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ABSTRACT

Reinforcement learning with offline data often suffers from Q-value extrapolation
errors due to limited data, which poses significant challenges and limits overall
performance. Existing methods such as layer normalization and reward relabeling
have shown promise in addressing these errors and achieving empirical improve-
ments. In this paper, we extend these approaches by introducing reward scaling
with layer normalization (RS-LN) to further mitigate extrapolation errors and en-
hance performance. Furthermore, based on the insight that Q-values should be
lower for infeasible action spaces—where neural networks might otherwise ex-
trapolate into undesirable regions—than for feasible action spaces, we propose
a penalization mechanism for infeasible actions (PA). By combining RS-LN and
PA, we develop a new algorithm called PARS. We evaluate PARS on a range
of tasks, demonstrating superior performance compared to state-of-the-art algo-
rithms in both offline training and online fine-tuning across the D4RL benchmark,
with notable success in the challenging AntMaze Ultra task.

1 INTRODUCTION

Reinforcement learning (RL) enables agents to de-
velop optimal decision-making strategies through
real-time interactions. However, these interactions
with real-world environments can expose the agent
to considerable risks. To mitigate these risks, Of-
fline RL, which derives optimal policies from pre-
collected data, has emerged as a critical area of re-
search (Fujimoto & Gu, 2021; Tarasov et al., 2024)).
Additionally, agents trained with offline RL can
be deployed in real-world environments to further
acquire knowledge, leading to the development of
offline-to-online RL approaches (Lee et al., [2022;
Nakamoto et al.| 2024; [LEI et al., 2024)). How-
ever, due to the limited coverage of offline data,
these methods often suffer from extrapolation error,
where the Q-values of out-of-distribution (OOD) ac-
tions are overestimated, limiting the overall perfor-
mance (Kumar et al., |2020; Kostrikov et al., [2022;
Lyu et al., [2022; Mao et al.| 2024)).

OFfli Adroit  Adroit —— PARS
ine Mujoco EXxpert Cloned ppivaze Previous
Scores Random Ultra = 50TA
MujoCo 00 pntmaze
Medium Large
MujoCo
Medium /?I’IESW\ ifﬁ
-Replay]
MujoCo
Medium Sﬁ:!‘f@e
-Expert s
A ujoCo
ASIYTI:A:ZZQ Medium
-Replay

AntMaze
Medium

MujoCo
Medium Qnline

AntMaze MuoCo  Finetuning
Large antMaze Adroit Random Scores
Ultra  Cloned

Figure 1: Overview of the comparison be-
tween PARS and prior SOTA with scores
normalized to each task’s maximum perfor-
mance.

To improve the performance of RL with offline data, several methods have been proposed. Recent
work by Ball et al.| (2023) has demonstrated that layer normalization (LN, Ba et al.| (2016))) can
reduce catastrophic overestimation by constraining Q-values in OOD actions, promoting more stable
Q-value learning and enhancing overall performance. Additionally, from a different perspective,
reward relabeling has been applied in various offline RL algorithms. For example, in sparse reward
environments like AntMaze, Kostrikov et al.| (2022) modifies the rewards by subtracting 1, while

Tarasov et al.| (2024) multiplies all rewards by 100.
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In this work, we examined the impact of these two techniques on RL with offline data and demon-
strated that combining layer normalization with reward scaling (applying a constant factor to the
overall reward) more effectively alleviates extrapolation error. However, we observed that the Q-
function still tends to be overestimated beyond regions where data coverage ends. To further address
this, we penalize the Q-values of infeasible action regions distant from the agent’s feasible action
regions, which encourages a gradual reduction in Q-values beyond the data-covered regions.

Building on these insights, we introduce PARS (Penalizing infeasible Actions and Reward Scaling),
a novel algorithm designed to mitigate Q-function extrapolation error. PARS consists of two com-
ponents: (1) reward scaling with layer normalization (RS-LN) and (2) penalizing infeasible
actions (PA). PARS is based on a minimal approach for offline RL, TD3+BC (Fujimoto & Gu,
2021)), with RS-LN and PA being implementable through just a few lines of code. This simplicity
allows PARS to be easily integrated into existing off-policy algorithms with minor modifications,
making it highly practical for real-world use.

We evaluate PARS on various RL tasks during both the offline training and online fine-tuning phases.
Figure[I|provides an overview of the benchmark comparison, showing that the performance of PARS
is either close to or significantly better than the previous SOTA in all considered tasks. In particular,
PARS stands out as the only method to successfully learn during offline-to-online training in the
challenging Antmaze Ultra task, demonstrating strong performance.

2 PRELIMINARIES

The RL problem is formulated as a Markov Decision Process (MDP, [Puterman, [1990) M =
(po,S, A, P,R,~), where pg is the initial state distribution, S is the state space, A is the action
space, P(s¢41]8¢, at) is the transition probability, R (s, a;) is the reward function, and vy € (0, 1) is
the discount factor, with s; € S and a; € A denoting the state and action at timestep ¢, respectively.
In this study, we focus on a continuous action space, typically confined to a compact subset of R™.
We denote the action space A, as defined in the MDP, as the feasible action region A, and the
infeasible action region as A7 = R™ \ Ax, which consists of actions the agent cannot perform in
any state. We extend the action space, typically limited to feasible actions, by defining the infeasible
action space Az to account for potential extrapolation into infeasible regions by neural networks.

Given this formulation, offline RL allows for learning a policy without real-time interaction with the
online environment and enables learning from a pre-collected dataset D, composed of trajectories of
various quality, 7 = {(s¢, as, 74, st+1)};f=_01, with r, = R (s, a;) denoting the reward at timestep ¢
and T representing the episode length, without knowing the behavior policy used to collect D. The
goal of offline RL is to utilize the transitions in D to develop an optimal policy 7 that maximizes the

expected discounted return Zi—ol Y.

A policy 7 trained with D can be finetuned to suit online situations by interacting with the online
environment. As new transitions are collected in a replay buffer B through online interactions, the
policy can be further improved by sampling transitions from both D and B.

Layer normalization. Layer normalization (LN;Ba et al.,[2016) stabilizes neural network training
by normalizing hidden outputs {z;} in each i-th layer. LN re-centers and re-scales them using the
layer’s mean p and standard deviation o with the transformation #; = *~£7 4 3, where 7 and /3
are learnable parameters. In recent RL research, LN has been shown to improve training stability
and thus lead to increased final performance (Ball et al.,|2023; Nauman et al.,[2024). Notably, Ball
et al.||2023|demonstrates that applying LN can constrain Q-values for out-of-distribution actions by

the weight layer norm, thereby mitigating the effects of erroneous Q-function extrapolation.

3 CRITIC REGULARIZATION FOR OOD ACTIONS

When RL is performed solely using a dataset without any online interaction, the Q-function may
become unstable and diverge due to overestimation in the OOD action region (Kumar et al., [2020;
An et al. 2021} [Yue et al.| 2024)), as shown in Figure [2] (a). To address this issue, various critic reg-
ularization methods have been proposed including the ensemble approach, penalizing OOD action
within the feasible region. Figure 2] captures the essence of the nature of the realistic offline dataset.
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Figure 2: Conceptual comparison of various critic regularization methods (a-c), including our ap-
proach with RS-LN and PA (d).

There exists a feasible action region A, and there exists an in-distribution (ID) region Ap (C Ax),
which may consist of multiple discontiguous subregions.

First, |An et al.| (2021) showed that increasing the number of critics in an ensemble can provide
effective critic regularization, as depicted in Figure |Z| (b). Additionally, other works (Kumar et al.,
2020; Lyu et al., [2022; [Mao et al.| [2024)) introduce a penalty to reduce Q-values for OOD actions
deviating from the behavior policy x within the feasible action space A, as shown in Figure [2] (c).
For instance, MCQ (Lyu et al.,2022)) and SVR (Mao et al. 2024) use behavior models trained with
either a VAE or Gaussian distribution to distinguish OOD actions and penalize them.

However, both approaches have limitations. Achieving sufficient regularization using only a critic
ensemble requires a large number of critics, significantly increasing training complexity. Further-
more, it does not perform well on sparse reward tasks, such as AntMaze (Tarasov et al.,2022;2024)).
Meanwhile, methods that rely on behavior models are limited by their accuracy. Misclassifying ID
actions as OOD can lead to inappropriate penalties and underestimated Q-values. Additionally,
considering online fine-tuning, adapting the behavior model in an evolving online setting presents
further challenges (Nair et al.,2020). Moreover, exploring potential regions not present in the dataset
and adapting accordingly becomes difficult if the OOD action region within A is fitted to a specific
penalty value or is overly conservative. Appendix [B]provides a more comprehensive comparison.

Therefore, we propose an alternative viewpoint on critic regularization. Unlike previous methods,
we leverage layer normalization and reward scaling to enhance the network’s expressivity, which
naturally mitigates OOD overestimation. Additionally, rather than penalizing OOD actions within
Ap, our method imposes penalties on OOD actions outside Ap to further prevent overestimation
in extrapolation regions, as shown in Figure [2](d). Our goal through this is to smoothly reduce the
values of OOD actions outside the data coverage while seamlessly interpolating the values of OOD
actions within the data coverage. This allows for flexible adaptation to distribution shifts during
online fine-tuning (See Appendix [B). Moreover, our method can be combined with a small number
of ensembles to further stabilize critic regularization.

