
Published as a conference paper at ICLR 2023

MODEM: ACCELERATING VISUAL MODEL-BASED
REINFORCEMENT LEARNING WITH DEMONSTRATIONS

Nicklas Hansen12, Yixin Lin1, Hao Su2, Xiaolong Wang2,
Vikash Kumar1, Aravind Rajeswaran1

1Meta AI 2University of California San Diego
{nihansen,haosu,xiw012}@ucsd.edu {vikashplus,aravraj}@meta.com

ABSTRACT

Poor sample efficiency continues to be the primary challenge for deployment
of deep Reinforcement Learning (RL) algorithms for real-world applications,
and in particular for visuo-motor control. Model-based RL has the potential to
be highly sample efficient by concurrently learning a world model and using
synthetic rollouts for planning and policy improvement. However, in practice,
sample-efficient learning with model-based RL is bottlenecked by the exploration
challenge. In this work, we find that leveraging just a handful of demonstrations can
dramatically improve the sample-efficiency of model-based RL. Simply appending
demonstrations to the interaction dataset, however, does not suffice. We identify key
ingredients for leveraging demonstrations in model learning – policy pretraining,
targeted exploration, and oversampling of demonstration data – which forms the
three phases of our model-based RL framework. We empirically study three
complex visuo-motor control domains and find that our method is 160%− 250%
more successful in completing sparse reward tasks compared to prior approaches in
the low data regime (100k interaction steps, 5 demonstrations). Code and videos
are available at https://nicklashansen.github.io/modemrl.

1 INTRODUCTION

BC+R3M (IL) FERM (MFRL+IL) TD-MPC (MBRL) Ours (MBRL+IL)

0

10

20

30

40

50

60

15
2 3

53
Adroit

BC+R3M (IL) FERM (MFRL+IL) TD-MPC (MBRL) Ours (MBRL+IL)

0

20

40

60

80

16
31

3

81
Meta-World

BC+R3M (IL)
FERM (MFRL+IL)

TD-MPC (MBRL)
Ours (MBRL+IL)

Figure 1. Success rate (%) in sparse reward
tasks. Given only 5 human demonstrations
and a limited amount of online interaction, our
method significantly improves success rate on
21 hard robotics tasks from pixels – including
dexterous manipulation, pick-and-place, and lo-
comotion – compared to strong baselines.

Reinforcement Learning (RL) provides a princi-
pled and complete abstraction for training agents
in unknown environments. However, poor sam-
ple efficiency of existing algorithms prevent their
applicability for real-world tasks like object manip-
ulation with robots. This is further exacerbated in
visuo-motor control tasks which present both the
challenges of visual representation learning as well
as motor control. Model-based RL (MBRL) can in
principle (Brafman & Tennenholtz, 2002) improve
the sample efficiency of RL by concurrently learn-
ing a world model and policy (Ha & Schmidhuber,
2018; Ecoffet et al., 2019; Schrittwieser et al., 2020;
Hafner et al., 2020; Hansen et al., 2022a). Use of
imaginary rollouts from the learned model can re-
duce the need for real environment interactions,
and thus improve sample efficiency. However, a
series of practical challenges like the difficulty of
exploration, the need for shaped rewards, and the need for a high-quality visual representation, prevent
MBRL from realizing its full potential. In this work, we seek to overcome these challenges from a
practical standpoint, and we propose to do so by using expert demonstrations to accelerate MBRL.

Expert demonstrations for visuo-motor control tasks can be collected using human teleoperation,
kinesthetic teaching, or scripted policies. While demonstrations provide direct supervision for learning
complex behaviors, they can be costly to collect in large quantities (Baker et al., 2022). However,
even a small number of demonstrations can significantly accelerate RL by circumventing challenges
related to exploration. Prior works have studied this in the context of model-free RL (MFRL)

1

https://nicklashansen.github.io/modemrl

Published as a conference paper at ICLR 2023

Figure 2. Our framework (MoDem) consists of three phases: (1) a policy pretraining phase where
representation and policy is trained on a handful of demonstrations via BC, (2) a seeding phase where
the pretrained policy is used to generate rollouts for targeted model learning, and (3) an interactive
learning phase where the model iteratively collects new rollouts and is trained with data from all three
phases. Crucially, we aggressively oversample demonstration data for model learning, regularize the
model using data augmentation, and reuse weights across phases. sg: stop-gradient operator.

algorithms (Rajeswaran et al., 2018; Shah & Kumar, 2021; Zhan et al., 2020). In this work, we
propose a new framework to accelerate model-based RL algorithms with demonstrations. On a suite
of challenging visuo-motor control tasks, we find that our method can train policies that are approx.
160%− 250% more successful than prior state-of-the-art (SOTA) baselines.

Off-Policy RL algorithms (Sutton & Barto, 1998) – both model-based and model-free – can in
principle admit any dataset in the replay buffer. Consequently, it is tempting to naïvely append
demonstrations to the replay buffer of an agent. However, we show that this is a poor choice (see
Section 4), since the agent still starts with a random policy and must slowly incorporate the behavioral
priors inherent in the demonstrations while learning in the environment. Simply initializing the policy
by behavior cloning (Pomerleau, 1988) the demonstrations is also insufficient. Any future learning
of the policy is directly impacted by the quality of world model and/or critic – training of which
requires sufficiently exploratory datasets. To circumvent these challenges and enable stable and
monotonic, yet sample-efficient learning, we propose Model-based Reinforcement Learning with
Demonstrations (MoDem), a three-phase framework for visual model-based RL using only a handful
of demonstrations. Our framework is summarized in Figure 2 and consists of:

• Phase 1: Policy pretraining, where the visual representation and policy are pretrained on
the demonstration dataset via behavior cloning (BC). While this pretraining by itself does not
produce successful policies, it provides a strong prior through initialization.

• Phase 2: Seeding, where the pretrained policy, with added exploration, is used to collect a
small dataset from the environment. This dataset is used to pretrain the world model and
critic. Empirically, data collected by the pretrained policy is far more useful for model and
critic learning than random policies used in prior work, and is key to the success of our work
as it ensures that the world model and critic benefit from the inductive biases provided by
demonstrations. Without this phase, interactive learning can quickly cause policy collapse after
the first few iterations of training, consequently erasing the benefits of policy pretraining.

• Phase 3: Finetuning with interactive learning, where we interleave policy learning using
synthetic rollouts and world model learning using data from all three phases including fresh
environment interactions. Crucially, we aggressively oversample demonstration data during
world model learning, and regularize with data augmentation in all phases.

Our Contributions. Our primary contribution in this work is the development of MoDem, which
we evaluate on 18 challenging visual manipulation tasks from Adroit (Rajeswaran et al., 2018) and
Meta-World (Yu et al., 2019) suites with only sparse rewards, as well as locomotion tasks from
DMControl (Tassa et al., 2018) that use dense rewards. Measured in terms of policy success after
100k interaction steps (and using just 5 demonstrations), MoDem achieves 160%− 250% higher
relative success and 38% − 50% higher absolute success compared to strong baselines. Through
extensive empirical evaluations, we also elucidate the importance of each phase of MoDem, as well
as the role of data augmentations and pre-trained visual representations.

2

Published as a conference paper at ICLR 2023

2 PRELIMINARIES

We start by formalizing our problem setting, and then introduce two algorithms, TD-MPC and Behav-
ior Cloning (BC), that were previously proposed for online RL and imitation learning, respectively,
and are both central to our work.

