
Indicators of Attack Failure: Debugging and
Improving Optimization of Adversarial Examples

Anonymous Author(s)
Affiliation
Address
email

Abstract

Evaluating robustness of machine-learning models to adversarial examples is a1

challenging problem. Many defenses have been shown to provide a false sense of2

security by causing gradient-based attacks to fail, and they have been broken under3

more rigorous evaluations. Although guidelines and best practices have been sug-4

gested to improve current adversarial robustness evaluations, the lack of automatic5

testing and debugging tools makes it difficult to apply these recommendations in6

a systematic manner. In this work, we overcome these limitations by (i) defining7

a set of quantitative indicators which unveil common failures in the optimization8

of gradient-based attacks, and (ii) proposing specific mitigation strategies within9

a systematic evaluation protocol. Our extensive experimental analysis shows that10

the proposed indicators of failure can be used to visualize, debug and improve11

current adversarial robustness evaluations, providing a first concrete step towards12

automatizing and systematizing current adversarial robustness evaluations.13

1 Introduction14

Neural networks are now deployed in settings where it is important that they behave reliably and15

robustly [19, 15, 33, 3]. Unfortunately, these systems are vulnerable to adversarial examples [29, 4],16

i.e., inputs intentionally crafted to mislead machine-learning classifiers at test time. These attacks17

are especially important in settings where classifiers have security-critical consequences, including18

autonomous driving, automated medical diagnoses, and cybersecurity-related tasks such as spam and19

malware detection, web-page ranking and network protocol verification [27, 18, 26, 2, 28, 15].20

This vulnerability has caused a strong reaction from the community, with many proposed defenses [33,21

22, 31, 25]. Early defenses often argued robustness by showing the defense could prevent prior22

attacks, but not attacks tailored to that particular defense. As a result, most of these defenses have23

turned out to only provide a false sense of security, i.e., to be broken when targeted by an adaptive24

attack that tailors the attack strategy to the particular defense [11, 1]. More recent work has tried to25

evaluate using such adaptive attacks. Unfortunately, even this has proven difficult; recent work has26

shown that 13 published defenses proposed in the last year are ineffective despite almost all of them27

containing an analysis to adaptive attacks [30].28

The reason why adversarial example defense evaluations are incomplete comes down to the difficulty29

of performing an adaptive attack, and diagnosing when they go wrong. Adversarial examples are30

typically generated through gradient descent: the adversary first constructs a loss function so that a31

minimum for that function is an adversarial example. While gradient-based attacks are highly effective32

at finding adversarial examples on undefended classifiers with smooth loss functions, many defenses33

substantially hinder the attack optimization by obfuscating gradients or by exhibiting harder-to-34

optimize loss functions. In particular, most attempted defenses to adversarial examples only succeed35

at increasing the difficulty of solving the minimization formulation, and not at actually increasing the36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Algorithm 1: Our framework for computing adversarial attacks
Input :x, the initial point; y, the true class of the initial point; n, the number of iterations; α,

the learning rate; f , the target model; ∆, the considered region.
Output :x?, the solution found by the algorithm

1 x0 ← initialize(x) . Initialize starting point
2 θ̂ ← approximation(θ) . Approximate model parameters
3 δ0 ← 0 . Initial δ
4 for i ∈ [1, n] do
5 δ′ ← δi − α∇xiL(x0 + δi, y; θ̂) . Compute optimizer step
6 δi+1 ← apply-constraints(x0, δ

′,∆) . Apply constraints (if needed)
7 δ? ← best(δ0, ..., δn) . Choose best perturbation
8 return δ?

robustness of the underlying classifier (i.e., increasing the actual distance of the decision boundary37

from the input sample) [10, 11, 1, 30]. Moreover, even though guidelines and best practices have38

been suggested to improve current adversarial robustness evaluations, the lack of automatic testing39

and debugging tools makes it difficult to apply these recommendations in a systematic manner. These40

difficulties have perpetuated a constant cat-and-mouse game where defenders propose new schemes,41

and attackers find that actually the defense was only increasing the difficulty of solving the underlying42

minimization problem [5, 3].43

This paper directly addresses these limitations by (i) developing quantitative indicators of failure,44

i.e., metrics designed to help debug optimization of gradient-based attacks for generating adversarial45

examples, and (ii) suggesting a systematic evaluation protocol to improve current robustness eval-46

uations by applying a sequence of specific mitigation strategies. In four case studies of published47

defenses that have been shown to be ineffective against stronger adaptive attacks, we show (i) that48

our indicators would have highlighted different failure modes in the original evaluations, and (ii) how49

these failures could have been easily overcome by following our suggested mitigation strategies.50

To summarize, we make the following contributions: (i) we introduce a unified attack framework51

that captures the predominant styles of existing gradient-based attack methods, and allows us to52

categorize the five main causes of failure that may arise during their optimization (Sect. 2); (ii) we53

propose five indicators of attack failures (IoAF), i.e., metrics and principles that help understand why54

and when gradient-based attack algorithms fail (Sect. 3); (iii) we empirically evaluate the utility of55

our metrics on four recently-published defenses, showing how their robustness evaluations could56

have been improved by monitoring the IoAF values and following our evaluation protocol (Sect. 4;57

and (iv) we provide open-source code and data we used in this paper for reproducing resources. Our58

code is available at https://github.com/ioaf-todo.1 We conclude by discussing related work59

(Sect. 5), along with the limitations of our work and future research directions (Sect. 6).60