4 PENALIZING INFEASIBLE ACTIONS AND REWARD SCALING

4.1 DIDACTIC EXAMPLE

We first examine the effects of reward scaling in conjunction with LN and the penalization of in-
feasible action regions (PA) when learning a Q-function with function approximation. For this, we
considered a regression problem by adopting and modifying the approach used in|Ball et al.| (2023)).
The true Q-function is defined as

y = f(21,72) = Creward - (\/x% + 2% - cos (m/8) + z1 - sin (77/8)) ,

where Crewara 18 the reward scaling factor and the feasible input region is defined as (z1,z2) €
[—1,1]2. This function is a slanted, inverted cone-shaped function with 2D inputs, z = (71, 2),
as shown in Figure [3] We then generated a dataset {(x1,22,y)} as y = f(x1,22) only on the ID
region 23 + 23 < 0.5, which covers only a subset of the feasible input region. The data were then
fitted using a 3-layer MLP with a hidden dimension of 256 and ReLU activation (Agarap, [2018).
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Figure 3: Results of training on a toy dataset using MLP networks with vanilla regression (‘None’
column), with LN (‘LN’ column) and LN with PA (‘LN & PA’ column), varying the Creward.

For this regression fitting, we considered three cases: 1) vanilla regression, 2) regression with LN,
and 3) regression with LN and PA. PA is applied so that penalties for infeasible inputs are imposed
by setting the label y to O for inputs where x; or 3 € (—200, —100) U (100, 200), which are far
from the feasible input region. By imposing penalties on regions far from the feasible region, the
impact on the prediction of Q-values within the feasible region can be minimized. The experiments
were conducted by varying the reward scaling factor cewarg among 1, 10, and 100.

As shown in the ‘None’ column of Figure 3] when the dataset covers only a portion of the feasible
region rather than the full region, Q-value regression yields overestimation, particularly from the
points where dataset coverage ends. Integrating LN into the Q network helps mitigate this abrupt
overestimation of Q-values as previously noted by Ball et al.|(2023)), with its impact becoming more
pronounced as the reward scale increases (‘LN’ column). Additionally, combining PA with LN
enables the network to decrease gradually in regions where data coverage ends as the input norm
grows (‘LN & PA’ column). Note that reward scaling is effective only when used in conjunction
with LN; when used independently, it can lead to the divergence of Q-values. For more discussion
on the didactic example, please refer to Appendix [C]

4.2 PARS ALGORITHM

Based on insight from Section[4.1} we present a novel algorithm that prevents Q-value extrapolation
error to ensure stable Q-learning across both offline and online fine-tuning phases: Penalizing in-
feasible actions and reward scaling (PARS). PARS is based on the minimalist offline RL algorithm,
TD3+BC, and is built upon two key components: (1) reward scaling combined with LN (RS-LN)
and (2) penalizing infeasible actions (PA).

4.2.1 PARS COMPONENT 1: REWARD SCALING COMBINED WITH LN (RS-LN)

For our first component, RS-LN, we scale all rewards in the offline dataset D by multiplying each
reward r € D by a constant factor cgewarg. During online fine-tuning, the rewards stored in the replay
buffer B are similarly scaled by the same constant factor cgewad, €nsuring consistency across both
offline and online phases. In the previous didactic example (Figure [3), we showed the effectiveness
of RS-LN in mitigating OOD values, and we aim to further investigate potential underlying causes.

Referring to Figure 3] RS-LN appears to foster the learning of a more intricate decision bound-
ary. This observation leads to the hypothesis that mitigating OOD values is linked to the network’s
capacity to learn more complex functions. This capacity, often referred to as neural network ex-
pressivity, has been extensively studied in various RL contexts (Kumar et al., [2021}; |Sokar et al.,
2023} |Obando Ceron et al., [2024), and several metrics to approximate expressivity have been pro-
posed. [Kumar et al. (2021)) introduced the effective rank, Srank;(¢), which provides insights into
how efficiently the model utilizes its capacity to represent complex data. A low Srank;(¢) suggests
the possibility of under-parameterization. Additionally,|Sokar et al.|(2023)) introduced the concept of
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Figure 4: Plots illustrating how each metric changes during training in AntMaze-medium-diverse-
v2, comparing the cases with (w/) and without (w/0) LN for Cewara Values of 1 and 1000.

dormant neurons (neurons with zero activations) in RL, showing that an increase in dormant neurons
correlates with the network’s under-utilization and degraded performance.

Figure [Z_f] shows how each metric evolves during training as cCrewarg increases, both with and without
LN. Without LN, the parameter norm grows rapidly as ciewarq increases, and Srank;(¢) decreases
sharply. Conversely, with LN, the parameter norm remains controlled, and although Srank;(¢)
decreases initially, it converges to a stable value. This regulated reduction in Sranks(¢) prevents
overfitting by minimizing the learning of irrelevant noise, allowing the model to focus on key pat-
terns, thus enhancing performance (Obando Ceron et al., |2024). Dormant neurons are also more
effectively utilized as crewara increases with LN. Therefore, increasing crewarg With LN helps the net-
work focus on important information, boosts network expressivity, mitigates OOD value spikes, and
ultimately leads to performance improvements.

4.2.2 PARS COMPONENT 2: PENALIZING INFEASIBLE ACTIONS (PA)

The goal of penalizing infeasible actions is to prevent () values 4,  Guard Ap w4
from diverging from the point where data coverage ends. To —NMT—TMM—
accomplish this, in addition to the standard TD loss, we con- —é) &—
sider the PA loss to constrain the value in the infeasible action
region to Qmin. Since we want the Q-function in the feasible Figure 5: Ap and A; forn =1
region to be sufficiently well estimated with the dataset and

not heavily affected by the constraint in the infeasible action region, we allow some guard interval

between the feasible action region and the constraint-imposed infeasible action region.

Lry 41 uy Ura

Therefore, we consider the following subset of the infeasible action region:

AI = U{(_OOaLI,i] U [Ul,ivoo)}v (D

i=1

where 7 is the dimensions of action. Note that the feasible action region is defined as (), { (¢;, u;) },
where ¢; and u; denote the lower and upper bounds of the feasible space in the i-th dimension. Thus,
L;; < {; and u; < Ur; to allow the guard or transition interval. Then, the PA loss is determined as

EPA _ mdin ]ESND,QEAI {(Q¢(S, CL) - Qmin)ﬂ y (2)

where Qi can be calculated as Creward * "'min/ (1 —7y). If the minimum reward of the task is unknown,
it can be estimated from the dataset’s minimum reward, as suggested in Mao et al.| (2024). By
combining two losses with a weighting factor o, our modified TD loss is given as follows:

ETotal = m(gn]Es,ms’ND |:(Q¢'(53 a/) - (Creward : T(S’ Cl) + nya/NﬂFe(.lSl)QQﬁ(S/’ a/)))2:|
Ta- <H$Il ]ESND7H/GA[ |:(Q¢(S, Cl) - Qmin)2:|) (3)

4.2.3 IMPLEMENTATION

Infeasible action sampling.  The expectation over a € A; in eq. is practically realized by
sample expectation or sample mean. To sample actions from the support in eq. (I), we consider the
following uniform distribution for infeasible action sampling:

‘ {Uniform(Lu — Ay, Lp,;) fora; < Ly, with probability 0.5,

4
Uniform(U;;, Ur;+ Ay) fora; > Ur; with probability 0.5. @)



Under review as a conference paper at ICLR 2025

As we shall see in Section[@, the performance does not heavily depend on the values of Ly ;, Uy ;
when these values are set as 100 to 1000 times the boundary of the feasible region.

Critic ensemble. PARS can be integrated into an ensemble approach with a limited number
of critics (4 for AntMaze, 10 for MuJoCo and Adroit). The impact of the number of critics is
discussed in Appendix [H] For policy evaluation, we use the same approach as in[Ball et al.| (2023) for
both offline and online fine-tuning. However, for policy improvement, we employ slightly different
objectives. During offline training, we use the minimum critic value. For online fine-tuning, we
average a subset of critics with a sample size of k, to avoid restricting the online exploration. The
objective function for policy improvement is as follows, where 3 is the weight factor for the behavior

cloning regularization term in TD3+BC, and A = Wm:

Offline training: m@axEs’GND [)\ ( minNQ¢j (s,ﬂ'g(s))> — B (mo(s) —a)*|, (5

=1,
Online fine-tuning: max Esaup [)\ (EjegkﬂQ%. (s, 7T9(S))> — B (mo(s) — a)Q} (6)

5 RELATED WORKS

Offline RL methods. In addition to the offline RL methods discussed in Section 3} which focus on
critic regularization, there is also ongoing research into actor regularization aimed at preventing the
actor from straying too far from the behavior policy. For example, TD3+BC (Fujimoto & Gu, |2021)),
an offline variant of TD3 (Fujimoto et al.|[2018)), adds a behavior cloning term to the policy objective
to keep 7 close to the behavior policy. Additionally, SPOT (Wu et al., 2022) introduces a density-
based regularization term using a VAE to estimate the behavior policy’s density, explicitly modeling
the support set. Furthermore, in an approach utilizing both actor and critic regularization, ReBRAC
(Tarasov et al., 2024)) recently enhanced TD3+BC by incorporating previously unvalidated design
elements, including decoupling the actor and critic penalties. ReBRAC demonstrates that significant
performance gains can be achieved by integrating appropriate design choices into existing methods.