Problem Setting We model interaction between an agent and its environment as an infinite-horizon
Markov Decision Process (MDP) defined as a tupleM := ⟨S,A, T ,R, γ⟩, where S ∈ Rn, A ∈ Rm

are continuous state and action spaces, T : S × A 7→ S is the environment transition function,
R : S×A 7→ R is a scalar reward function, and γ ∈ [0, 1) is the discount factor. T ,R are assumed to
be unknown. The goal for the agent is to learn a policy πθ : S 7→ A parameterized by θ that achieves
high long term performance, i.e. maxθ Eπθ

[
∑∞

t=0 γ
trt], while using as few interactions with the

environment as possible – referred to as sample efficiency. In this work, we focus more specifically
on high-dimensional MDPs with sparse rewards. This is motivated by applications in robotics
and Embodied Intelligence where the state is not directly observable, but can be well-approximated
through the combination: s = (x,q), where x denotes stacked RGB images observed by the
agent’s camera, and q denotes proprioceptive sensory information, e.g., the joint pose of a robot.
Furthermore, shaped reward functions can be hard to script for real-world applications (Singh et al.,
2019) or result in undesirable artifacts or behaviors (Amodei et al., 2016; Burda et al., 2019). Thus,
we desire to learn with simple sparse rewards that accurately capture task completion. The principal
challenges with sample efficient learning in such MDPs are exploration due sparse rewards, and
learning good representations of the high-dimensional state space (e.g. images). To help overcome
these challenges, we assume access to a small number of successful demonstration trajectories
Ddemo := {D1, D2, . . . , DN}, obtained through human teleoperation, kinesthetic teaching, or
other means. Our goal is to learn a successful policy using minimal environment interactions, by
accelerating the learning process using the provided demonstration trajectories.

Behavior Cloning (BC) is a simple and widely used framework for imitation learning (IL). This
relies entirely on Ddemo and presents an ideal scenario if successful policies can be trained – since it
incurs zero interaction sample complexity. BC trains a parameterized policy πθ : S 7→ A to predict
the demonstrated action from the corresponding observation (Pomerleau, 1988; Atkeson & Schaal,
1997). Behavior cloning with a small dataset is known to be challenging due to covariate shift (Ross
et al., 2011a; Rajeswaran et al., 2018) and the challenge of visual representation learning (Parisi et al.,
2022; Nair et al., 2022). Further, collecting a large demonstration dataset is often infeasible due to
the required human costs and expertise (Baker et al., 2022). More importantly, BC cannot improve
beyond the capabilities of the demonstrator since it lacks a notion of task success. Together, these
considerations motivate the need for combining demonstrations with sample-efficient RL.

TD-MPC (Hansen et al., 2022a) is a model-based RL algorithm that combines Model Predictive
Control (MPC), a learned latent-space world model, and a terminal value function learned via temporal
difference (TD) learning. Specifically, TD-MPC learns a representation z = hθ(s) that maps the
high-dimensional state (s) into a compact representation, and a dynamics model in this latent space
z′ = dθ(z,a). In addition, TD-MPC also learns prediction heads, Rθ, Qθ, πθ, for: (i) instantaneous
reward r = Rθ(z,a), (ii) state-action value Qθ(z,a), and (iii) action a ∼ πθ(z). The policy πθ

serves to "guide" planning towards high-return trajectories, and is optimized to maximize temporally
weighted Q-values. The remaining components are jointly optimized to minimize TD-errors, reward
prediction errors, and latent state prediction errors. The objective is given by

LTD−MPC(θ; (s,a, r, s
′)t:t+H) =

t+H∑
i=t

λi−t
[
∥Qθ(zi,ai)− (ri + γQθ̄(z

′
i, πθ(z

′
i)))∥22

+ ∥Rθ(zi,ai)− ri∥22 + ∥dθ(zi,ai)− hθ̄(s
′
i)∥22

]
, zt = hθ(st), zi+1 = dθ(zi,ai) ,

(1)

where θ̄ is an exponential moving average of θ, and s′t, z
′
t are the (latent) states at time t+ 1. During

environment interaction, TD-MPC uses a sample-based planner (Williams et al., 2015) in conjunction
with the learned latent world-model and value function (critic) for action selection. See Appendix B
for additional background on TD-MPC. We use TD-MPC as our choice of visual MBRL algorithm
due to its simplicity and strong empirical performance, but our framework, in principle, can be
instantiated with any MBRL algorithm.

3

Published as a conference paper at ICLR 2023

3 MODEL-BASED REINFORCEMENT LEARNING WITH DEMONSTRATIONS

In this work, our goal is to accelerate the sample efficiency of (visual) model-based RL with a
handful of demonstrations. To this end, we propose Model-based Reinforcement Learning with
Demonstrations (MoDem), a simple and intuitive framework for visual RL under a strict environment-
interaction budget. Figure 2 provides an overview of our method. MoDem consists of three
phases: (1) a policy pretraining phase where the policy is trained on a handful of demonstrations
via behavior cloning, (2) a seeding phase where the pretrained policy is used to collect a small
dataset for targeted world-model learning, and (3) an interactive learning phase where the agent
iteratively collects new data and improves using data from all the phases, with special emphasis on
the demonstration data. We describe each phase in more detail below.

Phase 1: policy pretraining. We start by learning a policy from the demonstration dataset
Ddemo := {D1, D2, . . . , DN} where each demonstration Di consists of {s0,a0, s1,a1, . . . , sT ,aT }.
In general, the demonstrations may be noisy or sub-optimal – we do not explicitly make any optimality
assumptions. Let hθ : S 7→ Rl denote the encoder and πθ : Rl 7→ A denote the policy that maps from
the latent state representation to the action space. In Phase 1, we pretrain both the policy and encoder
using a behavior-cloning objective, given by

LP1(θ) = E(s,a)∼Ddemo

[
− log πθ

(
a|hθ(s)

)]
. (2)

When πθ(·|z) is parameterized by an isotropic Gaussian distribution, as commonly used in practice,
Eq. 2 simplifies to the standard MSE loss. As outlined in Section 2, behavior cloning with a small
demonstration dataset is known to be difficult, especially from high-dimensional visual observa-
tions (Duan et al., 2017; Jang et al., 2021; Parisi et al., 2022). In Section 4, we indeed show that
behavior cloning alone cannot train successful policies for the environments and datasets we study,
even when using pre-trained visual representations (Parisi et al., 2022; Nair et al., 2022). However,
policy pretraining can provide strong inductive priors that facilitate sample-efficient adaptation in
subsequent phases outlined below (Peters et al., 2010).

Algorithm 1 Model-Based Reinforcement Learning with Demonstrations (MoDem)

Require: θ: randomly initialized parameters
Ddemo,B: demonstrations, (empty) replay buffer
πθ,Πθ: policy, planning procedure

// Phase 1: policy pretraining
// Behavior cloning on demonstrations

1: for each policy update do
2: {st,at} ∼ Ddemo // Sample state-action pair from demos
3: Update hθ, πθ by LP1(θ) // BC objective, Equation 2

// Phase 2: seeding
// Pretrain model with rollouts from pretrained policy

4: for each seeding rollout do
5: τ ← {st,at, rt, st+1}0:T where at ∼ πθ(st) // Act with pretrained policy

and st+1 ∼ T (st,at), rt ∼ R(st,at)
6: Dseed ← Dseed ∪ τ // Add rollout to seeding dataset
7: for each model update do
8: {st,at, rt, st+1}t:t+H ∼ (Ddemo ∪ Dseed) // Sample demos + seeding, oversample demos
9: Update hθ, dθ, Rθ, Qθ, πθ by LP2(θ) // Model objective, Equation 3

// Phase 3: interactive learning
// Collect rollouts by planning and finetune model

10: B := Dseed

11: while interaction limit is not reached do
12: τ ← {st,at, rt, st+1}0:T where at ∼ Πθ(st) // Planning with model

and st+1 ∼ T (st,at), rt ∼ R(st,at)
13: B ← B ∪ τ // Add rollout to replay buffer
14: {st,at, rt, st+1}t:t+H ∼ (Ddemo ∪ B) // Sample demos + buffer, oversample demos
15: Update hθ, dθ, Rθ, Qθ, πθ by LP3(θ) // Model objective, Equation 4
16: Done! // Enjoy your new visual latent dynamics model