2 Adversarial Robustness: Gradient-based Attacks and Failures61

We argue here that optimizing adversarial examples amounts to solving a multi-objective optimization:62

min
δ∈∆

(L(x+ δ, y;θ), ‖δ‖p) , (1)

where x ∈ [0, 1]d is the input sample, y ∈ {1, . . . , c} is either its label (for untargeted attacks) or63

the label of the target class (for targeted attacks), and δ ∈ ∆ is the perturbation optimized to have64

the perturbed sample x′ = x + δ misclassified as desired, within the given input domain. The65

target model is parameterized by θ. The given problem presents an inherent tradeoff: minimizing L66

amounts to finding an adversarial example with large misclassification confidence and perturbation67

size, while minimizing ‖δ‖p penalizes larger perturbations (in the given `p norm) at the expense of68

decreasing misclassification confidence.2 Typically the attacker loss L is defined as the Cross-Entropy69

(CE) loss, or the logit difference [11].70

1Anonymized for submission.
2Note that the sign of L may be adjusted internally in our formulation to properly account for both untargeted

and targeted attacks.

2

https://github.com/ioaf-todo

−1 0 1
v1

−1

0

1

v
2

0 10 20
Iterations

−0.2

0.0

0.2

0.4

0.6

L
og

it
s

di
ff

er
en

ce

(a) Impl. problems.

−2 0 2
v1

−2

−1

0

1

2

v
2

0 50 100
Iterations

0

10

20

L
og

it
s

di
ff

er
en

ce

(b) Non-converging attack

−1 0 1
v1

−1

0

1

v
2

0 20 40
Iterations

−2

0

2

L
og

it
s

di
ff

er
en

ce

(c) Bad local optimum.

−2 0 2
v1

−2

−1

0

1

2

v
2

0 20 40
Iterations

−10

−5

0

5

L
og

it
s

di
ff

er
en

ce

(d) Non-adaptive attack.

Figure 1: The four attack failures that can be encountered during the optimization of an attack. The
failed attack path is shown in gray, while the successful attack is displayed in black. The point x0 is
marked with the red dot, the returned point of the failed attack with a red cross, and the successful
adversarial point with the green star. The top row shows the loss landscape, as L(x+av1+bv2, yi;θ).
v1 is the normalized direction (xn − x0), while v2 is a representative direction for the displayed
case. In the second row we show the value of L(x+ δi, yi;θ) for the evaluated model.

Multiobjective problems can be solved by establishing a different tradeoff between the given objectives71

along the Pareto frontier, by either using soft- or hard-constraint reformulations. For example, Carlini-72

Wagner (CW) [11] is a soft-constraint attack, which reformulates the aforementioned multiobjective73

problem as an unconstrained optimization: minδ ‖δ‖p + c · min(L(x + δ, y,θ),−κ), where the74

hyperparameters κ and c tune the trade-off between misclassification confidence and perturbation75

size. Hard-constraint reformulations instead aim to minimize one objective while constraining the76

other. They include maximum-confidence attacks like Projected Gradient Descent (PGD) [17], which77

is formulated as minδ L(x+ δ, y;θ) s.t. ‖δ‖p ≤ ε, and minimum-norm attacks like Brendel-Bethge78

(BB) [6] and Decoupling-Direction-Norm (DDN) [24], which can be formulated as minδ ‖δ‖p s.t.79

L(x+δ, y;θ) ≤ k. In these cases, ε and k upper bound the perturbation size and the misclassification80

confidence, respectively, thereby optimizing a different tradeoff between these two quantities.81

The aforementioned attacks often need to use an approximation θ̂ of the target model, since the latter82

may be either non-differentiable, or not sufficiently smooth [1], hindering the gradient-based attack83

optimization process. In this case, once the attacker loss has been optimized on the surrogate model84

θ̂, the attack is considered successful if it evades the target model θ.85

Attack Algorithm. According to the previous discussion, even if different attacks minimize different86

objectives or require different constraints, all of them can be seen as solutions to a common multiob-87

jective problem, based on gradient descent. Thus, their main steps can be summarized as detailed in88

Algorithm 1. First, an initialization point (line 1) needs to be set, and this can be achieved by directly89

using the input point x, a randomly-perturbed version of it, or even a sample from the target class [6].90

Then, if the target model θ is difficult to deal with, or it is non-differentiable, the attacker must chose91

a surrogate model θ̂ that approximates the real target θ (line 2). The attack then iteratively updates92

the initial point searching for a better and better adversarial example (line 4), computing in each93

iteration one (or more) gradient descent steps (line 5) using the initial point and the perturbation δi94

computed so far. Hence, the new perturbation δi+1 is obtained by enforcing the constraints defined in95

the problem (line 6), that can be updated accordingly to the chosen strategy [23, 24]. For maximum96

confidence approaches, the attack can not exit the ∆ region, and samples are projected accordingly on97

this ball when reaching the constraints. Similarly, we consider minimum distance attacks successful98

only if they found adversarial examples inside the ∆ region. At the end of the iterations, the attacker99

has collected all the perturbations along the iterations, formalized as the attack path. The final result100

of the algorithm is the the best perturbation contained in the attack path, w.r.t. the loss they are101

minimizing (line 7).102

3

Obfuscated Gradients

Implementation
problems

FA
ILU

R
ES

I2: Step Size too small
/ Too few iterations

(Break-point angle)

I3: Noisy descent
(Increasing loss)

I4: Numeric problems in
the gradients

(Zero gradients)

I5: Bad surrogate
(Non-transferability)

I1: False Failure
(Silent Success)

IN
D

IC
ATO

R
S

M4 Use multiple
restarts

M
ITIG

ATIO
N

S

M1 Fix implementation M2 Increase iterations,
adjust step size

M3 Smoother loss
approximation M5 Adaptive loss

Non-converging
attacks

Bad local
optimum

Non-adaptive
attack

Figure 2: Indicators of Attack Failures. The top row lists the four general failures encountered in
gradient-based attacks. The second row lists the Indicators of Attack failures we propose, and the last
row depicts possible mitigations that can be applied.