Offline-to-online RL methods. The policy , trained using the offline dataset, can be further
fine-tuned through additional online interaction. However, this new interaction often leads to distri-
butional shifts between the offline and online data, resulting in performance degradation (Nair et al.|
2020; |[Lee et al., 2022; Uchendu et al., |2023). To address this issue, various studies have explored
effective fine-tuning methods for offline algorithms (Lee et al., 2022 [Nakamoto et al., 2024} Zhang
et al., |2023; [Beeson & Montana, [2022). For example, Off20n (Lee et al.| |2022) attempts to mit-
igate distribution shift issues by using an ensemble and a balanced replay strategy based on CQL
(Kumar et al.||[2020). However, traditional offline algorithms are designed with limited datasets in
mind, leading to a conservative learning approach that can limit performance in online fine-tuning.
To overcome this, Uni-O4 (LEI et al.| 2024) proposes removing conservatism during the offline
phase to facilitate a smoother transition to the online phase. On the other hand, RLPD (Ball et al.|
2023)) takes a different approach by bypassing the explicit offline phase altogether. Instead, it lever-
ages offline data during online learning, increasing the update-to-data (UTD) ratio for more efficient
sample utilization compared to fine-tuning a pre-trained offline policy. Unlike existing offline-to-
online methods, we do not propose new specialized techniques for online fine-tuning. Our proposed
RS-LA and PA can be naturally applied to online fine-tuning, allowing PARS to transition smoothly
while achieving superior performance.

6 EXPERIMENTS

6.1 EXPERIMENT SETUP

Benchmark. We use three domains (AntMaze, Adroit, and MuJoCo) with a total of 28 datasets
from the D4RL benchmark (Fu et al., 2020) for our experiments. The view of example datasets can
be found in Figure[6] In the performance comparison table, we used the following abbreviations: u
for umaze, m for medium, I for large, p for play, d for diverse, r for random, m-r for medium replay,
and e for expert. For a detailed explanation of the benchmark please refer to Appendix
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Figure 6: Examples of datasets we used for experiments.

Hyperparameters. We set L; and U uniformly across all action dimensions as Ly ; = L and
Ur,; = Uy for each dimension i. We use Ay, = |L;| and Ay = |Uy|, where L; and Uy are scaled
by either 100 or 1000 times the boundary of the feasible region. Given that in the tasks considered,
L; < 0and U; > 0, we sample infeasible actions from the intervals [2L;, L;] and [Uy, 2Uy],
respectively. Furthermore, we enable the tuning of around 10 sets of hyperparameters, including o
and TD3+BC’s 3, following prior works (Wu et al., 2022 Nikulin et al.}[2023}; | Tarasov et al.,[2024).
For detailed hyperparameters and implementation, please refer to Appendix [G.3]

Table 1: Offline PARS evaluation on the AntMaze, Adroit, and MuJoCo domains. We report the
final normalized score averaged over five random seeds, with + representing the standard deviation.

AntMaze TD3+BC 1QL CQL SAC-N EDAC MCQ MSG SPOT SAC-RND ReBRAC PARS
antmaze-u 78.6 87.5 74.0 0.0 0.0 27.5 97.9 93.5 97.0 97.8 93.8+2.1
antmaze-u-d 71.4 62.2 84.0 0.0 0.0 0.0 79.3 40.7 66.0 88.3 89.9+7.5
antmaze-m-p 10.6 71.2 61.2 0.0 0.0 0.0 85.9 74.7 38.5 84.0 91.2+3.9
antmaze-m-d 3.0 70.0 53.7 0.0 0.0 0.0 84.6 79.1 74.7 76.3 92.0+2.2
antmaze-1-p 0.2 39.6 15.8 0.0 0.0 0.0 64.3 353 439 60.4 84.8+5.9
antmaze-1-d 0.0 475 14.9 0.0 0.0 0.0 71.2 36.3 457 54.4 83.2+5.6
antmaze-ultra-p 0.0 133 16.1 0.0 0.0 0.0 0.6 44 20.6 224 66.41+4.4
antmaze-ultra-d 0.0 14.2 6.5 0.0 0.0 0.0 1.0 12.0 10.5 0.8 51.4+11.6
average 20.5 50.7 40.8 0.0 0.0 34 60.6 47.0 49.6 60.6 81.6
Adroit TD3+BC IQL CcQL SAC-N EDAC MCQ SVR SPOT SAC-RND ReBRAC PARS
pen-cloned 61.5 77.2 39.2 64.1 68.2 353 65.6 15.2 2.5 91.8 107.5+15.8
pen-expert 146.0 133.6  107.0 87.1 -1.5 1212 1199 1173 454 154.1 152.7+1.0
door-cloned 0.1 0.8 0.4 -0.3 9.6 0.2 1.1 0.0 0.2 1.1 434£6.1
door-expert 84.6 105.3  101.5 -0.3 106.3  73.0 833 0.2 73.6 104.6 106.0+0.2
hammer-cloned 0.8 1.1 2.1 0.2 0.3 52 0.5 2.5 0.1 6.7 23.3+20.8
hammer-expert 117.0 129.6  86.7 25.1 28.5 759 1033 86.6 24.8 133.8 133.54+0.4
relocate-cloned -0.1 0.2 -0.1 0.0 0.0 -0.1 0.0 -0.1 0.0 0.9 1.240.7
relocate-expert 107.3 106.5  95.0 -0.3 71.9 82.5 59.3 0.0 34 106.6 110.5+1.5
average 64.7 69.3 54.0 22.0 354 49.2 54.1 27.8 18.8 75.0 79.9
MuJoCo TD3+BC QL CQL SAC-N EDAC MCQ SVR SPOT SAC-RND ReBRAC PARS
halfcheetah-r 11.0 13.1 17.5 28.0 28.4 28.5 27.2 23.8 29.0 29.5 30.4+0.7
hopper-r 8.5 79 7.9 31.3 253 31.8 31.0 31.2 31.3 8.1 254+11.5
walker2d-r 1.6 54 5.1 21.7 16.6 17.0 22 5.3 21.5 18.4 21.8+0.2
halfcheetah-m 48.3 47.4 44.0 67.5 65.9 64.3 60.5 584 66.6 65.6 64.2+1.2
hopper-m 59.3 66.3 58.5 1003 1016 784 103.5 86.0 97.8 102.0 104.1+0.4
walker2d-m 83.7 78.3 72.5 87.9 92.5 91.0 92.4 86.4 91.6 825 97.3+2.5
halfcheetah-m-r 44.6 442 45.5 63.9 61.3 56.8 52.5 522 54.9 51.0 57.0+0.6
hopper-m-r 60.9 94.7 95.0 101.8  101.0 101.6 103.7 100.2 100.5 98.1 103.1+0.6
walker2d-m-r 81.8 73.9 77.2 78.7 87.1 91.3 95.6 91.6 88.7 77.3 95.8+1.4
halfcheetah-m-e 90.7 86.7 91.6 107.1 1063 87.5 94.2 86.9 107.6 101.1 103.0+2.4
hopper-m-e 98.0 91.5 1054 110.1 110.7 1112 111.2 993 109.8 107.0 113.14+0.3
walker2d-m-e 110.1 109.6 108.8 116.7 114.7 114.2 109.3 112.0 105.0 111.6 111.840.7
average 58.2 59.9 60.8 76.3 76.0 72.8 73.6 69.4 75.4 71.0 71.3

6.2 BASELINE COMPARISON

Offline training. We evaluate PARS in comparison with 10 prior SOTA baselines: TD3+BC
(Fujimoto & Gul 2021])), IQL (Kostrikov et al., |2022), CQL (Kumar et al., 2020), SAC-N (An et al.,
2021), EDAC (An et al.| 2021), MSG (Ghasemipour et al., [2022), SPOT (Wu et al., [2022)), SVR
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(Mao et al., 2024), SAC-RND (Nikulin et al.,2023)), and ReBRAC (Tarasov et al.|[2024). The details
of the baselines are described in Appendix We primarily used the official scores reported in the
respective papers for each algorithm. If a score was not available for certain datasets with a specific
dataset version, we either referenced scores from other papers that benchmarked these datasets or
conducted our own experiments, tuning the algorithm with the hyperparameter sets recommended
by each respective author.

The evaluation results are summarized in Table[I] As shown, while other algorithms often perform
well in specific domains but falter in others, PARS consistently demonstrates robust performance
across a diverse range of domains. For instance, SAC-N (An et al) [2021) shows strong perfor-
mance in MuJoCo; however, it struggles to learn effectively in AntMaze. In contrast, ReBRAC
excels in Adroit but falls behind other algorithms in both MuJoCo and AntMaze. Specifically, in
the challenging AntMaze Large and Ultra datasets, PARS achieves approximately 24% and 280%
performance improvements over existing baselines, respectively. These impressive results, achieved
without excessive computational resources (as shown in Appendix |I) and through a straightforward
implementation (as shown in Appendix [E), have the potential to advance the practical application of
offline RL.

