chemistry, i.e., scaffold
hopping and lead optimization, into a fully end-to-end generative framework. Unlike the separated
design strategies that rely on two-stage iterative refinement and pre-defined functional groups, S2-
HDM introduces a differentiable approach that implicitly learns the scaffold-substituent hierarchy
and generates molecules by prioritizing scaffold establishment and then enabling flexible substituent
exploration. Our model demonstrates consistent improvements over baseline methods in both stability
and validity on standard benchmarks, including QM9 and GEOM-Drugs. Through comprehensive
ablation studies and qualitative analysis, we validate the design of each component and show that
S2-HDM is capable of producing structurally diverse and chemically meaningful molecules.
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ETHICS STATEMENT

This study develops a hierarchical diffusion method using only publicly available molecule datasets
and publicly released foundation models, in accordance with the ICLR Code of Ethics. We did not
collect new data, involve human subjects, or access protected health information.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by documenting implementation details in method section, including
model configuration and optimization. Dataset descriptions and evaluation metrics are detailed in
experiment section. An anonymous GitHub repository link provides code, configs, and scripts to
reproduce molecule generation results. We fix random seeds and report mean and standard variance
performance from multiple independent runs.
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A APPENDIX

A.1 DETAILS OF ωt

Our design is motivated by three main considerations:

• At t = 0, we set ωt = 1;

• For t > 0, we ensure ωt ≤ 1;

• At t = T , for numerical stability, ωt should be greater than 0 and not too small.

In Figure. 4, we conducted an ablation study to select the most suitable η0. We report the performance
of different implementations under the same limited training epochs (which are less than 1300) as
follows:

Table 5: Ablation study on the choice of ωt. The current parameter choice yields the fastest
convergence and best performance.

ωt Valid(%) Atom Stable(%) Mol Stable(%) Comment
cos(0.5πt/T )× 0.8 + 0.2 92.7 98.4 80.2

cos(0.5πt/T ) NA NA NA Training fails due to numerical instability.
0.8(1− t/T ) + 0.2 87.6 97.7 73.2
0.8(1− t/T )2 + 0.2 88.2 97.8 74.5
0.8(1− t/T )6 + 0.2 59.2 91.9 41.5
0.99(1− t/T )2 + 0.01 83.9 96.4 70.4

A.2 DETAILS OF THE PARAMETER MODIFICATION

Given the weighting factor ᾱt, we have:

ᾱsc,t = ᾱt, (8)

αsc,t =

{
ᾱsc,t

ᾱsc,t−1
, if i ≥ 2

ᾱsc,1, if i = 1
(9)

ρsc,t =
(1− αsc,t)(1−

√
ᾱsc,t−1)

(1− ᾱsc,t)
, (10)

ᾱsu,t = ᾱtωt (11)

αsu,t =

{
ᾱsu,t

ᾱsu,t−1
, if i ≥ 2

ᾱsu,1, if i = 1
(12)

ρsu,t =
(1− αsu,t)(1−

√
ᾱsu,t−1)

(1− ᾱsu,t)
. (13)

We let ᾱt = (1− 2τ)(1− (t/T )2) + τ with τ = 10−5 to avoid numerically unstable issues.
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A.3 PROOF OF EQUATION.(7)

Below we provide a detailed clarification and derivation of Eq.(7) and how ELBO holds.

As shown in the original DDPM formulation(Ho et al., 2020):

q(xt−1 | xt,x0) = N
(
xt−1; µ̃t(xt,x0), β̃tI

)
, (14)

and the DDIM formulation(Song et al., 2020):

qσ(xt−1 | xt,x0) = N
(
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I

)
, (15)

the forward posterior always uses a diagonal covariance matrix. Any correlation among elements is
entirely captured by the mean vector.

In the reverse process, the model defines:

pθ (xt−1 | xt) , (16)

by approximating x0 in the forward posterior with x̂0(xt) or ϵ̂0(xt), which implies that any inter-
element dependencies are introduced solely by the denoising network.