2.1 Attack failures103

We can now isolate four failures that can be encountered while optimizing adversarial attacks using104

Algorithm 1, and we bound each of them to specific steps of such procedure.105

F1: Implementation Problems. If no adversarial examples are found by the attack, it might be106

possible that the used implementation include errors or bugs. For example, we isolated a bug inside107

the procedure proposed by Madry et al. [17]. The attack as described returns the adversarial example108

only by looking at the last point of the attack path (line 7 of Algorithm 2), as shown in Fig. 1a, but109

would not return an adversarial example if one was found during search and then passed over.110

F2: Non-converging attack. When performing gradient descent based attacks, a common problem111

is that attacks do not converge to any local minimum, as shown in Fig. 1b. This problem can be112

caused by either the setup of the attack, and in Algorithm 1, this is reflected on the values of α and n,113

i.e. the step size of the attack, and the number of iterations. If α is too small, the gradient update step114

is not exploring the space (line 5 of Algorithm 1), while using too few iterations n might cause an115

early stopping of the attack (line 4 of Algorithm 1). An example of this failure can be found in the116

evaluation of the defense proposed by Buckman et al. [7], where the authors only used 7 steps of117

PGD for testing the robustness of their defense, or by the one proposed by Pang et al. [21], where118

the defense has been evaluated with only 10 steps of PGD. Also, this failure might be triggered119

either by a too-large step size, that lead the optimizer to keep overshooting the local minimum, or120

the presence of gradient obfuscation techniques [31] that alter the gradients of the model to point to121

random directions, leading the descent to fail.122

F3: Bad local optimum. Once the attack reached convergence, the computed point might not be123

adversarial, since the optimizer has reached a region where it can not update anymore the adversarial124

perturbation, as shown in Fig. 1c. There are few reasons that might lead to such failure. One of them125

is again caused by the presence of gradient obfuscation, where the optimizer is unable to continue the126

descent, since it arrived in a region where the norms of gradients are (nearly) zero (i.e. flat regions),127

or again because the gradients are noisy, and the optimization lands on a bad local optimum (line 5128

of Algorithm 1). An example of such failure is detected inside the defense proposed by Papernot129

et al. [22], where the model is trained to have signal in correspondence of samples, and producing130

regions with no gradient all around them. Another reason might be triggered by the choice of the131

initialization point itself (line 1 of Algorithm 1), that leads the optimizer into a region where no132

adversarial examples can be found. The latter has been detected by the analysis conducted by Tramèr133

et al. [30] against the defense proposed by Pang et al. [21], where a different initialization point lead134

the attack to find a better solution.135

F4: Non-adaptive attack. The loss function that the attacker optimizes does not match the actual loss136

of the target system, and this is caused by a bad choice of the surrogate model (line 2 of Algorithm 1),137

as shown in Fig. 1d. This issue manifests when either the attack is computed on an undefended138

model, and later tested against the defense, or the target model is not differentiable and the surrogate139

is not really approximating it. Since we consider both cases, we differ from the literature, where the140

4

term non-adaptive has been used only for attacks that were not specifically designed to target a given141

defense [30]. An examples of this failure is found in the defense proposed by Yu et al. [32], where the142

attack has been computed against the undefended model, and then evaluated against the defense later.143

To maximize the likelihood of creating successful attacks and hence avoiding such failures, current144

recommendations [30] suggest to (i) select the strongest attacks against the model that is being tested;145

(ii) state the precise threat model being considered; (iii) select the correct hyperparameters for the146

attack being used; and (iv) compute charts to understand how the attacks behave by varying the size147

of the perturbation. Indeed useful, such are only qualitative recommendations that require ad-hoc148

inspection of each failed attack.149

3 Indicators of Attack Failure150

In this section we describe our Indicators of Attack Failures, i.e. tests that help an analyst debug a151

failing attack. Each of these tests outputs a value bounded between 0 and 1, where values towards 1152

implies the presence of the failure described by the test. Informed by the results of the indicators,153

we propose potential mitigations that can resolve the presence of the detected failure. An overview154

of such approach can be appreciated in Fig. 2, where we connect failures with the indicators that155

quantify them, along with possible mitigations.156

p1

p2p3

β

1

1

1

1

At
ta

ck
er

 L
os

s

0 0

At
ta

ck
er

 L
os

s

IterationsIterations

Figure 3: I2 indicator.