4

Published as a conference paper at ICLR 2023

Phase 2: seeding. In the previous phase, we only pretrained the policy. In Phase 2, our goal is to also
pretrain the critic and world-model, which requires a “seeding” dataset with sufficient exploration. A
random policy is conventionally used to collect such a dataset in algorithms like TD-MPC. However,
for visual RL tasks with sparse rewards, a random policy is unlikely to yield successful trajectories or
visit task-relevant parts of the state space. Thus, we collect a small dataset with additive exploration
using the policy from phase 1. Concretely, given πP1

θ and hP1
θ from the first phase, we collect a dataset

Dseed = {τ1, τ2, . . . τK} by rolling out πP1
θ (hP1

θ (s)). To ensure sufficient variability in trajectories,
we add Gaussian noise to actions (Hansen et al., 2022a). Let ξt = (si,ai, ri, s

′
i)

t+H
i=t be a generic

trajectory snippet of length H . In this phase, we learn πθ, hθ, dθ, Rθ, Qθ – the policy, representation,
dynamics, reward, and value models – by minimizing the loss

LP2(θ) := κ · Eξt∼Ddemo [LTD−MPC(θ, ξt)] + (1− κ) · Eξt∼Dseed [LTD−MPC(θ, ξt)] , (3)

where κ is an “oversampling” rate that provides more weight to the demonstration dataset. In
summary, the seeding phase plays the key role of initializing the world model, reward, and critic in the
task-relevant parts of the environment, both through data collection and demonstration oversampling.
We find in Section 4 that the seeding phase is crucial for sample-efficient learning, without which the
learning agent is unable to make best use of the inductive priors in the demonstrations.

Phase 3: interactive learning. After initial pretraining of model and policy, we continue to improve
the agent using fresh interactions with the environment. To do so, we initialize the replay buffer from
the second phase, i.e. B ← Dseed. A naïve approach to utilizing the demonstrations is to simply
append them to the replay buffer. However, we find this to be ineffective in practice, since online
interaction data quickly outnumbers demonstrations. In line with the seeding phase, we propose to
aggressively oversample demonstration data throughout training, but progressively anneal away the
oversampling through the course of training. Concretely, we minimize the loss

LP3(θ) := κ · Eξt∼Ddemo [LTD−MPC(θ, ξt)] + (1− κ) · Eξt∼B [LTD−MPC(θ, ξt)] . (4)

Finally, we find it highly effective to regularize the visual representation using data augmentation,
which we apply in all phases. We detail our proposed algorithm in Algorithm 1.

4 RESULTS & DISCUSSION

Table 1. Experimental setup. We consider a total
of 21 visual RL tasks spanning 3 domains.

Domain Tasks Demos Interactions Reward

Adroit 3 5 100k Sparse
Meta-World 15 5 100k Sparse
DMControl 3 5 100k Dense

Environments and Evaluation For our ex-
perimental evaluation, we consider 21 challeng-
ing visual control tasks. This includes 3 dex-
terous hand manipulation tasks from the Adroit
suite (Rajeswaran et al., 2018), 15 manipulation
tasks from Meta-World, as well as 3 locomotion
tasks involving high-dimensional embodiments
from DMControl (Tassa et al., 2018). Figure 3
provides illustrative frames from some of these tasks. For Adroit and Meta-World, we use sparse task
completion rewards instead of human-shaped rewards. We use DM-Control to illustrate that MoDem
provides significant sample-efficiency gains even for visual RL tasks with dense rewards. In the case
of Meta-World, we study a diverse collection of medium, hard, and very hard tasks as categorized
by Seo et al. (2022). We put strong emphasis on sample-efficiency and evaluate methods under
an extremely constrained budget of only 5 demonstrations1 and 100k online interactions, which
translates to approximately one hour of real-robot time in Adroit. We summarize our experimental
setup in Table 1. All of our tasks, demonstrations, and an implementation of our method is available
at https://nicklashansen.github.io/modemrl. Through experimental evaluation, we aim
to study the following questions:

1. Can MoDem effectively accelerate model-based RL with demonstrations and lead to sample-
efficient learning in complex visual RL tasks with sparse rewards?

2. What is the relative importance and contributions of each phase of MoDem?
3. How sensitive is MoDem to the source of demonstration data?
4. Does MoDem benefit from the use of pretrained visual representations?

1Each demonstration corresponds to 50-500 online interaction steps, depending on the task.

5

https://nicklashansen.github.io/modemrl

Published as a conference paper at ICLR 2023

Figure 3. Tasks. We evaluate methods on a total of 21 challenging image-based tasks spanning three
domains (Adroit (Rajeswaran et al., 2018), Meta-World (Yu et al., 2019), DMControl (Tassa et al.,
2018)). Observations are raw high-resolution (224 × 224) RGB frames (pictured). Environments
contain rich visual features such as textures and shading, and require particularly fine-grained control
due to complex geometry. See Appendix D and F for additional visualizations and a full list of tasks.

Baselines for Comparison We consider a set of strong baselines from prior work on both
visual IL, model-free RL (MFRL) with demonstrations, and visual model-based RL (MBRL).
We list the most relevant prior work in Table 2 and select the strongest and most repre-
sentative methods from each category. Specifically, we select the following baselines: (1)
BC + R3M that leverages the pretrained R3M visual representation (Nair et al., 2022) to
train a policy by behavior cloning the demonstration dataset. (2) state-based (oracle) DAPG
(Rajeswaran et al., 2018) that regularizes a policy gradient method with demonstrations.

Table 2. Baselines. Given that our problem setting is at
the intersection of IL and online RL, there are many poten-
tial baselines. We categorize prior work into three distinct
categories, and choose the best and most representative meth-
ods from each category as our main points of comparison.
Note that the listed model-based RL algorithms do not boot-
strap from demonstrations in their original papers, but can
be adapted by appending demonstrations to replay buffer.
Selected baselines are in bold.

Category Method

IL End-to-End BC (Atkeson & Schaal, 1997)
R3M (Nair et al., 2022)
VINN (Pari et al., 2022)

Model-free RL + IL DAPG Rajeswaran et al. (2018)
FERM (Zhan et al., 2020)
RRL (Shah & Kumar, 2021)
GAIL (Ho & Ermon, 2016)
AWAC (Nair et al., 2020)
HER + demos Nair et al. (2018)
VRL3 (Wang et al., 2022)

Model-based RL TD-MPC (Hansen et al., 2022a)
Dreamer-V2 (Hafner et al., 2020)
MWM (Seo et al., 2022)

(3) FERM (Zhan et al., 2020) com-
bines model-free RL, contrastive rep-
resentation learning, and imitation
learning. It first performs contrastive
pretraining on demonstrations, then
trains a model-free SAC (Haarnoja
et al., 2018) agent with online envi-
ronment interactions while incorpo-
rating random image augmentations.
Finally, we also compare with (4) TD-
MPC (Hansen et al., 2022a) instan-
tiated both with and without demon-
strations. Notably, we choose to com-
pare to R3M as it has been shown to
improve over both end-to-end BC and
other pretrained representations in sev-
eral robotic domains, and we compare
to DAPG as it also serves as a state-
based oracle for RRL (Shah & Kumar,
2021). We also compare to FERM
which is conceptually closest to our
method and has demonstrated great
sample-efficiency in real-robot manip-
ulation tasks. Furthermore, it is also
a superset of SOTA model-free methods that do not leverage demonstrations (Srinivas et al., 2020;
Laskin et al., 2020; Kostrikov et al., 2020; Yarats et al., 2021a). Lastly, our TD-MPC baseline appends
demonstrations to the replay buffer at the start of training following Zhan et al. (2020) and can thus
be interpreted as a model-based analogue of FERM (but without contrastive pretraining). We evaluate
all baselines under the same experimental setup as our method (e.g., frame stacking, action repeat,
data augmentation, and access to robot state) for a fair comparison.

Benchmark Results Our main results are summarized in Figure 4. Our method achieves an average
success rate of 53% at 100k steps across Adroit tasks, whereas all baselines fail to achieve any non-
trivial results under this sample budget. FERM solves a small subset of the Meta-World tasks, whereas
our method solves all 15 tasks; see Figure 5 for individual task curves. We find that our TD-MPC
and FERM baselines fare relatively better in DM-Control, which uses dense rewards. Nevertheless,
we still observe that MoDem outperforms all baselines. Finally, we also find that behavior cloning –
even with pretrained visual representations – is ineffective with just 5 demonstrations.