Table 2: PARS evaluation on the AntMaze, Adroit, and MuJoCo domains after fine-tuning with
300k online samples. We report the final normalized score averaged over five random seeds, with &
indicating the standard deviation. The corresponding performance graphs are in Appendix

AntMaze CQII'_I SPOT PEX RLPD Cal-QL ReBRAC PARS
antmaze-u 99.0-£0.6 98.4+1.9 95.2+£1.6 99.4+£0.8 90.1£10.8 99.4+£0.9 99.7+0.8
antmaze-u-d 76.9+£39.7 55.2432.8 34.8+30.1 99.2£1.0 75.24£35.0 97.4£2.1 97.8+2.1
antmaze-m-p 94.4+£3.0 91.2+3.8 834423 97.4£14 95.1+6.3 96.8+£1.9 99.1+1.8
antmaze-m-d 98.8£2.5 91.6£3.5 86.6+5.0 98.6£1.4 96.3+4.8 95.8£3.6 99.4+1.1
antmaze-1-p 87.3+5.6 60.4+£21.5 56.0£3.9 93.0£2.5 75.0£14.7 71.4£30.9 96.2+3.0
antmaze-1-d 65.31+28.3 69.4+£23.7 60.416.8 90.413.9 74.4+11.8 89.0+3.4 96.8+2.7
antmaze-ultra-p 21.3£19.0 0.0£0.0 13.3+5.8 8.8£16.5 6.9£2.7 0.0+0.0 86.5+4.4
antmaze-ultra-d 6.3£6.6 58%£11.5 26.7£11.3 40.0£37.0 5.7£112 1.0+1.7 86.4+£6.5
average 68.7 59.0 57.1 784 64.8 68.9 95.2
Adroit CQL Off20n SPOT RLPD Cal-QL ReBRAC PARS
pen-cloned -2.640.1 102.5£166.0 117.1+13.4  154.8+11.8 -1.6+1.6 134.1+£7.2 155.443.1
door-cloned -0.34£0.00 -8.0£0.2 0.05+0.06 110.8+6.1 -0.34£0.0 53.3+353 102.1£26.8
hammer-cloned 0.24+0.03 -7.4£0.4 90.2+£23.2 139.7£5.6 0.21£0.08 114.4+10.3 141.5+1.9
relocate-cloned -0.33£0.01 -1.5£0.5 -0.2940.04 4.8+7.1 -0.34£0.01 1.5£1.1 53.8+7.7
average -0.8 214 51.8 102.5 -0.5 75.8 113.2
MuJoCo CQL Off20n PEX RLPD Cal-QL Uni-O4 PARS
halfcheetah-r 26.5+£3.4 92.74+5.7 60.9£5.0 91.5£25 32.948.1 6.8£3.9 100.1+2.9
hopper-r 10.0£1.5 95.3+9.2 48.5+38.9 90.2+£19.1 17.7£26.0 12.4£1.8 109.74+5.3
walker2d-r 12.4£7.9 279422 9.8+1.6 87.7+14.1 9.4£5.6 5.7£0.8 113.9+13.9
halfcheetah-m 78.9+£1.3 103.3+1.4 70.4£2.3 95.5£1.5 77.0£2.2 56.6£0.8 107.0+£5.0
hopper-m 100.94+0.6 106.3+1.7 86.24+26.3 91.4427.8 100.740.8 104.8+2.6 111.54+0.4
walker2d-m 88.7+0.4 109.8+£29.6 91.4+143 121.6+2.3 97.0+8.2 106.5+3.4 126.442.1
halfcheetah-m-r 50.3+£28.3 95.6£1.7 55.4+£5.1 90.1£1.3 62.1£1.1 53.2+54 98.5+£1.0
hopper-m-r 103.9+1.8 101.7+14.8 95.3£7.2 78.9+24.5 101.442.1 103.416.6 107.0+1.4
walker2d-m-r 105.4+£1.8 120.3+9.4 87.2+13.6 119.0£2.1 98.4+3.3 1155£2.9 130.1+4.4
average 64.1 96.4 67.2 96.2 66.3 62.8 111.6

Online fine-tuning.  After offline training, we conduct online fine-tuning with 300K of online
samples and compare its score with 8 prior SOTA baselines: CQL (Kumar et al., 2020), Off20n
(Lee et al., 2022), SPOT (Wu et al., 2022), RLPD (Ball et al., [2023), PEX (Zhang et al., |2023),
Cal-QL (Nakamoto et al., [2024), Uni-O4 (LEI et al., [2024), ReBRAC (Tarasov et al., |2024). We
reproduced the results using the official implementations for all baseline scores in online fine-tuning,
with details provided in Appendix [G.2]

The experimental results are presented in Table [2| and the corresponding performance graphs can
be found in Appendix [A] Observing the results, except for two datasets, PARS outperforms all
baselines across all datasets. For the online phase, RLPD, which leverages an offline dataset while

1CQL can be fine-tuned with SAC (Haarnoja et al.,[2018)), as proposed in|Nakamoto et al.| (2024).
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learning from scratch online without an explicit offline training phase, showed strong performance
compared to other baselines. However, PARS surpassed RLPD, challenging previous findings and
highlighting that online fine-tuning can be an effective framework when proper critic regularization
is applied. Notably, in the cases of AntMaze ultra-play, ultra-diverse, and Adroit relocate-cloned,
PARS is the only algorithm to demonstrate strong results in these scenarios. One can argue that
PARS, by reducing OOD regions beyond data coverage, may limit online exploration. However,
in large and challenging tasks like AntMaze Ultra, PARS’s primary success lies in reducing OOD
regions during offline training, preventing exploration in completely irrelevant areas. Instead, it uses
the offline data as an anchor to begin exploration, thereby significantly narrowing the search space.
This can be particularly effective in online fine-tuning where online interaction steps are limited.

6.3 COMPARING PARS WITH GOAL-CONDITIONED OFFLINE RL IN ANTMAZE

We further compare PARS against 8 goal-conditioned offline RL baselines, specifically designed for
goal-reaching tasks like AntMaze. Reaching the goal in complex, long-horizon tasks poses consider-
able challenges (Park et al.,[2024b)). To tackle these challenges, various goal-based RL methods have
been developed, using techniques such as goal relabeling (Yang et al., [2022; |Hejna et al.| 2023), hi-
erarchical frameworks (Park et al.,[2024b)), or advanced architectures like transformers (Zeng et al.,
2024).

We compare PARS with 8 baselines listed in Table E} GCBC (Ghosh et al.l 2021), GC-IQL
(Kostrikov et al.l [2022), GC-POR (Xu et al.| 2022), WGCSL (Yang et al.| [2022), DWSL (Hejna
et al., [2023), RvS-G (Emmons et al., [2022)), HIQL (Park et al., [2024b), and GCPC (Zeng et al.,
2024). The details of the baselines can be found in Appendix [G.2] In Table [3] most algorithms
score around 30 on the ultra dataset, with only HIQL and GCPC surpassing 50. PARS notably out-
performs both, showing superior results not only on the ultra dataset but also in the overall average
score across the AntMaze domain. These results highlight that, even in sparse and challenging long-
horizon tasks, adhering to fundamental off-policy RL methods with proper regularization can lead
to superior decision-making ability without the need for specialized designs or architectures.

Table 3: Performance comparison of PARS on AntMaze with goal-conditioned offline RL baselines.

AntMaze GCBC GC-IQL GC-POR WGCSL DWSL RvS-G HIQL GCPC PARS

antmaze-u 59.2 91.6 81.7 90.8 712 70.4 79.2 71.2 93.8+2.1
antmaze-u-d 62.3 88.8 72.1 55.6 74.6 66.2 86.2 712 89.9+7.5
antmaze-m-p 71.9 82.6 714 632 71.6 71.8 84.1 70.8 91.2+3.9
antmaze-m-d 67.3 76.2 74.8 46.0 74.8 72.0 86.8 72.2 92.0+2.2
antmaze-1-p 23.1 40.0 63.2 0.6 152 35.6 86.1 78.2 84.8+5.9
antmaze-1-d 20.2 29.8 49.0 2.4 19.0 252 88.2 80.6 83.245.6
antmaze-u-p 20.7 20.6 31.0 0.2 252 25.6 39.2 56.6 66.4+4.4
antmaze-u-d 14.4 28.4 29.8 0 25.0 26.4 52.9 54.6 51.4+11.6
average 424 573 59.1 324 47.8 49.2 753 69.4 81.6

6.4 DISCUSSION ON THE COMPONENTS OF PARS

How does each component of PARS affect offline ,
Antmaze-umaze-diverse-v2

performance? To identify the source of the per- 100
formance gain of PARS, we assess the offline perfor- 80 ./.___./”" None
mance across different scenarios: the critic network 6o N

40

without LN or PA (None), with only LN (LN), and 20
with both LN and PA (LN & PA), while varying the re- 1o 16 1000 10600
ward scale crewara. The results are presented in Figure Creward

As illustrated, the presence of LN leads to a trend of
improved performance as Creward inCreases. Moreover,
the combination with PA resulted in even higher per-
formance, consistent with the prior discussion in Sec-
tion[d.T] Additional results for component ablation can
be found in Appendix

LN &PA

Figure 7: PARS offline performance, av-
eraged over five seeds, with varying creward
and the application of LN and PA. The er-
ror bars represent the standard deviation.
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How significant is the infeasible action penalty in N LN &PA

online fine-tuning?
Antmaze-ultra-play-v0 Antmaze-ultra-diverse-v0
100

Penalizing infeasible actions (PA) can be applied not M

only during offline training but also in the online fine- J/V"\NN
tuning phase. In addition to its effectiveness in the of- %
fline phase, we conducted additional experiments to 0
explore the benefits of PA in online fine-tuning by

varying the application of PA during the fine-tuning Fjgure 8: Ablation on PA: normalized

phase. The results, displayed in Figure[8] demonstrate  gcore over 300k online fine-tuning steps.
that PA enables more stable learning and accelerates

performance improvement during online fine-tuning.