Therefore, the use of molecule-level symbols such as s and G can (and should) be replaced by
atom-level symbols. For example, instead of:

q(Gt | G0), (17)

we should consider:
q(Gi,t | Gi,0), (18)

where i denotes the i-th atom and obviously q(Gi,t | Gi,0) = q(Gi,t | G0) .

Accordingly, the posterior:
q(Gt−1 | Gt,G0), (19)

should be refined to the per-atom formulation:

q(Gi,t−1 | Gt,G0) = q(Gi,t−1 | si,t = 1,Gt,G0) · q(si,t = 1 | Gt,G0)

+ q(Gi,t−1 | si,t = 0,Gt,G0) · q(si,t = 0 | Gt,G0). (20)

As pθ(Gt−1|Gt) is trained to minimize the KL divergence with the true posterior q(Gt−1|Gt,G0)
(i.e., minimize the ELBO), we aim to show that the forward posterior takes the form of Eq.(20),
which is a mixture of two Gaussian.

To see why this holds, note that each atom in the training set is deterministically labeled with
s ∈ {0, 1} via RDKit. Therefore, Term.(18) is equivalent to:

q(Gi,t|G0) = q(Gi,t|si,t = 1,G0)q(si,t = 1|G0) + q(Gi,t|si,t = 0,G0)q(si,t = 0|G0) (21)

Similar to the proof of Lemma 1 in the DDIM paper(Song et al., 2020), under the assumption of
q(Gi,t−1|Gt,G0) and q(Gi,t|G0), we now aim to show that:

q(Gi,t−1|G0) = q(si,t = 1|G0)q(Gi,t−1|si,t = 1,G0) + q(si,t = 0|G0)q(Gi,t−1|si,t = 0,G0) (22)

Proof. We begin with:

q(Gi,t−1|G0) =

∫
Gt

q(Gt|G0)q(Gi,t−1|Gt,G0) dGt (23)

Using Bayes’ rule:

q(si,t|Gt,G0) =
q(Gt|si,t,G0)q(si,t|G0)

q(Gt|G0)
(24)
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we substitute into the integral:

q(Gi,t−1|G0) =

∫
Gt

q(Gt|G0)
[
q(Gi,t−1|si,t = 1,Gt,G0)q(si,t = 1|Gt,G0)

+ q(Gi,t−1|si,t = 0,Gt,G0)q(si,t = 0|Gt,G0)
]
dGt

=

∫
Gt

q(Gi,t−1|si,t = 1,Gt,G0)q(Gt|si,t = 1,G0)q(si,t = 1|G0) dGt

+

∫
Gt

q(Gi,t−1|si,t = 0,Gt,G0)q(Gt|si,t = 0,G0)q(si,t = 0|G0) dGt

= q(si,t = 1|G0)q(Gi,t−1|si,t,G0) + q(si,t = 0|G0)q(Gi,t−1|si,t = 0,G0)

A.4 DETAILS OF THE MODEL ARCHITECTURE

We follow the implementation of (Hoogeboom et al., 2022), where the EGNN is composed of
equivariant convolutional layers, that is, xl+1,hl+1 = EGCL[xl,hl]:

mij = ϕe
(
hl
i,h

l
j , d

2
ij , aij

)
, (25)

ẽij = ϕinf (mij), (26)

hl+1
i = ϕh

hl
i,
∑
j ̸=i

ẽijmij

 , (27)

xl+1
i = xl

i +
∑
j ̸=i

xl
i − xl

j

dij + 1
ϕx

(
hl
i,h

l
j , d

2
ij , aij

)
, (28)

where ϕe, ϕinf , ϕh and ϕx are Multilayer Perceptrons, dij = ||xl
i − xl

j ||2.