6

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

Su
cc

es
s r

at
e

(%
)

Adroit (sparse)

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Meta-World (sparse)

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

No
rm

al
ize

d
re

tu
rn

DMControl (dense)

BC+R3M DAPG (oracle) FERM TD-MPC MoDem (ours)

Figure 4. Main result. Success rate and episode return as a function of interaction steps for each of
the three domains that we consider (Adroit, Meta-World, DMControl), aggregated across a total of
21 challenging, visual robotics tasks. Adroit and Meta-World use sparse rewards. Mean of 5 seeds;
shaded area indicates 95% CIs. Our method is significantly more sample-efficient than prior methods.

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Assembly Basketball Box close Coffee push Hand insert

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Peg insert side Pick place Pick place wall Push Push wall

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Soccer

0 20 40 60 80 100
Interaction steps (×103)

Stick pull

0 20 40 60 80 100
Interaction steps (×103)

Stick push

0 20 40 60 80 100
Interaction steps (×103)

Sweep

0 20 40 60 80 100
Interaction steps (×103)

Sweep into

BC+R3M DAPG (oracle) FERM TD-MPC MoDem (ours)

Figure 5. Meta-World. Success rate for our method and baselines on 15 difficult, sparse-reward
Meta-World tasks with image inputs. Mean of 5 seeds; shaded area indicates 95% CIs.

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

Phases

TD-MPC (no demos)
Naive TD-MPC + demos
Pretraining only
Oversampling only
Pretraining + oversampling
Pretraining + seeding
All (ours)

Figure 6. Relative contribution
of each phase. Mean success
across all Adroit tasks. 5 seeds,
shaded areas are 95% CIs.

Relative importance of each phase. We study the relative im-
portance of phases by considering all three Adroit tasks, and ex-
haustively evaluating all valid combinations of policy pretraining
– as opposed to random initialization; BC seeding – as opposed
to seeding with random interactions; and oversampling during
interactive learning – as opposed to adding demonstrations to the
interaction data buffer. Results are shown in Figure 6. We find that
each aspect of our framework – policy pretraining, seeding, and
oversampling – greatly improve sample-efficiency, both individ-
ually and in conjunction. However, naïvely adding demonstrations
to TD-MPC has limited impact on its own. In addition, policy pre-
training is the least effective on its own. We conjecture that this is
due to catastrophical forgetting of the inductive biases learned dur-
ing pretraining when the model and policy are finetuned in phase
two and three. This is a known challenge in RL with pretrained
representations (Xiao et al., 2022; Wang et al., 2022), and could
also explain the limited benefit of contrastive pretraining in FERM.
Interestingly, we find that adding demonstrations to TD-MPC fol-
lowing the procedure of FERM outperforms FERM at the 100k
interaction mark. This result suggests that TD-MPC, by virtue of
being model-based, can be more sample-efficient in difficult tasks
like Adroit compared to its direct model-free counterpart.

7

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

demonstrations

1
5

10
25

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

BC seeding (% of total)

0%
1%

5%
20%

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

Augmentation

Enabled
Disabled

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

Oversampling ratio

Linear annealing
Constant (25%)

Figure 7. Ablations. Success rate for various ablations of MoDem, aggregated across all Adroit tasks.
Our ablations highlight the relative importance of each design choice. Mean of 5 seeds; shaded area
indicates 95% CIs. See Figure 6 for an ablation of our three phases. Red is our default.

Ablations. We ablated our core design choices (each proposed phase) in the previous experiment.
In this section, we aim to provide further insights on the quantitative behavior of our method. In
Figure 7, we evaluate (from left to right) the influence of following components: (1) number of
human demonstrations provided, (2) percentage of total interaction data seeded from the pretrained
policy, (3) regularization of the representation hθ with and without random image shift augmentation,
and (4) linearly annealing the oversampling ratio from 75% to 25% during training vs. a constant
ratio of 25%. Interestingly, we observe that – although more demonstrations are generally helpful –
our method still converges with only a single demonstration, which strongly suggests that the primary
use of demonstrations is to overcome the initial exploration bottleneck. We also find that – although
the success rate of the pretrained policy is generally low – seeding model learning with BC rollouts
rather than random exploration greatly speeds up convergence. However, our method is insensitive
to the actual number of seeding episodes, which further shows that the main challenge is indeed to
overcome exploration. Consistent with prior work on visual RL, we find data augmentation to be
essential for learning (Laskin et al., 2020; Kostrikov et al., 2020; Yarats et al., 2021a; Zhan et al.,
2020; Hansen et al., 2022a), whereas we find the oversampling ratio to be relatively less important.

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

Su
cc

es
s r

at
e

(%
)

Demonstration source

Human (ours)
Near-optimal (ours)
Human (FERM)
Near-optimal (FERM)

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

Su
cc

es
s r

at
e

(%
)

Visual representation

End-to-End (aug)
End-to-End (no aug)
R3M (aug)
R3M (no aug)

Figure 8. We ablate (left) human vs. oracle policy
demonstrations, and (right) visual representations
for MoDem. Mean success rate across all Adroit
tasks. 5 seeds, shaded areas are 95% CIs.

Demonstration source. We evaluate the ef-
ficacy of demonstrations depending on the
source (human teleoperation vs. near-optimal
policies) and report results for both our
method and FERM in Figure 8 (left). Hu-
man demonstrations as well as state-based ex-
pert policies (trained with DAPG) are sourced
from Rajeswaran et al. (2018). We find that
demonstrations generated by a neural net-
work policy lead to marginally faster conver-
gence for our method. We attribute this be-
havior to human demonstrations being sub-
optimal, multi-modal with respect to actions,
and having non-Markovian properties (Man-
dlekar et al., 2021). However, more impor-
tantly, we find that our method converges to
the same asymptotic performance regardless
of the demonstration source. In comparison, FERM does not solve any of the Adroit tasks with either
demonstration source, which suggests that algorithmic advances provided by MoDem are far more
important than the source and quality of demonstrations.

Pretrained visual representations. We consider a variant of our framework that additionally uses
R3M (Nair et al., 2022) as a frozen visual representation, similar to the BC+R3M baseline. Results
for this experiment are shown in Figure 8 (right). We find that learning the representation end-to-
end using the BC and model learning objectives of our framework lead to more sample-efficient
learning than using a pretrained representation. Interestingly, we find that – while data augmentation
is essential to the success of the end-to-end representation – data augmentation is not beneficial
when using a pretrained representation. We conjecture that this is because the R3M representation
already provides the same inductive biases (i.e., translational invariance) as the random image shift
augmentation. Note, however, that all end-to-end image-based baselines throughout our work also use

8

Published as a conference paper at ICLR 2023

data augmentation for fair comparison. Lastly, while number of interactions is usually the limiting
factor in real-world applications, we remark that using a pretrained representation generally reduces
the computational cost of training and can thus be considered a trade-off.

5 RELATED WORK

Imitation Learning, and behavior cloning (Pomerleau, 1988; Atkeson & Schaal, 1997; Ross et al.,
2011b)) in particular, has been successfully applied to a variety of robotics applications such as
manipulation (Zhang et al., 2018b; Song et al., 2020; Young et al., 2020), locomotion (Nakanishi
et al., 2003), and autonomous driving (Bojarski et al., 2016), where demonstration collection is easy.
Recent works have also explored extensions like third-person imitation learning (Torabi et al., 2018;
Radosavovic et al., 2021; Zakka et al., 2021; Kumar et al., 2022)) and multi-task learning (Duan et al.,
2017; Sharma et al., 2018; Jang et al., 2021; Reed et al., 2022). Regardless, most prior work on IL
require large datasets with hundreds of expert demonstrations to provide sufficient coverage of the
state space. Instead, we require only a few demonstrations and allow a limited amount of interaction.