0 1 2 3 0 1 2 3
Environment Steps 1> Environment Steps &

How far should infeasible actions be from the feasible action region? As described in Section
we sample infeasible actions from the region defined by Eq. |4}, which is set at a distance of
the guard interval from the feasible region. The distance is determined by |L;| and |U;/|, and for the
benchmark comparison, we set |L;| = |U;|. Figure[9]demonstrates the impact of this configuration.
When |L;| = |U;| is small, meaning the sampled infeasible actions are near the feasible region,
suboptimal performance is noted, indicating that penalizing infeasible actions may influence policy
evaluation within the feasible region.

100 Antmaze-medium-diverse-v2 Antmaze-large-diverse-v2 Antmaze-ultra-diverse-v0 100 Walker2d-medium-v2
80 85 60
o 80 /\0/\ 50 /.,/Q—o\' &
40 75 60
20 70 40 40
i 10 10 1000 10600 1 10 100 1000 10000 i 10 100 1000 10000 i 10 100 1000 10000
ILil = U Ll =1ull Ll = Uil ILil = U

Figure 9: Final normalized score of PARS averaged over five random seeds with varying |L;| =
|U;|. The error bars represent the standard deviation.

7 CONCLUSION

We introduce PARS, aimed at preventing critic extrapolation error and enhancing overall perfor-
mance in both offline training and online fine-tuning of RL with offline data. Our analysis of LN
and reward scaling with offline data reveals that combining LN with reward scaling is highly effec-
tive for mitigating OOD issues. Additionally, applying penalties to the infeasible action region re-
duces OOD Q-values below ID Q-values, particularly where data coverage ends, resulting in notable
performance gains. PARS has demonstrated substantial performance improvements over previous
SOTA algorithms across diverse RL tasks in both offline training and online fine-tuning phases. Fur-
thermore, PARS was the only algorithm among off-policy RL variants to achieve strong performance
on the notoriously challenging AntMaze Ultra task. Our findings suggest a new avenue—differing
from conventional views—that strong performance across a wide array of RL tasks is achievable
with only simple adjustments to off-policy algorithms, provided appropriate regularization for OOD
mitigation is applied.

Limitations and Future research.  Although PARS has achieved superior performance, it still
benefits from the support of a critic ensemble, particularly in MuJoCo and Adroit. We expect that
further investigation into data fitting challenges in limited datasets, coupled with potential refine-
ments, could lead to robust performance with just a double-critic setup. As a future research direc-
tion, exploring the relationship between RS-LN and neural network expressivity would be valuable.
Additionally, designing activation functions in combination with RS-LN or PA presents an intriguing
research area.

10
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REPRODUCIBILITY STATEMENT

In Appendix [E] we provide a JAX-based reference implementation of the two components of the
PARS algorithm, RS-LN and PA. Furthermore, layer normalization can be seamlessly integrated
into the Q network. Additionally, Appendix |G| contains detailed experiments and implementation
settings. To further promote reproducibility, the complete training code will be publicly released on
GitHub after publication.
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A  PERFORMANCE GRAPHS FOR ONLINE FINE-TUNING (300K)
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Figure 10: The performance graph of the online fine-tuning (300k), using five random seeds, corre-
sponds to Table[2] The solid line indicates the mean, while the shaded region represents the standard
deviation.
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B IN-DEPTH COMPARION WITH PRIOR WORKS

In addition to Section 3] we further examined the advantages of PARS over prior methods from
the perspective of online fine-tuning. To achieve rapid progress toward the optimal policy through
fine-tuning of a Q-function and policy trained on offline data with a limited number of online sam-
ples, two key factors are crucial: (1) exploring promising but unvisited regions, and (2) effectively
adapting to newly collected samples.

Ground truth Q-values Penalizing OOD action

within feasible region

RS-LN and PA (ours)

AN

s~
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Qmin
Qmin * Creward
action action
-a—— A ——an
- 7\ 7\
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N ALY v AL
\ /7 "
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N Qmin * Creward
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am— s ——am

} . . @ in-distribution action region Ap
1 feasible action region Ap X . . X
@mm subset of infeasible action region A;

Figure 11: Comparison of the method for penalizing OOD actions in the feasible region with RS-LN
and PA across various ground truth Q-values.

Figure [[1] illustrates that methods penalizing OOD action regions within A tend to assign lower
Q-values compared to ID regions (green areas), thereby hindering exploration during the online fine-
tuning phase. In contrast, RS-LN and PA enable the network to naturally interpolate within OOD
regions covered by the data, while penalizing distant infeasible regions in extrapolated areas beyond
the data coverage. This approach ensures a smooth transition in Q-values between ID and OOD
regions, encouraging exploration into high-value regions.

B.1 EXPERIMENT ON Q-FUNCTION ADAPTATION

To more specifically analyze the advantages of PARS in compari- T Ground atn Govares
son to individual prior methods during online fine-tuning, we con- [ ofnedete
ducted an additional experiment using a simple MDP with a sin- 32 \
gle state s, and an action range of [—1,1]. In this setup, the o \/ h
ground truth Q-values, Q*(s,a), are equal to the reward func- 0

tion, r(s,a), and temporal-difference (TD) loss is defined as:

ming Evanp (Qo(s,a) ~ Q*(s,0))°] .

In Figure [I2] the blue dashed line represents the ground truth Q-
values, while the green area denotes the samples available as offline
data. We initially trained the Q-function on this offline data using
prior methods, including CQL (Kumar et al, 2020), Cal-QL (Nakamoto et al, 2024), and SVR
[2024), as well as our proposed PARS. Subsequently, we evaluated how each Q-function
adapted when new online samples were introduced.

0
Action

Figure 12: Ground truth Q-
values with highlighted of-
fline data region

We train the Q-function, ()4, and the policy function, 74, using a 3-layer MDP with ReLU activation.
Q4 for each algorithm was trained as follows on the offline data D:

* CQL - We train CQL using the following policy evaluation loss function:
min B op |[(Qo(5,0) = Q*(5,:0))°] 40 (Band ammy (19 Q0(5: @)] = Bu o[ Qo(5.a)])

16



Under review as a conference paper at ICLR 2025

* Cal-QL - We train Cal-QL using the following policy evaluation loss function:
min Es o |(Qo(s,0) ~Q"(5, )’
+a (E8~D7a~7re(-\8) [maX(Q¢(s, a), V#(s))] — E&aND[Q(zﬁ(sv a)]) )
where V#(s) is calculated as the mean of the Q* (s, ) within the offline data distribution.
* SVR - We train SVR using the following policy evaluation operator:

T™Q4(s,a), pBlals) >0,
min, otherwise.

TrQs(s,a) = {

SVR pretrains a behavior model for 5(als), but we assume the true distribution is given.

* PARS - LN was applied to the Q-network, the ground truth Q-values Q*(s, a) were scaled by a
factor of 100, and a @y, penalty was imposed on the action ranges of (-200, -100) and (100, 200).
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Figure 13: Comparison of how @), trained on offline data with prior methods and PARS, evolves as
new samples are added. For SVR, since SVR does not consider online finetuning, we do not account
for the behavior model when new samples are added, focusing on the Q-function’s adaptability.

Figure ﬂ}l presents the training results of Q)4 using offline data (left) and additional online samples
(right, denoted by an inverted orange triangle). As shown in the figure, CQL tends to make Q-values
overly conservative because its loss function minimizes the Q-values of OOD actions, which in turn
slows the Q-function’s adaptation to new samples. Cal-QL significantly improves upon CQL by
employing a regularization technique that allows the predicted Q-value to decrease only when it is
higher than V#(s). However, if the Q-value within the data distribution exceeds V#(s), particularly
near the boundaries where data coverage ends, the loss minimizing the Q-value at these edges can
still lead to excessive underestimation of the Q-value.

On the other hand, during SVR offline pretraining, the Q-value of OOD actions is fitted to a spe-
cific value, Quin- As a result, the neural network behaves unpredictably when a new sample is
added. While we currently assume a single state, TD learning involves bootstrapping, and such un-
predictable movements of the Q-function in one state can propagate to other states. Ultimately, this
can disrupt the entire online fine-tuning process.