I1: Silent Success. This indicator is designed as a binary flag that157

triggers when the attack is failing, but a legitimate adversarial exam-158

ple is found inside the attack path, as described by the implementa-159

tion problem failure (F1).160

I2: Break-point angle. This indicator is designed to quantify the161

non-convergence of the attack (F2) caused by the choice of too small162

hyperparameters. We normalize the loss along the attack path and163

the iteration, to fit the loss in the domain [0, 1]× [0, 1], and, ideally, a164

well-converged loss should approximate a triangle in that domain, as165

shown in Fig. 3. To create that triangle, we connect the first and the166

last point in the loss curve, and we conclude the shape by considering167

the point of the loss curve that is further to such conjunction. We are168

interested in the amplitude of the basis β angle, since it is the one169

that characterizes the shape of the triangle: when β ≈ π, the triangle is flat, implying that the loss is170

still decreasing. For this reason, the indicator computes 1− |cosβ|, matching such intended behavior.171

On the other hand, this indicator is close to 0 when the triangle is close to be right, hence β ≈ π
2 .172

p1

p2p3

β

1

1

1

1

At
ta

ck
er

 L
os

s

0 0

At
ta

ck
er

 L
os

s

IterationsIterations

Figure 4: I3 indicator.

I3: Increasing loss. This indicator is designed to quantify either the173

non-convergence of the attack (F2), or the inability of converging174

to a good local optimum (F3), both caused by the presence of noisy175

gradients, where the loss of the attack is increasing while optimizing.176

To characterize such behavior, we normalize the loss of the attack177

and the iterations as we did in I2, and we extract from it only the178

portions where it increases, and we compute its area, as shown in179

Fig. 4. When this indicator is close to 1, the values of the loss are180

fluctuating around its maximum value, difficult to be decreased by181

the optimizer.182

I4: Zero gradients. This indicator is designed to quantify the183

bad-local optimum failure (F3), caused by the absence of gradi-184

ent information. For this reason, we compute how many times,185

along the attack path, the gradients of the loss function are zero:186
1

n+1

∑n
i=0 1‖∇x+δi

L‖=0. This indicator is close to 1 when most of the norms of the gradient are 0,187

causing the attack step to fail.188

I5: Non-transferability. This indicator is designed to quantify the non-adaptive failure (F4), by189

measuring if the optimized attack fails against the real target model, while succeeding against the190

surrogate one. If the attack transfers successfully, the indicator is set to 0, otherwise it is set to 1.191

5

3.1 Mitigate the Failures of Security Evaluations192

Once the robust accuracy of a model has been computed, the attacker should now check the feedback193

of the indicators and mitigate accordingly the detected failures.194

M1: Fix the implementation. If I1 is active, the attack is considered failed, but there exists an195

adversarial point inside the computed path that satisfies the attack objective. Hence, the resulting196

robust accuracy must be lowered to reflect this patch accordingly. Also, the attacker would want to197

run again their evaluations using another library, or a patched version of the same attack.198

M2: Tune the hyperparameters. If I2 activates, it means that the optimization can be improved, and199

hence both the step size and iteration hyperparameters can be increased. Otherwise, if I3 activates,200

the attack should consider a smaller step size, since the loss might be overshooting local minima.201

M3: Use a different loss function. If I3 activates, and the decrement of the step size did not work,202

the attack should change the loss to be optimized [30], preferring one that has a smoother behavior. If203

I4 activates, the attack should consider loss functions that do not saturate (e.g. avoid the softmax) [9],204

or also increase the step size of the attack to avoid regions with zero gradients.205

M4: Consider different restarts for the attack. If I3 or I4 activates, the attack might also consider206

to repeat the experiments with more initialization points and restarts, as the failure could be the result207

of added randomness or an unlucky initialization.208

M5: Perform adaptive attacks. Lastly, if none of the above applied, the attack might be optimizing209

against a bad surrogate model. If I5 is active, the attack should be repeated by changing the surrogate210

to better approximate the target, or include the defense inside the attack itself [30]. This step implies211

repeating the evaluation, as the change of the surrogate might trigger other previously-fixed failures.212

When attacks fail even after the application of recommended mitigations, it would be easy to assume213

that the evaluated defense is strong against adversarial attacks. However, the only thing known is214

that baseline attacks, properly tested, are not working against the defense. Hence, the designer of the215

defense should try as hard as possible to break the proposed defense with further investigations [12],216

and by performing sanity checks, e.g., ensuring that the robust accuracy drops to 0% when the217

perturbation size is unbounded, or by trying different attack strategies, e.g., using gradient-free218

attacks or attacks designed by reversing the defense mechanism.219

4 Experiments220

We now exhibit the results of our experiments, by showing the correlation between the feedback of221

our indicators, and the false sense of security given by badly-evaluated defenses.222

Experimental setup. We run our attacks on an Intel R© Xeon R© CPU E5-2670 v3, with 48 cores, 126223

GB of RAM, and equipped with an Nvidia Quadro M6000 with 24 GB of memory. All the attacks224

and models have been wrapped and run by using the SecML library [20]. We select four defenses that225

have been reported as failing, and we show that our indicators would have detected such evaluation226

errors. For each of them, we set the hyperparameters for the attack as done in the original evaluation,227

in order to collect similar results.228

k-Winners-Take-All (kWTA), the defense proposed by Xiao et al. [31] uses only the top-k outputs229

from each layer, generating many discontinuities in the loss landscape, and hence resulting in the230

non-converging failure due to noisy gradients (F2). We use the implementation provided by Tramèr231

et al. [30], trained on CIFAR10, and we test its robustness by attacking it with `∞-PGD [17] with a232

step size of α = 0.003, maximum perturbation ε = 8/255 and 50 iterations, with 5 restarts for each233

attack, scoring a robust accuracy of 58% on 100 samples.234

Distillation, the defense proposed by Papernot et al. [22], works by training a model to have zero235

gradients around the training points, leading gradient-based attacks towards bad local optimum (F3).236