Sample-efficient RL. Algorithm design for RL has a large body of work (Mnih et al., 2013; Lillicrap
et al., 2016; Schrittwieser et al., 2020; Hansen et al., 2022a). However, direct real-world applications
remain limited due to poor sample efficiency. Various methods have been proposed to improve
sample-efficiency of RL (Levine et al., 2016; Zhang et al., 2018a; Ebert et al., 2018; Zhan et al.,
2020). For example, Ebert et al. (2018) learn a goal-conditioned world model via video prediction and
use the learned model for planning, and other works improve sample-efficiency by using pretrained
representations (Shah & Kumar, 2021; Pari et al., 2022; Parisi et al., 2022; Xiao et al., 2022; Xu et al.,
2023), data augmentation (Yarats et al., 2021b;a; Hansen et al., 2021; 2022b), and auxiliary objectives
(Srinivas et al., 2020). Recently, Wu et al. (2022) have also demonstrated that modern model-based
RL algorithms can solve locomotion tasks with only one hour of real-world training. Interestingly,
they find that their choice of model-based RL algorithm – Dreamer-V2 (Hafner et al., 2020) – is
consistently more sample-efficient than model-free alternatives across all tasks considered. Our work
builds upon a state-of-the-art model-based method, TD-MPC (Hansen et al., 2022a), and shows that
leveraging demonstrations can further yield large gains in sample-efficiency. Our contributions are
compatible with and largely orthogonal to most prior work on model-based RL.

RL with demonstrations. While IL and RL have been studied extensively in isolation, recent
works have started to explore their intersection (Ho & Ermon, 2016; Rajeswaran et al., 2018; Nair
et al., 2018; 2020; Zhan et al., 2020; Shah & Kumar, 2021; Mandlekar et al., 2021; Wang et al.,
2022; Baker et al., 2022). Notably, Rajeswaran et al. (2018) augments a policy gradient algorithm
with demonstration data to solve dexterous manipulation tasks from states. By virtue of using
policy gradient, their method achieves stable learning and high asymptotic performance, but poor
sample efficiency. Shah & Kumar (2021) extended this to visual spaces using a pre-trained visual
representation network, but inherit the same limitations. Zhan et al. (2020) accelerate a Soft Actor-
Critic (Haarnoja et al., 2018) agent with demonstrations and contrastive learning. Baker et al. (2022)
first learn a policy using imitation learning on a large, crowd-sourced dataset and then finetune the
policy using on-policy RL. In contrast to all prior work, we accelerate a model-based algorithm with
demonstrations, which we find leads to significantly improved results compared to prior model-free
alternatives.

6 CONCLUSION

In this work, we studied the acceleration of MBRL algorithms with expert demonstrations to improve
the sample efficiency. We showed that naively appending demonstration data to an MBRL agent’s
replay buffer does not meaningfully accelerate the learning. We developed MoDem, a three phase
framework to fully utilize demonstrations and accelerate MBRL. Through extensive experimental
evaluation, we find that MoDem trains policies that are 250% − 350% more successful in sparse
reward visual RL tasks in the low data regime (100k online interactions, 5 demonstrations). In this
process, we also elucidated the importance of different phases in MoDem, the importance of data
augmentation for visual MBRL, and the utility of pre-trained visual representations.

9

Published as a conference paper at ICLR 2023

Reproducibility statement. Experiments are conducted with publicly available environments. We
provide extensive implementation details in appendices, and have made our full implementation
available at https://github.com/facebookresearch/modem.

Acknowledgements. Work was done at Meta AI. Nicklas Hansen, Hao Su, and Xiaolong Wang are
additionally supported by gifts from Qualcomm AI and grants from NSF CCF-2112665 (TILOS).

REFERENCES

Dario Amodei, Christopher Olah, Jacob Steinhardt, Paul Francis Christiano, John Schulman, and
Dandelion Mané. Concrete problems in ai safety. ArXiv, abs/1606.06565, 2016.

Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration. In ICML, 1997.

Bowen Baker, Ilge Akkaya, Peter Zhokhov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. ArXiv, abs/2206.11795, 2022.

Mariusz Bojarski, David W. del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang, Jake Zhao,
and Karol Zieba. End to end learning for self-driving cars. ArXiv, abs/1604.07316, 2016.

Ronen I. Brafman and Moshe Tennenholtz. R-max - a general polynomial time algorithm for
near-optimal reinforcement learning. J. Mach. Learn. Res., 3:213–231, 2002.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random network
distillation. ArXiv, abs/1810.12894, 2019.

Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever,
P. Abbeel, and Wojciech Zaremba. One-shot imitation learning. ArXiv, abs/1703.07326, 2017.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex X. Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. ArXiv,
abs/1812.00568, 2018.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. ArXiv, abs/1901.10995, 2019.

Scott Fujimoto, H. V. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. ArXiv, abs/1802.09477, 2018.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems 31, pp. 2451–2463. Curran Associates, Inc., 2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, G. Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, P. Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. ArXiv, abs/1812.05905, 2018.

Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. arXiv preprint arXiv:2010.02193, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Stabilizing deep q-learning with convnets and vision
transformers under data augmentation. In Conference on Neural Information Processing Systems,
2021.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022a.

Nicklas Hansen, Zhecheng Yuan, Yanjie Ze, Tongzhou Mu, Aravind Rajeswaran, Hao Su, Huazhe Xu,
and Xiaolong Wang. On pre-training for visuo-motor control: Revisiting a learning-from-scratch
baseline, 2022b.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In NIPS, 2016.

10

https://github.com/facebookresearch/modem

Published as a conference paper at ICLR 2023

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In CoRL,
2021.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. International Conference on Learning Representations,
2020.

Sateesh Kumar, Jonathan Zamora, Nicklas Hansen, Rishabh Jangir, and Xiaolong Wang. Graph
inverse reinforcement learning from diverse videos. 2022.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Ajay Mandlekar, Danfei Xu, J. Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei,
Silvio Savarese, Yuke Zhu, and Roberto Mart’in-Mart’in. What matters in learning from offline
human demonstrations for robot manipulation. ArXiv, abs/2108.03298, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and P. Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 6292–6299, 2018.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. ArXiv, abs/2006.09359, 2020.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhi Gupta. R3m: A universal
visual representation for robot manipulation. ArXiv, abs/2203.12601, 2022.

Jun Nakanishi, Jun Morimoto, G. Endo, Gordon Cheng, Stefan Schaal, and Mitsuo Kawato. Learning
from demonstration and adaptation of biped locomotion with dynamical movement primitives.
Robotics and Autonomous Systems - RaS, 2004, 01 2003. doi: 10.1299/jsmermd.2004.32_2.

Jyothish Pari, Nur Muhammad (Mahi) Shafiullah, Sridhar Pandian Arunachalam, and Lerrel Pinto.
The surprising effectiveness of representation learning for visual imitation. ArXiv, abs/2112.01511,
2022.

Simone Parisi, Aravind Rajeswaran, Senthil Purushwalkam, and Abhinav Kumar Gupta. The
unsurprising effectiveness of pre-trained vision models for control. In ICML, 2022.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. Proceedings of
the AAAI Conference on Artificial Intelligence, 24(1), 2010.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In D. Touretzky (ed.),
Advances in Neural Information Processing Systems, volume 1. Morgan-Kaufmann, 1988.

Ilija Radosavovic, Xiaolong Wang, Lerrel Pinto, and Jitendra Malik. State-only imitation learning
for dexterous manipulation. 2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 7865–7871, 2021.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning Complex Dexterous Manipulation with Deep Reinforcement
Learning and Demonstrations. In Proceedings of Robotics: Science and Systems (RSS), 2018.

11

Published as a conference paper at ICLR 2023

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley D. Edwards, Nicolas Manfred Otto Heess, Yutian Chen, Raia Hadsell,
Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. ArXiv, abs/2205.06175,
2022.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011a.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011b.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, L. Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap, and David
Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588 7839:
604–609, 2020.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and P. Abbeel.
Masked world models for visual control. ArXiv, abs/2206.14244, 2022.