Unlike other methods, PARS neither explicitly minimizes the Q-value within the feasible region
nor fits it to a predetermined value. This approach allows for greater flexibility in responding to
new samples while leveraging the optimal actions identified during offline training as anchors for
exploration. Consequently, PARS demonstrates the ability to adapt rapidly to online scenarios.
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C MORE DISCUSSION ON DIDACTIC EXAMPLE

PA without LN. In addition to the results in Figure 3| we trained the same input (1, 22) using an
MLP with only PA applied, without LN, and present the outcomes in Figure[14} These findings indi-
cate that penalizing infeasible actions can mitigate overestimation in areas where data coverage ends,
with its effect increasing as the reward scale ciewara grows. However, the learned Q-values remain
uneven and exhibit inaccuracies in certain regions. As demonstrated in Figure[3] the combination of
PA with LN and reward scaling yields the most significant impact.

PA (Creward 1) PA (Crewara 10) PA (Crewara 100)

Lo ﬁ 10 ’ 100

0.5 5 |50

Figure 14: Results of training on a toy dataset in Section using MLP networks with infeasible
action penalty (PA) without LN, varying the ceward-

Analyzing split data distributions.  Figure [3illustrates a scenario where data is assumed to be
concentrated in a single region without separation. In practice, however, offline data can often be
distributed across multiple regions. To explore this, we developed a new toy dataset consisting of
two slightly separated inverted cones and analyzed the learning characteristics within this dataset.

Data

None LN LN & PA

Creward

‘ E Creward 100

feasible region

in-distribution region

Figure 15: Results of fitting the two inverted cone-shaped input datasets using an MLP network,
with and without LN and PA, at a ¢;ewarg of 100.

Figure E] demonstrates the data fitting behavior when cyewarq 18 set to 100, comparing cases where
neither LN nor PA is applied (‘None’ column), where only LN is applied (‘LN column), and where
both LN and PA are applied (‘LN & PA’ column). As observed, without LN or PA, the data shows
significant overestimation starting from where the coverage ends, similar to the results in Figure 3]
Introducing LN mitigates this overestimation, and when both LN and PA are applied, the Q-value is
predicted to be lower than in the ID region. Furthermore, LN enables smooth interpolation between
the two split data regions.

Impact of activation functions. In Section|4.2.1] we demonstrated that RS-LN’s effectiveness is
tied to the network expressivity, which is influenced by the activation function (Raghu et al.,[2017).
The activation function plays a crucial role in determining whether neurons are activated or remain
inactive during training. Accordingly, we examined how fitting characteristics, including OOD mit-
igation, vary depending on the activation function. We tested the toy dataset from Figure [3]in a
setting with Crewara = 100 and LN applied, using GELU (Hendrycks & Gimpel, 2016), Sigmoid,
SiLU (Elfwing et al.,|2018)), as well as cases with no activation function. The results can be seen in
Figure |16 Sigmoid and SiLU showed minimal effect on mitigating Q-values, while GELU offered
some benefits but was overly conservative. In the absence of activation, OOD Q-values remained
high, even with a large creward- The impact of different activation functions extends beyond the di-
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dactic example and affects performance in real RL tasks. We elaborate on the influence of activation
functions in Appendix [H]

No Activation ReLU GELU

Activation Functions
— RelU
— GELU
—— Sigmoid
— SiLU

2.0

15

1.0

Sigmoid SiLu 0.5

A . U A an G "

v

(a)

Figure 16: (a) The fitting results of applying various activation functions to the toy dataset from
Figure|§| in a setting with crewara = 100 and LN applied, (b) Plot of various activation functions.

D IN-DEPTH ANALYSIS OF RS-LN EFFECTIVENESS

In addition to the didactic example in Section[d.I]and the analysis in Figure[d we conducted further
analysis on the potential reasons why RS-LN is effective by using a Q-network consisting of three
hidden layers (each composed of a linear layer, LN, and ReLU activation), trained on the Antmaze-
ultra-diverse dataset. LN incorporates an affine transformation along with normalization to a mean
of 0 and a variance of 1. This affine transformation mitigates the potential loss of representational
capacity caused by standardizing the input distribution, thereby enhancing the model’s flexibility in
learning (Ba et al.| 2016} [Xu et al., 2019). For a hidden output z; in the i-th layer with a hidden
dimension d, LN is expressed as:

;= o M77 + ﬂ )
o
where 1 and [ are learnable parameters with a dimension of d. Here, 7 controls the scale of the
normalized values, while 3 adjusts their offset. Starting from an initial value of 1, 7 is trained to
naturally increase in response to the growth of creward, €ffectively adapting to the change.

Creward 1 Creward 1000

Sy
jp’:M .
/ o83% g

77 @ D Sample

@® 00D sample

Figure 17: A visualization of the norm of the LN output in the final layer, ||Z_1]|, for ID/OOD
samples. The radius of the circle represents the norm value. ID samples are obtained by sampling
from the dataset, while OOD samples are generated by sampling actions from A; for the same states
sampled from the dataset.

Using the Q-network with varying crewara» as shown in Figure [I7] we observed during the joint
optimization of the LN parameter 1 and the linear layer parameters that, as Crewarg increases, the
norm of the LN output in the final layer, ||Z_1]|, becomes more distinguishable. Specifically, it
exhibits higher values for ID samples and lower values for OOD samples. Notably, in Figure[I7} for
Creward = 1000 (right), while ID and OOD samples are distinguishable, the gap between them does
not widen abruptly but instead increases gradually. This observation aligns with the explanation in
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Appendix [B-T] where PARS naturally reduces the Q-values of OOD samples, resulting in significant
benefits for online fine-tuning.

However, this observation requires further analysis and represents one of the important future direc-
tions. A deeper investigation into layer normalization and its interaction with reward scaling would
be an intriguing research avenue, offering opportunities for further exploration and advancements.

E REFERENCE IMPLEMENTATION

We provide a JAX-based reference implementation for the critic loss, and the complete training code
will be made publicly available on GitHub following publication.

def _critic_loss(self,
critic_params,
critic_target_params,
actor_target_params,
transition,
rng) :
state, action, next_state, reward, not_done = transition

# Scale the reward by the predefined reward scaling factor
reward = self.reward_scale * reward

# Compute the target Q-value (implementation details omitted)
target_Q = ... # Placeholder for target Q-value computation

# Get current Q estimates (implementation details omitted)
current_Q = ... # Placeholder for current Q estimate computation

# Compute critic loss
Q_loss = jnp.mean(jnp.square (current_Q - target_Q[:, 0] [None, ...]))

# Uniform infeasible action sampling

infeasible_action = (jax.random.uniform(rng, action.shape) x 2) - 1

infeasible_action = jnp.where(infeasible_action < 0, infeasible_action - 1,
infeasible_action + 1) * self.L

# Compute current Q-value for infeasible action
current_Q infeasible = self.critic_model.apply(critic_params, state, infeasible_action)

# Set target Q-value for infeasible action to min_g
target_Q_infeasible = jnp.ones_like(target_Q) * self.min_g

# Compute infeasible Q loss
Q_loss_infeasible = jnp.mean (jnp.square (current_Q infeasible - target_Q_infeasible[:, 0][

None, ...]))

# Combine the losses
critic_loss = Q_loss + self.alpha * Q _loss_infeasible

return critic_loss

Listing 1: An example of reward scaling and infeasible action sampling implementation in JAX.

F EXTENSION TO OTHER OFFLINE RL METHODS

We also investigate whether incorporating RS-LN and PA into other existing offline RL algorithms
leads to performance gains.

F.1 EXTENSION TO SAC-BASED METHODS

Since PARS is based on TD34+BC, we applied RS-LN and PA to SAC-RND (Nikulin et al.} |2023),
an offline variant of SAC (Haarnoja et al., 2018). SAC-RND already uses a reward scaling of 100
with LN, and we explored whether further increasing it, along with applying PA, would enhance
performance. For hyperparameters, we used SAC-RND’s actor and critic beta values from Nikulin
et al.[(2023)) and tuned PARS’s o and ¢yewarq to 0.001, 0.0001, and 1000, 10000, respectively. Table
] shows that applying PA and reward scaling leads to a noticeable performance improvement when
integrated into an offline SAC-based algorithm. Although this study focuses on implementing our
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proposed PARS with TD3+BC, it can be seamlessly extended to other off-policy algorithms and
their applications, demonstrating its versatility and effectiveness.

Table 4: Performance improvement after applying PA and RS to SAC-RND. The scores are the
averages of the final evaluations across five random seeds.