We re-implemented such defense, by training a distilled classifier on the MNIST dataset to mimic the237

original evaluation. Then, we apply `∞-PGD [17], with step size α = 0.01, maximum perturbation238

ε = 0.3 for 50 iterations on 100 samples, resulting in a robust accuracy of 94,2%.239

Ensemble diversity, the defense proposed by Pang et al. [21] is composed with different neural240

networks, trained with a regularizer that encourages diversity. We adopt the implementation provided241

by Tramèr et al. [30]. Then, following its original evaluation, we apply `∞-PGD [17], with step size242

α = 0.001, maximum perturbation ε = 0.01 for 10 iterations on 100 samples, resulting in a robust243

accuracy of 38%.244

Turning a Weakness into a Strenght (TWS), the defense proposed by Yu et al. [32], applies a mechanism245

6

Model Attack I1 I2 I3 I4 I5 Ī RA
PGD 0.33 0.43 0.77 - - 0.306 58,2%

k-WTA [31] APGD - 0.310 0.33 - - 0.128 36,4%
PGD? 0.07 0.48 0.55 - - 0.220 6,4%
PGD - 0.98 - 0.97 - 0.39 94.2%

Distillation [22] APGD - 0.4 0.21 - - 0.122 00.4%
PGD? - 0.04 - - - 0.008 0%
PGD - 0.76 - - - 0.152 38%

Ensemble Div. [21] APGD - 0.370 0.14 - - 0.102 0%
PGD? 0.08 0.17 0.15 - - 0.080 9 %
PGD - 0.49 0.07 - 0.37 0.186 35%

TWS [32] APGD - 0.41 0.09 - - 0.10 0%
PGD? - 0.37 0.10 - - 0.094 0%

Table 1: Values of the Indicators of Attack Failures, computed for all the attacks against all the
evaluated models. We denote the attacks that apply also the mitigations as PGD?.

for detecting the presence of adversarial examples on top of an undefended model, measuring how246

much the decision changes locally around a sample. Even if the authors also apply other rejection247

mechanisms, we take into account only the described one, as we wish to show that attacks optimized248

neglecting such term will trigger the non-adaptive attack failure (F4). We apply this defended on249

a WideResNet model trained on CIFAR10, provided by RobustBench [14]. We attack this model250

with `∞-PGD [17], with step size α = 0.1, maximum perturbation ε = 0.3 for 50 iterations on 100251

samples, and then we query the defended model with all the computed adversarial examples. While252

the attacks works against the standard model, some of them are rejected by the defense, resulting253

in a robust accuracy of 35%, highlighted by the trigger of the I5 indicator. In this case, we consider254

an attack unsuccessful if the original sample is not misclassified and the adversarial point is either255

belonging to the same class, or it is labeled as rejected.256

Each of these attacks have been executed with 5 random restarts. We also attack all these models with257

the version of AutoPGD (APGD) [13] that uses the difference of logit (DLR) as a loss to optimize.258

This strategy will take care to automatically tune its hyperparameters while optimizing, reducing259

possible errors that occur while deciding the values of step size, and iterations. Lastly, we compute260

attacks that take into account all the mitigations we prescribed, and they will be analyzed further on261

in the paper.262

0.0 0.1 0.2 0.3 0.4
Average Metrics

0.0

0.2

0.4

0.6

0.8

R
ob

u
st

A
cc

u
ra

cy

Corr: 0.86 p-value: 3.51e-04

k-WTA

Distillation

TWS

Ensemble Diversity

Figure 5: Evaluation of our metrics
for different models. Robust accu-
racy vs. average value of the indi-
cators, for the initial evaluation (de-
noted with ’◦’), with the evaluation
after-mitigation (denoted with ’×’),
and with APGD (denoted with ’?’)

Identifying failures. We want now to understand if our in-263

dicators are correlated with faults of the security evaluations264

of defenses. We collect the results of all the attacks against265

the selected targets, and we compute our indicators, by listing266

their values in Table 1, along with their mean score. With267

a glance, it is possible to grasp that out hypothesis is right:268

the detection of a failure is linked with higher values for the269

robust accuracy, and also the opposite. Each original evalua-270

tion is characterized by high values of one or more indicator,271

while the opposite happens for stronger attacks. For instance,272

APGD automatically tunes its hyperparameter while optimiz-273

ing, hence it is able to apply some mitigations directly during274

the attack. To gain a quantitative evaluation of out hypothe-275

sis, we compute both the p-value and the correlation between276

the average score of the indicators and the robust accuracy,277

depicting this result in Fig. 5. Both p-value and correlation278

suggest a strong connection between these analyzed quantities,279

confirming our initial belief.280

Mitigating failures. We can now use our indicators to im-281

prove the quality of the security evaluations, and we apply282

the following pipeline: (i) we test the defense with a set of283

points with the original attack strategy proposed by the author284

of the defense; (ii) we select the failure cases and inspect the285

7

Model Initial M1 M2 M3 M4 M5 Final
k-WTA [31] 58.2% 36.4% 36.4% 6.4% 6.4% 6.4% 6.4%

Distillation [22] 94.2% 94.2% 94.2% 94.2% 94.2% 0.4% 0.4%
Ensemble Diversity [21] 38.0% 38.0% 36.0% 36.0% 29.0% 9.0% 9.0%