Rutav Shah and Vikash Kumar. Rrl: Resnet as representation for reinforcement learning. ArXiv,
abs/2107.03380, 2021.

Pratyusha Sharma, Lekha Mohan, Lerrel Pinto, and Abhinav Kumar Gupta. Multiple interactions
made easy (mime): Large scale demonstrations data for imitation. In CoRL, 2018.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. ArXiv, abs/1904.07854, 2019.

Shuran Song, Andy Zeng, Johnny Lee, and Thomas Funkhouser. Grasping in the wild: Learning
6dof closed-loop grasping from low-cost demonstrations. Robotics and Automation Letters, 2020.

A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In ICML, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. 1998.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, et al. Deepmind control suite. Technical report, DeepMind, 2018.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. ArXiv,
abs/1805.01954, 2018.

Che Wang, Xufang Luo, Keith W. Ross, and Dongsheng Li. Vrl3: A data-driven framework for
visual deep reinforcement learning. ArXiv, abs/2202.10324, 2022.

Grady Williams, Andrew Aldrich, and Evangelos A. Theodorou. Model predictive path integral
control using covariance variable importance sampling. ArXiv, abs/1509.01149, 2015.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Ken Goldberg, and P. Abbeel. Daydreamer: World
models for physical robot learning. ArXiv, abs/2206.14176, 2022.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. ArXiv, abs/2203.06173, 2022.

Yifan Xu, Nicklas Hansen, Zirui Wang, Yung-Chieh Chan, Hao Su, and Zhuowen Tu. On the
feasibility of cross-task transfer with model-based reinforcement learning. 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021a.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=GY6-6sTvGaf.

12

https://openreview.net/forum?id=GY6-6sTvGaf

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Door

0 20 40 60 80 100
Interaction steps (×103)

Hammer

0 20 40 60 80 100
Interaction steps (×103)

Pen

BC+R3M DAPG (oracle) FERM TD-MPC MoDem (ours)

Figure 9. Adroit. Success rate across each of the three sparse-reward Adroit dexterous manipulation
tasks. Tasks are visualized in Figure 13. Mean of 5 seeds; shaded area is 95% CIs.

0 20 40 60 80 100
Interaction steps (×103)

0

200

400

600

800

Ep
iso

de
 re

tu
rn

Walker run

0 20 40 60 80 100
Interaction steps (×103)

0

200

400

600

800 Quadruped run

0 20 40 60 80 100
Interaction steps (×103)

0

50

100

150

200 Humanoid walk

BC+R3M DAPG (oracle) FERM TD-MPC MoDem (ours)

Figure 10. DMControl. Episode return across each of the three DMControl locomotion tasks.
Quadruped Run and Humanoid Walk are visualized in Figure 13. See Tassa et al. (2018) for task
details. Mean of 5 seeds; shaded area is 95% CIs.

Sarah Young, Dhiraj Gandhi, Shubham Tulsiani, Abhinav Kumar Gupta, P. Abbeel, and Lerrel Pinto.
Visual imitation made easy. In CoRL, 2020.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019.

Kevin Zakka, Andy Zeng, Peter R. Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta
Dwibedi. Xirl: Cross-embodiment inverse reinforcement learning. In CoRL, 2021.

Albert Zhan, Philip Zhao, Lerrel Pinto, P. Abbeel, and Michael Laskin. A framework for efficient
robotic manipulation. ArXiv, abs/2012.07975, 2020.

Marvin Zhang, Sharad Vikram, Laura Smith, P. Abbeel, Matthew J. Johnson, and Sergey Levine.
Solar: Deep structured latent representations for model-based reinforcement learning. ArXiv,
abs/1808.09105, 2018a.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Ken Goldberg, and P. Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality teleoperation. 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 1–8, 2018b.

A ADDITIONAL RESULTS

Aggregate results for each of the three domains considered are shown in Figure 4. We additionally
provide all individual task results for Adroit tasks in Figure 9, for Meta-World in Figure 5, and
for DMControl in Figure 10. Note that Adroit and Meta-World tasks use sparse rewards, whereas
DMControl tasks use dense rewards. We also provide additional comparisons to FERM (model-free
method that uses demonstrations) and a simpler instantiation of our framework that simply adds
demonstrations to TD-MPC (model-based method) across all three domains; see Figure 12. We
emphasize that the TD-MPC with demonstrations result is equivalent to the None ablation in Figure 6.
We find that both aspects of our framework (model learning, and leveraging demonstrations via each
of our three phases) are crucial to the performance of MoDem, both in sparse (Adroit, Meta-World)
and dense (DMControl) reward domains. For completeness, we also include results for all methods
with a larger interaction budget; results are shown in Figure 11.

13

Published as a conference paper at ICLR 2023

0 50 100 150 200 250 300
Interaction steps (×103)

0

20

40

60

80

Su
cc

es
s r

at
e

(%
)

Adroit (sparse)

BC+R3M
DAPG (oracle)
DAPG (oracle; 2M steps)
FERM
TD-MPC
MoDem (ours)

Figure 11. Larger interaction budget. Success rate as a function of interaction steps, with a larger
interaction budget than in the remainder of our experiments. Mean of 5 seeds across all Adroit tasks;
shaded area indicates 95% CIs. For completeness, we also include the success rate of DAPG at 2M
interaction steps. We find that baselines continue to improve beyond the 100k interaction budget, but
do not close the performance gap.

B EXTENDED BACKGROUND: TD-MPC

Section 2 provides a high-level introduction to TD-MPC (Hansen et al., 2022a), the model-based RL
algorithm that we choose to build upon. In an effort to make the paper more self-contained, we aim
to provide further background on the TD-MPC algorithm here.

Model components. TD-MPC consists of 5 learned components hθ, dθ, Rθ, Qθ, πθ: a representation
z = hθ(s) that maps high-dimensional states (s) into a compact representation, a latent dynam-
ics model that predicts future latent states z′ = dθ(z,a), instantaneous reward r̂ = Rθ(z,a), a
state-action value Qθ(z,a), and a policy action â ∼ πθ(z). The aforementioned components are
summarized as follows:

Representation: zt = hθ(st)
Latent dynamics: zt+1 = dθ(zt,at)
Reward: r̂t = Rθ(zt,at)
Value: q̂t = Qθ(zt,at)
Policy: ât ∼ πθ(zt)

(5)

where we generically refer to learnable parameters of the model as θ (i.e., θ is the combined parameter
vector). All components are implemented as deterministic MLPs (except for hθ that additionally
learns a shallow ConvNet for image feature extraction); TD-MPC applies Gaussian noise to the policy
outputs to make action sampling stochastic. TD-MPC selects actions by planning with the learned
model, and the policy πθ is thus not strictly needed. However, additionally learning a policy can
greatly speed up both learning (for computing TD-targets) and planning (warm-starting the sampling),
and – as we show in this paper – can be pretrained on demonstration data to learn a strong behavioral
prior. Besides parameters θ, TD-MPC also leverages another set of parameters θ̄, which is defined as
an exponential moving average of θ.

Training. TD-MPC learns a model from sequential data collected by interaction. Specifically,
TD-MPC minimizes the objective given in Equation 1, which consists of three terms: a TD-loss, a
reward prediction loss, and a latent state prediction loss. We first restate the objective from Equation
1, and then motivate each term in more detail. TD-MPC minimizes the objective

LTD−MPC(θ; τ)︸ ︷︷ ︸
optimize θ on a sequence

=

t+H∑
i=t

λi−t

︸ ︷︷ ︸
temporal weight

 c1LQ(θ; τ)︸ ︷︷ ︸
TD-loss

+ c2LR(θ; τ)︸ ︷︷ ︸
reward loss

+ c3Ld(θ; τ)︸ ︷︷ ︸
latent state loss

 , (6)

where τ
.
= (s,a, r, s′)t:t+H), and each of the three terms are defined as mean squared errors:

TD-loss: LQ(θ; τ) = ∥Qθ(zi,ai)− (ri + γQθ̄(z
′
i, πθ(z

′
i)))∥22

Reward loss: LR(θ; τ) = ∥Rθ(zi,ai)− ri∥22
Latent state loss: Ld(θ; τ) = ∥dθ(zi,ai)− hθ̄(s

′
i)∥22 .