AntMaze SAC-RND SAC-RND SAC-RND with PA and RS-LN
(Tarasov et al.l 2024) (reproduce) (Ours)
umaze-diverse-v2 66.01+25.0 69.71+26.4 83.0+14.3
medium-play-v2 38.5+29.4 52.4421.6 79.2+5.9
medium-diverse-v2 74.7+10.7 753+11.2 84.71+8.3
large-play-v2 43.9429.2 40.0+£25.8 53.9+12.1
large-diverse-v2 45.7428.5 3724254 54.21+14.7

F.2 EXTENSION TO IN-SAMPLE LEARNING-BASED METHODS

Both TD3+BC and SAC are actor-critic methods that may sample OOD actions during training. Al-
ternatively, in-sample learning-based methods (Kostrikov et al, 2022}, [Xu et al.} 2023} [Garg et al.}
[2023}; [Hansen-Estruch et al.} 2023)) avoid OOD action sampling by implicitly learning the maximum
Q values, focusing on the upper portion of the Q-value distribution using only in-sample data. Build-
ing on the previous discussion, we investigated whether PA and RS-LN could be applied to these
methods. Specifically, we conducted experiments with IQL (Kostrikov et al}[2022), a representative
in-sample learning method, setting the discount factor v to 0.995 and increasing the temperature
parameter 7 to 20. Consistently, we also varied the v and 7 in IQL and reported the best results. We
used a ¢rewarg Value of 1000 for RS-LN.

Table 5: Performance improvement after applying PA and RS-LN to IQL. The scores are the aver-
ages of the final evaluations across five random seeds.

AntMaze IQL IQL IQL with RS-LN | IQL with PA and RS-LN
Kostrikov et al.l (reproduce) (Ours) (Ours)
umaze-diverse-v2 62.2 66.5+5.5 83.04+6.2 81.1£7.9
large-play-v2 39.6 454458 60.416.2 60.6+5.3
ultra-play-v2 - 13.3+5.7 36.6+£13.3 37.3£10.7

As shown in Table 5] PA was not particularly effective in this setting, likely due to its nature as
a method that avoids OOD sampling. Conversely, RS-LN demonstrated noticeable effectiveness,
indicating its potential for broader applicability and effectiveness when integrated into in-sample
learning-based approaches. However, it did not surpass the performance of TD34+BC-based PARS.
This can be attributed to the following reasons.

First, IQL relies on AWR (Peng et all |2019) for policy extraction. As highlighted by
(20244a), this approach has inherent limitations because it exclusively depends on a mode-covering

behavioral cloning term, which restricts actions to remain within the convex hull of dataset actions.
Additionally, as discussed in |Hansen-Estruch et al, (2023), methods such as expectiles, quantiles,
and exponentials can be used to implicitly learn maximum Q-values, each with its unique charac-
teristics and limitations. Thus, the choice of implicit Q-learning method tends to impose certain
constraints. Consequently, the best performance was achieved when PA and RS-LN were applied
to a fundamental off-policy algorithm such as TD3. Exploring the extension of PA and RS-LN
to in-sample learning, with variations in critic loss function design and policy extraction methods,
presents an interesting direction for future research.

G EXPERIMENT DETAILS

G.1 BENCHMARK DETAILS

2020 introduced a variety of datasets designed for different RL tasks, such as AntMaze,
Adroit, and MuJoCo. Additionally, zhengyao jiang et al.| [2023| expanded the AntMaze domain by
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proposing an ultra dataset, featuring a larger map size than previously proposed, thus increasing the
complexity of the task.

For the AntMaze domain, we leverage eight datasets: {umaze-v2, umaze-diverse-v2, medium-play-
v2, medium-diverse-v2, large-play-v2, large-diverse-v2, ultra-play-v0, ultra-diverse-vO}. These
datasets encompass different levels of difficulty based on the maze’s size, complexity, and the diver-
sity of start and goal positions.

In the Adroit domain, we utilize four tasks: {pen, door, hammer, relocate}, each associated with two
dataset qualities: {cloned-v1, expert-vl}. The cloned datasets are created by training an imitation
policy using demonstration data, executing the policy, and mixing the resulting data with the original
demonstrations in a 50-50 ratio. In contrast, expert datasets are derived from fine-tuned RL policy.

For the MuJoCo domain, we use three tasks: {halfcheetah, hopper, walker2d}, each of which has
four dataset qualities: {random-v2, medium-replay-v2, medium-v2, medium-expert-v2}. The ran-
dom dataset consists of data generated by randomly initialized policies, the medium dataset comes
from partially trained policies, the medium-replay dataset includes data from replay buffers dur-
ing training, and the expert dataset contains demonstrations from well-trained agents performing
near-optimal behavior.

G.2 BASELINES

Offline training. We primarily relied on the officially reported scores from each paper for
datasets benchmarked for comparison. For datasets that were not benchmarked in the original paper,
we referred to scores from other works that reported results for those datasets. For datasets without
available scores from other sources, we reproduced the results using the respective implementations,
tuning hyperparameters according to the recommendations in each paper.

Specifically, for datasets not benchmarked in the original paper, we either obtained the scores or
conducted experiments as outlined below. In all other cases, we used the scores reported in the
original paper. In cases where we conducted the experiments, we reported the final evaluation scores
using five random seeds, with the mean and standard deviation provided in Tables[6|and

- AntMaze: To begin, since the AntMaze Ultra datasets had not been benchmarked in previous
studies we compared, we conducted experiments for all prior baselines. For MSG and SAC-RND,
we ran the experiments using the official implementations. For TD3+BC, IQL, CQL, SPOT, and
ReBRAC, we used the CORL library (Tarasov et al.,[2022), which provides a single-file implemen-
tation of state-of-the-art (SOTA) offline RL algorithms. For the remaining datasets, we referenced
the SAC-N and EDAC scores from [Tarasov et al.[(2022). Additionally, we sourced the MSG and
SAC-RND scores from Tarasov et al.| (2024)), as those works benchmarked the vO and v1 versions
of the AntMaze datasets, rather than the v2 versions.

- Adroit: For Adroit, we obtained the TD3+BC, IQL, CQL, and SAC-RND scores from [Tarasov:
et al.| (2024), and the SAC-RND and EDAC scores for expert datasets from [Tarasov et al|(2022).
Moreover, for SPOT and SVR, we ran the experiments using the CORL library and the official SVR
implementation, respectively.

- MuJoCo: For MuJoCo, we obtained the IQL and CQL scores for random datasets from [Lyu et al.
(2022). Moreover, we ran SPOT on random datasets using the CORL library.

The URLs for each implementation are listed below:

e CORL - https://github.com/tinkoff—-ai/CORL

e MSG - |https://github.com/google-research/google-research/tree/
master/jrl

e SAC-RND - https://github.com/tinkoff—-ai/sac—rnd

* SVR-https://github.com/MAOYIXIU/SVR

Online fine-tuning.  During the online fine-tuning phase, since the official score for 300k on-
line samples is typically unavailable, we re-run all the baselines using their corresponding official

implementations, except for CQL, which uses the provided code from Cal-QL. The URLSs for each
implementation are listed below:
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Table 6: Final normalized evaluation scores averaged over five random seeds for SPOT and SVR.
For each dataset, we tuned them as recommended in the paper and reported the best scores.

Dataset SPOT Dataset SVR Dataset MCQ
halfcheetah-r 23.840.5 pen-cloned 65.6+18.8 antmaze-u 27.54+20.6
hopper-r 312404 pen-expert 119.9+11.2 antmaze-u-d 0.0£0.0
walker2d-r 53493 door-cloned 1.1£1.6 antmaze-m-p 0.0+0.0
pen-cloned 15.2+18.7 door-expert 83.3+14.9 antmaze-m-d 0.0£0.0
pen-expert 117.3+14.9 hammer-cloned 0.5+0.4 antmaze-1-p 0.0£0.0
door-cloned 0.01+0.0 hammer-expert 103.3+16.2 antmaze-1-d 0.0+0.0
door-expert 0.2£0.0 relocate-cloned 0.0+0.0 pen-cloned 35.31+28.1
hammer-cloned 25432 relocate-expert 59.3+10.2 pen-expert 121.2+159
hammer-expert 86.6+46.3 door-cloned 0.240.5
relocate-cloned -0.1£0.0 door-expert 73.0£2.2
relocate-expert 0.0£0.0 hammer-cloned 52463
hammer-expert 75.9430.2
relocate-cloned -0.1£0.0
relocate-expert 82.5+7.2

Table 7: Final normalized evaluation scores averaged over five random seeds for the baselines on the
AntMaze Ultra datasets. For each dataset, we tuned them as recommended in the paper and reported
the best scores.

Dataset TD3+BC IQL CQL MCQ MSG SPOT  SAC-RND  ReBRAC
antmaze-ultra-p || 0.0+00  133+57 16.1485 00+00 06209 44+13  20.6+150 224+L117
antmaze-ultra-d || 0.0£0.0 142462 65435 00400 1.0£14 120444  10.5+8.8 0.8+18

RLPD - https://github.com/ikostrikov/rlpd

e Cal-QL - https://github.com/nakamotoo/Cal-QL
Off20n - |https://github.com/shlee94/0ff20nRL
e PEX -https://github.com/Haichao-Zhang/PEX
e Uni-O4 -https://github.com/Lei-Kun/Uni-04
SPOT - https://github.com/thuml/SPOT

Goal-conditioned offline RL. We obtain the GCBC, GC-POR, and HIQL scores from Park et al.,
2024b, and the GC-IQL, WGCSL, DWSL, RvS-G, and GCPC scores from|Zeng et al., 2024, For the
umaze and umaze-diverse scores for GCBC, GC-POR, and HIQL, we run the experiments using the
implementations provided for each respective algorithm in the official HIQL repository (https:
//github.com/seohongpark/HIQL).