TWS [32] 35.0% 35.0% 35.0% 35.0% 35.0% 0.0% 0.0%
Table 2: Robust accuracies (%) after patching the security evaluations with the prescribed mitigations.

feedback of our indicators per-sample; (iii) for each cause of failure, we apply the specific remediation286

suggested by the metric; and (iv) we show that the attack now succeeds, thus reducing the robust287

accuracy of the target model, and also the values of the indicators.288

We report all the results of this process in Table 2, where each row shows the original robust accuracy,289

and how it is decreased, mitigation after mitigation. Also, all the individual values of each indicator290

computed on these patched attacks can be found in Table 1, marked as PGD?.291

Mitigating k-WTA failures. For many failing attacks, the I1 indicator triggers, implying that the292

attack found an adversarial example inside the path. We then apply mitigation M1, and we lower293

accordingly the robust accuracy of the model to 36,4%. We then analyze the feedback of the I3294

indicator, the one that detects the presence of noisy gradients. We apply mitigation M3, and we295

change the loss of the attack as described by Tramèr et al. [30]. This loss is computed by averaging296

the gradient of each single point of the attack path with the information of the surrounding ones. The297

resulting direction is then able to correctly descent toward a minimum. We run `∞-PGD with the298

same parameters, but smoothing the gradients by averaging 100 neighboring points from a normal299

distribution N (µ = xi, σ = 0.031), where xi is a point in the attack path. After such mitigation, the300

robust accuracy drops to 6, 4%, and so follows the indicator (Fig. 6a).301

Mitigating Distillation failures. All the attacks fail because of the absence of gradient information,302

leading the attack to a bad local optimum (F3), and such is highlighted by the feedback of the I3303

indicator. We apply mitigation M3, and we change the loss optimized during the attack, following the304

strategy applied by Carlini et al. [9], that computes the loss of the attack on the logit of the model305

rather than the final softmax layer. We repeat the PGD attack with such fix, and the robust accuracy306

drops to 0%, along with the indicator I3 (Fig. 6b).307

Mitigating Ensemble diversity failures. Firstly, the I1 indicator highlighted the presence of F1,308

implying that some failing attacks are due to the implementation itself. We apply mitigation M1, and309

the robust accuracy decreases to 36%. Also, I2 indicator is active, implying that the loss of of failing310

attacks could be optimized more. For this reason, we apply mitigation M2, and we increase the step311

size to 0.05 and the iterations to 50. This patch is enough for lowering the robust accuracy to 9%.312

(Fig. 6c).313

Mitigating TWS failures. The detector is rejecting adversarial attacks successfully computed on the314

undefended model, triggering the I5 indicator. Hence we apply mitigation M5, and we adapt the attack315

to consider also the rejection class. This version of PGD minimizes the usual loss function of the316

attacker, but it also minimizes the score of the rejection class when encountered, allowing it to evade317

the rejection. We run such attack, and we obtain a new robust accuracy of 0% (Fig. 6d).318

5 Related Work319

Other systematic analysis on robustness evaluations. There have been a number of prior papers320

evaluating the robustness of particular defense schemes [10, 1, 30]. These papers focus on under-321

standing whether the robustness claims of particular defenses are true, often by performing one-off322

attacks or by proposing new general attack approaches that can be used to break future defenses. In323

contrast our goal is not to break any particular defense, but rather to help researchers understand324

when their evaluation may have gone wrong. In this way our paper is related to Carlini et al. [12]325

that systematizes various suggestions from the literature for how to ensure that adversarial robust-326

ness evaluations are performed thoroughly. We imagine that our tests could be included in future327

recommendations for robustness evaluations.328

8

Init. eval.: 58.2
Final eval.: 6.4

(a) k-WTA

Init. eval.: 94.2
Final eval.: 0.4

(b) Distillation

Init. eval.: 38.0
Final eval.: 9.0

(c) Ensemble Div.

Init. eval.: 35.0
Final eval.: 0.0

(d) Rejection

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

I1: Silent Success

I4: Zero Gradients

I2: Break-Point Angle

I5: Non-transferability

I3: Increasing Loss

Figure 6: The values of our indicators and the success rate (SR) of the attack, before (semi-transparent
colored area) and after (solid colored area) fixing the failures, computed for the analyzed models.

Benchmarks. Related to this work, there are a number of attack benchmarks that have been329

constructed. Instead of measuring the robustness of individual schemes as the prior papers do, these330

benchmarks aim to provide a complete evaluation framework that can be applied to any future defense331

as well. Ling et. al [16] proposed DEEPSEC, a benchmark that tests several attacks against a wide332

range of defenses. However, this framework was shown to be flawed by several implementation issues333

and problems in the configuration of the attacks [8]. Croce et al. [14] propose RobustBench [14],334

that accepts state-of-the-art models as submissions, and it tests their robust accuracy by applying335