(7)

14

Published as a conference paper at ICLR 2023

Here, the learned components hθ, dθ, Rθ, Qθ, πθ are as defined in Equation 5, λ is a constant
coefficient that weighs temporally near predictions higher (i.e., long-term predictions are down-
weighted), and c1:3 are constant coefficients that balance the three mean squared errors. TD-MPC
learns its representation and model by jointly optimizing the objective in Equation 6: the TD-loss is
used to learn the state-action value function Qθ, the reward loss is used to learn the reward predictor
Rθ, and the latent state consistency loss is empirically found to improve sample-efficiency in tasks
with sparse rewards (Hansen et al., 2022a). To reduce compounding errors, TD-MPC recurrently
predicts these quantities H steps into the future from predicted future latent states, and back-propagate
gradients through time.

Finally, note that the TD-loss in Equation 7 requires estimating the quantity maxat
Qθ−(zt,at),

which can be prohibitively costly to compute using planning. Instead, TD-MPC optimizes a policy
πθ to maximize the objective

Lπ(θ; τ) =

t+H∑
i=t

λi−tQθ(zi, πθ(sg(zi))) , (8)

where sg denotes the stop-grad operator, and zi = dθ(zi−1,ai−1), z0 = hθ(s0). Equation 8 is
optimized strictly wrt. the policy parameters. Intuitively, the policy objective can be interpreted as
a generalization of the policy objective proposed in the model-free method DDPG (Lillicrap et al.,
2016). Generally, the learned policy is found to be inferior to planning, but can dramatically speed up
learning (Hansen et al., 2022a).

Planning (inference). TD-MPC adopts the Model Predictive Control (MPC) framework for planning
using its learned model. Planning is used for action selection during inference and data collection,
but not in learning. To differentiate between action selection via the learned policy πθ and planning,
we denote the planning procedure as Πθ. The planner Πθ is a sample-based planner based on MPPI
(Williams et al., 2015), which iteratively fits a time-independent Gaussian with diagonal covariance
to the (importance weighted) return distribution over action sequences. This is achieved by sampling
action sequences from a prior, estimating their return by latent "imagination" using the model, and
updating parameters of the return distribution using a weighted average over the sampled action
sequences. Return estimation is a combination of reward predictions using Rθ, and value predictions
using Qθ. TD-MPC executes only the first planned action, and replan at each time step based on the
most recent observation, i.e., a feedback policy is produced via receding horizon MPC. To speed
up convergence of planning, a fixed percentage (5% in practice) of sampled action sequences are
sampled using the parameterized policy πθ (executed in the latent space of the model).

Readers are referred to Hansen et al. (2022a) for further background on the TD-MPC algorithm.

C WALL-TIME

Table 3. Wall-time for each of
the three phases of MoDem.

Phase Duration

1 5m
2 34m
3 6h3m

While we are primarily concerned with sample-efficiency (i.e., num-
ber of environment interactions required to learn a given task), we
here break down the computational cost of each phase of our frame-
work. Wall-times are shown in Table 3. We emphasize that our
framework adds no significant overhead to phase 2 (seeding) and
3 (interactive learning), i.e., running our baseline TD-MPC takes
equally much time for those two phases; the only overhead intro-
duced by our framework is the 5 minute BC pretraining of phase
1. Lastly, we remark that wall-time can be reduced significantly by
resizing image observations to a smaller resolution for applications
that are sensitive to computational cost.

D EXTENDED EXPERIMENTAL SETUP

We evaluate methods extensively across three domains: Adroit (Rajeswaran et al., 2018), Meta-World
(Yu et al., 2019), and DMControl (Tassa et al., 2018). See Figure 13 for task visualizations. In this
section, we provide further details on our experimental setup for each domain.

15

Published as a conference paper at ICLR 2023

Table 4. Meta-World tasks. We select 15 tasks from Meta-World based on task difficulty following
the categorization of Seo et al. (2022). We experiment with all tasks from the medium, hard, and very
hard categories that we are able to solve using MPC with a ground-truth model and a computational
budget of 12 hours per demonstration. Note that the majority of Meta-World tasks are categorized as
easy.

Difficulty Tasks

easy −
medium Basketball, Box Close, Coffee Push, Peg Insert Side, Push Wall, Soccer, Sweep, Sweep Into
hard Assembly, Hand Insert, Pick Place, Push
very hard Stick Pull, Stick Push, Pick Place Wall

D.1 ADROIT

We consider three tasks from Adroit: Door, Hammer, Pen. Our experimental setup for Adroit
closely follows Nair et al. (2022); we use 224× 224 RGB frames and proprioceptive information
as input, adopt their proposed view_1 viewpoint in all three tasks, and use episode lengths of 200
for Door, 250 for Hammer, and 100 for Pen. We use an action repeat of 2 for all tasks and methods,
which we find to improve sample-efficiency slightly across the board. Our evaluation constrains the
sample budget to 5 demonstrations and 100k interaction steps (equivalent to 200k environment steps),
whereas prior work commonly use 25-100 demonstrations (Parisi et al., 2022; Nair et al., 2022)
and/or 4M environment steps (Rajeswaran et al., 2018; Shah & Kumar, 2021; Wang et al., 2022). To
construct a sparse reward signal for the Adroit tasks, we provide a per-step reward of 1 when the task
is solved and 0 otherwise. For Pen we use the same success criterion as in Rajeswaran et al. (2018);
for Door and Hammer we relax the success criteria to the second-to-last reward stage since we find
that less than 5 of the human demonstrations achieve success within the given episode length using
the stricter success criteria. We use these success criteria across all methods for a fair comparison.

D.2 META-WORLD

We consider a total of 15 tasks from Meta-World. Tasks are selected based on their difficulty according
to Seo et al. (2022), which categorize tasks into easy, medium, hard, and very hard categories; we
discard easy tasks and select all tasks from the remaining 3 categories that we are able to generate
demonstrations for using MPC with a ground-truth model and a computational budget of 12 hours per
demonstration. This procedure yields the task set shown in Table 4. We follow the experimental setup
of Seo et al. (2022) and use the same camera across all tasks: a modified corner_2 camera where
the position is adjusted with env.model.cam pos[2] = [0.75, 0.075, 0.7] as in prior
work. We adopt the same action repeat (2) in all tasks, and use an episode length of 200 as we find
that all of our considered tasks are solved within this time frame. Unlike Seo et al. (2022) that uses
only RGB frames as input, we also provide proprioceptive state information (end-effector position
and gripper openness) since it is readily available and requires minimal architectural changes. We
consider a variant of Meta-World that uses a fixed goal (env._freeze_rand_vec = True),
but randomly select a goal for each seed such that we evaluate on a total of 5 goals per task. To
construct a sparse reward signal for the Meta-World tasks, we provide a per-step reward of 1 when
the task is solved according to the success criteria of Yu et al. (2019) and 0 otherwise.

D.3 DMCONTROL

We consider a total of 3 locomotion tasks from DMControl: Walker Run, Quadruped Run, Humanoid
Walk. We select tasks based on diversity in embodiments and task difficulty: Walker Run and
Quadruped Run are categorized as medium difficulty tasks, and Humanoid Walk as hard difficulty
according to Yarats et al. (2021a). We follow the experimental setup of Hansen et al. (2022a) for
DMControl experiments and adopt both camera settings, hyperparameters, and their action repeat of
2 in all tasks. To be consistent across all three domains, observations include 224× 224 RGB frames
as well as proprioceptive state features provided by DMControl. Since rewards are only a function of
the proprioceptive state in locomotion tasks, we evaluate DMControl tasks using the default, shaped
rewards proposed by Tassa et al. (2018).