Property-guided Refinement. We have introduced differentiated noise schedules and denoising
strategies for scaffold and substituent atoms to better reflect their distinct structural roles. However,
the asymmetric treatment can influence downstream molecular properties—such as HOMO (Highest
Occupied Molecular Orbital) energy levels—which are known to be differently affected by scaffolds
and substituents (Sicard et al., 2024; Góger et al., 2023). If the denoising process disproportionately
perturbs one component, it may lead to inconsistencies in the electronic structure that deviate from
realistic chemical behavior. To account for this, we incorporate a property-guided denoising gradient
that steers the generation process toward molecules with desirable properties, thereby preserving
structure–property consistency throughout the diffusion trajectory. Specifically, as illustrated in the
red box of Fig. 1, we train a property predictor pϕ(c|ŝt,Gt), which is trained to estimate a target
molecular property c based on the noisy molecule and the scaffold probability prediction. In this work,
we focus on the HOMO energy as the target property, though the framework can be flexibly extended
to other quantum or physicochemical properties. Following the classifier guidance strategy proposed
in Dhariwal & Nichol (2021), we modify the reverse denoising update in Eq.(6) by incorporating
an additional property-guidance term η1ρt∇Gt

log pϕ(c|ŝt,Gt), where η1 is a hyperparameter that
controls the strength of the property guidance.

A.5 DETAILS OF THE EXPERIMENTS

Scaffold/substituent Label We use RDKit to determine the scaffold/substituent label for each atom
in the molecule. Specifically, we use the MurckoScaffold.GetScaffoldForMol method from RDKit to
extract the scaffold atoms of a molecule, and label all remaining atoms as substituent. As we want
to label every atom of the molecules with RDkit, all the molecules in QM9 dataset have to pass the
validation check to generate the scaffold/sustituent label. Thus, the training/validation/test set will
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Figure 6: Samples generated by S2-HDM trained on QM9 (top 2 rows) and GEOM-Drugs (bottom 2
rows).

not be identical as previous papers (Hoogeboom et al., 2022) (Xu et al., 2023). We split the whole
dataset as training/validation/test set with 100k/6k/10k samples respectively.

Hyperparameters S2-HDM has 256 hidden features and 15 layers for QM9 dataset, and 256
hidden features and 4 layers for GEOM-Drugs dataset. It is trained with batch size 64 and Adam
optimizer with learning rate 10−4 on 1100 epochs. Diffusion step of the diffusion process is set to
T = 1000. η0 and η1 are both set to 1.

Compute Resource We train our model on a single NVIDIA RTX A5000 for around 9 days.

More generated molecule samples are listed in Figure 6.

A.6 DATASET DESCRIPTION

The QM9 dataset (Ramakrishnan et al., 2014) is a widely used benchmark that provides molecular
properties and atomic coordinates for approximately 130,000 small molecules, each containing up
to 9 heavy atoms (a total of 29 atoms, including hydrogens). Also, we test the proposed method on
the GEOM-DRUG dataset (Axelrod & Gomez-Bombarelli, 2022). GEOM-DRUG dataset consist
of complex organic compounds with a maximum of 181 atoms and average of 44.2 atoms across
five distinct atomic species. This dataset encompasses ∼37 million conformations corresponding to
∼450,000 unique molecules, each annotated with energy levels and statistical weights.

A.7 BROADER IMPACTS

Generative models possess powerful modeling and generalization capabilities; however, such ca-
pabilities also pose potential risks, as they may be exploited to generate molecules with unknown
or harmful toxicity. If deployed in real-world industrial settings, it is crucial to conduct thorough
analyses and experimental validation of the generated molecules to prevent adverse impacts on human
health and the environment.

A.8 USAGE OF LLMS

In this work, large language models (LLMs) are primarily employed as auxiliary tools to enhance the
research workflow. Specifically, we leverage LLMs for two main purposes: (i) refining and polishing

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the textual presentation to ensure clarity and readability; and (ii) assisting in the development of
data visualization code, thereby streamlining the process of transforming experimental results into
interpretable figures.
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