AutoAttack [13]. However, this benchmark suite only works on CIFAR-trained models, and it is not336

able to determine which are the possible causes of such scored performance.337

Hence, these benchmark would benefit from our indicators, since they might provide useful insight338

that can be autonomously computed. Here we imagine that our framework could be used to help339

these tools automatically detect when their evaluations are incomplete, so that they could warn the340

operator that there was a potential error that should be investigated.341

6 Contributions, Limitations and Future Work342

We propose the Indicators of Attack Failures (IoAF), quantitative tests that help the debugging of343

faulty-conducted security evaluations, and we propose a pipeline for mitigating their issues, leading to344

a fairer evaluation. We select defenses that have been previously shown to be weak against adversarial345

attacks, and we evaluate them with the lens of our indicators, showing that we could have detected346

their misconduct in advance. We empirically prove that these test are correlated with wrongly high347

robust accuracy, while they drop when attacks are successful.348

On top of these contributions, we acknowledge some limitations in our methodology. We do not349

provide a fully-autonomous way for deciding how to turn an attack into its adaptive version against350

a particular defense (e.g. gradient obfuscation), but we provide quantitative tools for helping the351

decision among all the possible solutions that the attacker could come up with. Another limitation352

lurks in the choice of the attack itself, since some unknown-and-adaptive attack could behave very353

differently w.r.t. standard one, triggering some indicator in the process. However, these tests can be354

patched accordingly to take care of these newly-proposed patched attacks, and still being used as355

debugging tools. Lastly, as already discussed in Sect. 3, if the evaluated defense is not triggering any356

indicators it does not imply it is secure, but rather it forces the application of other sanity checks [12].357

We believe some part of this last process can be automatized with additional indicators, however we358

leave this as a future work.359

We hope that future work will include our indicators during the evaluation phase of new methods, in360

order to identify when attacks are failing for known reasons, and thus contributing to the creation of361

better defense mechanisms. Also, this work pose a preliminary step towards the creation of interactive362

dashboards that can be inspected as a web application. Finally, it would be insightful to attach363

our pipeline of indicators and mitigations to already-available benchmarks (i.e. RobustBench [14]),364

possibly detecting other failures in security evaluations we did not covered in our experiments.365

9

References366

[1] A. Athalye, N. Carlini, and D. A. Wagner. Obfuscated gradients give a false sense of security:367

Circumventing defenses to adversarial examples. In ICML, volume 80 of JMLR Workshop and368

Conference Proceedings, pages 274–283. JMLR.org, 2018.369

[2] M. Barreno, B. Nelson, A. Joseph, and J. Tygar. The security of machine learning. Machine370

Learning, 81:121–148, 2010.371

[3] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning.372

Pattern Recognition, 84:317–331, 2018.373

[4] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli.374

Evasion attacks against machine learning at test time. In H. Blockeel, K. Kersting, S. Nijssen,375

and F. Železný, editors, Machine Learning and Knowledge Discovery in Databases (ECML376

PKDD), Part III, volume 8190 of LNCS, pages 387–402. Springer Berlin Heidelberg, 2013.377

[5] B. Biggio, G. Fumera, and F. Roli. Security evaluation of pattern classifiers under attack.378

IEEE Transactions on Knowledge and Data Engineering, 26(4):984–996, April 2014. ISSN379

1041-4347.380

[6] W. Brendel, J. Rauber, M. Kümmerer, I. Ustyuzhaninov, and M. Bethge. Accurate, reliable and381

fast robustness evaluation, 2019.382

[7] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow. Thermometer encoding: One hot way to383

resist adversarial examples. In International Conference on Learning Representations, 2018.384

[8] N. Carlini. A critique of the deepsec platform for security analysis of deep learning models,385

2019.386

[9] N. Carlini and D. Wagner. Defensive distillation is not robust to adversarial examples, 2016.387

[10] N. Carlini and D. A. Wagner. Adversarial examples are not easily detected: Bypassing ten388

detection methods. In B. M. Thuraisingham, B. Biggio, D. M. Freeman, B. Miller, and A. Sinha,389

editors, 10th ACM Workshop on Artificial Intelligence and Security, AISec ’17, pages 3–14,390

New York, NY, USA, 2017. ACM.391

[11] N. Carlini and D. A. Wagner. Towards evaluating the robustness of neural networks. In IEEE392

Symposium on Security and Privacy, pages 39–57. IEEE Computer Society, 2017.393

[12] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras, I. Goodfellow, A. Madry,394

and A. Kurakin. On evaluating adversarial robustness, 2019.395

[13] F. Croce and M. Hein. Reliable evaluation of adversarial robustness with an ensemble of diverse396

parameter-free attacks. In ICML, 2020.397

[14] F. Croce, M. Andriushchenko, V. Sehwag, N. Flammarion, M. Chiang, P. Mittal, and398

M. Hein. Robustbench: a standardized adversarial robustness benchmark. arXiv preprint399

arXiv:2010.09670, 2020.400

[15] S. G. Finlayson, J. D. Bowers, J. Ito, J. L. Zittrain, A. L. Beam, and I. S. Kohane. Adversarial401

attacks on medical machine learning. Science, 363(6433):1287–1289, 2019.402

[16] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang. Deepsec: A uniform platform for403

security analysis of deep learning model. In 2019 IEEE Symposium on Security and Privacy404

(SP), pages 673–690, 2019. doi: 10.1109/SP.2019.00023.405

[17] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models406

resistant to adversarial attacks. In ICLR, 2018.407

[18] A. McCallum and K. Nigam. A comparison of event models for naive bayes text classification.408

In Proc. AAAI Workshop on learning for text categorization, pages 41–48, 1998.409

[19] P. McDaniel, N. Papernot, and Z. B. Celik. Machine learning in adversarial settings. IEEE410