16

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

Su
cc

es
s r

at
e

(%
)

Adroit (sparse)

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Meta-World (sparse)

0 20 40 60 80 100
Interaction steps (×103)

0

20

40

60

80

100

No
rm

al
ize

d
re

tu
rn

DMControl (dense)

FERM TD-MPC w/ demos MoDem (ours)

Figure 12. Ours vs. appending demonstrations to buffer. Success rate and episode return as a
function of interaction steps on all 21 tasks across each of the three domains that we consider (Adroit,
Meta-World, DMControl). Mean of 5 seeds; shaded area indicates 95% CIs. We find that both (i)
using a model-based method, and (ii) leveraging demonstrations via our three-phase framework vs.
simply appending demonstrations to the interaction buffer is crucial to the performance of MoDem.

E IMPLEMENTATION DETAILS

Environment and hyperparameters. Human demonstrations for Adroit are sourced from Ra-
jeswaran et al. (2018) which recorded them via teleoperation. In lieu of human demonstrations for
Meta-World and DMControl, we collect demonstrations for those tasks using MPC with a ground-
truth model. We follow the experimental setup of Nair et al. (2022) for Adroit, Seo et al. (2022) for
Meta-World, and Yarats et al. (2021a) for DMControl when applicable, but choose to use a unified
multi-modal observation space across all domains. Observations are a stack of the two most recent
224 × 224 RGB images from a third-person camera, and also include proprioceptive information
(Adroit: finger joint positions, Meta-World: end-effector position and gripper openness, DMControl:
state features) as it can be assumed readily available even in real-world robotics applications. Demon-
strations are of the same length as episodes during interaction and include observations, actions, and
rewards for each step. We consider only sparse reward variants of Adroit and Meta-World tasks since
dense rewards are typically impractical to obtain for real-world manipulation tasks, and consider
dense rewards in DMControl locomotion tasks where reward is only a function of the robot state. We
use an action repeat of 2 in all tasks (i.e., 100k interactions = 200k environment steps). Adroit and
DMControl environments are randomized, whereas we use fixed goals for Meta-World. Following
Hansen et al. (2022a) we apply image shift augmentation (Kostrikov et al., 2020) to all observations.
As observations are 224× 224 as opposed to 84× 84 as used in prior work, we shift images by ±10
pixels to maintain the same ratio. Table 5 lists all relevant hyperparameters. We closely follow the
original hyperparameters of TD-MPC and emphasize that we use the same hyperparameters across
nearly all tasks, but list them for completeness; hyperparameters specific to MoDem are highlighted.

Network architecture. We adopt the network architecture of TD-MPC but modify the encoder
to accommodate high-resolution images and proprioceptive state information as input. Specifically,
we modify the encoder hθ to consist of three components: an image encoder, a proprioceptive state
encoder, and a modality fusion module. We embed image and proprioceptive state into separate
feature vectors, sum them element-wise, and project them into the latent representation z using a
2-layer MLP. Total parameter count of model and policy is 1.6M. We provide a PyTorch-like overview
of our architecture below. We here denote the latent state dimension as Z, the proprioceptive state
dimension as Q, and the action dimension as A for simplicity. As in Hansen et al. (2022a), the
Q-function is implemented using clipped double Q-learning (Fujimoto et al., 2018).

Total parameters: approx. 1.6M
(h):

(image): Sequential(
(0): Conv2d(kernel_size=(7,7), stride=2)
(1): ReLU()
(2): Conv2d(kernel_size=(5,5), stride=2)
(3): ReLU()
(4): Conv2d(kernel_size=(3,3), stride=2)
(5): ReLU()
(6): Conv2d(kernel_size=(3,3), stride=2)
(7): ReLU()
(8): Conv2d(kernel_size=(3,3), stride=2)
(9): ReLU()
(10): Conv2d(kernel_size=(3,3), stride=2)

17

Published as a conference paper at ICLR 2023

(11): ReLU()
(12): Linear(in_features=128, out_features=Z))

(prop_state): Sequential(
(0): Linear(in_features=Q, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z))

(fuse): Sequential(
(0): Linear(in_features=Z, out_features=256)
(1): ELU(alpha=1.0)
(2): Linear(in_features=256, out_features=Z)

(d): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=Z))

(R): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=1))

(pi): Sequential(
(0): Linear(in_features=Z, out_features=512)
(1): ELU(alpha=1.0)
(2): Linear(in_features=512, out_features=512)
(3): ELU(alpha=1.0)
(4): Linear(in_features=512, out_features=A))

(Q1): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,))
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)
(5): Linear(in_features=512, out_features=1))

(Q2): Sequential(
(0): Linear(in_features=Z+A, out_features=512)
(1): LayerNorm((512,))
(2): Tanh()
(3): Linear(in_features=512, out_features=512)
(4): ELU(alpha=1.0)

F TASK VISUALIZATIONS

We visualize demonstration trajectories in Figure 13 for 8 of the tasks that we consider. Each frame
corresponds to raw 224× 224 RGB image observations that our model takes as input together with
proprioceptive information. Adroit human demonstrations are visualized at key time steps, whereas
Meta-World and DMControl demonstrations are shown at regular intervals of 20 interaction steps
starting from a (randomized) initial state.

Visualizations are shown on the following page ↓

18

Published as a conference paper at ICLR 2023

Table 5. MoDem hyperparameters. We list all relevant hy-
perparameters for our proposed method below. Highlighted
rows are unique to MoDem, whereas the remainder are in-
herited from TD-MPC but included for completeness.

Hyperparameter Value

Discount factor (γ) 0.99
Image resolution 224× 224
Frame stack 2
Data augmentation ±10 pixel image shifts
Action repeat 2
Seed steps 5, 000
Pretraining objective Behavior cloning
Seeding policy Behavior cloning
Number of demos 5
Demo sampling ratio 75%→ 25% (100k steps)
Replay buffer size Unlimited
Sampling technique PER (α = 0.6, β = 0.4)
Planning horizon (H) 5
Initial parameters (µ0, σ0) (0, 2)
Population size 512
Elite fraction 64
Iterations 8 (Humanoid, Adroit)

4 (Meta-World)
6 (otherwise)

Policy fraction 5%
Number of particles 1
Momentum coefficient 0.1
Temperature (τ) 0.5
MLP hidden size 512
MLP activation ELU
Latent dimension 100 (Humanoid)

50 (otherwise)
Learning rate 3e-4
Optimizer (θ) Adam (β1 = 0.9, β2 = 0.999)
Temporal coefficient (λ) 0.5
Reward loss coefficient (c1) 0.5
Value loss coefficient (c2) 0.1
Consistency loss coefficient (c3) 2
Exploration schedule (ϵ) 0.1→ 0.05 (25k steps)
Batch size 256
Momentum coefficient (ζ) 0.99
Steps per gradient update 1
θ̄ update frequency 2

19

Published as a conference paper at ICLR 2023

D
oo

r
H

am
m

er
Pe

n

t=0 t=20 t=40 t=60 t=80 t=100

B
in

Pi
ck

in
g

St
ic

k
Pu

ll
Pi

ck
Pl

ac
e

W
al

l
H

um
an

oi
d

W
al

k
Q

ua
dr

up
ed

R
un

Figure 13. Task visualizations. We visualize demonstration trajectories for 8 of the total of 21 tasks
that we consider. The raw 224× 224 RGB image observations that our model takes as input together
with proprioceptive information are shown; Adroit human demonstrations are visualized at key time
steps, whereas Meta-World and DMControl observations are visualized at equal time intervals of 20
interaction steps, starting at a random initial state. Actual episode lengths are 100 for Adroit Pen, 200
for Adroit Door, 250 for Adroit Hammer, 200 for Meta-World tasks, and 1000 for DMControl.

20

	Introduction
	Preliminaries
	Model-Based Reinforcement Learning with Demonstrations
	Results & Discussion
	Related Work
	Conclusion
	Additional Results
	Extended Background: TD-MPC
	Wall-time
	Extended Experimental Setup
	Adroit
	Meta-World
	DMControl

	Implementation Details
	Task visualizations