Table 8: Final normalized evaluation scores averaged over five random seeds for GCBC, GC-POR,
and HIQL on the AntMaze umaze and umaze-diverse datasets.

Dataset GCBC GC-POR HIQL
antmaze-umaze 59.24+13.3 81.7£9.5 79.24+4.2
antmaze-umaze-diverse 62.3+13.8  72.1%+12.3 86.245.7

G.3 PARS

‘We built our code on the JAX (Bradbury et al.,|2018)) implementation of TD3 (Fujimoto et al., 2018)
(https://github.com/yifanl2wu/td3-jax) and made modifications to suit the PARS
algorithm, such as adding an infeasible action penalty, and reward scaling. For critic ensembles, we
referenced the implementation of SAC-N (https://github.com/Howuhh/sac—n-jax).
Our full implementation code for PARS will be released after publication.

AntMaze. For offline training, we tuned Cgewarq to 100, 1000, and 10,000, 5 between 0.005 and
0.01, and « between 0.001 and 0.01. During online fine-tuning, we used a 50/50 mix of offline and
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Table 9: Qm;n for each task. Table 10: PARS’s general hyperparameters.
AntMaze Qmin Offline Hyperparameters Value
antmaze-umaze 0 optimizer Adam (Kingma & Bal[2015)
antmaze-medium 0 batch size 256
antmaze-large 0 learning rate (all networks) 3e-4
antmaze-ultra 0 tau (1) 5e-3
Adroit Qmin hidden dim (all networks) 256
pen -715 gamma (vy) 0.995 on AntMaze, 0.99 on others
door -42 infeasible region distance 1000 on AntMaze, 100 on others
hammer -348 actor cosine scheduling True on Adroit, False on others
relocate 0 nonlinearity ReLU (Agarap, |2018)
MuJoCo Qmin Online Fine-Tuning Hyperparameters | Value
halfcheetah -366 exploration noise 0.1 on MuJoCo 0.05 on others
hopper -166 learning starts 0
walker2d -229 update to data (UTD) ratio 20

online data. The online S was tuned to 0, 0.001, and 0.01, while o was fixed at 0.001, except for

ultra-play, which used 0.0001, and Sy, was set to 1. The hyperparameters for each dataset are
listed in Table[I1]

Adroit. For offline training, we set Crewarg to 10 and tuned S between 0.1 and 0.01, and « to
0.001, 0.01, and 0.1. During online fine-tuning, a 50/50 mix of offline and online data was used.
The online « was set to 0.001, and 3 was tuned to 0 and 0.01, and Sj__. was set to 1. The specific
hyperparameters for each dataset are provided in Table[T1]

actor

Table 11: Dataset-specific hyperparameters of PARS for AntMaze and Adroit domains used in of-
fline training and online fine-tuning.

Offline Online Offline Online
AntMaze Creward B a B Adroit B a B
antmaze-umaze 10000 0.005 0.001 0 pen-cloned 0.01 0.01 0
antmaze-umaze-diverse 10000 0.005 0.001 0.001 door-cloned 0.01 0.01 0.01
antmaze-medium-play 1000 0.01 0.001 0 hammer-cloned 0.1 0.001 0
antmaze-medium-diverse 1000 0.01 0.001 0 relocate-cloned 0.01 0.01 0.01
antmaze-large-play 1000 0.01 0.001 0.01 pen-expert 0.01 0.01 -
antmaze-large-diverse 10000 0.01 0.01 0.01 door-expert 0.1 0.001 -
antmaze-ultra-play 100 0.01 0.001 0.001 hammer-expert 0.01 0.001 -
antmaze-ultra-diverse 10000 0.01 0.01 0.01 relocate-expert 0.1 0.0001 -
MuJoCo. For offline training, we used a crewara 0f 5 for HalfCheetah and a crewarg 0f 10 for

Walker2d and Hopper. The /3 was set to 0, and o was tuned between 0.01, 0.001 and 0.0001. Ad-
ditionally, for this domain, we found that adjusting policy noise and Sk, provides further benefits,
so we varied the policy noise between 0 and 0.2, and Sk, between 2 and 10. During online fine-
tuning, we used 5% offline data for the HalfCheetah and random datasets, and 50% for the remaining
datasets. We also tuned o among 0.1, 0.01, and 0.0001, and S, between 1 and 10. The specific
hyperparameters for each dataset can be found in Table

H MORE ABLATION STUDY

Extended results on the impact of PARS components on offline performance. In addition to
Figure[/|in Section we conducted additional experiments on various datasets to further explore
the impact of the PARS components in offline training. As shown in Figure [I8] beyond AntMaze,
the application of RS-LN in MuJoCo and Adroit leads to a general improvement in performance.
Furthermore, incorporating PA results in a more robust enhancement.

Impact of the number of critic ensembles.  As discussed in Section 4.2.3] PARS can be used
in combination with a critic ensemble. We analyzed the effect of the number of critic ensembles on
offline performance in Figure[I9] As shown in the figure, while the impact is minimal in the Antmaze
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Table 12: Dataset-specific hyperparameters of PARS for MuJoCo domain used in offline training
and online fine-tuning.

Offline Online
MuJoCo @ policy noise  Sg_... e} Skactor
halfcheetah-random 0.0001 0.2 2 0.0001 1
halfcheetah-medium 0.0001 0 2 0.0001 10
halfcheetah-medium-replay 0.0001 0 2 0.0001 10
halfcheetah-medium-expert 0.0001 0.2 10 - -
hopper-random 0.01 0.2 2 0.01 1
hopper-medium 0.01 0 10 0.1 1
hopper-medium-replay 0.01 0 10 0.1 1
hopper-medium-expert 0.0001 0.2 10 - -
walker2d-random 0.01 0 10 0.0001 10
walker2d-medium 0.01 0 10 0.1 1
walker2d-medium-replay 0.01 0 10 0.01 1
walker2d-medium-expert 0.0001 0.2 10 - -
None LN LN &PA
Walker2d-random-v2 Walker2d-medium-v2 Pen-cloned-vl Hammer-cloned-v1

120
20 100 /. ./o 40
15- 80" 80 30
60
] 20
10 40 2 |
5 20 10
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1 10 1 10 1 10 1 10
Creward Creward Creward Creward

Figure 18: Extended ablation results of PARS components beyond Figure |7/ We evaluate PARS
with varying crewara and the application of LN and PA, averaged over five random seeds. The error
bars represent the standard deviation.

domain, incorporating an ensemble in the MuJoCo and Adroit domains enables more stable learning
and thus contributes to improved performance.

Antmaze-umaze-diverse-v0  Antmaze-ultra-diverse-v0  Halfcheetah-medium-v2 Hopper-medium-v2 Hammer-cloned-v1
95- 60 65 40
.//’/__. 100+
I— 40 20 /0/‘
85- 80
) . . ) 01, .
3 4 20 4 %5 4 10 3 4 0 2 4 10
Number of Critics Number of Critics Number of Critics Number of Critics Number of Critics

Figure 19: Final normalized score of PARS for offline training, averaged over five random seeds
with varying numbers of critics. Error bars represent the standard deviation.

Which activation function would be most compatible with PARS? In Appendix [C| we exam-
ine the effect of activation functions on fitting toy data. Additionally, we analyze how activation
functions, when combined with PARS, influence performance in real RL tasks.

Figure [20] presents the results of applying each activation function to PARS, showing that the ReLU
activation function consistently performs well across various tasks. While other activation functions
outperform ReLU in some tasks, they lack robustness across all tasks. The impact of activation
functions on RL tasks, in conjunction with RS-LN and PA, could be an interesting topic for future
research.

I COMPUTATION COST

We compared the training time and GPU memory usage of PARS with various offline baselines.
The comparison was conducted using a single L40S GPU, and the training time was measured over
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Figure 20: Final normalized score of PARS for offline training averaged over five random seeds with
varying activation functions. The error bars represent the standard deviation.

5000 gradient steps. The baselines were implemented using either PyTorch or JAX. Given that JAX
is generally recognized for its speed advantage over PyTorch due to optimizations like just-in-time
compilation and efficient hardware utilization (Bradbury et al.,[2018]), we distinguished the training
time and GPU memory usage for PyTorch and JAX with yellow and blue bars, respectively. PARS,
implemented in JAX, is indicated by a red bar.

Showing the comparison results presented in Figure PARS has faster training time compared
to methods like SAC-N (PyTorch) and MSG (JAX), which use a large number of critic ensembles.
Additionally, while SAC-RND and ReBRAC have faster training times than PARS, they use signif-
icantly more GPU memory. In contrast, PARS efficiently reduces computation costs by using both
less training time and less GPU memory.
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Figure 21: Comparison of PARS’s training time and GPU memory usage with various offline base-
lines. Yellow bars represent PyTorch implementations, blue bars represent JAX implementations,
and the red bar represents PARS implemented in JAX.
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Figure 22: LN applied with three seeds (corresponding to the ‘LN’ column in Figure 3
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