Security & Privacy, 14(3):68–72, May 2016.411

10

[20] M. Melis, A. Demontis, M. Pintor, A. Sotgiu, and B. Biggio. secml: A python library for secure412

and explainable machine learning. arXiv preprint arXiv:1912.10013, 2019.413

[21] T. Pang, K. Xu, C. Du, N. Chen, and J. Zhu. Improving adversarial robustness via promoting414

ensemble diversity. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th415

International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning416

Research, pages 4970–4979. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.417

press/v97/pang19a.html.418

[22] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a defense to adversarial419

perturbations against deep neural networks. In 2016 IEEE Symposium on Security and Privacy420

(SP), pages 582–597, May 2016. doi: 10.1109/SP.2016.41.421

[23] M. Pintor, F. Roli, W. Brendel, and B. Biggio. Fast minimum-norm adversarial attacks through422

adaptive norm constraints, 2021.423

[24] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and E. Granger. Decoupling424

direction and norm for efficient gradient-based l2 adversarial attacks and defenses, 2019.425

[25] K. Roth, Y. Kilcher, and T. Hofmann. The odds are odd: A statistical test for detecting426

adversarial examples. In International Conference on Machine Learning, pages 5498–5507.427

PMLR, 2019.428

[26] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao, N. Taft, and J. D. Tygar.429

Antidote: understanding and defending against poisoning of anomaly detectors. In Proceedings430

of the 9th ACM SIGCOMM Internet Measurement Conference, IMC ’09, pages 1–14, New York,431

NY, USA, 2009. ACM.432

[27] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk433

e-mail. AAAI Technical Report WS-98-05, Madison, Wisconsin, 1998.434

[28] C. Smutz and A. Stavrou. Malicious pdf detection using metadata and structural features. In435

Proceedings of the 28th Annual Computer Security Applications Conference, ACSAC ’12, pages436

239–248, New York, NY, USA, 2012. ACM.437

[29] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intrigu-438

ing properties of neural networks. In International Conference on Learning Representations,439

2014. URL http://arxiv.org/abs/1312.6199.440

[30] F. Tramer, N. Carlini, W. Brendel, and A. Madry. On adaptive attacks to adversarial example441

defenses. Advances in Neural Information Processing Systems, 33, 2020.442

[31] C. Xiao, P. Zhong, and C. Zheng. Resisting adversarial attacks by k-winners-take-all. 2020.443

[32] T. Yu, S. Hu, C. Guo, W. Chao, and K. Weinberger. A new defense against adversarial444

images: Turning a weakness into a strength. In Proceedings of the 33rd Conference on Neural445

Information Processing Systems (NeurIPS 2019), Oct. 2019.446

[33] X. Yuan, P. He, Q. Zhu, and X. Li. Adversarial examples: Attacks and defenses for deep447

learning. IEEE Transactions on Neural Networks and Learning Systems, 30(9):2805–2824,448

2019. doi: 10.1109/TNNLS.2018.2886017.449

Checklist450

1. For all authors...451

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s452

contributions and scope? [Yes]453

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations in454

Sect. 6455

(c) Did you discuss any potential negative societal impacts of your work? [Yes] In Sect. 6,456

we specified that the aim of our work is not to break defenses in an harmful way. Our457

purpose is only to help researchers to improve their security evaluation.458

11

http://proceedings.mlr.press/v97/pang19a.html
http://proceedings.mlr.press/v97/pang19a.html
http://proceedings.mlr.press/v97/pang19a.html
http://arxiv.org/abs/1312.6199

(d) Have you read the ethics review guidelines and ensured that your paper conforms to459

them? [Yes]460

2. If you are including theoretical results...461

(a) Did you state the full set of assumptions of all theoretical results? [N/A]462

(b) Did you include complete proofs of all theoretical results? [N/A]463

3. If you ran experiments...464

(a) Did you include the code, data, and instructions needed to reproduce the main ex-465

perimental results (either in the supplemental material or as a URL)? [Yes] The code466

will be submitted as supplementary material, and the instructions for reproducing the467

experiments are described in Sect. 4468

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they469

were chosen)? [Yes] We describe the experimental protocol in Sect. 4470

(c) Did you report error bars (e.g., with respect to the random seed after running experi-471

ments multiple times)? [N/A]472

(d) Did you include the total amount of compute and the type of resources used (e.g.,473

type of GPUs, internal cluster, or cloud provider)? [Yes] The resourced used for the474

experiments are listed in Sect. 4475

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...476

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited all the477

existing assets used for the experiments.478

(b) Did you mention the license of the assets? [Yes] We cited the authors of the assets, and479

we provide the list of external assets along with the code.480

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]481

We provide the code for computing the metrics as supplementary material.482

(d) Did you discuss whether and how consent was obtained from people whose data you’re483

using/curating? [N/A] All the assets we used are publicly available.484

(e) Did you discuss whether the data you are using/curating contains personally identifiable485

information or offensive content? [N/A]486

5. If you used crowdsourcing or conducted research with human subjects...487

(a) Did you include the full text of instructions given to participants and screenshots, if488

applicable? [N/A]489

(b) Did you describe any potential participant risks, with links to Institutional Review490

Board (IRB) approvals, if applicable? [N/A]491

(c) Did you include the estimated hourly wage paid to participants and the total amount492

spent on participant compensation? [N/A]493

12

	Introduction
	Adversarial Robustness: Gradient-based Attacks and Failures
	Attack failures

	Indicators of Attack Failure
	Mitigate the Failures of Security Evaluations

	Experiments
	Related Work
	Contributions, Limitations and Future Work

